77 lines
3 KiB
JavaScript
77 lines
3 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.HuggingFaceInferenceEmbeddings = void 0;
|
|
const inference_1 = require("@huggingface/inference");
|
|
const embeddings_1 = require("@langchain/core/embeddings");
|
|
const env_1 = require("@langchain/core/utils/env");
|
|
/**
|
|
* Class that extends the Embeddings class and provides methods for
|
|
* generating embeddings using Hugging Face models through the
|
|
* HuggingFaceInference API.
|
|
*/
|
|
class HuggingFaceInferenceEmbeddings extends embeddings_1.Embeddings {
|
|
constructor(fields) {
|
|
super(fields ?? {});
|
|
Object.defineProperty(this, "apiKey", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "model", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "endpointUrl", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "client", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
this.model = fields?.model ?? "BAAI/bge-base-en-v1.5";
|
|
this.apiKey =
|
|
fields?.apiKey ?? (0, env_1.getEnvironmentVariable)("HUGGINGFACEHUB_API_KEY");
|
|
this.endpointUrl = fields?.endpointUrl;
|
|
this.client = this.endpointUrl
|
|
? new inference_1.HfInference(this.apiKey).endpoint(this.endpointUrl)
|
|
: new inference_1.HfInference(this.apiKey);
|
|
}
|
|
async _embed(texts) {
|
|
// replace newlines, which can negatively affect performance.
|
|
const clean = texts.map((text) => text.replace(/\n/g, " "));
|
|
return this.caller.call(() => this.client.featureExtraction({
|
|
model: this.model,
|
|
inputs: clean,
|
|
}));
|
|
}
|
|
/**
|
|
* Method that takes a document as input and returns a promise that
|
|
* resolves to an embedding for the document. It calls the _embed method
|
|
* with the document as the input and returns the first embedding in the
|
|
* resulting array.
|
|
* @param document Document to generate an embedding for.
|
|
* @returns Promise that resolves to an embedding for the document.
|
|
*/
|
|
embedQuery(document) {
|
|
return this._embed([document]).then((embeddings) => embeddings[0]);
|
|
}
|
|
/**
|
|
* Method that takes an array of documents as input and returns a promise
|
|
* that resolves to a 2D array of embeddings for each document. It calls
|
|
* the _embed method with the documents as the input.
|
|
* @param documents Array of documents to generate embeddings for.
|
|
* @returns Promise that resolves to a 2D array of embeddings for each document.
|
|
*/
|
|
embedDocuments(documents) {
|
|
return this._embed(documents);
|
|
}
|
|
}
|
|
exports.HuggingFaceInferenceEmbeddings = HuggingFaceInferenceEmbeddings;
|