143 lines
5.4 KiB
JavaScript
143 lines
5.4 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.CacheBackedEmbeddings = void 0;
|
|
const hash_1 = require("@langchain/core/utils/hash");
|
|
const embeddings_1 = require("@langchain/core/embeddings");
|
|
const encoder_backed_js_1 = require("../storage/encoder_backed.cjs");
|
|
/**
|
|
* Interface for caching results from embedding models.
|
|
*
|
|
* The interface allows works with any store that implements
|
|
* the abstract store interface accepting keys of type str and values of list of
|
|
* floats.
|
|
*
|
|
* If need be, the interface can be extended to accept other implementations
|
|
* of the value serializer and deserializer, as well as the key encoder.
|
|
* @example
|
|
* ```typescript
|
|
* const underlyingEmbeddings = new OpenAIEmbeddings();
|
|
*
|
|
* const cacheBackedEmbeddings = CacheBackedEmbeddings.fromBytesStore(
|
|
* underlyingEmbeddings,
|
|
* new ConvexKVStore({ ctx }),
|
|
* {
|
|
* namespace: underlyingEmbeddings.modelName,
|
|
* },
|
|
* );
|
|
*
|
|
* const loader = new TextLoader("./state_of_the_union.txt");
|
|
* const rawDocuments = await loader.load();
|
|
* const splitter = new RecursiveCharacterTextSplitter({
|
|
* chunkSize: 1000,
|
|
* chunkOverlap: 0,
|
|
* });
|
|
* const documents = await splitter.splitDocuments(rawDocuments);
|
|
*
|
|
* let time = Date.now();
|
|
* const vectorstore = await ConvexVectorStore.fromDocuments(
|
|
* documents,
|
|
* cacheBackedEmbeddings,
|
|
* { ctx },
|
|
* );
|
|
* console.log(`Initial creation time: ${Date.now() - time}ms`);
|
|
*
|
|
* time = Date.now();
|
|
* const vectorstore2 = await ConvexVectorStore.fromDocuments(
|
|
* documents,
|
|
* cacheBackedEmbeddings,
|
|
* { ctx },
|
|
* );
|
|
* console.log(`Cached creation time: ${Date.now() - time}ms`);
|
|
*
|
|
* ```
|
|
*/
|
|
class CacheBackedEmbeddings extends embeddings_1.Embeddings {
|
|
constructor(fields) {
|
|
super(fields);
|
|
Object.defineProperty(this, "underlyingEmbeddings", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "documentEmbeddingStore", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
this.underlyingEmbeddings = fields.underlyingEmbeddings;
|
|
this.documentEmbeddingStore = fields.documentEmbeddingStore;
|
|
}
|
|
/**
|
|
* Embed query text.
|
|
*
|
|
* This method does not support caching at the moment.
|
|
*
|
|
* Support for caching queries is easy to implement, but might make
|
|
* sense to hold off to see the most common patterns.
|
|
*
|
|
* If the cache has an eviction policy, we may need to be a bit more careful
|
|
* about sharing the cache between documents and queries. Generally,
|
|
* one is OK evicting query caches, but document caches should be kept.
|
|
*
|
|
* @param document The text to embed.
|
|
* @returns The embedding for the given text.
|
|
*/
|
|
async embedQuery(document) {
|
|
return this.underlyingEmbeddings.embedQuery(document);
|
|
}
|
|
/**
|
|
* Embed a list of texts.
|
|
*
|
|
* The method first checks the cache for the embeddings.
|
|
* If the embeddings are not found, the method uses the underlying embedder
|
|
* to embed the documents and stores the results in the cache.
|
|
*
|
|
* @param documents
|
|
* @returns A list of embeddings for the given texts.
|
|
*/
|
|
async embedDocuments(documents) {
|
|
const vectors = await this.documentEmbeddingStore.mget(documents);
|
|
const missingIndicies = [];
|
|
const missingDocuments = [];
|
|
for (let i = 0; i < vectors.length; i += 1) {
|
|
if (vectors[i] === undefined) {
|
|
missingIndicies.push(i);
|
|
missingDocuments.push(documents[i]);
|
|
}
|
|
}
|
|
if (missingDocuments.length) {
|
|
const missingVectors = await this.underlyingEmbeddings.embedDocuments(missingDocuments);
|
|
const keyValuePairs = missingDocuments.map((document, i) => [document, missingVectors[i]]);
|
|
await this.documentEmbeddingStore.mset(keyValuePairs);
|
|
for (let i = 0; i < missingIndicies.length; i += 1) {
|
|
vectors[missingIndicies[i]] = missingVectors[i];
|
|
}
|
|
}
|
|
return vectors;
|
|
}
|
|
/**
|
|
* Create a new CacheBackedEmbeddings instance from another embeddings instance
|
|
* and a storage instance.
|
|
* @param underlyingEmbeddings Embeddings used to populate the cache for new documents.
|
|
* @param documentEmbeddingStore Stores raw document embedding values. Keys are hashes of the document content.
|
|
* @param options.namespace Optional namespace for store keys.
|
|
* @returns A new CacheBackedEmbeddings instance.
|
|
*/
|
|
static fromBytesStore(underlyingEmbeddings, documentEmbeddingStore, options) {
|
|
const encoder = new TextEncoder();
|
|
const decoder = new TextDecoder();
|
|
const encoderBackedStore = new encoder_backed_js_1.EncoderBackedStore({
|
|
store: documentEmbeddingStore,
|
|
keyEncoder: (key) => (options?.namespace ?? "") + (0, hash_1.insecureHash)(key),
|
|
valueSerializer: (value) => encoder.encode(JSON.stringify(value)),
|
|
valueDeserializer: (serializedValue) => JSON.parse(decoder.decode(serializedValue)),
|
|
});
|
|
return new this({
|
|
underlyingEmbeddings,
|
|
documentEmbeddingStore: encoderBackedStore,
|
|
});
|
|
}
|
|
}
|
|
exports.CacheBackedEmbeddings = CacheBackedEmbeddings;
|