gems-kernel/source/THIRDPARTY/linux-old/drivers/FPU-emu/poly_atan.c

205 lines
5.9 KiB
C
Raw Normal View History

/*---------------------------------------------------------------------------+
| p_atan.c |
| |
| Compute the tan of a FPU_REG, using a polynomial approximation. |
| |
| Copyright (C) 1992,1993 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
| Australia. E-mail billm@vaxc.cc.monash.edu.au |
| |
| |
+---------------------------------------------------------------------------*/
#include "exception.h"
#include "reg_constant.h"
#include "fpu_emu.h"
#include "control_w.h"
#define HIPOWERon 6 /* odd poly, negative terms */
static unsigned const oddnegterms[HIPOWERon][2] =
{
{ 0x00000000, 0x00000000 }, /* for + 1.0 */
{ 0x763b6f3d, 0x1adc4428 },
{ 0x20f0630b, 0x0502909d },
{ 0x4e825578, 0x0198ce38 },
{ 0x22b7cb87, 0x008da6e3 },
{ 0x9b30ca03, 0x00239c79 }
} ;
#define HIPOWERop 6 /* odd poly, positive terms */
static unsigned const oddplterms[HIPOWERop][2] =
{
{ 0xa6f67cb8, 0x94d910bd },
{ 0xa02ffab4, 0x0a43cb45 },
{ 0x04265e6b, 0x02bf5655 },
{ 0x0a728914, 0x00f280f7 },
{ 0x6d640e01, 0x004d6556 },
{ 0xf1dd2dbf, 0x000a530a }
};
static unsigned long long const denomterm = 0xea2e6612fc4bd208LL;
/*--- poly_atan() -----------------------------------------------------------+
| |
+---------------------------------------------------------------------------*/
void poly_atan(FPU_REG *arg)
{
char recursions = 0;
short exponent;
FPU_REG odd_poly, even_poly, pos_poly, neg_poly, ratio;
FPU_REG argSq;
unsigned long long arg_signif, argSqSq;
#ifdef PARANOID
if ( arg->sign != 0 ) /* Can't hack a number < 0.0 */
{ arith_invalid(arg); return; } /* Need a positive number */
#endif PARANOID
exponent = arg->exp - EXP_BIAS;
if ( arg->tag == TW_Zero )
{
/* Return 0.0 */
reg_move(&CONST_Z, arg);
return;
}
if ( exponent >= -2 )
{
/* argument is in the range [0.25 .. 1.0] */
if ( exponent >= 0 )
{
#ifdef PARANOID
if ( (exponent == 0) &&
(arg->sigl == 0) && (arg->sigh == 0x80000000) )
#endif PARANOID
{
reg_move(&CONST_PI4, arg);
return;
}
#ifdef PARANOID
EXCEPTION(EX_INTERNAL|0x104); /* There must be a logic error */
return;
#endif PARANOID
}
/* If the argument is greater than sqrt(2)-1 (=0.414213562...) */
/* convert the argument by an identity for atan */
if ( (exponent >= -1) || (arg->sigh > 0xd413ccd0) )
{
FPU_REG numerator, denom;
recursions++;
arg_signif = significand(arg);
if ( exponent < -1 )
{
if ( shrx(&arg_signif, -1-exponent) >= 0x80000000U )
arg_signif++; /* round up */
}
significand(&numerator) = -arg_signif;
numerator.exp = EXP_BIAS - 1;
normalize(&numerator); /* 1 - arg */
arg_signif = significand(arg);
if ( shrx(&arg_signif, -exponent) >= 0x80000000U )
arg_signif++; /* round up */
significand(&denom) = arg_signif;
denom.sigh |= 0x80000000; /* 1 + arg */
arg->exp = numerator.exp;
reg_u_div(&numerator, &denom, arg, FULL_PRECISION);
exponent = arg->exp - EXP_BIAS;
}
}
arg_signif = significand(arg);
#ifdef PARANOID
/* This must always be true */
if ( exponent >= -1 )
{
EXCEPTION(EX_INTERNAL|0x120); /* There must be a logic error */
}
#endif PARANOID
/* shift the argument right by the required places */
if ( shrx(&arg_signif, -1-exponent) >= 0x80000000U )
arg_signif++; /* round up */
/* Now have arg_signif with binary point at the left
.1xxxxxxxx */
mul64(&arg_signif, &arg_signif, &significand(&argSq));
mul64(&significand(&argSq), &significand(&argSq), &argSqSq);
/* will be a valid positive nr with expon = 0 */
*(short *)&(pos_poly.sign) = 0;
pos_poly.exp = EXP_BIAS;
/* Do the basic fixed point polynomial evaluation */
polynomial(&pos_poly.sigl, (unsigned *)&argSqSq,
(unsigned short (*)[4])oddplterms, HIPOWERop-1);
mul64(&significand(&argSq), &significand(&pos_poly),
&significand(&pos_poly));
/* will be a valid positive nr with expon = 0 */
*(short *)&(neg_poly.sign) = 0;
neg_poly.exp = EXP_BIAS;
/* Do the basic fixed point polynomial evaluation */
polynomial(&neg_poly.sigl, (unsigned *)&argSqSq,
(unsigned short (*)[4])oddnegterms, HIPOWERon-1);
/* Subtract the mantissas */
significand(&pos_poly) -= significand(&neg_poly);
reg_move(&pos_poly, &odd_poly);
poly_add_1(&odd_poly);
/* will be a valid positive nr with expon = 0 */
*(short *)&(even_poly.sign) = 0;
mul64(&significand(&argSq), &denomterm, &significand(&even_poly));
poly_add_1(&even_poly);
reg_div(&odd_poly, &even_poly, &ratio, FULL_PRECISION);
reg_u_mul(&ratio, arg, arg, FULL_PRECISION);
if ( recursions )
reg_sub(&CONST_PI4, arg, arg, FULL_PRECISION);
}
/* The argument to this function must be polynomial() compatible,
i.e. have an exponent (not checked) of EXP_BIAS-1 but need not
be normalized.
This function adds 1.0 to the (assumed positive) argument. */
void poly_add_1(FPU_REG *src)
{
/* Rounding in a consistent direction produces better results
for the use of this function in poly_atan. Simple truncation
is used here instead of round-to-nearest. */
#ifdef OBSOLETE
char round = (src->sigl & 3) == 3;
#endif OBSOLETE
shrx(&src->sigl, 1);
#ifdef OBSOLETE
if ( round ) significand(src)++; /* Round to even */
#endif OBSOLETE
src->sigh |= 0x80000000;
src->exp = EXP_BIAS;
}