85 lines
3.4 KiB
JavaScript
85 lines
3.4 KiB
JavaScript
import { getEnvironmentVariable } from "@langchain/core/utils/env";
|
|
import { Embeddings } from "@langchain/core/embeddings";
|
|
import { encodeApiKey } from "../utils/zhipuai.js";
|
|
export class ZhipuAIEmbeddings extends Embeddings {
|
|
constructor(fields) {
|
|
super(fields ?? {});
|
|
Object.defineProperty(this, "modelName", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: "embedding-2"
|
|
});
|
|
Object.defineProperty(this, "apiKey", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: void 0
|
|
});
|
|
Object.defineProperty(this, "stripNewLines", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: true
|
|
});
|
|
Object.defineProperty(this, "embeddingsAPIURL", {
|
|
enumerable: true,
|
|
configurable: true,
|
|
writable: true,
|
|
value: "https://open.bigmodel.cn/api/paas/v4/embeddings"
|
|
});
|
|
this.modelName = fields?.modelName ?? this.modelName;
|
|
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
|
|
this.apiKey = fields?.apiKey ?? getEnvironmentVariable("ZHIPUAI_API_KEY");
|
|
if (!this.apiKey) {
|
|
throw new Error("ZhipuAI API key not found");
|
|
}
|
|
}
|
|
/**
|
|
* Private method to make a request to the TogetherAI API to generate
|
|
* embeddings. Handles the retry logic and returns the response from the API.
|
|
* @param {string} input The input text to embed.
|
|
* @returns Promise that resolves to the response from the API.
|
|
* @TODO Figure out return type and statically type it.
|
|
*/
|
|
async embeddingWithRetry(input) {
|
|
const text = this.stripNewLines ? input.replace(/\n/g, " ") : input;
|
|
const body = JSON.stringify({ input: text, model: this.modelName });
|
|
const headers = {
|
|
Accept: "application/json",
|
|
"Content-Type": "application/json",
|
|
Authorization: encodeApiKey(this.apiKey),
|
|
};
|
|
return this.caller.call(async () => {
|
|
const fetchResponse = await fetch(this.embeddingsAPIURL, {
|
|
method: "POST",
|
|
headers,
|
|
body,
|
|
});
|
|
if (fetchResponse.status === 200) {
|
|
return fetchResponse.json();
|
|
}
|
|
throw new Error(`Error getting embeddings from ZhipuAI. ${JSON.stringify(await fetchResponse.json(), null, 2)}`);
|
|
});
|
|
}
|
|
/**
|
|
* Method to generate an embedding for a single document. Calls the
|
|
* embeddingWithRetry method with the document as the input.
|
|
* @param {string} text Document to generate an embedding for.
|
|
* @returns {Promise<number[]>} Promise that resolves to an embedding for the document.
|
|
*/
|
|
async embedQuery(text) {
|
|
const { data } = await this.embeddingWithRetry(text);
|
|
return data[0].embedding;
|
|
}
|
|
/**
|
|
* Method that takes an array of documents as input and returns a promise
|
|
* that resolves to a 2D array of embeddings for each document. It calls
|
|
* the embedQuery method for each document in the array.
|
|
* @param documents Array of documents for which to generate embeddings.
|
|
* @returns Promise that resolves to a 2D array of embeddings for each input document.
|
|
*/
|
|
embedDocuments(documents) {
|
|
return Promise.all(documents.map((doc) => this.embedQuery(doc)));
|
|
}
|
|
}
|