46 lines
1.1 KiB
JavaScript
46 lines
1.1 KiB
JavaScript
/**
|
|
*Returns the Inner Product similarity between vectors a and b
|
|
* @link [Inner Product Similarity algorithm](https://www.naun.org/main/NAUN/ijmmas/mmmas-49.pdf)
|
|
* @param a - first vector
|
|
* @param b - second vector
|
|
*
|
|
*/
|
|
export function innerProduct(a, b) {
|
|
let ans = 0;
|
|
for (let i = 0; i < a.length; i++) {
|
|
ans += a[i] * b[i];
|
|
}
|
|
return ans;
|
|
}
|
|
/**
|
|
*Returns the Chebyshev distance between vectors a and b
|
|
* @link [Chebyshev algorithm](https://en.wikipedia.org/wiki/Chebyshev_distance)
|
|
* @param a - first vector
|
|
* @param b - second vector
|
|
*
|
|
*/
|
|
export function chebyshev(a, b) {
|
|
let max = 0;
|
|
let aux = 0;
|
|
for (let i = 0; i < a.length; i++) {
|
|
aux = Math.abs(a[i] - b[i]);
|
|
if (max < aux) {
|
|
max = aux;
|
|
}
|
|
}
|
|
return max;
|
|
}
|
|
/**
|
|
*Returns the Manhattan distance between vectors a and b
|
|
* @link [Manhattan algorithm](https://www.naun.org/main/NAUN/ijmmas/mmmas-49.pdf)
|
|
* @param a - first vector
|
|
* @param b - second vector
|
|
*
|
|
*/
|
|
export function manhattan(a, b) {
|
|
let d = 0;
|
|
for (let i = 0; i < a.length; i++) {
|
|
d += Math.abs(a[i] - b[i]);
|
|
}
|
|
return d;
|
|
}
|