agsamantha/node_modules/@langchain/community/dist/vectorstores/convex.cjs
2024-10-02 15:15:21 -05:00

177 lines
7.2 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.ConvexVectorStore = void 0;
// eslint-disable-next-line import/no-extraneous-dependencies
const server_1 = require("convex/server");
const vectorstores_1 = require("@langchain/core/vectorstores");
const documents_1 = require("@langchain/core/documents");
/**
* Class that is a wrapper around Convex storage and vector search. It is used
* to insert embeddings in Convex documents with a vector search index,
* and perform a vector search on them.
*
* ConvexVectorStore does NOT implement maxMarginalRelevanceSearch.
*/
class ConvexVectorStore extends vectorstores_1.VectorStore {
_vectorstoreType() {
return "convex";
}
constructor(embeddings, config) {
super(embeddings, config);
Object.defineProperty(this, "ctx", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "table", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "index", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "textField", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "embeddingField", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "metadataField", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "insert", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "get", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.ctx = config.ctx;
this.table = config.table ?? "documents";
this.index = config.index ?? "byEmbedding";
this.textField = config.textField ?? "text";
this.embeddingField =
config.embeddingField ?? "embedding";
this.metadataField =
config.metadataField ?? "metadata";
this.insert =
// eslint-disable-next-line @typescript-eslint/no-explicit-any
config.insert ?? (0, server_1.makeFunctionReference)("langchain/db:insert");
// eslint-disable-next-line @typescript-eslint/no-explicit-any
this.get = config.get ?? (0, server_1.makeFunctionReference)("langchain/db:get");
}
/**
* Add vectors and their corresponding documents to the Convex table.
* @param vectors Vectors to be added.
* @param documents Corresponding documents to be added.
* @returns Promise that resolves when the vectors and documents have been added.
*/
async addVectors(vectors, documents) {
const convexDocuments = vectors.map((embedding, idx) => ({
[this.textField]: documents[idx].pageContent,
[this.embeddingField]: embedding,
[this.metadataField]: documents[idx].metadata,
}));
// TODO: Remove chunking when Convex handles the concurrent requests correctly
const PAGE_SIZE = 16;
for (let i = 0; i < convexDocuments.length; i += PAGE_SIZE) {
await Promise.all(convexDocuments.slice(i, i + PAGE_SIZE).map((document) => this.ctx.runMutation(this.insert, {
table: this.table,
document,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
})));
}
}
/**
* Add documents to the Convex table. It first converts
* the documents to vectors using the embeddings and then calls the
* addVectors method.
* @param documents Documents to be added.
* @returns Promise that resolves when the documents have been added.
*/
async addDocuments(documents) {
const texts = documents.map(({ pageContent }) => pageContent);
return this.addVectors(await this.embeddings.embedDocuments(texts), documents);
}
/**
* Similarity search on the vectors stored in the
* Convex table. It returns a list of documents and their
* corresponding similarity scores.
* @param query Query vector for the similarity search.
* @param k Number of nearest neighbors to return.
* @param filter Optional filter to be applied.
* @returns Promise that resolves to a list of documents and their corresponding similarity scores.
*/
async similaritySearchVectorWithScore(query, k, filter) {
const idsAndScores = await this.ctx.vectorSearch(this.table, this.index, {
vector: query,
limit: k,
filter: filter?.filter,
});
const documents = await Promise.all(idsAndScores.map(({ _id }) =>
// eslint-disable-next-line @typescript-eslint/no-explicit-any
this.ctx.runQuery(this.get, { id: _id })));
return documents.map(({ [this.textField]: text, [this.embeddingField]: embedding, [this.metadataField]: metadata, }, idx) => [
new documents_1.Document({
pageContent: text,
metadata: {
...metadata,
...(filter?.includeEmbeddings ? { embedding } : null),
},
}),
idsAndScores[idx]._score,
]);
}
/**
* Static method to create an instance of ConvexVectorStore from a
* list of texts. It first converts the texts to vectors and then adds
* them to the Convex table.
* @param texts List of texts to be converted to vectors.
* @param metadatas Metadata for the texts.
* @param embeddings Embeddings to be used for conversion.
* @param dbConfig Database configuration for Convex.
* @returns Promise that resolves to a new instance of ConvexVectorStore.
*/
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
const docs = texts.map((text, i) => new documents_1.Document({
pageContent: text,
metadata: Array.isArray(metadatas) ? metadatas[i] : metadatas,
}));
return ConvexVectorStore.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Static method to create an instance of ConvexVectorStore from a
* list of documents. It first converts the documents to vectors and then
* adds them to the Convex table.
* @param docs List of documents to be converted to vectors.
* @param embeddings Embeddings to be used for conversion.
* @param dbConfig Database configuration for Convex.
* @returns Promise that resolves to a new instance of ConvexVectorStore.
*/
static async fromDocuments(docs, embeddings, dbConfig) {
const instance = new this(embeddings, dbConfig);
await instance.addDocuments(docs);
return instance;
}
}
exports.ConvexVectorStore = ConvexVectorStore;