394 lines
16 KiB
JavaScript
394 lines
16 KiB
JavaScript
"use strict";
|
|
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
|
|
if (k2 === undefined) k2 = k;
|
|
var desc = Object.getOwnPropertyDescriptor(m, k);
|
|
if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
|
|
desc = { enumerable: true, get: function() { return m[k]; } };
|
|
}
|
|
Object.defineProperty(o, k2, desc);
|
|
}) : (function(o, m, k, k2) {
|
|
if (k2 === undefined) k2 = k;
|
|
o[k2] = m[k];
|
|
}));
|
|
var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
|
|
Object.defineProperty(o, "default", { enumerable: true, value: v });
|
|
}) : function(o, v) {
|
|
o["default"] = v;
|
|
});
|
|
var __importStar = (this && this.__importStar) || function (mod) {
|
|
if (mod && mod.__esModule) return mod;
|
|
var result = {};
|
|
if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
|
|
__setModuleDefault(result, mod);
|
|
return result;
|
|
};
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.FaissStore = void 0;
|
|
const uuid = __importStar(require("uuid"));
|
|
const vectorstores_1 = require("@langchain/core/vectorstores");
|
|
const documents_1 = require("@langchain/core/documents");
|
|
const in_memory_js_1 = require("../stores/doc/in_memory.cjs");
|
|
/**
|
|
* A class that wraps the FAISS (Facebook AI Similarity Search) vector
|
|
* database for efficient similarity search and clustering of dense
|
|
* vectors.
|
|
*/
|
|
class FaissStore extends vectorstores_1.SaveableVectorStore {
|
|
_vectorstoreType() {
|
|
return "faiss";
|
|
}
|
|
getMapping() {
|
|
return this._mapping;
|
|
}
|
|
getDocstore() {
|
|
return this.docstore;
|
|
}
|
|
constructor(embeddings, args) {
|
|
super(embeddings, args);
|
|
Object.defineProperty(this, "_index", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "_mapping", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "docstore", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "args", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
this.args = args;
|
|
this._index = args.index;
|
|
this._mapping = args.mapping ?? {};
|
|
this.embeddings = embeddings;
|
|
this.docstore = args?.docstore ?? new in_memory_js_1.SynchronousInMemoryDocstore();
|
|
}
|
|
/**
|
|
* Adds an array of Document objects to the store.
|
|
* @param documents An array of Document objects.
|
|
* @returns A Promise that resolves when the documents have been added.
|
|
*/
|
|
async addDocuments(documents, options) {
|
|
const texts = documents.map(({ pageContent }) => pageContent);
|
|
return this.addVectors(await this.embeddings.embedDocuments(texts), documents, options);
|
|
}
|
|
get index() {
|
|
if (!this._index) {
|
|
throw new Error("Vector store not initialised yet. Try calling `fromTexts`, `fromDocuments` or `fromIndex` first.");
|
|
}
|
|
return this._index;
|
|
}
|
|
set index(index) {
|
|
this._index = index;
|
|
}
|
|
/**
|
|
* Adds an array of vectors and their corresponding Document objects to
|
|
* the store.
|
|
* @param vectors An array of vectors.
|
|
* @param documents An array of Document objects corresponding to the vectors.
|
|
* @returns A Promise that resolves with an array of document IDs when the vectors and documents have been added.
|
|
*/
|
|
async addVectors(vectors, documents, options) {
|
|
if (vectors.length === 0) {
|
|
return [];
|
|
}
|
|
if (vectors.length !== documents.length) {
|
|
throw new Error(`Vectors and documents must have the same length`);
|
|
}
|
|
const dv = vectors[0].length;
|
|
if (!this._index) {
|
|
const { IndexFlatL2 } = await FaissStore.importFaiss();
|
|
this._index = new IndexFlatL2(dv);
|
|
}
|
|
const d = this.index.getDimension();
|
|
if (dv !== d) {
|
|
throw new Error(`Vectors must have the same length as the number of dimensions (${d})`);
|
|
}
|
|
const docstoreSize = this.index.ntotal();
|
|
const documentIds = options?.ids ?? documents.map(() => uuid.v4());
|
|
for (let i = 0; i < vectors.length; i += 1) {
|
|
const documentId = documentIds[i];
|
|
const id = docstoreSize + i;
|
|
this.index.add(vectors[i]);
|
|
this._mapping[id] = documentId;
|
|
this.docstore.add({ [documentId]: documents[i] });
|
|
}
|
|
return documentIds;
|
|
}
|
|
/**
|
|
* Performs a similarity search in the vector store using a query vector
|
|
* and returns the top k results along with their scores.
|
|
* @param query A query vector.
|
|
* @param k The number of top results to return.
|
|
* @returns A Promise that resolves with an array of tuples, each containing a Document and its corresponding score.
|
|
*/
|
|
async similaritySearchVectorWithScore(query, k) {
|
|
const d = this.index.getDimension();
|
|
if (query.length !== d) {
|
|
throw new Error(`Query vector must have the same length as the number of dimensions (${d})`);
|
|
}
|
|
if (k > this.index.ntotal()) {
|
|
const total = this.index.ntotal();
|
|
console.warn(`k (${k}) is greater than the number of elements in the index (${total}), setting k to ${total}`);
|
|
// eslint-disable-next-line no-param-reassign
|
|
k = total;
|
|
}
|
|
const result = this.index.search(query, k);
|
|
return result.labels.map((id, index) => {
|
|
const uuid = this._mapping[id];
|
|
return [this.docstore.search(uuid), result.distances[index]];
|
|
});
|
|
}
|
|
/**
|
|
* Saves the current state of the FaissStore to a specified directory.
|
|
* @param directory The directory to save the state to.
|
|
* @returns A Promise that resolves when the state has been saved.
|
|
*/
|
|
async save(directory) {
|
|
const fs = await import("node:fs/promises");
|
|
const path = await import("node:path");
|
|
await fs.mkdir(directory, { recursive: true });
|
|
await Promise.all([
|
|
this.index.write(path.join(directory, "faiss.index")),
|
|
await fs.writeFile(path.join(directory, "docstore.json"), JSON.stringify([
|
|
Array.from(this.docstore._docs.entries()),
|
|
this._mapping,
|
|
])),
|
|
]);
|
|
}
|
|
/**
|
|
* Method to delete documents.
|
|
* @param params Object containing the IDs of the documents to delete.
|
|
* @returns A promise that resolves when the deletion is complete.
|
|
*/
|
|
async delete(params) {
|
|
const documentIds = params.ids;
|
|
if (documentIds == null) {
|
|
throw new Error("No documentIds provided to delete.");
|
|
}
|
|
const mappings = new Map(Object.entries(this._mapping).map(([key, value]) => [
|
|
parseInt(key, 10),
|
|
value,
|
|
]));
|
|
const reversedMappings = new Map(Array.from(mappings, (entry) => [entry[1], entry[0]]));
|
|
const missingIds = new Set(documentIds.filter((id) => !reversedMappings.has(id)));
|
|
if (missingIds.size > 0) {
|
|
throw new Error(`Some specified documentIds do not exist in the current store. DocumentIds not found: ${Array.from(missingIds).join(", ")}`);
|
|
}
|
|
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
|
const indexIdToDelete = documentIds.map((id) => reversedMappings.get(id));
|
|
// remove from index
|
|
this.index.removeIds(indexIdToDelete);
|
|
// remove from docstore
|
|
documentIds.forEach((id) => {
|
|
this.docstore._docs.delete(id);
|
|
});
|
|
// remove from mappings
|
|
indexIdToDelete.forEach((id) => {
|
|
mappings.delete(id);
|
|
});
|
|
this._mapping = { ...Array.from(mappings.values()) };
|
|
}
|
|
/**
|
|
* Merges the current FaissStore with another FaissStore.
|
|
* @param targetIndex The FaissStore to merge with.
|
|
* @returns A Promise that resolves with an array of document IDs when the merge is complete.
|
|
*/
|
|
async mergeFrom(targetIndex) {
|
|
const targetIndexDimensions = targetIndex.index.getDimension();
|
|
if (!this._index) {
|
|
const { IndexFlatL2 } = await FaissStore.importFaiss();
|
|
this._index = new IndexFlatL2(targetIndexDimensions);
|
|
}
|
|
const d = this.index.getDimension();
|
|
if (targetIndexDimensions !== d) {
|
|
throw new Error("Cannot merge indexes with different dimensions.");
|
|
}
|
|
const targetMapping = targetIndex.getMapping();
|
|
const targetDocstore = targetIndex.getDocstore();
|
|
const targetSize = targetIndex.index.ntotal();
|
|
const documentIds = [];
|
|
const currentDocstoreSize = this.index.ntotal();
|
|
for (let i = 0; i < targetSize; i += 1) {
|
|
const targetId = targetMapping[i];
|
|
documentIds.push(targetId);
|
|
const targetDocument = targetDocstore.search(targetId);
|
|
const id = currentDocstoreSize + i;
|
|
this._mapping[id] = targetId;
|
|
this.docstore.add({ [targetId]: targetDocument });
|
|
}
|
|
this.index.mergeFrom(targetIndex.index);
|
|
return documentIds;
|
|
}
|
|
/**
|
|
* Loads a FaissStore from a specified directory.
|
|
* @param directory The directory to load the FaissStore from.
|
|
* @param embeddings An Embeddings object.
|
|
* @returns A Promise that resolves with a new FaissStore instance.
|
|
*/
|
|
static async load(directory, embeddings) {
|
|
const fs = await import("node:fs/promises");
|
|
const path = await import("node:path");
|
|
const readStore = (directory) => fs
|
|
.readFile(path.join(directory, "docstore.json"), "utf8")
|
|
.then(JSON.parse);
|
|
const readIndex = async (directory) => {
|
|
const { IndexFlatL2 } = await this.importFaiss();
|
|
return IndexFlatL2.read(path.join(directory, "faiss.index"));
|
|
};
|
|
const [[docstoreFiles, mapping], index] = await Promise.all([
|
|
readStore(directory),
|
|
readIndex(directory),
|
|
]);
|
|
const docstore = new in_memory_js_1.SynchronousInMemoryDocstore(new Map(docstoreFiles));
|
|
return new this(embeddings, { docstore, index, mapping });
|
|
}
|
|
static async loadFromPython(directory, embeddings) {
|
|
const fs = await import("node:fs/promises");
|
|
const path = await import("node:path");
|
|
const { Parser, NameRegistry } = await this.importPickleparser();
|
|
class PyDocument extends Map {
|
|
toDocument() {
|
|
return new documents_1.Document({
|
|
pageContent: this.get("page_content"),
|
|
metadata: this.get("metadata"),
|
|
});
|
|
}
|
|
}
|
|
class PyInMemoryDocstore {
|
|
constructor() {
|
|
Object.defineProperty(this, "_dict", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
}
|
|
toInMemoryDocstore() {
|
|
const s = new in_memory_js_1.SynchronousInMemoryDocstore();
|
|
for (const [key, value] of Object.entries(this._dict)) {
|
|
s._docs.set(key, value.toDocument());
|
|
}
|
|
return s;
|
|
}
|
|
}
|
|
const readStore = async (directory) => {
|
|
const pkl = await fs.readFile(path.join(directory, "index.pkl"), "binary");
|
|
const buffer = Buffer.from(pkl, "binary");
|
|
const registry = new NameRegistry()
|
|
.register("langchain.docstore.in_memory", "InMemoryDocstore", PyInMemoryDocstore)
|
|
.register("langchain_community.docstore.in_memory", "InMemoryDocstore", PyInMemoryDocstore)
|
|
.register("langchain.schema", "Document", PyDocument)
|
|
.register("langchain.docstore.document", "Document", PyDocument)
|
|
.register("langchain.schema.document", "Document", PyDocument)
|
|
.register("langchain_core.documents.base", "Document", PyDocument)
|
|
.register("pathlib", "WindowsPath", (...args) => args.join("\\"))
|
|
.register("pathlib", "PosixPath", (...args) => args.join("/"));
|
|
const pickleparser = new Parser({
|
|
nameResolver: registry,
|
|
});
|
|
const [rawStore, mapping] = pickleparser.parse(buffer);
|
|
const store = rawStore.toInMemoryDocstore();
|
|
return { store, mapping };
|
|
};
|
|
const readIndex = async (directory) => {
|
|
const { IndexFlatL2 } = await this.importFaiss();
|
|
return IndexFlatL2.read(path.join(directory, "index.faiss"));
|
|
};
|
|
const [store, index] = await Promise.all([
|
|
readStore(directory),
|
|
readIndex(directory),
|
|
]);
|
|
return new this(embeddings, {
|
|
docstore: store.store,
|
|
index,
|
|
mapping: store.mapping,
|
|
});
|
|
}
|
|
/**
|
|
* Creates a new FaissStore from an array of texts, their corresponding
|
|
* metadata, and an Embeddings object.
|
|
* @param texts An array of texts.
|
|
* @param metadatas An array of metadata corresponding to the texts, or a single metadata object to be used for all texts.
|
|
* @param embeddings An Embeddings object.
|
|
* @param dbConfig An optional configuration object for the document store.
|
|
* @returns A Promise that resolves with a new FaissStore instance.
|
|
*/
|
|
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
|
|
const docs = [];
|
|
for (let i = 0; i < texts.length; i += 1) {
|
|
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
|
|
const newDoc = new documents_1.Document({
|
|
pageContent: texts[i],
|
|
metadata,
|
|
});
|
|
docs.push(newDoc);
|
|
}
|
|
return this.fromDocuments(docs, embeddings, dbConfig);
|
|
}
|
|
/**
|
|
* Creates a new FaissStore from an array of Document objects and an
|
|
* Embeddings object.
|
|
* @param docs An array of Document objects.
|
|
* @param embeddings An Embeddings object.
|
|
* @param dbConfig An optional configuration object for the document store.
|
|
* @returns A Promise that resolves with a new FaissStore instance.
|
|
*/
|
|
static async fromDocuments(docs, embeddings, dbConfig) {
|
|
const args = {
|
|
docstore: dbConfig?.docstore,
|
|
};
|
|
const instance = new this(embeddings, args);
|
|
await instance.addDocuments(docs);
|
|
return instance;
|
|
}
|
|
/**
|
|
* Creates a new FaissStore from an existing FaissStore and an Embeddings
|
|
* object.
|
|
* @param targetIndex An existing FaissStore.
|
|
* @param embeddings An Embeddings object.
|
|
* @param dbConfig An optional configuration object for the document store.
|
|
* @returns A Promise that resolves with a new FaissStore instance.
|
|
*/
|
|
static async fromIndex(targetIndex, embeddings, dbConfig) {
|
|
const args = {
|
|
docstore: dbConfig?.docstore,
|
|
};
|
|
const instance = new this(embeddings, args);
|
|
await instance.mergeFrom(targetIndex);
|
|
return instance;
|
|
}
|
|
static async importFaiss() {
|
|
try {
|
|
const { default: { IndexFlatL2 }, } = await import("faiss-node");
|
|
return { IndexFlatL2 };
|
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
}
|
|
catch (err) {
|
|
throw new Error(`Could not import faiss-node. Please install faiss-node as a dependency with, e.g. \`npm install -S faiss-node\`.\n\nError: ${err?.message}`);
|
|
}
|
|
}
|
|
static async importPickleparser() {
|
|
try {
|
|
const { default: { Parser, NameRegistry }, } = await import("pickleparser");
|
|
return { Parser, NameRegistry };
|
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
}
|
|
catch (err) {
|
|
throw new Error(`Could not import pickleparser. Please install pickleparser as a dependency with, e.g. \`npm install -S pickleparser\`.\n\nError: ${err?.message}`);
|
|
}
|
|
}
|
|
}
|
|
exports.FaissStore = FaissStore;
|