agsamantha/node_modules/@langchain/community/dist/vectorstores/pinecone.d.ts
2024-10-02 15:15:21 -05:00

124 lines
6.1 KiB
TypeScript

import { RecordMetadata, Index as PineconeIndex } from "@pinecone-database/pinecone";
import { MaxMarginalRelevanceSearchOptions, VectorStore } from "@langchain/core/vectorstores";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { Document } from "@langchain/core/documents";
import { AsyncCaller, AsyncCallerParams } from "@langchain/core/utils/async_caller";
/** @deprecated Install and import from @langchain/pinecone instead. */
type PineconeMetadata = Record<string, any>;
/** @deprecated Install and import from @langchain/pinecone instead. */
export interface PineconeLibArgs extends AsyncCallerParams {
pineconeIndex: PineconeIndex;
textKey?: string;
namespace?: string;
filter?: PineconeMetadata;
}
/**
* @deprecated Install and import from @langchain/pinecone instead.
* Type that defines the parameters for the delete operation in the
* PineconeStore class. It includes ids, filter, deleteAll flag, and namespace.
*/
export type PineconeDeleteParams = {
ids?: string[];
deleteAll?: boolean;
filter?: object;
namespace?: string;
};
/**
* @deprecated Install and import from @langchain/pinecone instead.
* Class that extends the VectorStore class and provides methods to
* interact with the Pinecone vector database.
*/
export declare class PineconeStore extends VectorStore {
FilterType: PineconeMetadata;
textKey: string;
namespace?: string;
pineconeIndex: PineconeIndex;
filter?: PineconeMetadata;
caller: AsyncCaller;
_vectorstoreType(): string;
constructor(embeddings: EmbeddingsInterface, args: PineconeLibArgs);
/**
* Method that adds documents to the Pinecone database.
* @param documents Array of documents to add to the Pinecone database.
* @param options Optional ids for the documents.
* @returns Promise that resolves with the ids of the added documents.
*/
addDocuments(documents: Document[], options?: {
ids?: string[];
} | string[]): Promise<string[]>;
/**
* Method that adds vectors to the Pinecone database.
* @param vectors Array of vectors to add to the Pinecone database.
* @param documents Array of documents associated with the vectors.
* @param options Optional ids for the vectors.
* @returns Promise that resolves with the ids of the added vectors.
*/
addVectors(vectors: number[][], documents: Document[], options?: {
ids?: string[];
} | string[]): Promise<string[]>;
/**
* Method that deletes vectors from the Pinecone database.
* @param params Parameters for the delete operation.
* @returns Promise that resolves when the delete operation is complete.
*/
delete(params: PineconeDeleteParams): Promise<void>;
protected _runPineconeQuery(query: number[], k: number, filter?: PineconeMetadata, options?: {
includeValues: boolean;
}): Promise<import("@pinecone-database/pinecone").QueryResponse<RecordMetadata>>;
/**
* Method that performs a similarity search in the Pinecone database and
* returns the results along with their scores.
* @param query Query vector for the similarity search.
* @param k Number of top results to return.
* @param filter Optional filter to apply to the search.
* @returns Promise that resolves with an array of documents and their scores.
*/
similaritySearchVectorWithScore(query: number[], k: number, filter?: PineconeMetadata): Promise<[Document, number][]>;
/**
* Return documents selected using the maximal marginal relevance.
* Maximal marginal relevance optimizes for similarity to the query AND diversity
* among selected documents.
*
* @param {string} query - Text to look up documents similar to.
* @param {number} options.k - Number of documents to return.
* @param {number} options.fetchK=20 - Number of documents to fetch before passing to the MMR algorithm.
* @param {number} options.lambda=0.5 - Number between 0 and 1 that determines the degree of diversity among the results,
* where 0 corresponds to maximum diversity and 1 to minimum diversity.
* @param {PineconeMetadata} options.filter - Optional filter to apply to the search.
*
* @returns {Promise<Document[]>} - List of documents selected by maximal marginal relevance.
*/
maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>): Promise<Document[]>;
/**
* Static method that creates a new instance of the PineconeStore class
* from texts.
* @param texts Array of texts to add to the Pinecone database.
* @param metadatas Metadata associated with the texts.
* @param embeddings Embeddings to use for the texts.
* @param dbConfig Configuration for the Pinecone database.
* @returns Promise that resolves with a new instance of the PineconeStore class.
*/
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: {
pineconeIndex: PineconeIndex;
textKey?: string;
namespace?: string | undefined;
} | PineconeLibArgs): Promise<PineconeStore>;
/**
* Static method that creates a new instance of the PineconeStore class
* from documents.
* @param docs Array of documents to add to the Pinecone database.
* @param embeddings Embeddings to use for the documents.
* @param dbConfig Configuration for the Pinecone database.
* @returns Promise that resolves with a new instance of the PineconeStore class.
*/
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: PineconeLibArgs): Promise<PineconeStore>;
/**
* Static method that creates a new instance of the PineconeStore class
* from an existing index.
* @param embeddings Embeddings to use for the documents.
* @param dbConfig Configuration for the Pinecone database.
* @returns Promise that resolves with a new instance of the PineconeStore class.
*/
static fromExistingIndex(embeddings: EmbeddingsInterface, dbConfig: PineconeLibArgs): Promise<PineconeStore>;
}
export {};