agsamantha/node_modules/@langchain/community/dist/vectorstores/prisma.js
2024-10-02 15:15:21 -05:00

300 lines
12 KiB
JavaScript

import { Document } from "@langchain/core/documents";
import { VectorStore } from "@langchain/core/vectorstores";
const IdColumnSymbol = Symbol("id");
const ContentColumnSymbol = Symbol("content");
const OpMap = {
equals: "=",
in: "IN",
notIn: "NOT IN",
isNull: "IS NULL",
isNotNull: "IS NOT NULL",
like: "LIKE",
lt: "<",
lte: "<=",
gt: ">",
gte: ">=",
not: "<>",
};
/**
* A specific implementation of the VectorStore class that is designed to
* work with Prisma. It provides methods for adding models, documents, and
* vectors, as well as for performing similarity searches.
*/
export class PrismaVectorStore extends VectorStore {
_vectorstoreType() {
return "prisma";
}
constructor(embeddings, config) {
super(embeddings, {});
Object.defineProperty(this, "tableName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "vectorColumnName", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "selectColumns", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "filter", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "idColumn", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "contentColumn", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "db", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "Prisma", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.Prisma = config.prisma;
this.db = config.db;
const entries = Object.entries(config.columns);
const idColumn = entries.find((i) => i[1] === IdColumnSymbol)?.[0];
const contentColumn = entries.find((i) => i[1] === ContentColumnSymbol)?.[0];
if (idColumn == null)
throw new Error("Missing ID column");
if (contentColumn == null)
throw new Error("Missing content column");
this.idColumn = idColumn;
this.contentColumn = contentColumn;
this.tableName = config.tableName;
this.vectorColumnName = config.vectorColumnName;
this.selectColumns = entries
.map(([key, alias]) => (alias && key) || null)
.filter((x) => !!x);
if (config.filter) {
this.filter = config.filter;
}
}
/**
* Creates a new PrismaVectorStore with the specified model.
* @param db The PrismaClient instance.
* @returns An object with create, fromTexts, and fromDocuments methods.
*/
static withModel(db) {
function create(embeddings, config) {
return new PrismaVectorStore(embeddings, { ...config, db });
}
async function fromTexts(texts, metadatas, embeddings, dbConfig) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return PrismaVectorStore.fromDocuments(docs, embeddings, {
...dbConfig,
db,
});
}
async function fromDocuments(docs, embeddings, dbConfig) {
const instance = new PrismaVectorStore(embeddings, { ...dbConfig, db });
await instance.addDocuments(docs);
return instance;
}
return { create, fromTexts, fromDocuments };
}
/**
* Adds the specified models to the store.
* @param models The models to add.
* @returns A promise that resolves when the models have been added.
*/
async addModels(models) {
return this.addDocuments(models.map((metadata) => {
const pageContent = metadata[this.contentColumn];
if (typeof pageContent !== "string")
throw new Error("Content column must be a string");
return new Document({ pageContent, metadata });
}));
}
/**
* Adds the specified documents to the store.
* @param documents The documents to add.
* @returns A promise that resolves when the documents have been added.
*/
async addDocuments(documents) {
const texts = documents.map(({ pageContent }) => pageContent);
return this.addVectors(await this.embeddings.embedDocuments(texts), documents);
}
/**
* Adds the specified vectors to the store.
* @param vectors The vectors to add.
* @param documents The documents associated with the vectors.
* @returns A promise that resolves when the vectors have been added.
*/
async addVectors(vectors, documents) {
// table name, column name cannot be parametrised
// these fields are thus not escaped by Prisma and can be dangerous if user input is used
const idColumnRaw = this.Prisma.raw(`"${this.idColumn}"`);
const tableNameRaw = this.Prisma.raw(`"${this.tableName}"`);
const vectorColumnRaw = this.Prisma.raw(`"${this.vectorColumnName}"`);
await this.db.$transaction(vectors.map((vector, idx) => this.db.$executeRaw(this.Prisma.sql `UPDATE ${tableNameRaw}
SET ${vectorColumnRaw} = ${`[${vector.join(",")}]`}::vector
WHERE ${idColumnRaw} = ${documents[idx].metadata[this.idColumn]}
`)));
}
/**
* Performs a similarity search with the specified query.
* @param query The query to use for the similarity search.
* @param k The number of results to return.
* @param _filter The filter to apply to the results.
* @param _callbacks The callbacks to use during the search.
* @returns A promise that resolves with the search results.
*/
async similaritySearch(query, k = 4, filter = undefined) {
const results = await this.similaritySearchVectorWithScore(await this.embeddings.embedQuery(query), k, filter);
return results.map((result) => result[0]);
}
/**
* Performs a similarity search with the specified query and returns the
* results along with their scores.
* @param query The query to use for the similarity search.
* @param k The number of results to return.
* @param filter The filter to apply to the results.
* @param _callbacks The callbacks to use during the search.
* @returns A promise that resolves with the search results and their scores.
*/
async similaritySearchWithScore(query, k, filter) {
return super.similaritySearchWithScore(query, k, filter);
}
/**
* Performs a similarity search with the specified vector and returns the
* results along with their scores.
* @param query The vector to use for the similarity search.
* @param k The number of results to return.
* @param filter The filter to apply to the results.
* @returns A promise that resolves with the search results and their scores.
*/
async similaritySearchVectorWithScore(query, k, filter) {
// table name, column names cannot be parametrised
// these fields are thus not escaped by Prisma and can be dangerous if user input is used
const vectorColumnRaw = this.Prisma.raw(`"${this.vectorColumnName}"`);
const tableNameRaw = this.Prisma.raw(`"${this.tableName}"`);
const selectRaw = this.Prisma.raw(this.selectColumns.map((x) => `"${x}"`).join(", "));
const vector = `[${query.join(",")}]`;
const articles = await this.db.$queryRaw(this.Prisma.join([
this.Prisma.sql `
SELECT ${selectRaw}, ${vectorColumnRaw} <=> ${vector}::vector as "_distance"
FROM ${tableNameRaw}
`,
this.buildSqlFilterStr(filter ?? this.filter),
this.Prisma.sql `
ORDER BY "_distance" ASC
LIMIT ${k};
`,
].filter((x) => x != null), ""));
const results = [];
for (const article of articles) {
if (article._distance != null && article[this.contentColumn] != null) {
results.push([
new Document({
pageContent: article[this.contentColumn],
metadata: article,
}),
article._distance,
]);
}
}
return results;
}
buildSqlFilterStr(filter) {
if (filter == null)
return null;
return this.Prisma.join(Object.entries(filter).flatMap(([key, ops]) => Object.entries(ops).map(([opName, value]) => {
// column name, operators cannot be parametrised
// these fields are thus not escaped by Prisma and can be dangerous if user input is used
const opNameKey = opName;
const colRaw = this.Prisma.raw(`"${key}"`);
const opRaw = this.Prisma.raw(OpMap[opNameKey]);
switch (OpMap[opNameKey]) {
case OpMap.notIn:
case OpMap.in: {
if (!Array.isArray(value)) {
throw new Error(`Invalid filter: IN operator requires an array. Received: ${JSON.stringify(value, null, 2)}`);
}
return this.Prisma.sql `${colRaw} ${opRaw} (${this.Prisma.join(value)})`;
}
case OpMap.isNull:
case OpMap.isNotNull:
return this.Prisma.sql `${colRaw} ${opRaw}`;
default:
return this.Prisma.sql `${colRaw} ${opRaw} ${value}`;
}
})), " AND ", " WHERE ");
}
/**
* Creates a new PrismaVectorStore from the specified texts.
* @param texts The texts to use to create the store.
* @param metadatas The metadata for the texts.
* @param embeddings The embeddings to use.
* @param dbConfig The database configuration.
* @returns A promise that resolves with the new PrismaVectorStore.
*/
static async fromTexts(texts, metadatas, embeddings, dbConfig) {
const docs = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return PrismaVectorStore.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Creates a new PrismaVectorStore from the specified documents.
* @param docs The documents to use to create the store.
* @param embeddings The embeddings to use.
* @param dbConfig The database configuration.
* @returns A promise that resolves with the new PrismaVectorStore.
*/
static async fromDocuments(docs, embeddings, dbConfig) {
const instance = new PrismaVectorStore(embeddings, dbConfig);
await instance.addDocuments(docs);
return instance;
}
}
Object.defineProperty(PrismaVectorStore, "IdColumn", {
enumerable: true,
configurable: true,
writable: true,
value: IdColumnSymbol
});
Object.defineProperty(PrismaVectorStore, "ContentColumn", {
enumerable: true,
configurable: true,
writable: true,
value: ContentColumnSymbol
});