165 lines
6.4 KiB
JavaScript
165 lines
6.4 KiB
JavaScript
import { Embeddings } from "@langchain/core/embeddings";
|
|
import { chunkArray } from "@langchain/core/utils/chunk_array";
|
|
import { getEnvironmentVariable } from "@langchain/core/utils/env";
|
|
export class BaiduQianfanEmbeddings extends Embeddings {
|
|
constructor(fields) {
|
|
const fieldsWithDefaults = { maxConcurrency: 2, ...fields };
|
|
super(fieldsWithDefaults);
|
|
Object.defineProperty(this, "modelName", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: "embedding-v1"
|
|
});
|
|
Object.defineProperty(this, "batchSize", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: 16
|
|
});
|
|
Object.defineProperty(this, "stripNewLines", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: true
|
|
});
|
|
Object.defineProperty(this, "baiduApiKey", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "baiduSecretKey", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "accessToken", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
const baiduApiKey = fieldsWithDefaults?.baiduApiKey ??
|
|
getEnvironmentVariable("BAIDU_API_KEY");
|
|
const baiduSecretKey = fieldsWithDefaults?.baiduSecretKey ??
|
|
getEnvironmentVariable("BAIDU_SECRET_KEY");
|
|
if (!baiduApiKey) {
|
|
throw new Error("Baidu API key not found");
|
|
}
|
|
if (!baiduSecretKey) {
|
|
throw new Error("Baidu Secret key not found");
|
|
}
|
|
this.baiduApiKey = baiduApiKey;
|
|
this.baiduSecretKey = baiduSecretKey;
|
|
this.modelName = fieldsWithDefaults?.modelName ?? this.modelName;
|
|
if (this.modelName === "tao-8k") {
|
|
if (fieldsWithDefaults?.batchSize && fieldsWithDefaults.batchSize !== 1) {
|
|
throw new Error("tao-8k model supports only a batchSize of 1. Please adjust your batchSize accordingly");
|
|
}
|
|
this.batchSize = 1;
|
|
}
|
|
else {
|
|
this.batchSize = fieldsWithDefaults?.batchSize ?? this.batchSize;
|
|
}
|
|
this.stripNewLines =
|
|
fieldsWithDefaults?.stripNewLines ?? this.stripNewLines;
|
|
}
|
|
/**
|
|
* Method to generate embeddings for an array of documents. Splits the
|
|
* documents into batches and makes requests to the BaiduQianFan API to generate
|
|
* embeddings.
|
|
* @param texts Array of documents to generate embeddings for.
|
|
* @returns Promise that resolves to a 2D array of embeddings for each document.
|
|
*/
|
|
async embedDocuments(texts) {
|
|
const batches = chunkArray(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize);
|
|
const batchRequests = batches.map((batch) => {
|
|
const params = this.getParams(batch);
|
|
return this.embeddingWithRetry(params);
|
|
});
|
|
const batchResponses = await Promise.all(batchRequests);
|
|
const embeddings = [];
|
|
for (let i = 0; i < batchResponses.length; i += 1) {
|
|
const batch = batches[i];
|
|
const batchResponse = batchResponses[i] || [];
|
|
for (let j = 0; j < batch.length; j += 1) {
|
|
embeddings.push(batchResponse[j]);
|
|
}
|
|
}
|
|
return embeddings;
|
|
}
|
|
/**
|
|
* Method to generate an embedding for a single document. Calls the
|
|
* embeddingWithRetry method with the document as the input.
|
|
* @param text Document to generate an embedding for.
|
|
* @returns Promise that resolves to an embedding for the document.
|
|
*/
|
|
async embedQuery(text) {
|
|
const params = this.getParams([
|
|
this.stripNewLines ? text.replace(/\n/g, " ") : text,
|
|
]);
|
|
const embeddings = (await this.embeddingWithRetry(params)) || [[]];
|
|
return embeddings[0];
|
|
}
|
|
/**
|
|
* Method to generate an embedding params.
|
|
* @param texts Array of documents to generate embeddings for.
|
|
* @returns an embedding params.
|
|
*/
|
|
getParams(texts) {
|
|
return {
|
|
input: texts,
|
|
};
|
|
}
|
|
/**
|
|
* Private method to make a request to the BaiduAI API to generate
|
|
* embeddings. Handles the retry logic and returns the response from the
|
|
* API.
|
|
* @param request Request to send to the BaiduAI API.
|
|
* @returns Promise that resolves to the response from the API.
|
|
*/
|
|
async embeddingWithRetry(body) {
|
|
if (!this.accessToken) {
|
|
this.accessToken = await this.getAccessToken();
|
|
}
|
|
return fetch(`https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/${this.modelName}?access_token=${this.accessToken}`, {
|
|
method: "POST",
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify(body),
|
|
}).then(async (response) => {
|
|
const embeddingData = await response.json();
|
|
if ("error_code" in embeddingData && embeddingData.error_code) {
|
|
throw new Error(`${embeddingData.error_code}: ${embeddingData.error_msg}`);
|
|
}
|
|
return embeddingData.data.map(({ embedding }) => embedding);
|
|
});
|
|
}
|
|
/**
|
|
* Method that retrieves the access token for making requests to the Baidu
|
|
* API.
|
|
* @returns The access token for making requests to the Baidu API.
|
|
*/
|
|
async getAccessToken() {
|
|
const url = `https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=${this.baiduApiKey}&client_secret=${this.baiduSecretKey}`;
|
|
const response = await fetch(url, {
|
|
method: "POST",
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
Accept: "application/json",
|
|
},
|
|
});
|
|
if (!response.ok) {
|
|
const text = await response.text();
|
|
const error = new Error(`Baidu get access token failed with status code ${response.status}, response: ${text}`);
|
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
error.response = response;
|
|
throw error;
|
|
}
|
|
const json = await response.json();
|
|
return json.access_token;
|
|
}
|
|
}
|