110 lines
4.1 KiB
JavaScript
110 lines
4.1 KiB
JavaScript
"use strict";
|
|
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
|
|
if (k2 === undefined) k2 = k;
|
|
var desc = Object.getOwnPropertyDescriptor(m, k);
|
|
if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
|
|
desc = { enumerable: true, get: function() { return m[k]; } };
|
|
}
|
|
Object.defineProperty(o, k2, desc);
|
|
}) : (function(o, m, k, k2) {
|
|
if (k2 === undefined) k2 = k;
|
|
o[k2] = m[k];
|
|
}));
|
|
var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
|
|
Object.defineProperty(o, "default", { enumerable: true, value: v });
|
|
}) : function(o, v) {
|
|
o["default"] = v;
|
|
});
|
|
var __importStar = (this && this.__importStar) || function (mod) {
|
|
if (mod && mod.__esModule) return mod;
|
|
var result = {};
|
|
if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
|
|
__setModuleDefault(result, mod);
|
|
return result;
|
|
};
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.TensorFlowEmbeddings = void 0;
|
|
const universal_sentence_encoder_1 = require("@tensorflow-models/universal-sentence-encoder");
|
|
const tf = __importStar(require("@tensorflow/tfjs-core"));
|
|
const embeddings_1 = require("@langchain/core/embeddings");
|
|
/**
|
|
* Class that extends the Embeddings class and provides methods for
|
|
* generating embeddings using the Universal Sentence Encoder model from
|
|
* TensorFlow.js.
|
|
* @example
|
|
* ```typescript
|
|
* const embeddings = new TensorFlowEmbeddings();
|
|
* const store = new MemoryVectorStore(embeddings);
|
|
*
|
|
* const documents = [
|
|
* "A document",
|
|
* "Some other piece of text",
|
|
* "One more",
|
|
* "And another",
|
|
* ];
|
|
*
|
|
* await store.addDocuments(
|
|
* documents.map((pageContent) => new Document({ pageContent }))
|
|
* );
|
|
* ```
|
|
*/
|
|
class TensorFlowEmbeddings extends embeddings_1.Embeddings {
|
|
constructor(fields) {
|
|
super(fields ?? {});
|
|
Object.defineProperty(this, "_cached", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
try {
|
|
tf.backend();
|
|
}
|
|
catch (e) {
|
|
throw new Error("No TensorFlow backend found, see instructions at ...");
|
|
}
|
|
}
|
|
/**
|
|
* Private method that loads the Universal Sentence Encoder model if it
|
|
* hasn't been loaded already. It returns a promise that resolves to the
|
|
* loaded model.
|
|
* @returns Promise that resolves to the loaded Universal Sentence Encoder model.
|
|
*/
|
|
async load() {
|
|
if (this._cached === undefined) {
|
|
this._cached = (0, universal_sentence_encoder_1.load)();
|
|
}
|
|
return this._cached;
|
|
}
|
|
_embed(texts) {
|
|
return this.caller.call(async () => {
|
|
const model = await this.load();
|
|
return model.embed(texts);
|
|
});
|
|
}
|
|
/**
|
|
* Method that takes a document as input and returns a promise that
|
|
* resolves to an embedding for the document. It calls the _embed method
|
|
* with the document as the input and processes the result to return a
|
|
* single embedding.
|
|
* @param document Document to generate an embedding for.
|
|
* @returns Promise that resolves to an embedding for the input document.
|
|
*/
|
|
embedQuery(document) {
|
|
return this._embed([document])
|
|
.then((embeddings) => embeddings.array())
|
|
.then((embeddings) => embeddings[0]);
|
|
}
|
|
/**
|
|
* Method that takes an array of documents as input and returns a promise
|
|
* that resolves to a 2D array of embeddings for each document. It calls
|
|
* the _embed method with the documents as the input and processes the
|
|
* result to return the embeddings.
|
|
* @param documents Array of documents to generate embeddings for.
|
|
* @returns Promise that resolves to a 2D array of embeddings for each input document.
|
|
*/
|
|
embedDocuments(documents) {
|
|
return this._embed(documents).then((embeddings) => embeddings.array());
|
|
}
|
|
}
|
|
exports.TensorFlowEmbeddings = TensorFlowEmbeddings;
|