agsamantha/node_modules/langchain/dist/agents/react/output_parser.cjs
2024-10-02 15:15:21 -05:00

112 lines
3.9 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.ReActSingleInputOutputParser = void 0;
const prompts_1 = require("@langchain/core/prompts");
const output_parsers_1 = require("@langchain/core/output_parsers");
const types_js_1 = require("../types.cjs");
const prompt_js_1 = require("./prompt.cjs");
const FINAL_ANSWER_ACTION = "Final Answer:";
const FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "Parsing LLM output produced both a final answer and a parse-able action:";
/**
* Parses ReAct-style LLM calls that have a single tool input.
*
* Expects output to be in one of two formats.
*
* If the output signals that an action should be taken,
* should be in the below format. This will result in an AgentAction
* being returned.
*
* ```
* Thought: agent thought here
* Action: search
* Action Input: what is the temperature in SF?
* ```
*
* If the output signals that a final answer should be given,
* should be in the below format. This will result in an AgentFinish
* being returned.
*
* ```
* Thought: agent thought here
* Final Answer: The temperature is 100 degrees
* ```
* @example
* ```typescript
*
* const runnableAgent = RunnableSequence.from([
* ...rest of runnable
* new ReActSingleInputOutputParser({ toolNames: ["SerpAPI", "Calculator"] }),
* ]);
* const agent = AgentExecutor.fromAgentAndTools({
* agent: runnableAgent,
* tools: [new SerpAPI(), new Calculator()],
* });
* const result = await agent.invoke({
* input: "whats the weather in pomfret?",
* });
* ```
*/
class ReActSingleInputOutputParser extends types_js_1.AgentActionOutputParser {
constructor(fields) {
super(...arguments);
Object.defineProperty(this, "lc_namespace", {
enumerable: true,
configurable: true,
writable: true,
value: ["langchain", "agents", "react"]
});
Object.defineProperty(this, "toolNames", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.toolNames = fields.toolNames;
}
/**
* Parses the given text into an AgentAction or AgentFinish object. If an
* output fixing parser is defined, uses it to parse the text.
* @param text Text to parse.
* @returns Promise that resolves to an AgentAction or AgentFinish object.
*/
async parse(text) {
const includesAnswer = text.includes(FINAL_ANSWER_ACTION);
const regex = /Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)/;
const actionMatch = text.match(regex);
if (actionMatch) {
if (includesAnswer) {
throw new output_parsers_1.OutputParserException(`${FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: ${text}`);
}
const action = actionMatch[1];
const actionInput = actionMatch[2];
const toolInput = actionInput.trim().replace(/"/g, "");
return {
tool: action,
toolInput,
log: text,
};
}
if (includesAnswer) {
const finalAnswerText = text.split(FINAL_ANSWER_ACTION)[1].trim();
return {
returnValues: {
output: finalAnswerText,
},
log: text,
};
}
throw new output_parsers_1.OutputParserException(`Could not parse LLM output: ${text}`);
}
/**
* Returns the format instructions as a string. If the 'raw' option is
* true, returns the raw FORMAT_INSTRUCTIONS.
* @param options Options for getting the format instructions.
* @returns Format instructions as a string.
*/
getFormatInstructions() {
return (0, prompts_1.renderTemplate)(prompt_js_1.FORMAT_INSTRUCTIONS, "f-string", {
tool_names: this.toolNames.join(", "),
});
}
}
exports.ReActSingleInputOutputParser = ReActSingleInputOutputParser;