agsamantha/node_modules/langchain/dist/agents/openai_functions/index.js
2024-10-02 15:15:21 -05:00

240 lines
8.8 KiB
JavaScript

import { RunnablePassthrough } from "@langchain/core/runnables";
import { convertToOpenAIFunction } from "@langchain/core/utils/function_calling";
import { AIMessage, FunctionMessage, } from "@langchain/core/messages";
import { ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, } from "@langchain/core/prompts";
import { Agent, AgentRunnableSequence } from "../agent.js";
import { PREFIX } from "./prompt.js";
import { LLMChain } from "../../chains/llm_chain.js";
import { OpenAIFunctionsAgentOutputParser, } from "../openai/output_parser.js";
import { formatToOpenAIFunctionMessages } from "../format_scratchpad/openai_functions.js";
/**
* Checks if the given action is a FunctionsAgentAction.
* @param action The action to check.
* @returns True if the action is a FunctionsAgentAction, false otherwise.
*/
function isFunctionsAgentAction(action) {
return action.messageLog !== undefined;
}
function _convertAgentStepToMessages(action, observation) {
if (isFunctionsAgentAction(action) && action.messageLog !== undefined) {
return action.messageLog?.concat(new FunctionMessage(observation, action.tool));
}
else {
return [new AIMessage(action.log)];
}
}
export function _formatIntermediateSteps(intermediateSteps) {
return intermediateSteps.flatMap(({ action, observation }) => _convertAgentStepToMessages(action, observation));
}
/**
* Class representing an agent for the OpenAI chat model in LangChain. It
* extends the Agent class and provides additional functionality specific
* to the OpenAIAgent type.
*
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createOpenAIFunctionsAgent.html | createOpenAIFunctionsAgent method instead}.
*/
export class OpenAIAgent extends Agent {
static lc_name() {
return "OpenAIAgent";
}
_agentType() {
return "openai-functions";
}
observationPrefix() {
return "Observation: ";
}
llmPrefix() {
return "Thought:";
}
_stop() {
return ["Observation:"];
}
constructor(input) {
super({ ...input, outputParser: undefined });
Object.defineProperty(this, "lc_namespace", {
enumerable: true,
configurable: true,
writable: true,
value: ["langchain", "agents", "openai"]
});
Object.defineProperty(this, "tools", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "outputParser", {
enumerable: true,
configurable: true,
writable: true,
value: new OpenAIFunctionsAgentOutputParser()
});
this.tools = input.tools;
}
/**
* Creates a prompt for the OpenAIAgent using the provided tools and
* fields.
* @param _tools The tools to be used in the prompt.
* @param fields Optional fields for creating the prompt.
* @returns A BasePromptTemplate object representing the created prompt.
*/
static createPrompt(_tools, fields) {
const { prefix = PREFIX } = fields || {};
return ChatPromptTemplate.fromMessages([
SystemMessagePromptTemplate.fromTemplate(prefix),
new MessagesPlaceholder("chat_history"),
HumanMessagePromptTemplate.fromTemplate("{input}"),
new MessagesPlaceholder("agent_scratchpad"),
]);
}
/**
* Creates an OpenAIAgent from a BaseLanguageModel and a list of tools.
* @param llm The BaseLanguageModel to use.
* @param tools The tools to be used by the agent.
* @param args Optional arguments for creating the agent.
* @returns An instance of OpenAIAgent.
*/
static fromLLMAndTools(llm, tools, args) {
OpenAIAgent.validateTools(tools);
if (llm._modelType() !== "base_chat_model" || llm._llmType() !== "openai") {
throw new Error("OpenAIAgent requires an OpenAI chat model");
}
const prompt = OpenAIAgent.createPrompt(tools, args);
const chain = new LLMChain({
prompt,
llm,
callbacks: args?.callbacks,
});
return new OpenAIAgent({
llmChain: chain,
allowedTools: tools.map((t) => t.name),
tools,
});
}
/**
* Constructs a scratch pad from a list of agent steps.
* @param steps The steps to include in the scratch pad.
* @returns A string or a list of BaseMessages representing the constructed scratch pad.
*/
async constructScratchPad(steps) {
return _formatIntermediateSteps(steps);
}
/**
* Plans the next action or finish state of the agent based on the
* provided steps, inputs, and optional callback manager.
* @param steps The steps to consider in planning.
* @param inputs The inputs to consider in planning.
* @param callbackManager Optional CallbackManager to use in planning.
* @returns A Promise that resolves to an AgentAction or AgentFinish object representing the planned action or finish state.
*/
async plan(steps, inputs, callbackManager) {
// Add scratchpad and stop to inputs
const thoughts = await this.constructScratchPad(steps);
const newInputs = {
...inputs,
agent_scratchpad: thoughts,
};
if (this._stop().length !== 0) {
newInputs.stop = this._stop();
}
// Split inputs between prompt and llm
const llm = this.llmChain.llm;
const valuesForPrompt = { ...newInputs };
const valuesForLLM = {
functions: this.tools.map((tool) => convertToOpenAIFunction(tool)),
};
const callKeys = "callKeys" in this.llmChain.llm ? this.llmChain.llm.callKeys : [];
for (const key of callKeys) {
if (key in inputs) {
valuesForLLM[key] =
inputs[key];
delete valuesForPrompt[key];
}
}
const promptValue = await this.llmChain.prompt.formatPromptValue(valuesForPrompt);
const message = await llm.invoke(promptValue.toChatMessages(), {
...valuesForLLM,
callbacks: callbackManager,
});
return this.outputParser.parseAIMessage(message);
}
}
/**
* Create an agent that uses OpenAI-style function calling.
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
* @returns A runnable sequence representing an agent. It takes as input all the same input
* variables as the prompt passed in does. It returns as output either an
* AgentAction or AgentFinish.
*
* @example
* ```typescript
* import { AgentExecutor, createOpenAIFunctionsAgent } from "langchain/agents";
* import { pull } from "langchain/hub";
* import type { ChatPromptTemplate } from "@langchain/core/prompts";
* import { AIMessage, HumanMessage } from "@langchain/core/messages";
*
* import { ChatOpenAI } from "@langchain/openai";
*
* // Define the tools the agent will have access to.
* const tools = [...];
*
* // Get the prompt to use - you can modify this!
* // If you want to see the prompt in full, you can at:
* // https://smith.langchain.com/hub/hwchase17/openai-functions-agent
* const prompt = await pull<ChatPromptTemplate>(
* "hwchase17/openai-functions-agent"
* );
*
* const llm = new ChatOpenAI({
* temperature: 0,
* });
*
* const agent = await createOpenAIFunctionsAgent({
* llm,
* tools,
* prompt,
* });
*
* const agentExecutor = new AgentExecutor({
* agent,
* tools,
* });
*
* const result = await agentExecutor.invoke({
* input: "what is LangChain?",
* });
*
* // With chat history
* const result2 = await agentExecutor.invoke({
* input: "what's my name?",
* chat_history: [
* new HumanMessage("hi! my name is cob"),
* new AIMessage("Hello Cob! How can I assist you today?"),
* ],
* });
* ```
*/
export async function createOpenAIFunctionsAgent({ llm, tools, prompt, streamRunnable, }) {
if (!prompt.inputVariables.includes("agent_scratchpad")) {
throw new Error([
`Prompt must have an input variable named "agent_scratchpad".`,
`Found ${JSON.stringify(prompt.inputVariables)} instead.`,
].join("\n"));
}
const llmWithTools = llm.bind({
functions: tools.map((tool) => convertToOpenAIFunction(tool)),
});
const agent = AgentRunnableSequence.fromRunnables([
RunnablePassthrough.assign({
agent_scratchpad: (input) => formatToOpenAIFunctionMessages(input.steps),
}),
prompt,
llmWithTools,
new OpenAIFunctionsAgentOutputParser(),
], {
name: "OpenAIFunctionsAgent",
streamRunnable,
singleAction: true,
});
return agent;
}