agsamantha/node_modules/langchain/dist/agents/openai_tools/index.js
2024-10-02 15:15:21 -05:00

86 lines
2.9 KiB
JavaScript

import { RunnablePassthrough } from "@langchain/core/runnables";
import { convertToOpenAITool } from "@langchain/core/utils/function_calling";
import { formatToOpenAIToolMessages } from "../format_scratchpad/openai_tools.js";
import { OpenAIToolsAgentOutputParser, } from "./output_parser.js";
import { AgentRunnableSequence } from "../agent.js";
export { OpenAIToolsAgentOutputParser };
/**
* Create an agent that uses OpenAI-style tool calling.
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
* @returns A runnable sequence representing an agent. It takes as input all the same input
* variables as the prompt passed in does. It returns as output either an
* AgentAction or AgentFinish.
*
* @example
* ```typescript
* import { AgentExecutor, createOpenAIToolsAgent } from "langchain/agents";
* import { pull } from "langchain/hub";
* import type { ChatPromptTemplate } from "@langchain/core/prompts";
* import { AIMessage, HumanMessage } from "@langchain/core/messages";
*
* import { ChatOpenAI } from "@langchain/openai";
*
* // Define the tools the agent will have access to.
* const tools = [...];
*
* // Get the prompt to use - you can modify this!
* // If you want to see the prompt in full, you can at:
* // https://smith.langchain.com/hub/hwchase17/openai-tools-agent
* const prompt = await pull<ChatPromptTemplate>(
* "hwchase17/openai-tools-agent"
* );
*
* const llm = new ChatOpenAI({
* temperature: 0,
* modelName: "gpt-3.5-turbo-1106",
* });
*
* const agent = await createOpenAIToolsAgent({
* llm,
* tools,
* prompt,
* });
*
* const agentExecutor = new AgentExecutor({
* agent,
* tools,
* });
*
* const result = await agentExecutor.invoke({
* input: "what is LangChain?",
* });
*
* // With chat history
* const result2 = await agentExecutor.invoke({
* input: "what's my name?",
* chat_history: [
* new HumanMessage("hi! my name is cob"),
* new AIMessage("Hello Cob! How can I assist you today?"),
* ],
* });
* ```
*/
export async function createOpenAIToolsAgent({ llm, tools, prompt, streamRunnable, }) {
if (!prompt.inputVariables.includes("agent_scratchpad")) {
throw new Error([
`Prompt must have an input variable named "agent_scratchpad".`,
`Found ${JSON.stringify(prompt.inputVariables)} instead.`,
].join("\n"));
}
const modelWithTools = llm.bind({
tools: tools.map((tool) => convertToOpenAITool(tool)),
});
const agent = AgentRunnableSequence.fromRunnables([
RunnablePassthrough.assign({
agent_scratchpad: (input) => formatToOpenAIToolMessages(input.steps),
}),
prompt,
modelWithTools,
new OpenAIToolsAgentOutputParser(),
], {
name: "OpenAIToolsAgent",
streamRunnable,
singleAction: false,
});
return agent;
}