94 lines
3.2 KiB
JavaScript
94 lines
3.2 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.createToolCallingAgent = void 0;
|
|
const runnables_1 = require("@langchain/core/runnables");
|
|
const agent_js_1 = require("../agent.cjs");
|
|
const output_parser_js_1 = require("./output_parser.cjs");
|
|
const tool_calling_js_1 = require("../format_scratchpad/tool_calling.cjs");
|
|
function _isBaseChatModel(x) {
|
|
const model = x;
|
|
return (typeof model._modelType === "function" &&
|
|
model._modelType() === "base_chat_model");
|
|
}
|
|
/**
|
|
* Create an agent that uses tools.
|
|
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
|
|
* @returns A runnable sequence representing an agent. It takes as input all the same input
|
|
* variables as the prompt passed in does. It returns as output either an
|
|
* AgentAction or AgentFinish.
|
|
* @example
|
|
* ```typescript
|
|
* import { ChatAnthropic } from "@langchain/anthropic";
|
|
* import { ChatPromptTemplate, MessagesPlaceholder } from "@langchain/core/prompts";
|
|
* import { AgentExecutor, createToolCallingAgent } from "langchain/agents";
|
|
*
|
|
* const prompt = ChatPromptTemplate.fromMessages(
|
|
* [
|
|
* ["system", "You are a helpful assistant"],
|
|
* ["placeholder", "{chat_history}"],
|
|
* ["human", "{input}"],
|
|
* ["placeholder", "{agent_scratchpad}"],
|
|
* ]
|
|
* );
|
|
*
|
|
*
|
|
* const llm = new ChatAnthropic({
|
|
* modelName: "claude-3-opus-20240229",
|
|
* temperature: 0,
|
|
* });
|
|
*
|
|
* // Define the tools the agent will have access to.
|
|
* const tools = [...];
|
|
*
|
|
* const agent = createToolCallingAgent({ llm, tools, prompt });
|
|
*
|
|
* const agentExecutor = new AgentExecutor({ agent, tools });
|
|
*
|
|
* const result = await agentExecutor.invoke({input: "what is LangChain?"});
|
|
*
|
|
* // Using with chat history
|
|
* import { AIMessage, HumanMessage } from "@langchain/core/messages";
|
|
*
|
|
* const result2 = await agentExecutor.invoke(
|
|
* {
|
|
* input: "what's my name?",
|
|
* chat_history: [
|
|
* new HumanMessage({content: "hi! my name is bob"}),
|
|
* new AIMessage({content: "Hello Bob! How can I assist you today?"}),
|
|
* ],
|
|
* }
|
|
* );
|
|
* ```
|
|
*/
|
|
function createToolCallingAgent({ llm, tools, prompt, streamRunnable, }) {
|
|
if (!prompt.inputVariables.includes("agent_scratchpad")) {
|
|
throw new Error([
|
|
`Prompt must have an input variable named "agent_scratchpad".`,
|
|
`Found ${JSON.stringify(prompt.inputVariables)} instead.`,
|
|
].join("\n"));
|
|
}
|
|
let modelWithTools;
|
|
if (_isBaseChatModel(llm)) {
|
|
if (llm.bindTools === undefined) {
|
|
throw new Error(`This agent requires that the "bind_tools()" method be implemented on the input model.`);
|
|
}
|
|
modelWithTools = llm.bindTools(tools);
|
|
}
|
|
else {
|
|
modelWithTools = llm;
|
|
}
|
|
const agent = agent_js_1.AgentRunnableSequence.fromRunnables([
|
|
runnables_1.RunnablePassthrough.assign({
|
|
agent_scratchpad: (input) => (0, tool_calling_js_1.formatToToolMessages)(input.steps),
|
|
}),
|
|
prompt,
|
|
modelWithTools,
|
|
new output_parser_js_1.ToolCallingAgentOutputParser(),
|
|
], {
|
|
name: "ToolCallingAgent",
|
|
streamRunnable,
|
|
singleAction: false,
|
|
});
|
|
return agent;
|
|
}
|
|
exports.createToolCallingAgent = createToolCallingAgent;
|