agsamantha/node_modules/langchain/dist/agents/chat_convo/index.d.ts
2024-10-02 15:15:21 -05:00

82 lines
3.8 KiB
TypeScript

import type { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
import type { ToolInterface } from "@langchain/core/tools";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import type { AgentStep } from "@langchain/core/agents";
import { type BaseMessage } from "@langchain/core/messages";
import { Optional } from "../../types/type-utils.js";
import { Agent, AgentArgs, OutputParserArgs } from "../agent.js";
import { AgentActionOutputParser, AgentInput } from "../types.js";
/**
* Interface defining the structure of arguments used to create a prompt
* for the ChatConversationalAgent class.
*/
export interface ChatConversationalCreatePromptArgs {
/** String to put after the list of tools. */
systemMessage?: string;
/** String to put before the list of tools. */
humanMessage?: string;
/** List of input variables the final prompt will expect. */
inputVariables?: string[];
/** Output parser to use for formatting. */
outputParser?: AgentActionOutputParser;
}
/**
* Type that extends the AgentInput interface for the
* ChatConversationalAgent class, making the outputParser property
* optional.
*/
export type ChatConversationalAgentInput = Optional<AgentInput, "outputParser">;
/**
* Agent for the MRKL chain.
* @augments Agent
*
* @deprecated Use the {@link https://api.js.langchain.com/functions/langchain.agents.createStructuredChatAgent.html | createStructuredChatAgent method instead}.
*/
export declare class ChatConversationalAgent extends Agent {
static lc_name(): string;
lc_namespace: string[];
ToolType: ToolInterface;
constructor(input: ChatConversationalAgentInput);
_agentType(): "chat-conversational-react-description";
observationPrefix(): string;
llmPrefix(): string;
_stop(): string[];
static validateTools(tools: ToolInterface[]): void;
/**
* Constructs the agent scratchpad based on the agent steps. It returns an
* array of base messages representing the thoughts of the agent.
* @param steps The agent steps to construct the scratchpad from.
* @returns An array of base messages representing the thoughts of the agent.
*/
constructScratchPad(steps: AgentStep[]): Promise<BaseMessage[]>;
/**
* Returns the default output parser for the ChatConversationalAgent
* class. It takes optional fields as arguments to customize the output
* parser.
* @param fields Optional fields to customize the output parser.
* @returns The default output parser for the ChatConversationalAgent class.
*/
static getDefaultOutputParser(fields?: OutputParserArgs & {
toolNames: string[];
}): AgentActionOutputParser;
/**
* Create prompt in the style of the ChatConversationAgent.
*
* @param tools - List of tools the agent will have access to, used to format the prompt.
* @param args - Arguments to create the prompt with.
* @param args.systemMessage - String to put before the list of tools.
* @param args.humanMessage - String to put after the list of tools.
* @param args.outputParser - Output parser to use for formatting.
*/
static createPrompt(tools: ToolInterface[], args?: ChatConversationalCreatePromptArgs): ChatPromptTemplate<any, any>;
/**
* Creates an instance of the ChatConversationalAgent class from a
* BaseLanguageModel and a set of tools. It takes optional arguments to
* customize the agent.
* @param llm The BaseLanguageModel to create the agent from.
* @param tools The set of tools to create the agent from.
* @param args Optional arguments to customize the agent.
* @returns An instance of the ChatConversationalAgent class.
*/
static fromLLMAndTools(llm: BaseLanguageModelInterface, tools: ToolInterface[], args?: ChatConversationalCreatePromptArgs & AgentArgs): ChatConversationalAgent;
}