agsamantha/node_modules/@langchain/community/dist/embeddings/alibaba_tongyi.js
2024-10-02 15:15:21 -05:00

124 lines
4.8 KiB
JavaScript

import { getEnvironmentVariable } from "@langchain/core/utils/env";
import { Embeddings } from "@langchain/core/embeddings";
import { chunkArray } from "@langchain/core/utils/chunk_array";
export class AlibabaTongyiEmbeddings extends Embeddings {
constructor(fields) {
const fieldsWithDefaults = { maxConcurrency: 2, ...fields };
super(fieldsWithDefaults);
Object.defineProperty(this, "modelName", {
enumerable: true,
configurable: true,
writable: true,
value: "text-embedding-v2"
});
Object.defineProperty(this, "batchSize", {
enumerable: true,
configurable: true,
writable: true,
value: 24
});
Object.defineProperty(this, "stripNewLines", {
enumerable: true,
configurable: true,
writable: true,
value: true
});
Object.defineProperty(this, "apiKey", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "parameters", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
const apiKey = fieldsWithDefaults?.apiKey ?? getEnvironmentVariable("ALIBABA_API_KEY");
if (!apiKey)
throw new Error("AlibabaAI API key not found");
this.apiKey = apiKey;
this.modelName = fieldsWithDefaults?.modelName ?? this.modelName;
this.batchSize = fieldsWithDefaults?.batchSize ?? this.batchSize;
this.stripNewLines =
fieldsWithDefaults?.stripNewLines ?? this.stripNewLines;
this.parameters = {
text_type: fieldsWithDefaults?.parameters?.text_type ?? "document",
};
}
/**
* Method to generate embeddings for an array of documents. Splits the
* documents into batches and makes requests to the AlibabaTongyi API to generate
* embeddings.
* @param texts Array of documents to generate embeddings for.
* @returns Promise that resolves to a 2D array of embeddings for each document.
*/
async embedDocuments(texts) {
const batches = chunkArray(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize);
const batchRequests = batches.map((batch) => {
const params = this.getParams(batch);
return this.embeddingWithRetry(params);
});
const batchResponses = await Promise.all(batchRequests);
const embeddings = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batch = batches[i];
const batchResponse = batchResponses[i] || [];
for (let j = 0; j < batch.length; j += 1) {
embeddings.push(batchResponse[j]);
}
}
return embeddings;
}
/**
* Method to generate an embedding for a single document. Calls the
* embeddingWithRetry method with the document as the input.
* @param text Document to generate an embedding for.
* @returns Promise that resolves to an embedding for the document.
*/
async embedQuery(text) {
const params = this.getParams([
this.stripNewLines ? text.replace(/\n/g, " ") : text,
]);
const embeddings = (await this.embeddingWithRetry(params)) || [[]];
return embeddings[0];
}
/**
* Method to generate an embedding params.
* @param texts Array of documents to generate embeddings for.
* @returns an embedding params.
*/
getParams(texts) {
return {
model: this.modelName,
input: {
texts,
},
parameters: this.parameters,
};
}
/**
* Private method to make a request to the OpenAI API to generate
* embeddings. Handles the retry logic and returns the response from the
* API.
* @param request Request to send to the OpenAI API.
* @returns Promise that resolves to the response from the API.
*/
async embeddingWithRetry(body) {
return fetch("https://dashscope.aliyuncs.com/api/v1/services/embeddings/text-embedding/text-embedding", {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${this.apiKey}`,
},
body: JSON.stringify(body),
}).then(async (response) => {
const embeddingData = await response.json();
if ("code" in embeddingData && embeddingData.code) {
throw new Error(`${embeddingData.code}: ${embeddingData.message}`);
}
return embeddingData.output.embeddings.map(({ embedding }) => embedding);
});
}
}