113 lines
4 KiB
JavaScript
113 lines
4 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.HuggingFaceTransformersEmbeddings = void 0;
|
|
const embeddings_1 = require("@langchain/core/embeddings");
|
|
const chunk_array_1 = require("@langchain/core/utils/chunk_array");
|
|
/**
|
|
* @example
|
|
* ```typescript
|
|
* const model = new HuggingFaceTransformersEmbeddings({
|
|
* model: "Xenova/all-MiniLM-L6-v2",
|
|
* });
|
|
*
|
|
* // Embed a single query
|
|
* const res = await model.embedQuery(
|
|
* "What would be a good company name for a company that makes colorful socks?"
|
|
* );
|
|
* console.log({ res });
|
|
*
|
|
* // Embed multiple documents
|
|
* const documentRes = await model.embedDocuments(["Hello world", "Bye bye"]);
|
|
* console.log({ documentRes });
|
|
* ```
|
|
*/
|
|
class HuggingFaceTransformersEmbeddings extends embeddings_1.Embeddings {
|
|
constructor(fields) {
|
|
super(fields ?? {});
|
|
Object.defineProperty(this, "modelName", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: "Xenova/all-MiniLM-L6-v2"
|
|
});
|
|
Object.defineProperty(this, "model", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: "Xenova/all-MiniLM-L6-v2"
|
|
});
|
|
Object.defineProperty(this, "batchSize", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: 512
|
|
});
|
|
Object.defineProperty(this, "stripNewLines", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: true
|
|
});
|
|
Object.defineProperty(this, "timeout", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "pretrainedOptions", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "pipelineOptions", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "pipelinePromise", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
|
|
this.model = this.modelName;
|
|
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
|
|
this.timeout = fields?.timeout;
|
|
this.pretrainedOptions = fields?.pretrainedOptions ?? {};
|
|
this.pipelineOptions = {
|
|
pooling: "mean",
|
|
normalize: true,
|
|
...fields?.pipelineOptions,
|
|
};
|
|
}
|
|
async embedDocuments(texts) {
|
|
const batches = (0, chunk_array_1.chunkArray)(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize);
|
|
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
|
|
const batchResponses = await Promise.all(batchRequests);
|
|
const embeddings = [];
|
|
for (let i = 0; i < batchResponses.length; i += 1) {
|
|
const batchResponse = batchResponses[i];
|
|
for (let j = 0; j < batchResponse.length; j += 1) {
|
|
embeddings.push(batchResponse[j]);
|
|
}
|
|
}
|
|
return embeddings;
|
|
}
|
|
async embedQuery(text) {
|
|
const data = await this.runEmbedding([
|
|
this.stripNewLines ? text.replace(/\n/g, " ") : text,
|
|
]);
|
|
return data[0];
|
|
}
|
|
async runEmbedding(texts) {
|
|
const pipe = await (this.pipelinePromise ??= (await import("@xenova/transformers")).pipeline("feature-extraction", this.model, this.pretrainedOptions));
|
|
return this.caller.call(async () => {
|
|
const output = await pipe(texts, this.pipelineOptions);
|
|
return output.tolist();
|
|
});
|
|
}
|
|
}
|
|
exports.HuggingFaceTransformersEmbeddings = HuggingFaceTransformersEmbeddings;
|