310 lines
12 KiB
JavaScript
310 lines
12 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.NeonPostgres = void 0;
|
|
const serverless_1 = require("@neondatabase/serverless");
|
|
const vectorstores_1 = require("@langchain/core/vectorstores");
|
|
const documents_1 = require("@langchain/core/documents");
|
|
const env_1 = require("@langchain/core/utils/env");
|
|
/**
|
|
* Class that provides an interface to a Neon Postgres database. It
|
|
* extends the `VectorStore` base class and implements methods for adding
|
|
* documents and vectors, performing similarity searches, and ensuring the
|
|
* existence of a table in the database.
|
|
*/
|
|
class NeonPostgres extends vectorstores_1.VectorStore {
|
|
_vectorstoreType() {
|
|
return "neon-postgres";
|
|
}
|
|
constructor(embeddings, config) {
|
|
super(embeddings, config);
|
|
Object.defineProperty(this, "tableName", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "idColumnName", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "vectorColumnName", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "contentColumnName", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "metadataColumnName", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "filter", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "_verbose", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "neonConnectionString", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
this._verbose =
|
|
(0, env_1.getEnvironmentVariable)("LANGCHAIN_VERBOSE") === "true" ??
|
|
!!config.verbose;
|
|
this.neonConnectionString = config.connectionString;
|
|
this.tableName = config.tableName ?? "vectorstore_documents";
|
|
this.filter = config.filter;
|
|
this.vectorColumnName = config.columns?.vectorColumnName ?? "embedding";
|
|
this.contentColumnName = config.columns?.contentColumnName ?? "text";
|
|
this.idColumnName = config.columns?.idColumnName ?? "id";
|
|
this.metadataColumnName = config.columns?.metadataColumnName ?? "metadata";
|
|
}
|
|
/**
|
|
* Static method to create a new `NeonPostgres` instance from a
|
|
* connection. It creates a table if one does not exist.
|
|
*
|
|
* @param embeddings - Embeddings instance.
|
|
* @param fields - `NeonPostgresArgs` instance.
|
|
* @returns A new instance of `NeonPostgres`.
|
|
*/
|
|
static async initialize(embeddings, config) {
|
|
const neonVectorStore = new NeonPostgres(embeddings, config);
|
|
await neonVectorStore.ensureTableInDatabase();
|
|
return neonVectorStore;
|
|
}
|
|
/**
|
|
* Constructs the SQL query for inserting rows into the specified table.
|
|
*
|
|
* @param rows - The rows of data to be inserted, consisting of values and records.
|
|
* @param chunkIndex - The starting index for generating query placeholders based on chunk positioning.
|
|
* @returns The complete SQL INSERT INTO query string.
|
|
*/
|
|
async runInsertQuery(
|
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
rows, useIdColumn) {
|
|
const placeholders = rows.map((row, index) => {
|
|
const base = index * row.length;
|
|
return `(${row.map((_, j) => `$${base + 1 + j}`)})`;
|
|
});
|
|
const queryString = `
|
|
INSERT INTO ${this.tableName} (
|
|
${useIdColumn ? `${this.idColumnName},` : ""}
|
|
${this.contentColumnName},
|
|
${this.vectorColumnName},
|
|
${this.metadataColumnName}
|
|
) VALUES ${placeholders.join(", ")}
|
|
ON CONFLICT (${this.idColumnName})
|
|
DO UPDATE
|
|
SET
|
|
${this.contentColumnName} = EXCLUDED.${this.contentColumnName},
|
|
${this.vectorColumnName} = EXCLUDED.${this.vectorColumnName},
|
|
${this.metadataColumnName} = EXCLUDED.${this.metadataColumnName}
|
|
RETURNING ${this.idColumnName}
|
|
`;
|
|
const flatValues = rows.flat();
|
|
const sql = (0, serverless_1.neon)(this.neonConnectionString);
|
|
return await sql(queryString, flatValues);
|
|
}
|
|
/**
|
|
* Method to add vectors to the vector store. It converts the vectors into
|
|
* rows and inserts them into the database.
|
|
*
|
|
* @param vectors - Array of vectors.
|
|
* @param documents - Array of `Document` instances.
|
|
* @param options - Optional arguments for adding documents
|
|
* @returns Promise that resolves when the vectors have been added.
|
|
*/
|
|
async addVectors(vectors, documents, options) {
|
|
if (options?.ids !== undefined && options?.ids.length !== vectors.length) {
|
|
throw new Error(`If provided, the length of "ids" must be the same as the number of vectors.`);
|
|
}
|
|
const rows = vectors.map((embedding, idx) => {
|
|
const embeddingString = `[${embedding.join(",")}]`;
|
|
const row = [
|
|
documents[idx].pageContent,
|
|
embeddingString,
|
|
documents[idx].metadata,
|
|
];
|
|
if (options?.ids) {
|
|
return [options.ids[idx], ...row];
|
|
}
|
|
return row;
|
|
});
|
|
const chunkSize = 500;
|
|
const ids = [];
|
|
for (let i = 0; i < rows.length; i += chunkSize) {
|
|
const chunk = rows.slice(i, i + chunkSize);
|
|
try {
|
|
const result = await this.runInsertQuery(chunk, options?.ids !== undefined);
|
|
ids.push(...result.map((row) => row[this.idColumnName]));
|
|
}
|
|
catch (e) {
|
|
console.error(e);
|
|
throw new Error(`Error inserting: ${e.message}`);
|
|
}
|
|
}
|
|
return ids;
|
|
}
|
|
/**
|
|
* Method to perform a similarity search in the vector store. It returns
|
|
* the `k` most similar documents to the query vector, along with their
|
|
* similarity scores.
|
|
*
|
|
* @param query - Query vector.
|
|
* @param k - Number of most similar documents to return.
|
|
* @param filter - Optional filter to apply to the search.
|
|
* @returns Promise that resolves with an array of tuples, each containing a `Document` and its similarity score.
|
|
*/
|
|
async similaritySearchVectorWithScore(query, k, filter) {
|
|
const embeddingString = `[${query.join(",")}]`;
|
|
const _filter = filter ?? {};
|
|
const whereClauses = [];
|
|
const parameters = [embeddingString, k];
|
|
let paramCount = parameters.length;
|
|
// The vector to query with, and the num of results are the first
|
|
// two parameters. The rest of the parameters are the filter values
|
|
for (const [key, value] of Object.entries(_filter)) {
|
|
if (typeof value === "object" && value !== null) {
|
|
const currentParamCount = paramCount;
|
|
const placeholders = value.in
|
|
.map((_, index) => `$${currentParamCount + index + 1}`)
|
|
.join(",");
|
|
whereClauses.push(`${this.metadataColumnName}->>'${key}' IN (${placeholders})`);
|
|
parameters.push(...value.in);
|
|
paramCount += value.in.length;
|
|
}
|
|
else {
|
|
paramCount += 1;
|
|
whereClauses.push(`${this.metadataColumnName}->>'${key}' = $${paramCount}`);
|
|
parameters.push(value);
|
|
}
|
|
}
|
|
const whereClause = whereClauses.length
|
|
? `WHERE ${whereClauses.join(" AND ")}`
|
|
: "";
|
|
const queryString = `
|
|
SELECT *, ${this.vectorColumnName} <=> $1 as "_distance"
|
|
FROM ${this.tableName}
|
|
${whereClause}
|
|
ORDER BY "_distance" ASC
|
|
LIMIT $2;`;
|
|
const sql = (0, serverless_1.neon)(this.neonConnectionString);
|
|
const documents = await sql(queryString, parameters);
|
|
const results = [];
|
|
for (const doc of documents) {
|
|
if (doc._distance != null && doc[this.contentColumnName] != null) {
|
|
const document = new documents_1.Document({
|
|
pageContent: doc[this.contentColumnName],
|
|
metadata: doc[this.metadataColumnName],
|
|
});
|
|
results.push([document, doc._distance]);
|
|
}
|
|
}
|
|
return results;
|
|
}
|
|
/**
|
|
* Method to add documents to the vector store. It converts the documents into
|
|
* vectors, and adds them to the store.
|
|
*
|
|
* @param documents - Array of `Document` instances.
|
|
* @param options - Optional arguments for adding documents
|
|
* @returns Promise that resolves when the documents have been added.
|
|
*/
|
|
async addDocuments(documents, options) {
|
|
const texts = documents.map(({ pageContent }) => pageContent);
|
|
return this.addVectors(await this.embeddings.embedDocuments(texts), documents, options);
|
|
}
|
|
/**
|
|
* Method to delete documents from the vector store. It deletes the
|
|
* documents that match the provided ids.
|
|
*
|
|
* @param ids - Array of document ids.
|
|
* @param deleteAll - Boolean to delete all documents.
|
|
* @returns Promise that resolves when the documents have been deleted.
|
|
*/
|
|
async delete(params) {
|
|
const sql = (0, serverless_1.neon)(this.neonConnectionString);
|
|
if (params.ids !== undefined) {
|
|
await sql(`DELETE FROM ${this.tableName}
|
|
WHERE ${this.idColumnName}
|
|
IN (${params.ids.map((_, idx) => `$${idx + 1}`)})`, params.ids);
|
|
}
|
|
else if (params.deleteAll) {
|
|
await sql(`TRUNCATE TABLE ${this.tableName}`);
|
|
}
|
|
}
|
|
/**
|
|
* Method to ensure the existence of the table to store vectors in
|
|
* the database. It creates the table if it does not already exist.
|
|
*
|
|
* @returns Promise that resolves when the table has been ensured.
|
|
*/
|
|
async ensureTableInDatabase() {
|
|
const sql = (0, serverless_1.neon)(this.neonConnectionString);
|
|
await sql(`CREATE EXTENSION IF NOT EXISTS vector;`);
|
|
await sql(`CREATE EXTENSION IF NOT EXISTS "uuid-ossp";`);
|
|
await sql(`
|
|
CREATE TABLE IF NOT EXISTS ${this.tableName} (
|
|
${this.idColumnName} uuid NOT NULL DEFAULT uuid_generate_v4() PRIMARY KEY,
|
|
${this.contentColumnName} text,
|
|
${this.metadataColumnName} jsonb,
|
|
${this.vectorColumnName} vector
|
|
);
|
|
`);
|
|
}
|
|
/**
|
|
* Static method to create a new `NeonPostgres` instance from an
|
|
* array of texts and their metadata. It converts the texts into
|
|
* `Document` instances and adds them to the store.
|
|
*
|
|
* @param texts - Array of texts.
|
|
* @param metadatas - Array of metadata objects or a single metadata object.
|
|
* @param embeddings - Embeddings instance.
|
|
* @param dbConfig - `NeonPostgresArgs` instance.
|
|
* @returns Promise that resolves with a new instance of `NeonPostgresArgs`.
|
|
*/
|
|
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
|
|
const docs = [];
|
|
for (let i = 0; i < texts.length; i += 1) {
|
|
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
|
|
const newDoc = new documents_1.Document({
|
|
pageContent: texts[i],
|
|
metadata,
|
|
});
|
|
docs.push(newDoc);
|
|
}
|
|
return this.fromDocuments(docs, embeddings, dbConfig);
|
|
}
|
|
/**
|
|
* Static method to create a new `NeonPostgres` instance from an
|
|
* array of `Document` instances. It adds the documents to the store.
|
|
*
|
|
* @param docs - Array of `Document` instances.
|
|
* @param embeddings - Embeddings instance.
|
|
* @param dbConfig - `NeonPostgreseArgs` instance.
|
|
* @returns Promise that resolves with a new instance of `NeonPostgres`.
|
|
*/
|
|
static async fromDocuments(docs, embeddings, dbConfig) {
|
|
const instance = await this.initialize(embeddings, dbConfig);
|
|
await instance.addDocuments(docs);
|
|
return instance;
|
|
}
|
|
}
|
|
exports.NeonPostgres = NeonPostgres;
|