agsamantha/node_modules/@langchain/community/dist/chat_models/bedrock/web.d.ts
2024-10-02 15:15:21 -05:00

409 lines
12 KiB
TypeScript

import { EventStreamCodec } from "@smithy/eventstream-codec";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import { type BaseChatModelParams, BaseChatModel, LangSmithParams, BaseChatModelCallOptions, BindToolsInput } from "@langchain/core/language_models/chat_models";
import { BaseLanguageModelInput } from "@langchain/core/language_models/base";
import { Runnable } from "@langchain/core/runnables";
import { AIMessageChunk, BaseMessage, BaseMessageChunk } from "@langchain/core/messages";
import { ChatGenerationChunk, ChatResult } from "@langchain/core/outputs";
import type { SerializedFields } from "../../load/map_keys.js";
import { BaseBedrockInput, type CredentialType } from "../../utils/bedrock/index.js";
type AnthropicTool = Record<string, unknown>;
type BedrockChatToolType = BindToolsInput | AnthropicTool;
export declare function convertMessagesToPromptAnthropic(messages: BaseMessage[], humanPrompt?: string, aiPrompt?: string): string;
/**
* Function that converts an array of messages into a single string prompt
* that can be used as input for a chat model. It delegates the conversion
* logic to the appropriate provider-specific function.
* @param messages Array of messages to be converted.
* @param options Options to be used during the conversion.
* @returns A string prompt that can be used as input for a chat model.
*/
export declare function convertMessagesToPrompt(messages: BaseMessage[], provider: string): string;
export interface BedrockChatCallOptions extends BaseChatModelCallOptions {
tools?: BedrockChatToolType[];
}
export interface BedrockChatFields extends Partial<BaseBedrockInput>, BaseChatModelParams {
}
/**
* AWS Bedrock chat model integration.
*
* Setup:
* Install `@langchain/community` and set the following environment variables:
*
* ```bash
* npm install @langchain/openai
* export AWS_REGION="your-aws-region"
* export AWS_SECRET_ACCESS_KEY="your-aws-secret-access-key"
* export AWS_ACCESS_KEY_ID="your-aws-access-key-id"
* ```
*
* ## [Constructor args](/classes/langchain_community_chat_models_bedrock.BedrockChat.html#constructor)
*
* ## [Runtime args](/interfaces/langchain_community_chat_models_bedrock_web.BedrockChatCallOptions.html)
*
* Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
* They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
*
* ```typescript
* // When calling `.bind`, call options should be passed via the first argument
* const llmWithArgsBound = llm.bind({
* stop: ["\n"],
* tools: [...],
* });
*
* // When calling `.bindTools`, call options should be passed via the second argument
* const llmWithTools = llm.bindTools(
* [...],
* {
* stop: ["stop on this token!"],
* }
* );
* ```
*
* ## Examples
*
* <details open>
* <summary><strong>Instantiate</strong></summary>
*
* ```typescript
* import { BedrockChat } from '@langchain/community/chat_models/bedrock/web';
*
* const llm = new BedrockChat({
* region: process.env.AWS_REGION,
* maxRetries: 0,
* model: "anthropic.claude-3-5-sonnet-20240620-v1:0",
* temperature: 0,
* maxTokens: undefined,
* // other params...
* });
*
* // You can also pass credentials in explicitly:
* const llmWithCredentials = new BedrockChat({
* region: process.env.BEDROCK_AWS_REGION,
* model: "anthropic.claude-3-5-sonnet-20240620-v1:0",
* credentials: {
* secretAccessKey: process.env.BEDROCK_AWS_SECRET_ACCESS_KEY!,
* accessKeyId: process.env.BEDROCK_AWS_ACCESS_KEY_ID!,
* },
* });
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Invoking</strong></summary>
*
* ```typescript
* const input = `Translate "I love programming" into French.`;
*
* // Models also accept a list of chat messages or a formatted prompt
* const result = await llm.invoke(input);
* console.log(result);
* ```
*
* ```txt
* AIMessage {
* "content": "Here's the translation to French:\n\nJ'adore la programmation.",
* "additional_kwargs": {
* "id": "msg_bdrk_01HCZHa2mKbMZeTeHjLDd286"
* },
* "response_metadata": {
* "type": "message",
* "role": "assistant",
* "model": "claude-3-5-sonnet-20240620",
* "stop_reason": "end_turn",
* "stop_sequence": null,
* "usage": {
* "input_tokens": 25,
* "output_tokens": 19
* }
* },
* "tool_calls": [],
* "invalid_tool_calls": []
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Streaming Chunks</strong></summary>
*
* ```typescript
* for await (const chunk of await llm.stream(input)) {
* console.log(chunk);
* }
* ```
*
* ```txt
* AIMessageChunk {
* "content": "",
* "additional_kwargs": {
* "id": "msg_bdrk_01RhFuGR9uJ2bj5GbdAma4y6"
* },
* "response_metadata": {
* "type": "message",
* "role": "assistant",
* "model": "claude-3-5-sonnet-20240620",
* "stop_reason": null,
* "stop_sequence": null
* },
* }
* AIMessageChunk {
* "content": "J",
* }
* AIMessageChunk {
* "content": "'adore la",
* }
* AIMessageChunk {
* "content": " programmation.",
* }
* AIMessageChunk {
* "content": "",
* "additional_kwargs": {
* "stop_reason": "end_turn",
* "stop_sequence": null
* },
* }
* AIMessageChunk {
* "content": "",
* "response_metadata": {
* "amazon-bedrock-invocationMetrics": {
* "inputTokenCount": 25,
* "outputTokenCount": 11,
* "invocationLatency": 659,
* "firstByteLatency": 506
* }
* },
* "usage_metadata": {
* "input_tokens": 25,
* "output_tokens": 11,
* "total_tokens": 36
* }
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Aggregate Streamed Chunks</strong></summary>
*
* ```typescript
* import { AIMessageChunk } from '@langchain/core/messages';
* import { concat } from '@langchain/core/utils/stream';
*
* const stream = await llm.stream(input);
* let full: AIMessageChunk | undefined;
* for await (const chunk of stream) {
* full = !full ? chunk : concat(full, chunk);
* }
* console.log(full);
* ```
*
* ```txt
* AIMessageChunk {
* "content": "J'adore la programmation.",
* "additional_kwargs": {
* "id": "msg_bdrk_017b6PuBybA51P5LZ9K6gZHm",
* "stop_reason": "end_turn",
* "stop_sequence": null
* },
* "response_metadata": {
* "type": "message",
* "role": "assistant",
* "model": "claude-3-5-sonnet-20240620",
* "stop_reason": null,
* "stop_sequence": null,
* "amazon-bedrock-invocationMetrics": {
* "inputTokenCount": 25,
* "outputTokenCount": 11,
* "invocationLatency": 1181,
* "firstByteLatency": 1177
* }
* },
* "usage_metadata": {
* "input_tokens": 25,
* "output_tokens": 11,
* "total_tokens": 36
* }
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Bind tools</strong></summary>
*
* ```typescript
* import { z } from 'zod';
* import { AIMessage } from '@langchain/core/messages';
*
* const GetWeather = {
* name: "GetWeather",
* description: "Get the current weather in a given location",
* schema: z.object({
* location: z.string().describe("The city and state, e.g. San Francisco, CA")
* }),
* }
*
* const GetPopulation = {
* name: "GetPopulation",
* description: "Get the current population in a given location",
* schema: z.object({
* location: z.string().describe("The city and state, e.g. San Francisco, CA")
* }),
* }
*
* const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
* const aiMsg: AIMessage = await llmWithTools.invoke(
* "Which city is hotter today and which is bigger: LA or NY?"
* );
* console.log(aiMsg.tool_calls);
* ```
*
* ```txt
* [
* {
* name: 'GetWeather',
* args: { location: 'Los Angeles, CA' },
* id: 'toolu_bdrk_01R2daqwHR931r4baVNzbe38',
* type: 'tool_call'
* },
* {
* name: 'GetWeather',
* args: { location: 'New York, NY' },
* id: 'toolu_bdrk_01WDadwNc7PGqVZvCN7Dr7eD',
* type: 'tool_call'
* },
* {
* name: 'GetPopulation',
* args: { location: 'Los Angeles, CA' },
* id: 'toolu_bdrk_014b8zLkpAgpxrPfewKinJFc',
* type: 'tool_call'
* },
* {
* name: 'GetPopulation',
* args: { location: 'New York, NY' },
* id: 'toolu_bdrk_01Tt8K2MUP15kNuMDFCLEFKN',
* type: 'tool_call'
* }
* ]
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Structured Output</strong></summary>
*
* ```typescript
* const Joke = z.object({
* setup: z.string().describe("The setup of the joke"),
* punchline: z.string().describe("The punchline to the joke"),
* rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
* }).describe('Joke to tell user.');
*
* const structuredLlm = llm.withStructuredOutput(Joke);
* const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
* console.log(jokeResult);
* ```
*
* ```txt
* {
* setup: "Why don't cats play poker in the jungle?",
* punchline: 'Too many cheetahs!'
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Response Metadata</strong></summary>
*
* ```typescript
* const aiMsgForResponseMetadata = await llm.invoke(input);
* console.log(aiMsgForResponseMetadata.response_metadata);
* ```
*
* ```txt
* "response_metadata": {
* "type": "message",
* "role": "assistant",
* "model": "claude-3-5-sonnet-20240620",
* "stop_reason": "end_turn",
* "stop_sequence": null,
* "usage": {
* "input_tokens": 25,
* "output_tokens": 19
* }
* }
* ```
* </details>
*/
export declare class BedrockChat extends BaseChatModel<BedrockChatCallOptions, AIMessageChunk> implements BaseBedrockInput {
model: string;
modelProvider: string;
region: string;
credentials: CredentialType;
temperature?: number | undefined;
maxTokens?: number | undefined;
fetchFn: typeof fetch;
endpointHost?: string;
/** @deprecated Use as a call option using .bind() instead. */
stopSequences?: string[];
modelKwargs?: Record<string, unknown>;
codec: EventStreamCodec;
streaming: boolean;
usesMessagesApi: boolean;
lc_serializable: boolean;
trace?: "ENABLED" | "DISABLED";
guardrailIdentifier: string;
guardrailVersion: string;
guardrailConfig?: {
tagSuffix: string;
streamProcessingMode: "SYNCHRONOUS" | "ASYNCHRONOUS";
};
get lc_aliases(): Record<string, string>;
get lc_secrets(): {
[key: string]: string;
} | undefined;
get lc_attributes(): SerializedFields | undefined;
_identifyingParams(): Record<string, string>;
_llmType(): string;
static lc_name(): string;
constructor(fields?: BedrockChatFields);
invocationParams(options?: this["ParsedCallOptions"]): {
tools: AnthropicTool[] | undefined;
temperature: number | undefined;
max_tokens: number | undefined;
stop: string[] | undefined;
modelKwargs: Record<string, unknown> | undefined;
guardrailConfig: {
tagSuffix: string;
streamProcessingMode: "SYNCHRONOUS" | "ASYNCHRONOUS";
} | undefined;
};
getLsParams(options: this["ParsedCallOptions"]): LangSmithParams;
_generate(messages: BaseMessage[], options: Partial<this["ParsedCallOptions"]>, runManager?: CallbackManagerForLLMRun): Promise<ChatResult>;
_generateNonStreaming(messages: BaseMessage[], options: Partial<this["ParsedCallOptions"]>, _runManager?: CallbackManagerForLLMRun): Promise<ChatResult>;
_signedFetch(messages: BaseMessage[], options: this["ParsedCallOptions"], fields: {
bedrockMethod: "invoke" | "invoke-with-response-stream";
endpointHost: string;
provider: string;
}): Promise<Response>;
_streamResponseChunks(messages: BaseMessage[], options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): AsyncGenerator<ChatGenerationChunk>;
_readChunks(reader: any): {
[Symbol.asyncIterator](): AsyncGenerator<Uint8Array, void, unknown>;
};
_combineLLMOutput(): {};
bindTools(tools: BedrockChatToolType[], _kwargs?: Partial<this["ParsedCallOptions"]>): Runnable<BaseLanguageModelInput, BaseMessageChunk, this["ParsedCallOptions"]>;
}
/**
* @deprecated Use `BedrockChat` instead.
*/
export declare const ChatBedrock: typeof BedrockChat;
export {};