agsamantha/node_modules/@langchain/community/dist/embeddings/hf_transformers.js
2024-10-02 15:15:21 -05:00

109 lines
3.7 KiB
JavaScript

import { Embeddings } from "@langchain/core/embeddings";
import { chunkArray } from "@langchain/core/utils/chunk_array";
/**
* @example
* ```typescript
* const model = new HuggingFaceTransformersEmbeddings({
* model: "Xenova/all-MiniLM-L6-v2",
* });
*
* // Embed a single query
* const res = await model.embedQuery(
* "What would be a good company name for a company that makes colorful socks?"
* );
* console.log({ res });
*
* // Embed multiple documents
* const documentRes = await model.embedDocuments(["Hello world", "Bye bye"]);
* console.log({ documentRes });
* ```
*/
export class HuggingFaceTransformersEmbeddings extends Embeddings {
constructor(fields) {
super(fields ?? {});
Object.defineProperty(this, "modelName", {
enumerable: true,
configurable: true,
writable: true,
value: "Xenova/all-MiniLM-L6-v2"
});
Object.defineProperty(this, "model", {
enumerable: true,
configurable: true,
writable: true,
value: "Xenova/all-MiniLM-L6-v2"
});
Object.defineProperty(this, "batchSize", {
enumerable: true,
configurable: true,
writable: true,
value: 512
});
Object.defineProperty(this, "stripNewLines", {
enumerable: true,
configurable: true,
writable: true,
value: true
});
Object.defineProperty(this, "timeout", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "pretrainedOptions", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "pipelineOptions", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "pipelinePromise", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
this.model = this.modelName;
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
this.timeout = fields?.timeout;
this.pretrainedOptions = fields?.pretrainedOptions ?? {};
this.pipelineOptions = {
pooling: "mean",
normalize: true,
...fields?.pipelineOptions,
};
}
async embedDocuments(texts) {
const batches = chunkArray(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize);
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
const batchResponses = await Promise.all(batchRequests);
const embeddings = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batchResponse = batchResponses[i];
for (let j = 0; j < batchResponse.length; j += 1) {
embeddings.push(batchResponse[j]);
}
}
return embeddings;
}
async embedQuery(text) {
const data = await this.runEmbedding([
this.stripNewLines ? text.replace(/\n/g, " ") : text,
]);
return data[0];
}
async runEmbedding(texts) {
const pipe = await (this.pipelinePromise ??= (await import("@xenova/transformers")).pipeline("feature-extraction", this.model, this.pretrainedOptions));
return this.caller.call(async () => {
const output = await pipe(texts, this.pipelineOptions);
return output.tolist();
});
}
}