agsamantha/node_modules/@langchain/community/dist/vectorstores/supabase.cjs
2024-10-02 15:15:21 -05:00

348 lines
13 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.SupabaseVectorStore = void 0;
const vectorstores_1 = require("@langchain/core/vectorstores");
const documents_1 = require("@langchain/core/documents");
const math_1 = require("@langchain/core/utils/math");
/**
* Supabase vector store integration.
*
* Setup:
* Install `@langchain/community` and `@supabase/supabase-js`.
*
* ```bash
* npm install @langchain/community @supabase/supabase-js
* ```
*
* See https://js.langchain.com/docs/integrations/vectorstores/supabase for
* instructions on how to set up your Supabase instance.
*
* ## [Constructor args](https://api.js.langchain.com/classes/_langchain_community.vectorstores_supabase.SupabaseVectorStore.html#constructor)
*
* <details open>
* <summary><strong>Instantiate</strong></summary>
*
* ```typescript
* import { SupabaseVectorStore } from "@langchain/community/vectorstores/supabase";
* import { OpenAIEmbeddings } from "@langchain/openai";
*
* import { createClient } from "@supabase/supabase-js";
*
* const embeddings = new OpenAIEmbeddings({
* model: "text-embedding-3-small",
* });
*
* const supabaseClient = createClient(
* process.env.SUPABASE_URL,
* process.env.SUPABASE_PRIVATE_KEY
* );
*
* const vectorStore = new SupabaseVectorStore(embeddings, {
* client: supabaseClient,
* tableName: "documents",
* queryName: "match_documents",
* });
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Add documents</strong></summary>
*
* ```typescript
* import type { Document } from '@langchain/core/documents';
*
* const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
* const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
* const document3 = { pageContent: "i will be deleted :(", metadata: {} };
*
* const documents: Document[] = [document1, document2, document3];
* const ids = ["1", "2", "3"];
* await vectorStore.addDocuments(documents, { ids });
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Delete documents</strong></summary>
*
* ```typescript
* await vectorStore.delete({ ids: ["3"] });
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Similarity search</strong></summary>
*
* ```typescript
* const results = await vectorStore.similaritySearch("thud", 1);
* for (const doc of results) {
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * thud [{"baz":"bar"}]
* ```
* </details>
*
* <br />
*
*
* <details>
* <summary><strong>Similarity search with filter</strong></summary>
*
* ```typescript
* const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });
*
* for (const doc of resultsWithFilter) {
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * foo [{"baz":"bar"}]
* ```
* </details>
*
* <br />
*
*
* <details>
* <summary><strong>Similarity search with score</strong></summary>
*
* ```typescript
* const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
* for (const [doc, score] of resultsWithScore) {
* console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>As a retriever</strong></summary>
*
* ```typescript
* const retriever = vectorStore.asRetriever({
* searchType: "mmr", // Leave blank for standard similarity search
* k: 1,
* });
* const resultAsRetriever = await retriever.invoke("thud");
* console.log(resultAsRetriever);
*
* // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
* ```
* </details>
*
* <br />
*/
class SupabaseVectorStore extends vectorstores_1.VectorStore {
_vectorstoreType() {
return "supabase";
}
constructor(embeddings, args) {
super(embeddings, args);
Object.defineProperty(this, "client", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "tableName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "queryName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "filter", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "upsertBatchSize", {
enumerable: true,
configurable: true,
writable: true,
value: 500
});
this.client = args.client;
this.tableName = args.tableName || "documents";
this.queryName = args.queryName || "match_documents";
this.filter = args.filter;
this.upsertBatchSize = args.upsertBatchSize ?? this.upsertBatchSize;
}
/**
* Adds documents to the vector store.
* @param documents The documents to add.
* @param options Optional parameters for adding the documents.
* @returns A promise that resolves when the documents have been added.
*/
async addDocuments(documents, options) {
const texts = documents.map(({ pageContent }) => pageContent);
return this.addVectors(await this.embeddings.embedDocuments(texts), documents, options);
}
/**
* Adds vectors to the vector store.
* @param vectors The vectors to add.
* @param documents The documents associated with the vectors.
* @param options Optional parameters for adding the vectors.
* @returns A promise that resolves with the IDs of the added vectors when the vectors have been added.
*/
async addVectors(vectors, documents, options) {
const rows = vectors.map((embedding, idx) => ({
content: documents[idx].pageContent,
embedding,
metadata: documents[idx].metadata,
}));
// upsert returns 500/502/504 (yes really any of them) if given too many rows/characters
// ~2000 trips it, but my data is probably smaller than average pageContent and metadata
let returnedIds = [];
for (let i = 0; i < rows.length; i += this.upsertBatchSize) {
const chunk = rows.slice(i, i + this.upsertBatchSize).map((row, j) => {
if (options?.ids) {
return { id: options.ids[i + j], ...row };
}
return row;
});
const res = await this.client.from(this.tableName).upsert(chunk).select();
if (res.error) {
throw new Error(`Error inserting: ${res.error.message} ${res.status} ${res.statusText}`);
}
if (res.data) {
returnedIds = returnedIds.concat(res.data.map((row) => row.id));
}
}
return returnedIds;
}
/**
* Deletes vectors from the vector store.
* @param params The parameters for deleting vectors.
* @returns A promise that resolves when the vectors have been deleted.
*/
async delete(params) {
const { ids } = params;
for (const id of ids) {
await this.client.from(this.tableName).delete().eq("id", id);
}
}
async _searchSupabase(query, k, filter) {
if (filter && this.filter) {
throw new Error("cannot provide both `filter` and `this.filter`");
}
const _filter = filter ?? this.filter ?? {};
const matchDocumentsParams = {
query_embedding: query,
};
let filterFunction;
if (typeof _filter === "function") {
filterFunction = (rpcCall) => _filter(rpcCall).limit(k);
}
else if (typeof _filter === "object") {
matchDocumentsParams.filter = _filter;
matchDocumentsParams.match_count = k;
filterFunction = (rpcCall) => rpcCall;
}
else {
throw new Error("invalid filter type");
}
const rpcCall = this.client.rpc(this.queryName, matchDocumentsParams);
const { data: searches, error } = await filterFunction(rpcCall);
if (error) {
throw new Error(`Error searching for documents: ${error.code} ${error.message} ${error.details}`);
}
return searches;
}
/**
* Performs a similarity search on the vector store.
* @param query The query vector.
* @param k The number of results to return.
* @param filter Optional filter to apply to the search.
* @returns A promise that resolves with the search results when the search is complete.
*/
async similaritySearchVectorWithScore(query, k, filter) {
const searches = await this._searchSupabase(query, k, filter);
const result = searches.map((resp) => [
new documents_1.Document({
metadata: resp.metadata,
pageContent: resp.content,
}),
resp.similarity,
]);
return result;
}
/**
* Return documents selected using the maximal marginal relevance.
* Maximal marginal relevance optimizes for similarity to the query AND diversity
* among selected documents.
*
* @param {string} query - Text to look up documents similar to.
* @param {number} options.k - Number of documents to return.
* @param {number} options.fetchK=20- Number of documents to fetch before passing to the MMR algorithm.
* @param {number} options.lambda=0.5 - Number between 0 and 1 that determines the degree of diversity among the results,
* where 0 corresponds to maximum diversity and 1 to minimum diversity.
* @param {SupabaseLibArgs} options.filter - Optional filter to apply to the search.
*
* @returns {Promise<Document[]>} - List of documents selected by maximal marginal relevance.
*/
async maxMarginalRelevanceSearch(query, options) {
const queryEmbedding = await this.embeddings.embedQuery(query);
const searches = await this._searchSupabase(queryEmbedding, options.fetchK ?? 20, options.filter);
const embeddingList = searches.map((searchResp) => searchResp.embedding);
const mmrIndexes = (0, math_1.maximalMarginalRelevance)(queryEmbedding, embeddingList, options.lambda, options.k);
return mmrIndexes.map((idx) => new documents_1.Document({
metadata: searches[idx].metadata,
pageContent: searches[idx].content,
}));
}
/**
* Creates a new SupabaseVectorStore instance from an array of texts.
* @param texts The texts to create documents from.
* @param metadatas The metadata for the documents.
* @param embeddings The embeddings to use.
* @param dbConfig The configuration for the Supabase database.
* @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created.
*/
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new documents_1.Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return SupabaseVectorStore.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Creates a new SupabaseVectorStore instance from an array of documents.
* @param docs The documents to create the instance from.
* @param embeddings The embeddings to use.
* @param dbConfig The configuration for the Supabase database.
* @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created.
*/
static async fromDocuments(docs, embeddings, dbConfig) {
const instance = new this(embeddings, dbConfig);
await instance.addDocuments(docs);
return instance;
}
/**
* Creates a new SupabaseVectorStore instance from an existing index.
* @param embeddings The embeddings to use.
* @param dbConfig The configuration for the Supabase database.
* @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created.
*/
static async fromExistingIndex(embeddings, dbConfig) {
const instance = new this(embeddings, dbConfig);
return instance;
}
}
exports.SupabaseVectorStore = SupabaseVectorStore;