185 lines
6.5 KiB
JavaScript
185 lines
6.5 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.createXmlAgent = exports.XMLAgent = void 0;
|
|
const runnables_1 = require("@langchain/core/runnables");
|
|
const prompts_1 = require("@langchain/core/prompts");
|
|
const llm_chain_js_1 = require("../../chains/llm_chain.cjs");
|
|
const agent_js_1 = require("../agent.cjs");
|
|
const prompt_js_1 = require("./prompt.cjs");
|
|
const output_parser_js_1 = require("./output_parser.cjs");
|
|
const render_js_1 = require("../../tools/render.cjs");
|
|
const xml_js_1 = require("../format_scratchpad/xml.cjs");
|
|
/**
|
|
* Class that represents an agent that uses XML tags.
|
|
*
|
|
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createXmlAgent.html | createXmlAgent method instead}.
|
|
*/
|
|
class XMLAgent extends agent_js_1.BaseSingleActionAgent {
|
|
static lc_name() {
|
|
return "XMLAgent";
|
|
}
|
|
_agentType() {
|
|
return "xml";
|
|
}
|
|
constructor(fields) {
|
|
super(fields);
|
|
Object.defineProperty(this, "lc_namespace", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: ["langchain", "agents", "xml"]
|
|
});
|
|
Object.defineProperty(this, "tools", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "llmChain", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "outputParser", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: new output_parser_js_1.XMLAgentOutputParser()
|
|
});
|
|
this.tools = fields.tools;
|
|
this.llmChain = fields.llmChain;
|
|
}
|
|
get inputKeys() {
|
|
return ["input"];
|
|
}
|
|
static createPrompt() {
|
|
return prompts_1.ChatPromptTemplate.fromMessages([
|
|
prompts_1.HumanMessagePromptTemplate.fromTemplate(prompt_js_1.AGENT_INSTRUCTIONS),
|
|
prompts_1.AIMessagePromptTemplate.fromTemplate("{intermediate_steps}"),
|
|
]);
|
|
}
|
|
/**
|
|
* Plans the next action or finish state of the agent based on the
|
|
* provided steps, inputs, and optional callback manager.
|
|
* @param steps The steps to consider in planning.
|
|
* @param inputs The inputs to consider in planning.
|
|
* @param callbackManager Optional CallbackManager to use in planning.
|
|
* @returns A Promise that resolves to an AgentAction or AgentFinish object representing the planned action or finish state.
|
|
*/
|
|
async plan(steps, inputs, callbackManager) {
|
|
let log = "";
|
|
for (const { action, observation } of steps) {
|
|
log += `<tool>${action.tool}</tool><tool_input>${action.toolInput}</tool_input><observation>${observation}</observation>`;
|
|
}
|
|
let tools = "";
|
|
for (const tool of this.tools) {
|
|
tools += `${tool.name}: ${tool.description}\n`;
|
|
}
|
|
const _inputs = {
|
|
intermediate_steps: log,
|
|
tools,
|
|
question: inputs.input,
|
|
stop: ["</tool_input>", "</final_answer>"],
|
|
};
|
|
const response = await this.llmChain.call(_inputs, callbackManager);
|
|
return this.outputParser.parse(response[this.llmChain.outputKey]);
|
|
}
|
|
/**
|
|
* Creates an XMLAgent from a BaseLanguageModel and a list of tools.
|
|
* @param llm The BaseLanguageModel to use.
|
|
* @param tools The tools to be used by the agent.
|
|
* @param args Optional arguments for creating the agent.
|
|
* @returns An instance of XMLAgent.
|
|
*/
|
|
static fromLLMAndTools(llm, tools, args) {
|
|
const prompt = XMLAgent.createPrompt();
|
|
const chain = new llm_chain_js_1.LLMChain({
|
|
prompt,
|
|
llm,
|
|
callbacks: args?.callbacks,
|
|
});
|
|
return new XMLAgent({
|
|
llmChain: chain,
|
|
tools,
|
|
});
|
|
}
|
|
}
|
|
exports.XMLAgent = XMLAgent;
|
|
/**
|
|
* Create an agent that uses XML to format its logic.
|
|
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
|
|
* @returns A runnable sequence representing an agent. It takes as input all the same input
|
|
* variables as the prompt passed in does. It returns as output either an
|
|
* AgentAction or AgentFinish.
|
|
*
|
|
* @example
|
|
* ```typescript
|
|
* import { AgentExecutor, createXmlAgent } from "langchain/agents";
|
|
* import { pull } from "langchain/hub";
|
|
* import type { PromptTemplate } from "@langchain/core/prompts";
|
|
*
|
|
* import { ChatAnthropic } from "@langchain/anthropic";
|
|
*
|
|
* // Define the tools the agent will have access to.
|
|
* const tools = [...];
|
|
*
|
|
* // Get the prompt to use - you can modify this!
|
|
* // If you want to see the prompt in full, you can at:
|
|
* // https://smith.langchain.com/hub/hwchase17/xml-agent-convo
|
|
* const prompt = await pull<PromptTemplate>("hwchase17/xml-agent-convo");
|
|
*
|
|
* const llm = new ChatAnthropic({
|
|
* temperature: 0,
|
|
* });
|
|
*
|
|
* const agent = await createXmlAgent({
|
|
* llm,
|
|
* tools,
|
|
* prompt,
|
|
* });
|
|
*
|
|
* const agentExecutor = new AgentExecutor({
|
|
* agent,
|
|
* tools,
|
|
* });
|
|
*
|
|
* const result = await agentExecutor.invoke({
|
|
* input: "what is LangChain?",
|
|
* });
|
|
*
|
|
* // With chat history
|
|
* const result2 = await agentExecutor.invoke({
|
|
* input: "what's my name?",
|
|
* // Notice that chat_history is a string, since this prompt is aimed at LLMs, not chat models
|
|
* chat_history: "Human: Hi! My name is Cob\nAI: Hello Cob! Nice to meet you",
|
|
* });
|
|
* ```
|
|
*/
|
|
async function createXmlAgent({ llm, tools, prompt, streamRunnable, }) {
|
|
const missingVariables = ["tools", "agent_scratchpad"].filter((v) => !prompt.inputVariables.includes(v));
|
|
if (missingVariables.length > 0) {
|
|
throw new Error(`Provided prompt is missing required input variables: ${JSON.stringify(missingVariables)}`);
|
|
}
|
|
const partialedPrompt = await prompt.partial({
|
|
tools: (0, render_js_1.renderTextDescription)(tools),
|
|
});
|
|
// TODO: Add .bind to core runnable interface.
|
|
const llmWithStop = llm.bind({
|
|
stop: ["</tool_input>", "</final_answer>"],
|
|
});
|
|
const agent = agent_js_1.AgentRunnableSequence.fromRunnables([
|
|
runnables_1.RunnablePassthrough.assign({
|
|
agent_scratchpad: (input) => (0, xml_js_1.formatXml)(input.steps),
|
|
}),
|
|
partialedPrompt,
|
|
llmWithStop,
|
|
new output_parser_js_1.XMLAgentOutputParser(),
|
|
], {
|
|
name: "XMLAgent",
|
|
streamRunnable,
|
|
singleAction: true,
|
|
});
|
|
return agent;
|
|
}
|
|
exports.createXmlAgent = createXmlAgent;
|