agsamantha/node_modules/langchain/dist/chains/retrieval_qa.js
2024-10-02 15:15:21 -05:00

123 lines
4.2 KiB
JavaScript

import { BaseChain } from "./base.js";
import { loadQAStuffChain, } from "./question_answering/load.js";
/**
* @deprecated This class will be removed in 1.0.0. See below for an example implementation using
* `createRetrievalChain`:
* Class representing a chain for performing question-answering tasks with
* a retrieval component.
* @example
* ```typescript
* import { createStuffDocumentsChain } from "langchain/chains/combine_documents";
* import { ChatPromptTemplate } from "@langchain/core/prompts";
* import { createRetrievalChain } from "langchain/chains/retrieval";
* import { MemoryVectorStore } from "langchain/vectorstores/memory";
*
* const documents = [...your documents here];
* const embeddings = ...your embeddings model;
* const llm = ...your LLM model;
*
* const vectorstore = await MemoryVectorStore.fromDocuments(
* documents,
* embeddings
* );
* const prompt = ChatPromptTemplate.fromTemplate(`Answer the user's question: {input} based on the following context {context}`);
*
* const combineDocsChain = await createStuffDocumentsChain({
* llm,
* prompt,
* });
* const retriever = vectorstore.asRetriever();
*
* const retrievalChain = await createRetrievalChain({
* combineDocsChain,
* retriever,
* });
* ```
*/
export class RetrievalQAChain extends BaseChain {
static lc_name() {
return "RetrievalQAChain";
}
get inputKeys() {
return [this.inputKey];
}
get outputKeys() {
return this.combineDocumentsChain.outputKeys.concat(this.returnSourceDocuments ? ["sourceDocuments"] : []);
}
constructor(fields) {
super(fields);
Object.defineProperty(this, "inputKey", {
enumerable: true,
configurable: true,
writable: true,
value: "query"
});
Object.defineProperty(this, "retriever", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "combineDocumentsChain", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
Object.defineProperty(this, "returnSourceDocuments", {
enumerable: true,
configurable: true,
writable: true,
value: false
});
this.retriever = fields.retriever;
this.combineDocumentsChain = fields.combineDocumentsChain;
this.inputKey = fields.inputKey ?? this.inputKey;
this.returnSourceDocuments =
fields.returnSourceDocuments ?? this.returnSourceDocuments;
}
/** @ignore */
async _call(values, runManager) {
if (!(this.inputKey in values)) {
throw new Error(`Question key "${this.inputKey}" not found.`);
}
const question = values[this.inputKey];
const docs = await this.retriever.getRelevantDocuments(question, runManager?.getChild("retriever"));
const inputs = { question, input_documents: docs, ...values };
const result = await this.combineDocumentsChain.call(inputs, runManager?.getChild("combine_documents"));
if (this.returnSourceDocuments) {
return {
...result,
sourceDocuments: docs,
};
}
return result;
}
_chainType() {
return "retrieval_qa";
}
static async deserialize(_data, _values) {
throw new Error("Not implemented");
}
serialize() {
throw new Error("Not implemented");
}
/**
* Creates a new instance of RetrievalQAChain using a BaseLanguageModel
* and a BaseRetriever.
* @param llm The BaseLanguageModel used to generate a new question.
* @param retriever The BaseRetriever used to retrieve relevant documents.
* @param options Optional parameters for the RetrievalQAChain.
* @returns A new instance of RetrievalQAChain.
*/
static fromLLM(llm, retriever, options) {
const qaChain = loadQAStuffChain(llm, {
prompt: options?.prompt,
});
return new this({
...options,
retriever,
combineDocumentsChain: qaChain,
});
}
}