4155 lines
108 KiB
C
4155 lines
108 KiB
C
|
/*
|
||
|
* Copyright (c) 2000-2021 Apple Inc. All rights reserved.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
||
|
*
|
||
|
* This file contains Original Code and/or Modifications of Original Code
|
||
|
* as defined in and that are subject to the Apple Public Source License
|
||
|
* Version 2.0 (the 'License'). You may not use this file except in
|
||
|
* compliance with the License. The rights granted to you under the License
|
||
|
* may not be used to create, or enable the creation or redistribution of,
|
||
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
||
|
* circumvent, violate, or enable the circumvention or violation of, any
|
||
|
* terms of an Apple operating system software license agreement.
|
||
|
*
|
||
|
* Please obtain a copy of the License at
|
||
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
||
|
*
|
||
|
* The Original Code and all software distributed under the License are
|
||
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
||
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
||
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
||
|
* Please see the License for the specific language governing rights and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 1982, 1986, 1988, 1993
|
||
|
* The Regents of the University of California. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* This product includes software developed by the University of
|
||
|
* California, Berkeley and its contributors.
|
||
|
* 4. Neither the name of the University nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* @(#)ip_input.c 8.2 (Berkeley) 1/4/94
|
||
|
*/
|
||
|
/*
|
||
|
* NOTICE: This file was modified by SPARTA, Inc. in 2007 to introduce
|
||
|
* support for mandatory and extensible security protections. This notice
|
||
|
* is included in support of clause 2.2 (b) of the Apple Public License,
|
||
|
* Version 2.0.
|
||
|
*/
|
||
|
|
||
|
#define _IP_VHL
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/systm.h>
|
||
|
#include <sys/mbuf.h>
|
||
|
#include <sys/malloc.h>
|
||
|
#include <sys/domain.h>
|
||
|
#include <sys/protosw.h>
|
||
|
#include <sys/socket.h>
|
||
|
#include <sys/time.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/syslog.h>
|
||
|
#include <sys/sysctl.h>
|
||
|
#include <sys/mcache.h>
|
||
|
#include <sys/socketvar.h>
|
||
|
#include <sys/kdebug.h>
|
||
|
#include <mach/mach_time.h>
|
||
|
#include <mach/sdt.h>
|
||
|
|
||
|
#include <machine/endian.h>
|
||
|
#include <dev/random/randomdev.h>
|
||
|
|
||
|
#include <kern/queue.h>
|
||
|
#include <kern/locks.h>
|
||
|
#include <libkern/OSAtomic.h>
|
||
|
|
||
|
#include <pexpert/pexpert.h>
|
||
|
|
||
|
#include <net/if.h>
|
||
|
#include <net/if_var.h>
|
||
|
#include <net/if_dl.h>
|
||
|
#include <net/route.h>
|
||
|
#include <net/kpi_protocol.h>
|
||
|
#include <net/ntstat.h>
|
||
|
#include <net/dlil.h>
|
||
|
#include <net/classq/classq.h>
|
||
|
#include <net/net_perf.h>
|
||
|
#include <net/init.h>
|
||
|
#if PF
|
||
|
#include <net/pfvar.h>
|
||
|
#endif /* PF */
|
||
|
#include <net/if_ports_used.h>
|
||
|
|
||
|
#include <netinet/in.h>
|
||
|
#include <netinet/in_systm.h>
|
||
|
#include <netinet/in_var.h>
|
||
|
#include <netinet/in_arp.h>
|
||
|
#include <netinet/ip.h>
|
||
|
#include <netinet/in_pcb.h>
|
||
|
#include <netinet/ip_var.h>
|
||
|
#include <netinet/ip_icmp.h>
|
||
|
#include <netinet/kpi_ipfilter_var.h>
|
||
|
#include <netinet/udp.h>
|
||
|
#include <netinet/udp_var.h>
|
||
|
#include <netinet/bootp.h>
|
||
|
|
||
|
#if DUMMYNET
|
||
|
#include <netinet/ip_dummynet.h>
|
||
|
#endif /* DUMMYNET */
|
||
|
|
||
|
#if IPSEC
|
||
|
#include <netinet6/ipsec.h>
|
||
|
#include <netkey/key.h>
|
||
|
#endif /* IPSEC */
|
||
|
|
||
|
#include <net/sockaddr_utils.h>
|
||
|
|
||
|
#include <os/log.h>
|
||
|
|
||
|
#define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
|
||
|
#define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
|
||
|
#define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
|
||
|
|
||
|
#if IPSEC
|
||
|
extern int ipsec_bypass;
|
||
|
#endif /* IPSEC */
|
||
|
|
||
|
MBUFQ_HEAD(fq_head);
|
||
|
|
||
|
static int frag_timeout_run; /* frag timer is scheduled to run */
|
||
|
static void frag_timeout(void *);
|
||
|
static void frag_sched_timeout(void);
|
||
|
|
||
|
static struct ipq *ipq_alloc(void);
|
||
|
static void ipq_free(struct ipq *);
|
||
|
static void ipq_updateparams(void);
|
||
|
static void ip_input_second_pass(struct mbuf *, struct ifnet *,
|
||
|
int, int, struct ip_fw_in_args *);
|
||
|
|
||
|
static LCK_GRP_DECLARE(ipqlock_grp, "ipqlock");
|
||
|
static LCK_MTX_DECLARE(ipqlock, &ipqlock_grp);
|
||
|
|
||
|
|
||
|
/* Packet reassembly stuff */
|
||
|
#define IPREASS_NHASH_LOG2 6
|
||
|
#define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
|
||
|
#define IPREASS_HMASK (IPREASS_NHASH - 1)
|
||
|
#define IPREASS_HASH(x, y) \
|
||
|
(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
|
||
|
|
||
|
/* IP fragment reassembly queues (protected by ipqlock) */
|
||
|
static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; /* ip reassembly queues */
|
||
|
static int maxnipq; /* max packets in reass queues */
|
||
|
static u_int32_t maxfragsperpacket; /* max frags/packet in reass queues */
|
||
|
static u_int32_t nipq; /* # of packets in reass queues */
|
||
|
static u_int32_t ipq_limit; /* ipq allocation limit */
|
||
|
static u_int32_t ipq_count; /* current # of allocated ipq's */
|
||
|
|
||
|
static int sysctl_ipforwarding SYSCTL_HANDLER_ARGS;
|
||
|
static int sysctl_maxnipq SYSCTL_HANDLER_ARGS;
|
||
|
static int sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS;
|
||
|
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
static int sysctl_reset_ip_input_stats SYSCTL_HANDLER_ARGS;
|
||
|
static int sysctl_ip_input_measure_bins SYSCTL_HANDLER_ARGS;
|
||
|
static int sysctl_ip_input_getperf SYSCTL_HANDLER_ARGS;
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
|
||
|
int ipforwarding = 0;
|
||
|
SYSCTL_PROC(_net_inet_ip, IPCTL_FORWARDING, forwarding,
|
||
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ipforwarding, 0,
|
||
|
sysctl_ipforwarding, "I", "Enable IP forwarding between interfaces");
|
||
|
|
||
|
static int ipsendredirects = 1; /* XXX */
|
||
|
SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ipsendredirects, 0,
|
||
|
"Enable sending IP redirects");
|
||
|
|
||
|
int ip_defttl = IPDEFTTL;
|
||
|
SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&ip_defttl, 0, "Maximum TTL on IP packets");
|
||
|
|
||
|
static int ip_dosourceroute = 0;
|
||
|
SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip_dosourceroute, 0,
|
||
|
"Enable forwarding source routed IP packets");
|
||
|
|
||
|
static int ip_acceptsourceroute = 0;
|
||
|
SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip_acceptsourceroute, 0,
|
||
|
"Enable accepting source routed IP packets");
|
||
|
|
||
|
static int ip_sendsourcequench = 0;
|
||
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip_sendsourcequench, 0,
|
||
|
"Enable the transmission of source quench packets");
|
||
|
|
||
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
|
||
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxnipq, 0, sysctl_maxnipq,
|
||
|
"I", "Maximum number of IPv4 fragment reassembly queue entries");
|
||
|
|
||
|
SYSCTL_UINT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD | CTLFLAG_LOCKED,
|
||
|
&nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
|
||
|
|
||
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragsperpacket,
|
||
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxfragsperpacket, 0,
|
||
|
sysctl_maxfragsperpacket, "I",
|
||
|
"Maximum number of IPv4 fragments allowed per packet");
|
||
|
|
||
|
static uint32_t ip_adj_clear_hwcksum = 0;
|
||
|
SYSCTL_UINT(_net_inet_ip, OID_AUTO, adj_clear_hwcksum,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip_adj_clear_hwcksum, 0,
|
||
|
"Invalidate hwcksum info when adjusting length");
|
||
|
|
||
|
static uint32_t ip_adj_partial_sum = 1;
|
||
|
SYSCTL_UINT(_net_inet_ip, OID_AUTO, adj_partial_sum,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip_adj_partial_sum, 0,
|
||
|
"Perform partial sum adjustment of trailing bytes at IP layer");
|
||
|
|
||
|
/*
|
||
|
* ip_checkinterface controls the receive side of the models for multihoming
|
||
|
* that are discussed in RFC 1122.
|
||
|
*
|
||
|
* ip_checkinterface values are:
|
||
|
* IP_CHECKINTERFACE_WEAK_ES:
|
||
|
* This corresponds to the Weak End-System model where incoming packets from
|
||
|
* any interface are accepted provided the destination address of the incoming packet
|
||
|
* is assigned to some interface.
|
||
|
*
|
||
|
* IP_CHECKINTERFACE_HYBRID_ES:
|
||
|
* The Hybrid End-System model use the Strong End-System for tunnel interfaces
|
||
|
* (ipsec and utun) and the weak End-System model for other interfaces families.
|
||
|
* This prevents a rogue middle box to probe for signs of TCP connections
|
||
|
* that use the tunnel interface.
|
||
|
*
|
||
|
* IP_CHECKINTERFACE_STRONG_ES:
|
||
|
* The Strong model model requires the packet arrived on an interface that
|
||
|
* is assigned the destination address of the packet.
|
||
|
*
|
||
|
* Since the routing table and transmit implementation do not implement the Strong ES model,
|
||
|
* setting this to a value different from IP_CHECKINTERFACE_WEAK_ES may lead to unexpected results.
|
||
|
*
|
||
|
* When forwarding is enabled, the system reverts to the Weak ES model as a router
|
||
|
* is expected by design to receive packets from several interfaces to the same address.
|
||
|
*
|
||
|
* XXX - ip_checkinterface currently must be set to IP_CHECKINTERFACE_WEAK_ES if you use ipnat
|
||
|
* to translate the destination address to another local interface.
|
||
|
*
|
||
|
* XXX - ip_checkinterface must be set to IP_CHECKINTERFACE_WEAK_ES if you add IP aliases
|
||
|
* to the loopback interface instead of the interface where the
|
||
|
* packets for those addresses are received.
|
||
|
*/
|
||
|
#define IP_CHECKINTERFACE_WEAK_ES 0
|
||
|
#define IP_CHECKINTERFACE_HYBRID_ES 1
|
||
|
#define IP_CHECKINTERFACE_STRONG_ES 2
|
||
|
|
||
|
static int ip_checkinterface = IP_CHECKINTERFACE_HYBRID_ES;
|
||
|
|
||
|
static int sysctl_ip_checkinterface SYSCTL_HANDLER_ARGS;
|
||
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, check_interface,
|
||
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
0, 0, sysctl_ip_checkinterface, "I", "Verify packet arrives on correct interface");
|
||
|
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
#define IP_CHECK_IF_DEBUG 1
|
||
|
#else
|
||
|
#define IP_CHECK_IF_DEBUG 0
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
static int ip_checkinterface_debug = IP_CHECK_IF_DEBUG;
|
||
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, checkinterface_debug, CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&ip_checkinterface_debug, IP_CHECK_IF_DEBUG, "");
|
||
|
|
||
|
static int ip_chaining = 1;
|
||
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, rx_chaining, CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&ip_chaining, 1, "Do receive side ip address based chaining");
|
||
|
|
||
|
static int ip_chainsz = 6;
|
||
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, rx_chainsz, CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&ip_chainsz, 1, "IP receive side max chaining");
|
||
|
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
static int ip_input_measure = 0;
|
||
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf,
|
||
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&ip_input_measure, 0, sysctl_reset_ip_input_stats, "I", "Do time measurement");
|
||
|
|
||
|
static uint64_t ip_input_measure_bins = 0;
|
||
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf_bins,
|
||
|
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_input_measure_bins, 0,
|
||
|
sysctl_ip_input_measure_bins, "I",
|
||
|
"bins for chaining performance data histogram");
|
||
|
|
||
|
static net_perf_t net_perf;
|
||
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf_data,
|
||
|
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
|
||
|
0, 0, sysctl_ip_input_getperf, "S,net_perf",
|
||
|
"IP input performance data (struct net_perf, net/net_perf.h)");
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
|
||
|
#if DIAGNOSTIC
|
||
|
static int ipprintfs = 0;
|
||
|
#endif
|
||
|
|
||
|
struct protosw *ip_protox[IPPROTO_MAX];
|
||
|
|
||
|
static LCK_GRP_DECLARE(in_ifaddr_rwlock_grp, "in_ifaddr_rwlock");
|
||
|
LCK_RW_DECLARE(in_ifaddr_rwlock, &in_ifaddr_rwlock_grp);
|
||
|
|
||
|
/* Protected by in_ifaddr_rwlock */
|
||
|
struct in_ifaddrhead in_ifaddrhead; /* first inet address */
|
||
|
struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
|
||
|
|
||
|
#define INADDR_NHASH 61
|
||
|
static uint32_t inaddr_nhash; /* hash table size */
|
||
|
static uint32_t inaddr_hashp; /* next largest prime */
|
||
|
|
||
|
static int ip_getstat SYSCTL_HANDLER_ARGS;
|
||
|
struct ipstat ipstat;
|
||
|
SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats,
|
||
|
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
|
||
|
0, 0, ip_getstat, "S,ipstat",
|
||
|
"IP statistics (struct ipstat, netinet/ip_var.h)");
|
||
|
|
||
|
#if IPCTL_DEFMTU
|
||
|
SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&ip_mtu, 0, "Default MTU");
|
||
|
#endif /* IPCTL_DEFMTU */
|
||
|
|
||
|
#if IPSTEALTH
|
||
|
static int ipstealth = 0;
|
||
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&ipstealth, 0, "");
|
||
|
#endif /* IPSTEALTH */
|
||
|
|
||
|
#if DUMMYNET
|
||
|
ip_dn_io_t *ip_dn_io_ptr;
|
||
|
#endif /* DUMMYNET */
|
||
|
|
||
|
SYSCTL_NODE(_net_inet_ip, OID_AUTO, linklocal,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local");
|
||
|
|
||
|
struct ip_linklocal_stat ip_linklocal_stat;
|
||
|
SYSCTL_STRUCT(_net_inet_ip_linklocal, OID_AUTO, stat,
|
||
|
CTLFLAG_RD | CTLFLAG_LOCKED, &ip_linklocal_stat, ip_linklocal_stat,
|
||
|
"Number of link local packets with TTL less than 255");
|
||
|
|
||
|
SYSCTL_NODE(_net_inet_ip_linklocal, OID_AUTO, in,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local input");
|
||
|
|
||
|
int ip_linklocal_in_allowbadttl = 1;
|
||
|
SYSCTL_INT(_net_inet_ip_linklocal_in, OID_AUTO, allowbadttl,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, &ip_linklocal_in_allowbadttl, 0,
|
||
|
"Allow incoming link local packets with TTL less than 255");
|
||
|
|
||
|
|
||
|
/*
|
||
|
* We need to save the IP options in case a protocol wants to respond
|
||
|
* to an incoming packet over the same route if the packet got here
|
||
|
* using IP source routing. This allows connection establishment and
|
||
|
* maintenance when the remote end is on a network that is not known
|
||
|
* to us.
|
||
|
*/
|
||
|
static int ip_nhops = 0;
|
||
|
static struct ip_srcrt {
|
||
|
struct in_addr dst; /* final destination */
|
||
|
char nop; /* one NOP to align */
|
||
|
char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
|
||
|
struct in_addr route[MAX_IPOPTLEN / sizeof(struct in_addr)];
|
||
|
} ip_srcrt;
|
||
|
|
||
|
static void in_ifaddrhashtbl_init(void);
|
||
|
static void save_rte(u_char *, struct in_addr);
|
||
|
static int ip_dooptions(struct mbuf *, int, struct sockaddr_in *);
|
||
|
static void ip_forward(struct mbuf *, int, struct sockaddr_in *);
|
||
|
static void frag_freef(struct ipqhead *, struct ipq *);
|
||
|
static struct mbuf *ip_reass(struct mbuf *);
|
||
|
static void ip_fwd_route_copyout(struct ifnet *, struct route *);
|
||
|
static void ip_fwd_route_copyin(struct ifnet *, struct route *);
|
||
|
static inline u_short ip_cksum(struct mbuf *, int);
|
||
|
|
||
|
/*
|
||
|
* On platforms which require strict alignment (currently for anything but
|
||
|
* i386 or x86_64 or arm64), check if the IP header pointer is 32-bit aligned; if not,
|
||
|
* copy the contents of the mbuf chain into a new chain, and free the original
|
||
|
* one. Create some head room in the first mbuf of the new chain, in case
|
||
|
* it's needed later on.
|
||
|
*/
|
||
|
#if defined(__i386__) || defined(__x86_64__) || defined(__arm64__)
|
||
|
#define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
|
||
|
#else /* !__i386__ && !__x86_64__ && !__arm64__ */
|
||
|
#define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
|
||
|
if (!IP_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
|
||
|
struct mbuf *_n; \
|
||
|
struct ifnet *__ifp = (_ifp); \
|
||
|
os_atomic_inc(&(__ifp)->if_alignerrs, relaxed); \
|
||
|
if (((_m)->m_flags & M_PKTHDR) && \
|
||
|
(_m)->m_pkthdr.pkt_hdr != NULL) \
|
||
|
(_m)->m_pkthdr.pkt_hdr = NULL; \
|
||
|
_n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
|
||
|
if (_n == NULL) { \
|
||
|
os_atomic_inc(&ipstat.ips_toosmall, relaxed); \
|
||
|
m_freem(_m); \
|
||
|
(_m) = NULL; \
|
||
|
_action; \
|
||
|
} else { \
|
||
|
VERIFY(_n != (_m)); \
|
||
|
(_m) = _n; \
|
||
|
} \
|
||
|
} \
|
||
|
} while (0)
|
||
|
#endif /* !__i386__ && !__x86_64__ && !__arm64__ */
|
||
|
|
||
|
|
||
|
typedef enum ip_check_if_result {
|
||
|
IP_CHECK_IF_NONE = 0,
|
||
|
IP_CHECK_IF_OURS = 1,
|
||
|
IP_CHECK_IF_DROP = 2,
|
||
|
IP_CHECK_IF_FORWARD = 3
|
||
|
} ip_check_if_result_t;
|
||
|
|
||
|
static ip_check_if_result_t ip_input_check_interface(struct mbuf **, struct ip *, struct ifnet *);
|
||
|
|
||
|
/*
|
||
|
* GRE input handler function, settable via ip_gre_register_input() for PPTP.
|
||
|
*/
|
||
|
static gre_input_func_t gre_input_func;
|
||
|
|
||
|
static void
|
||
|
ip_init_delayed(void)
|
||
|
{
|
||
|
struct ifreq ifr;
|
||
|
int error;
|
||
|
struct sockaddr_in *sin;
|
||
|
|
||
|
bzero(&ifr, sizeof(ifr));
|
||
|
strlcpy(ifr.ifr_name, "lo0", sizeof(ifr.ifr_name));
|
||
|
sin = SIN(&ifr.ifr_addr);
|
||
|
sin->sin_len = sizeof(struct sockaddr_in);
|
||
|
sin->sin_family = AF_INET;
|
||
|
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
||
|
error = in_control(NULL, SIOCSIFADDR, (caddr_t)&ifr, lo_ifp, kernproc);
|
||
|
if (error) {
|
||
|
printf("%s: failed to initialise lo0's address, error=%d\n",
|
||
|
__func__, error);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* IP initialization: fill in IP protocol switch table.
|
||
|
* All protocols not implemented in kernel go to raw IP protocol handler.
|
||
|
*/
|
||
|
void
|
||
|
ip_init(struct protosw *pp, struct domain *dp)
|
||
|
{
|
||
|
static int ip_initialized = 0;
|
||
|
struct protosw *pr;
|
||
|
struct timeval tv;
|
||
|
int i;
|
||
|
|
||
|
domain_proto_mtx_lock_assert_held();
|
||
|
VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED);
|
||
|
|
||
|
/*
|
||
|
* Some ioctls (e.g. SIOCAIFADDR) use ifaliasreq struct, which is
|
||
|
* interchangeable with in_aliasreq; they must have the same size.
|
||
|
*/
|
||
|
_CASSERT(sizeof(struct ifaliasreq) == sizeof(struct in_aliasreq));
|
||
|
|
||
|
if (ip_initialized) {
|
||
|
return;
|
||
|
}
|
||
|
ip_initialized = 1;
|
||
|
|
||
|
TAILQ_INIT(&in_ifaddrhead);
|
||
|
in_ifaddrhashtbl_init();
|
||
|
|
||
|
ip_moptions_init();
|
||
|
|
||
|
pr = pffindproto_locked(PF_INET, IPPROTO_RAW, SOCK_RAW);
|
||
|
if (pr == NULL) {
|
||
|
panic("%s: Unable to find [PF_INET,IPPROTO_RAW,SOCK_RAW]",
|
||
|
__func__);
|
||
|
/* NOTREACHED */
|
||
|
}
|
||
|
|
||
|
/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
|
||
|
for (i = 0; i < IPPROTO_MAX; i++) {
|
||
|
ip_protox[i] = pr;
|
||
|
}
|
||
|
/*
|
||
|
* Cycle through IP protocols and put them into the appropriate place
|
||
|
* in ip_protox[], skipping protocols IPPROTO_{IP,RAW}.
|
||
|
*/
|
||
|
VERIFY(dp == inetdomain && dp->dom_family == PF_INET);
|
||
|
TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
|
||
|
VERIFY(pr->pr_domain == dp);
|
||
|
if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
|
||
|
/* Be careful to only index valid IP protocols. */
|
||
|
if (pr->pr_protocol < IPPROTO_MAX) {
|
||
|
ip_protox[pr->pr_protocol] = pr;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
lck_mtx_lock(&ipqlock);
|
||
|
/* Initialize IP reassembly queue. */
|
||
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
||
|
TAILQ_INIT(&ipq[i]);
|
||
|
}
|
||
|
|
||
|
maxnipq = nmbclusters / 32;
|
||
|
maxfragsperpacket = 128; /* enough for 64k in 512 byte fragments */
|
||
|
ipq_updateparams();
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
|
||
|
getmicrotime(&tv);
|
||
|
ip_id = (u_short)(RandomULong() ^ tv.tv_usec);
|
||
|
|
||
|
PE_parse_boot_argn("ip_checkinterface", &i, sizeof(i));
|
||
|
switch (i) {
|
||
|
case IP_CHECKINTERFACE_WEAK_ES:
|
||
|
case IP_CHECKINTERFACE_HYBRID_ES:
|
||
|
case IP_CHECKINTERFACE_STRONG_ES:
|
||
|
ip_checkinterface = i;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
arp_init();
|
||
|
net_init_add(ip_init_delayed);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize IPv4 source address hash table.
|
||
|
*/
|
||
|
static void
|
||
|
in_ifaddrhashtbl_init(void)
|
||
|
{
|
||
|
int i, k, p;
|
||
|
|
||
|
if (in_ifaddrhashtbl != NULL) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
PE_parse_boot_argn("inaddr_nhash", &inaddr_nhash,
|
||
|
sizeof(inaddr_nhash));
|
||
|
if (inaddr_nhash == 0) {
|
||
|
inaddr_nhash = INADDR_NHASH;
|
||
|
}
|
||
|
|
||
|
in_ifaddrhashtbl = zalloc_permanent(
|
||
|
inaddr_nhash * sizeof(*in_ifaddrhashtbl),
|
||
|
ZALIGN_PTR);
|
||
|
|
||
|
/*
|
||
|
* Generate the next largest prime greater than inaddr_nhash.
|
||
|
*/
|
||
|
k = (inaddr_nhash % 2 == 0) ? inaddr_nhash + 1 : inaddr_nhash + 2;
|
||
|
for (;;) {
|
||
|
p = 1;
|
||
|
for (i = 3; i * i <= k; i += 2) {
|
||
|
if (k % i == 0) {
|
||
|
p = 0;
|
||
|
}
|
||
|
}
|
||
|
if (p == 1) {
|
||
|
break;
|
||
|
}
|
||
|
k += 2;
|
||
|
}
|
||
|
inaddr_hashp = k;
|
||
|
}
|
||
|
|
||
|
uint32_t
|
||
|
inaddr_hashval(uint32_t key)
|
||
|
{
|
||
|
/*
|
||
|
* The hash index is the computed prime times the key modulo
|
||
|
* the hash size, as documented in "Introduction to Algorithms"
|
||
|
* (Cormen, Leiserson, Rivest).
|
||
|
*/
|
||
|
if (inaddr_nhash > 1) {
|
||
|
return (key * inaddr_hashp) % inaddr_nhash;
|
||
|
} else {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct in_ifaddrhashhead *
|
||
|
inaddr_hashlookup(uint32_t key)
|
||
|
{
|
||
|
return &in_ifaddrhashtbl[inaddr_hashval(key)];
|
||
|
}
|
||
|
|
||
|
__private_extern__ void
|
||
|
ip_proto_dispatch_in(struct mbuf *m, int hlen, u_int8_t proto,
|
||
|
ipfilter_t inject_ipfref)
|
||
|
{
|
||
|
struct ipfilter *filter;
|
||
|
int seen = (inject_ipfref == NULL);
|
||
|
int changed_header = 0;
|
||
|
struct ip *ip;
|
||
|
void (*pr_input)(struct mbuf *, int len);
|
||
|
|
||
|
if (!TAILQ_EMPTY(&ipv4_filters)) {
|
||
|
ipf_ref();
|
||
|
TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
|
||
|
if (seen == 0) {
|
||
|
if ((struct ipfilter *)inject_ipfref == filter) {
|
||
|
seen = 1;
|
||
|
}
|
||
|
} else if (filter->ipf_filter.ipf_input) {
|
||
|
errno_t result;
|
||
|
|
||
|
if (changed_header == 0) {
|
||
|
/*
|
||
|
* Perform IP header alignment fixup,
|
||
|
* if needed, before passing packet
|
||
|
* into filter(s).
|
||
|
*/
|
||
|
IP_HDR_ALIGNMENT_FIXUP(m,
|
||
|
m->m_pkthdr.rcvif, ipf_unref());
|
||
|
|
||
|
/* ipf_unref() already called */
|
||
|
if (m == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
changed_header = 1;
|
||
|
ip = mtod(m, struct ip *);
|
||
|
ip->ip_len = htons(ip->ip_len + (uint16_t)hlen);
|
||
|
ip->ip_off = htons(ip->ip_off);
|
||
|
ip->ip_sum = 0;
|
||
|
ip->ip_sum = ip_cksum_hdr_in(m, hlen);
|
||
|
}
|
||
|
result = filter->ipf_filter.ipf_input(
|
||
|
filter->ipf_filter.cookie, (mbuf_t *)&m,
|
||
|
hlen, proto);
|
||
|
if (result == EJUSTRETURN) {
|
||
|
ipf_unref();
|
||
|
return;
|
||
|
}
|
||
|
if (result != 0) {
|
||
|
ipf_unref();
|
||
|
m_freem(m);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
ipf_unref();
|
||
|
}
|
||
|
|
||
|
/* Perform IP header alignment fixup (post-filters), if needed */
|
||
|
IP_HDR_ALIGNMENT_FIXUP(m, m->m_pkthdr.rcvif, return );
|
||
|
|
||
|
ip = mtod(m, struct ip *);
|
||
|
|
||
|
if (changed_header) {
|
||
|
ip->ip_len = ntohs(ip->ip_len) - (u_short)hlen;
|
||
|
ip->ip_off = ntohs(ip->ip_off);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If there isn't a specific lock for the protocol
|
||
|
* we're about to call, use the generic lock for AF_INET.
|
||
|
* otherwise let the protocol deal with its own locking
|
||
|
*/
|
||
|
if ((pr_input = ip_protox[ip->ip_p]->pr_input) == NULL) {
|
||
|
m_freem(m);
|
||
|
} else if (!(ip_protox[ip->ip_p]->pr_flags & PR_PROTOLOCK)) {
|
||
|
lck_mtx_lock(inet_domain_mutex);
|
||
|
pr_input(m, hlen);
|
||
|
lck_mtx_unlock(inet_domain_mutex);
|
||
|
} else {
|
||
|
pr_input(m, hlen);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct pktchain_elm {
|
||
|
struct mbuf *pkte_head;
|
||
|
struct mbuf *pkte_tail;
|
||
|
struct in_addr pkte_saddr;
|
||
|
struct in_addr pkte_daddr;
|
||
|
uint16_t pkte_npkts;
|
||
|
uint16_t pkte_proto;
|
||
|
uint32_t pkte_nbytes;
|
||
|
};
|
||
|
|
||
|
typedef struct pktchain_elm pktchain_elm_t;
|
||
|
|
||
|
/* Store upto PKTTBL_SZ unique flows on the stack */
|
||
|
#define PKTTBL_SZ 7
|
||
|
|
||
|
static struct mbuf *
|
||
|
ip_chain_insert(struct mbuf *packet, pktchain_elm_t *tbl)
|
||
|
{
|
||
|
struct ip* ip;
|
||
|
int pkttbl_idx = 0;
|
||
|
|
||
|
ip = mtod(packet, struct ip*);
|
||
|
|
||
|
/* reusing the hash function from inaddr_hashval */
|
||
|
pkttbl_idx = inaddr_hashval(ntohl(ip->ip_src.s_addr)) % PKTTBL_SZ;
|
||
|
if (tbl[pkttbl_idx].pkte_head == NULL) {
|
||
|
tbl[pkttbl_idx].pkte_head = packet;
|
||
|
tbl[pkttbl_idx].pkte_saddr.s_addr = ip->ip_src.s_addr;
|
||
|
tbl[pkttbl_idx].pkte_daddr.s_addr = ip->ip_dst.s_addr;
|
||
|
tbl[pkttbl_idx].pkte_proto = ip->ip_p;
|
||
|
} else {
|
||
|
if ((ip->ip_dst.s_addr == tbl[pkttbl_idx].pkte_daddr.s_addr) &&
|
||
|
(ip->ip_src.s_addr == tbl[pkttbl_idx].pkte_saddr.s_addr) &&
|
||
|
(ip->ip_p == tbl[pkttbl_idx].pkte_proto)) {
|
||
|
} else {
|
||
|
return packet;
|
||
|
}
|
||
|
}
|
||
|
if (tbl[pkttbl_idx].pkte_tail != NULL) {
|
||
|
mbuf_setnextpkt(tbl[pkttbl_idx].pkte_tail, packet);
|
||
|
}
|
||
|
|
||
|
tbl[pkttbl_idx].pkte_tail = packet;
|
||
|
tbl[pkttbl_idx].pkte_npkts += 1;
|
||
|
tbl[pkttbl_idx].pkte_nbytes += packet->m_pkthdr.len;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* args is a dummy variable here for backward compatibility */
|
||
|
static void
|
||
|
ip_input_second_pass_loop_tbl(pktchain_elm_t *tbl, struct ip_fw_in_args *args)
|
||
|
{
|
||
|
int i = 0;
|
||
|
|
||
|
for (i = 0; i < PKTTBL_SZ; i++) {
|
||
|
if (tbl[i].pkte_head != NULL) {
|
||
|
struct mbuf *m = tbl[i].pkte_head;
|
||
|
ip_input_second_pass(m, m->m_pkthdr.rcvif,
|
||
|
tbl[i].pkte_npkts, tbl[i].pkte_nbytes, args);
|
||
|
|
||
|
if (tbl[i].pkte_npkts > 2) {
|
||
|
ipstat.ips_rxc_chainsz_gt2++;
|
||
|
}
|
||
|
if (tbl[i].pkte_npkts > 4) {
|
||
|
ipstat.ips_rxc_chainsz_gt4++;
|
||
|
}
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
if (ip_input_measure) {
|
||
|
net_perf_histogram(&net_perf, tbl[i].pkte_npkts);
|
||
|
}
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
tbl[i].pkte_head = tbl[i].pkte_tail = NULL;
|
||
|
tbl[i].pkte_npkts = 0;
|
||
|
tbl[i].pkte_nbytes = 0;
|
||
|
/* no need to initialize address and protocol in tbl */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ip_input_cpout_args(struct ip_fw_in_args *args, struct ip_fw_args *args1,
|
||
|
boolean_t *done_init)
|
||
|
{
|
||
|
if (*done_init == FALSE) {
|
||
|
bzero(args1, sizeof(struct ip_fw_args));
|
||
|
*done_init = TRUE;
|
||
|
}
|
||
|
args1->fwa_pf_rule = args->fwai_pf_rule;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ip_input_cpin_args(struct ip_fw_args *args1, struct ip_fw_in_args *args)
|
||
|
{
|
||
|
args->fwai_pf_rule = args1->fwa_pf_rule;
|
||
|
}
|
||
|
|
||
|
typedef enum {
|
||
|
IPINPUT_DOCHAIN = 0,
|
||
|
IPINPUT_DONTCHAIN,
|
||
|
IPINPUT_FREED,
|
||
|
IPINPUT_DONE
|
||
|
} ipinput_chain_ret_t;
|
||
|
|
||
|
static void
|
||
|
ip_input_update_nstat(struct ifnet *ifp, struct in_addr src_ip,
|
||
|
u_int32_t packets, u_int32_t bytes)
|
||
|
{
|
||
|
if (nstat_collect) {
|
||
|
struct rtentry *rt = ifnet_cached_rtlookup_inet(ifp,
|
||
|
src_ip);
|
||
|
if (rt != NULL) {
|
||
|
nstat_route_rx(rt, packets, bytes, 0);
|
||
|
rtfree(rt);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ip_input_dispatch_chain(struct mbuf *m)
|
||
|
{
|
||
|
struct mbuf *tmp_mbuf = m;
|
||
|
struct mbuf *nxt_mbuf = NULL;
|
||
|
struct ip *ip = NULL;
|
||
|
unsigned int hlen;
|
||
|
|
||
|
ip = mtod(tmp_mbuf, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
while (tmp_mbuf != NULL) {
|
||
|
nxt_mbuf = mbuf_nextpkt(tmp_mbuf);
|
||
|
mbuf_setnextpkt(tmp_mbuf, NULL);
|
||
|
ip_proto_dispatch_in(tmp_mbuf, hlen, ip->ip_p, 0);
|
||
|
tmp_mbuf = nxt_mbuf;
|
||
|
if (tmp_mbuf) {
|
||
|
ip = mtod(tmp_mbuf, struct ip *);
|
||
|
/* first mbuf of chain already has adjusted ip_len */
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
ip->ip_len -= hlen;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ip_input_setdst_chain(struct mbuf *m, uint16_t ifindex, struct in_ifaddr *ia)
|
||
|
{
|
||
|
struct mbuf *tmp_mbuf = m;
|
||
|
|
||
|
while (tmp_mbuf != NULL) {
|
||
|
ip_setdstifaddr_info(tmp_mbuf, ifindex, ia);
|
||
|
tmp_mbuf = mbuf_nextpkt(tmp_mbuf);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ip_input_adjust(struct mbuf *m, struct ip *ip, struct ifnet *inifp)
|
||
|
{
|
||
|
boolean_t adjust = TRUE;
|
||
|
|
||
|
ASSERT(m_pktlen(m) > ip->ip_len);
|
||
|
|
||
|
/*
|
||
|
* Invalidate hardware checksum info if ip_adj_clear_hwcksum
|
||
|
* is set; useful to handle buggy drivers. Note that this
|
||
|
* should not be enabled by default, as we may get here due
|
||
|
* to link-layer padding.
|
||
|
*/
|
||
|
if (ip_adj_clear_hwcksum &&
|
||
|
(m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
|
||
|
!(inifp->if_flags & IFF_LOOPBACK) &&
|
||
|
!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
|
||
|
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
|
||
|
m->m_pkthdr.csum_data = 0;
|
||
|
ipstat.ips_adj_hwcsum_clr++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If partial checksum information is available, subtract
|
||
|
* out the partial sum of postpended extraneous bytes, and
|
||
|
* update the checksum metadata accordingly. By doing it
|
||
|
* here, the upper layer transport only needs to adjust any
|
||
|
* prepended extraneous bytes (else it will do both.)
|
||
|
*/
|
||
|
if (ip_adj_partial_sum &&
|
||
|
(m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) ==
|
||
|
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
|
||
|
m->m_pkthdr.csum_rx_val = m_adj_sum16(m,
|
||
|
m->m_pkthdr.csum_rx_start, m->m_pkthdr.csum_rx_start,
|
||
|
(ip->ip_len - m->m_pkthdr.csum_rx_start),
|
||
|
m->m_pkthdr.csum_rx_val);
|
||
|
} else if ((m->m_pkthdr.csum_flags &
|
||
|
(CSUM_DATA_VALID | CSUM_PARTIAL)) ==
|
||
|
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
|
||
|
/*
|
||
|
* If packet has partial checksum info and we decided not
|
||
|
* to subtract the partial sum of postpended extraneous
|
||
|
* bytes here (not the default case), leave that work to
|
||
|
* be handled by the other layers. For now, only TCP, UDP
|
||
|
* layers are capable of dealing with this. For all other
|
||
|
* protocols (including fragments), trim and ditch the
|
||
|
* partial sum as those layers might not implement partial
|
||
|
* checksumming (or adjustment) at all.
|
||
|
*/
|
||
|
if ((ip->ip_off & (IP_MF | IP_OFFMASK)) == 0 &&
|
||
|
(ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_UDP)) {
|
||
|
adjust = FALSE;
|
||
|
} else {
|
||
|
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
|
||
|
m->m_pkthdr.csum_data = 0;
|
||
|
ipstat.ips_adj_hwcsum_clr++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (adjust) {
|
||
|
ipstat.ips_adj++;
|
||
|
if (m->m_len == m->m_pkthdr.len) {
|
||
|
m->m_len = ip->ip_len;
|
||
|
m->m_pkthdr.len = ip->ip_len;
|
||
|
} else {
|
||
|
m_adj(m, ip->ip_len - m->m_pkthdr.len);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* First pass does all essential packet validation and places on a per flow
|
||
|
* queue for doing operations that have same outcome for all packets of a flow.
|
||
|
*/
|
||
|
static ipinput_chain_ret_t
|
||
|
ip_input_first_pass(struct mbuf *m, struct ip_fw_in_args *args, struct mbuf **modm)
|
||
|
{
|
||
|
struct ip *ip;
|
||
|
struct ifnet *inifp;
|
||
|
unsigned int hlen;
|
||
|
int retval = IPINPUT_DOCHAIN;
|
||
|
int len = 0;
|
||
|
struct in_addr src_ip;
|
||
|
#if DUMMYNET
|
||
|
struct m_tag *copy;
|
||
|
struct m_tag *p;
|
||
|
boolean_t delete = FALSE;
|
||
|
struct ip_fw_args args1;
|
||
|
boolean_t init = FALSE;
|
||
|
#endif /* DUMMYNET */
|
||
|
ipfilter_t inject_filter_ref = NULL;
|
||
|
|
||
|
/* Check if the mbuf is still valid after interface filter processing */
|
||
|
MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
|
||
|
inifp = mbuf_pkthdr_rcvif(m);
|
||
|
VERIFY(inifp != NULL);
|
||
|
|
||
|
/* Perform IP header alignment fixup, if needed */
|
||
|
IP_HDR_ALIGNMENT_FIXUP(m, inifp, goto bad);
|
||
|
|
||
|
m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
|
||
|
|
||
|
#if DUMMYNET
|
||
|
/*
|
||
|
* Don't bother searching for tag(s) if there's none.
|
||
|
*/
|
||
|
if (SLIST_EMPTY(&m->m_pkthdr.tags)) {
|
||
|
goto ipfw_tags_done;
|
||
|
}
|
||
|
|
||
|
/* Grab info from mtags prepended to the chain */
|
||
|
p = m_tag_first(m);
|
||
|
while (p) {
|
||
|
if (p->m_tag_id == KERNEL_MODULE_TAG_ID) {
|
||
|
if (p->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET) {
|
||
|
struct dn_pkt_tag *dn_tag;
|
||
|
|
||
|
dn_tag = (struct dn_pkt_tag *)(p->m_tag_data);
|
||
|
args->fwai_pf_rule = dn_tag->dn_pf_rule;
|
||
|
delete = TRUE;
|
||
|
}
|
||
|
|
||
|
if (delete) {
|
||
|
copy = p;
|
||
|
p = m_tag_next(m, p);
|
||
|
m_tag_delete(m, copy);
|
||
|
} else {
|
||
|
p = m_tag_next(m, p);
|
||
|
}
|
||
|
} else {
|
||
|
p = m_tag_next(m, p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if DIAGNOSTIC
|
||
|
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
|
||
|
panic("ip_input no HDR");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (args->fwai_pf_rule) {
|
||
|
/* dummynet already filtered us */
|
||
|
ip = mtod(m, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
inject_filter_ref = ipf_get_inject_filter(m);
|
||
|
if (args->fwai_pf_rule) {
|
||
|
goto check_with_pf;
|
||
|
}
|
||
|
}
|
||
|
ipfw_tags_done:
|
||
|
#endif /* DUMMYNET */
|
||
|
|
||
|
/*
|
||
|
* No need to process packet twice if we've already seen it.
|
||
|
*/
|
||
|
if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
|
||
|
inject_filter_ref = ipf_get_inject_filter(m);
|
||
|
}
|
||
|
if (inject_filter_ref != NULL) {
|
||
|
ip = mtod(m, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
|
||
|
DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
|
||
|
struct ip *, ip, struct ifnet *, inifp,
|
||
|
struct ip *, ip, struct ip6_hdr *, NULL);
|
||
|
|
||
|
ip->ip_len = ntohs(ip->ip_len) - (u_short)hlen;
|
||
|
ip->ip_off = ntohs(ip->ip_off);
|
||
|
ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref);
|
||
|
return IPINPUT_DONE;
|
||
|
}
|
||
|
|
||
|
if (__improbable(m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) {
|
||
|
if_ports_used_match_mbuf(inifp, PF_INET, m);
|
||
|
}
|
||
|
|
||
|
if (m->m_pkthdr.len < sizeof(struct ip)) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
OSAddAtomic(1, &ipstat.ips_tooshort);
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
|
||
|
if (m->m_len < sizeof(struct ip) &&
|
||
|
(m = m_pullup(m, sizeof(struct ip))) == NULL) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
OSAddAtomic(1, &ipstat.ips_toosmall);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
|
||
|
ip = mtod(m, struct ip *);
|
||
|
*modm = m;
|
||
|
|
||
|
KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
|
||
|
ip->ip_p, ip->ip_off, ip->ip_len);
|
||
|
|
||
|
if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
OSAddAtomic(1, &ipstat.ips_badvers);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
if (hlen < sizeof(struct ip)) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
OSAddAtomic(1, &ipstat.ips_badhlen);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
|
||
|
if (hlen > m->m_len) {
|
||
|
if ((m = m_pullup(m, hlen)) == NULL) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
OSAddAtomic(1, &ipstat.ips_badhlen);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
ip = mtod(m, struct ip *);
|
||
|
*modm = m;
|
||
|
}
|
||
|
|
||
|
if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1) {
|
||
|
m->m_pkthdr.pkt_ext_flags |= PKTF_EXT_L4S;
|
||
|
}
|
||
|
|
||
|
/* 127/8 must not appear on wire - RFC1122 */
|
||
|
if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
|
||
|
(ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
|
||
|
/*
|
||
|
* Allow for the following exceptions:
|
||
|
*
|
||
|
* 1. If the packet was sent to loopback (i.e. rcvif
|
||
|
* would have been set earlier at output time.)
|
||
|
*
|
||
|
* 2. If the packet was sent out on loopback from a local
|
||
|
* source address which belongs to a non-loopback
|
||
|
* interface (i.e. rcvif may not necessarily be a
|
||
|
* loopback interface, hence the test for PKTF_LOOP.)
|
||
|
* Unlike IPv6, there is no interface scope ID, and
|
||
|
* therefore we don't care so much about PKTF_IFINFO.
|
||
|
*/
|
||
|
if (!(inifp->if_flags & IFF_LOOPBACK) &&
|
||
|
!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
OSAddAtomic(1, &ipstat.ips_badaddr);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* IPv4 Link-Local Addresses as defined in RFC3927 */
|
||
|
if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
|
||
|
IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) {
|
||
|
ip_linklocal_stat.iplls_in_total++;
|
||
|
if (ip->ip_ttl != MAXTTL) {
|
||
|
OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl);
|
||
|
/* Silently drop link local traffic with bad TTL */
|
||
|
if (!ip_linklocal_in_allowbadttl) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ip_cksum(m, hlen)) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
|
||
|
DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
|
||
|
struct ip *, ip, struct ifnet *, inifp,
|
||
|
struct ip *, ip, struct ip6_hdr *, NULL);
|
||
|
|
||
|
/*
|
||
|
* Convert fields to host representation.
|
||
|
*/
|
||
|
#if BYTE_ORDER != BIG_ENDIAN
|
||
|
NTOHS(ip->ip_len);
|
||
|
#endif
|
||
|
|
||
|
if (ip->ip_len < hlen) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
OSAddAtomic(1, &ipstat.ips_badlen);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
|
||
|
#if BYTE_ORDER != BIG_ENDIAN
|
||
|
NTOHS(ip->ip_off);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Check that the amount of data in the buffers
|
||
|
* is as at least much as the IP header would have us expect.
|
||
|
* Trim mbufs if longer than we expect.
|
||
|
* Drop packet if shorter than we expect.
|
||
|
*/
|
||
|
if (m->m_pkthdr.len < ip->ip_len) {
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
OSAddAtomic(1, &ipstat.ips_tooshort);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
|
||
|
if (m->m_pkthdr.len > ip->ip_len) {
|
||
|
ip_input_adjust(m, ip, inifp);
|
||
|
}
|
||
|
|
||
|
/* for netstat route statistics */
|
||
|
src_ip = ip->ip_src;
|
||
|
len = m->m_pkthdr.len;
|
||
|
|
||
|
#if DUMMYNET
|
||
|
check_with_pf:
|
||
|
#endif /* DUMMYNET */
|
||
|
#if PF
|
||
|
/* Invoke inbound packet filter */
|
||
|
if (PF_IS_ENABLED) {
|
||
|
int error;
|
||
|
ip_input_cpout_args(args, &args1, &init);
|
||
|
ip = mtod(m, struct ip *);
|
||
|
src_ip = ip->ip_src;
|
||
|
|
||
|
#if DUMMYNET
|
||
|
error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, &args1);
|
||
|
#else
|
||
|
error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, NULL);
|
||
|
#endif /* DUMMYNET */
|
||
|
if (error != 0 || m == NULL) {
|
||
|
if (m != NULL) {
|
||
|
panic("%s: unexpected packet %p",
|
||
|
__func__, m);
|
||
|
/* NOTREACHED */
|
||
|
}
|
||
|
/* Already freed by callee */
|
||
|
ip_input_update_nstat(inifp, src_ip, 1, len);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
ip = mtod(m, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
*modm = m;
|
||
|
ip_input_cpin_args(&args1, args);
|
||
|
}
|
||
|
#endif /* PF */
|
||
|
|
||
|
#if IPSEC
|
||
|
if (ipsec_bypass == 0 && ipsec_get_history_count(m)) {
|
||
|
retval = IPINPUT_DONTCHAIN; /* XXX scope for chaining here? */
|
||
|
goto pass;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if IPSEC
|
||
|
pass:
|
||
|
#endif
|
||
|
/*
|
||
|
* Process options and, if not destined for us,
|
||
|
* ship it on. ip_dooptions returns 1 when an
|
||
|
* error was detected (causing an icmp message
|
||
|
* to be sent and the original packet to be freed).
|
||
|
*/
|
||
|
ip_nhops = 0; /* for source routed packets */
|
||
|
if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, NULL)) {
|
||
|
src_ip = ip->ip_src;
|
||
|
ip_input_update_nstat(inifp, src_ip, 1, len);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Don't chain fragmented packets
|
||
|
*/
|
||
|
if (ip->ip_off & ~(IP_DF | IP_RF)) {
|
||
|
return IPINPUT_DONTCHAIN;
|
||
|
}
|
||
|
|
||
|
/* Allow DHCP/BootP responses through */
|
||
|
if ((inifp->if_eflags & IFEF_AUTOCONFIGURING) &&
|
||
|
hlen == sizeof(struct ip) && ip->ip_p == IPPROTO_UDP) {
|
||
|
struct udpiphdr *ui;
|
||
|
|
||
|
if (m->m_len < sizeof(struct udpiphdr) &&
|
||
|
(m = m_pullup(m, sizeof(struct udpiphdr))) == NULL) {
|
||
|
OSAddAtomic(1, &udpstat.udps_hdrops);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
return IPINPUT_FREED;
|
||
|
}
|
||
|
*modm = m;
|
||
|
ui = mtod(m, struct udpiphdr *);
|
||
|
if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) {
|
||
|
ip_setdstifaddr_info(m, inifp->if_index, NULL);
|
||
|
return IPINPUT_DONTCHAIN;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Avoid chaining raw sockets as ipsec checks occur later for them */
|
||
|
if (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR) {
|
||
|
return IPINPUT_DONTCHAIN;
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
#if !defined(__i386__) && !defined(__x86_64__) && !defined(__arm64__)
|
||
|
bad:
|
||
|
m_freem(m);
|
||
|
return IPINPUT_FREED;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Because the call to m_pullup() may freem the mbuf, the function frees the mbuf packet
|
||
|
* chain before it return IP_CHECK_IF_DROP
|
||
|
*/
|
||
|
static ip_check_if_result_t
|
||
|
ip_input_check_interface(struct mbuf **mp, struct ip *ip, struct ifnet *inifp)
|
||
|
{
|
||
|
struct mbuf *m = *mp;
|
||
|
struct in_ifaddr *ia = NULL;
|
||
|
struct in_ifaddr *best_ia = NULL;
|
||
|
struct ifnet *match_ifp = NULL;
|
||
|
ip_check_if_result_t result = IP_CHECK_IF_NONE;
|
||
|
|
||
|
/*
|
||
|
* Host broadcast and all network broadcast addresses are always a match
|
||
|
*/
|
||
|
if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST ||
|
||
|
ip->ip_dst.s_addr == INADDR_ANY) {
|
||
|
ip_input_setdst_chain(m, inifp->if_index, NULL);
|
||
|
return IP_CHECK_IF_OURS;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check for a match in the hash bucket.
|
||
|
*/
|
||
|
lck_rw_lock_shared(&in_ifaddr_rwlock);
|
||
|
TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
|
||
|
if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) {
|
||
|
best_ia = ia;
|
||
|
match_ifp = best_ia->ia_ifp;
|
||
|
|
||
|
if (ia->ia_ifp == inifp || (inifp->if_flags & IFF_LOOPBACK) ||
|
||
|
(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
|
||
|
/*
|
||
|
* A locally originated packet or packet from the loopback
|
||
|
* interface is always an exact interface address match
|
||
|
*/
|
||
|
match_ifp = inifp;
|
||
|
break;
|
||
|
}
|
||
|
/*
|
||
|
* Continue the loop in case there's a exact match with another
|
||
|
* interface
|
||
|
*/
|
||
|
}
|
||
|
}
|
||
|
if (best_ia != NULL) {
|
||
|
if (match_ifp != inifp && ipforwarding == 0 &&
|
||
|
((ip_checkinterface == IP_CHECKINTERFACE_HYBRID_ES &&
|
||
|
(match_ifp->if_family == IFNET_FAMILY_IPSEC ||
|
||
|
match_ifp->if_family == IFNET_FAMILY_UTUN)) ||
|
||
|
ip_checkinterface == IP_CHECKINTERFACE_STRONG_ES)) {
|
||
|
/*
|
||
|
* Drop when interface address check is strict and forwarding
|
||
|
* is disabled
|
||
|
*/
|
||
|
result = IP_CHECK_IF_DROP;
|
||
|
} else {
|
||
|
result = IP_CHECK_IF_OURS;
|
||
|
ip_input_setdst_chain(m, 0, best_ia);
|
||
|
}
|
||
|
}
|
||
|
lck_rw_done(&in_ifaddr_rwlock);
|
||
|
|
||
|
if (result == IP_CHECK_IF_NONE && (inifp->if_flags & IFF_BROADCAST)) {
|
||
|
/*
|
||
|
* Check for broadcast addresses.
|
||
|
*
|
||
|
* Only accept broadcast packets that arrive via the matching
|
||
|
* interface. Reception of forwarded directed broadcasts would be
|
||
|
* handled via ip_forward() and ether_frameout() with the loopback
|
||
|
* into the stack for SIMPLEX interfaces handled by ether_frameout().
|
||
|
*/
|
||
|
struct ifaddr *ifa;
|
||
|
|
||
|
ifnet_lock_shared(inifp);
|
||
|
TAILQ_FOREACH(ifa, &inifp->if_addrhead, ifa_link) {
|
||
|
if (ifa->ifa_addr->sa_family != AF_INET) {
|
||
|
continue;
|
||
|
}
|
||
|
ia = ifatoia(ifa);
|
||
|
if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == ip->ip_dst.s_addr ||
|
||
|
ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
|
||
|
ip_input_setdst_chain(m, 0, ia);
|
||
|
result = IP_CHECK_IF_OURS;
|
||
|
match_ifp = inifp;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
ifnet_lock_done(inifp);
|
||
|
}
|
||
|
|
||
|
/* Allow DHCP/BootP responses through */
|
||
|
if (result == IP_CHECK_IF_NONE && (inifp->if_eflags & IFEF_AUTOCONFIGURING) &&
|
||
|
ip->ip_p == IPPROTO_UDP && (IP_VHL_HL(ip->ip_vhl) << 2) == sizeof(struct ip)) {
|
||
|
struct udpiphdr *ui;
|
||
|
|
||
|
if (m->m_len < sizeof(struct udpiphdr)) {
|
||
|
if ((m = m_pullup(m, sizeof(struct udpiphdr))) == NULL) {
|
||
|
OSAddAtomic(1, &udpstat.udps_hdrops);
|
||
|
*mp = NULL;
|
||
|
return IP_CHECK_IF_DROP;
|
||
|
}
|
||
|
/*
|
||
|
* m_pullup can return a different mbuf
|
||
|
*/
|
||
|
*mp = m;
|
||
|
ip = mtod(m, struct ip *);
|
||
|
}
|
||
|
ui = mtod(m, struct udpiphdr *);
|
||
|
if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) {
|
||
|
ip_input_setdst_chain(m, inifp->if_index, NULL);
|
||
|
result = IP_CHECK_IF_OURS;
|
||
|
match_ifp = inifp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (result == IP_CHECK_IF_NONE) {
|
||
|
if (ipforwarding == 0) {
|
||
|
result = IP_CHECK_IF_DROP;
|
||
|
} else {
|
||
|
result = IP_CHECK_IF_FORWARD;
|
||
|
ip_input_setdst_chain(m, inifp->if_index, NULL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (result == IP_CHECK_IF_OURS && match_ifp != inifp) {
|
||
|
ipstat.ips_rcv_if_weak_match++;
|
||
|
|
||
|
/* Logging is too noisy when forwarding is enabled */
|
||
|
if (ip_checkinterface_debug != 0 && ipforwarding == 0) {
|
||
|
char src_str[MAX_IPv4_STR_LEN];
|
||
|
char dst_str[MAX_IPv4_STR_LEN];
|
||
|
|
||
|
inet_ntop(AF_INET, &ip->ip_src, src_str, sizeof(src_str));
|
||
|
inet_ntop(AF_INET, &ip->ip_dst, dst_str, sizeof(dst_str));
|
||
|
os_log_info(OS_LOG_DEFAULT,
|
||
|
"%s: weak ES interface match to %s for packet from %s to %s proto %u received via %s",
|
||
|
__func__, best_ia->ia_ifp->if_xname, src_str, dst_str, ip->ip_p, inifp->if_xname);
|
||
|
}
|
||
|
} else if (result == IP_CHECK_IF_DROP) {
|
||
|
if (ip_checkinterface_debug > 0) {
|
||
|
char src_str[MAX_IPv4_STR_LEN];
|
||
|
char dst_str[MAX_IPv4_STR_LEN];
|
||
|
|
||
|
inet_ntop(AF_INET, &ip->ip_src, src_str, sizeof(src_str));
|
||
|
inet_ntop(AF_INET, &ip->ip_dst, dst_str, sizeof(dst_str));
|
||
|
os_log(OS_LOG_DEFAULT,
|
||
|
"%s: no interface match for packet from %s to %s proto %u received via %s",
|
||
|
__func__, src_str, dst_str, ip->ip_p, inifp->if_xname);
|
||
|
}
|
||
|
struct mbuf *tmp_mbuf = m;
|
||
|
while (tmp_mbuf != NULL) {
|
||
|
ipstat.ips_rcv_if_no_match++;
|
||
|
tmp_mbuf = tmp_mbuf->m_nextpkt;
|
||
|
}
|
||
|
m_freem_list(m);
|
||
|
*mp = NULL;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ip_input_second_pass(struct mbuf *m, struct ifnet *inifp,
|
||
|
int npkts_in_chain, int bytes_in_chain, struct ip_fw_in_args *args)
|
||
|
{
|
||
|
struct mbuf *tmp_mbuf = NULL;
|
||
|
unsigned int hlen;
|
||
|
|
||
|
#pragma unused (args)
|
||
|
|
||
|
struct ip *ip = mtod(m, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
|
||
|
OSAddAtomic(npkts_in_chain, &ipstat.ips_total);
|
||
|
|
||
|
/*
|
||
|
* Naively assume we can attribute inbound data to the route we would
|
||
|
* use to send to this destination. Asymmetric routing breaks this
|
||
|
* assumption, but it still allows us to account for traffic from
|
||
|
* a remote node in the routing table.
|
||
|
* this has a very significant performance impact so we bypass
|
||
|
* if nstat_collect is disabled. We may also bypass if the
|
||
|
* protocol is tcp in the future because tcp will have a route that
|
||
|
* we can use to attribute the data to. That does mean we would not
|
||
|
* account for forwarded tcp traffic.
|
||
|
*/
|
||
|
ip_input_update_nstat(inifp, ip->ip_src, npkts_in_chain,
|
||
|
bytes_in_chain);
|
||
|
|
||
|
/*
|
||
|
* Check our list of addresses, to see if the packet is for us.
|
||
|
* If we don't have any addresses, assume any unicast packet
|
||
|
* we receive might be for us (and let the upper layers deal
|
||
|
* with it).
|
||
|
*/
|
||
|
tmp_mbuf = m;
|
||
|
if (TAILQ_EMPTY(&in_ifaddrhead)) {
|
||
|
while (tmp_mbuf != NULL) {
|
||
|
if (!(tmp_mbuf->m_flags & (M_MCAST | M_BCAST))) {
|
||
|
ip_setdstifaddr_info(tmp_mbuf, inifp->if_index,
|
||
|
NULL);
|
||
|
}
|
||
|
tmp_mbuf = mbuf_nextpkt(tmp_mbuf);
|
||
|
}
|
||
|
goto ours;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enable a consistency check between the destination address
|
||
|
* and the arrival interface for a unicast packet (the RFC 1122
|
||
|
* strong ES model) if IP forwarding is disabled and the packet
|
||
|
* is not locally generated
|
||
|
*
|
||
|
* XXX - Checking also should be disabled if the destination
|
||
|
* address is ipnat'ed to a different interface.
|
||
|
*
|
||
|
* XXX - Checking is incompatible with IP aliases added
|
||
|
* to the loopback interface instead of the interface where
|
||
|
* the packets are received.
|
||
|
*/
|
||
|
if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
|
||
|
ip_check_if_result_t ip_check_if_result = IP_CHECK_IF_NONE;
|
||
|
|
||
|
ip_check_if_result = ip_input_check_interface(&m, ip, inifp);
|
||
|
ASSERT(ip_check_if_result != IP_CHECK_IF_NONE);
|
||
|
if (ip_check_if_result == IP_CHECK_IF_OURS) {
|
||
|
goto ours;
|
||
|
} else if (ip_check_if_result == IP_CHECK_IF_DROP) {
|
||
|
return;
|
||
|
}
|
||
|
} else {
|
||
|
struct in_multi *inm;
|
||
|
/*
|
||
|
* See if we belong to the destination multicast group on the
|
||
|
* arrival interface.
|
||
|
*/
|
||
|
in_multihead_lock_shared();
|
||
|
IN_LOOKUP_MULTI(&ip->ip_dst, inifp, inm);
|
||
|
in_multihead_lock_done();
|
||
|
if (inm == NULL) {
|
||
|
OSAddAtomic(npkts_in_chain, &ipstat.ips_notmember);
|
||
|
m_freem_list(m);
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
return;
|
||
|
}
|
||
|
ip_input_setdst_chain(m, inifp->if_index, NULL);
|
||
|
INM_REMREF(inm);
|
||
|
goto ours;
|
||
|
}
|
||
|
|
||
|
tmp_mbuf = m;
|
||
|
struct mbuf *nxt_mbuf = NULL;
|
||
|
while (tmp_mbuf != NULL) {
|
||
|
nxt_mbuf = mbuf_nextpkt(tmp_mbuf);
|
||
|
/*
|
||
|
* Not for us; forward if possible and desirable.
|
||
|
*/
|
||
|
mbuf_setnextpkt(tmp_mbuf, NULL);
|
||
|
if (ipforwarding == 0) {
|
||
|
OSAddAtomic(1, &ipstat.ips_cantforward);
|
||
|
m_freem(tmp_mbuf);
|
||
|
} else {
|
||
|
ip_forward(tmp_mbuf, 0, NULL);
|
||
|
}
|
||
|
tmp_mbuf = nxt_mbuf;
|
||
|
}
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
return;
|
||
|
ours:
|
||
|
ip = mtod(m, struct ip *); /* in case it changed */
|
||
|
/*
|
||
|
* If offset is set, must reassemble.
|
||
|
*/
|
||
|
if (ip->ip_off & ~(IP_DF | IP_RF)) {
|
||
|
VERIFY(npkts_in_chain == 1);
|
||
|
m = ip_reass(m);
|
||
|
if (m == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
ip = mtod(m, struct ip *);
|
||
|
/* Get the header length of the reassembled packet */
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Further protocols expect the packet length to be w/o the
|
||
|
* IP header.
|
||
|
*/
|
||
|
ip->ip_len -= hlen;
|
||
|
|
||
|
#if IPSEC
|
||
|
/*
|
||
|
* enforce IPsec policy checking if we are seeing last header.
|
||
|
* note that we do not visit this with protocols with pcb layer
|
||
|
* code - like udp/tcp/raw ip.
|
||
|
*/
|
||
|
if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR)) {
|
||
|
VERIFY(npkts_in_chain == 1);
|
||
|
if (ipsec4_in_reject(m, NULL)) {
|
||
|
IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
|
||
|
goto bad;
|
||
|
}
|
||
|
}
|
||
|
#endif /* IPSEC */
|
||
|
|
||
|
/*
|
||
|
* Switch out to protocol's input routine.
|
||
|
*/
|
||
|
OSAddAtomic(npkts_in_chain, &ipstat.ips_delivered);
|
||
|
|
||
|
ip_input_dispatch_chain(m);
|
||
|
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
return;
|
||
|
bad:
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ip_input_process_list(struct mbuf *packet_list)
|
||
|
{
|
||
|
pktchain_elm_t pktchain_tbl[PKTTBL_SZ];
|
||
|
|
||
|
struct mbuf *packet = NULL;
|
||
|
struct mbuf *modm = NULL; /* modified mbuf */
|
||
|
int retval = 0;
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
struct timeval start_tv;
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
int num_pkts = 0;
|
||
|
int chain = 0;
|
||
|
struct ip_fw_in_args args;
|
||
|
|
||
|
if (ip_chaining == 0) {
|
||
|
struct mbuf *m = packet_list;
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
if (ip_input_measure) {
|
||
|
net_perf_start_time(&net_perf, &start_tv);
|
||
|
}
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
|
||
|
while (m) {
|
||
|
packet_list = mbuf_nextpkt(m);
|
||
|
mbuf_setnextpkt(m, NULL);
|
||
|
ip_input(m);
|
||
|
m = packet_list;
|
||
|
num_pkts++;
|
||
|
}
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
if (ip_input_measure) {
|
||
|
net_perf_measure_time(&net_perf, &start_tv, num_pkts);
|
||
|
}
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
return;
|
||
|
}
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
if (ip_input_measure) {
|
||
|
net_perf_start_time(&net_perf, &start_tv);
|
||
|
}
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
|
||
|
bzero(&pktchain_tbl, sizeof(pktchain_tbl));
|
||
|
restart_list_process:
|
||
|
chain = 0;
|
||
|
for (packet = packet_list; packet; packet = packet_list) {
|
||
|
m_add_crumb(packet, PKT_CRUMB_IP_INPUT);
|
||
|
|
||
|
packet_list = mbuf_nextpkt(packet);
|
||
|
mbuf_setnextpkt(packet, NULL);
|
||
|
|
||
|
num_pkts++;
|
||
|
modm = NULL;
|
||
|
bzero(&args, sizeof(args));
|
||
|
|
||
|
retval = ip_input_first_pass(packet, &args, &modm);
|
||
|
|
||
|
if (retval == IPINPUT_DOCHAIN) {
|
||
|
if (modm) {
|
||
|
packet = modm;
|
||
|
}
|
||
|
packet = ip_chain_insert(packet, &pktchain_tbl[0]);
|
||
|
if (packet == NULL) {
|
||
|
ipstat.ips_rxc_chained++;
|
||
|
chain++;
|
||
|
if (chain > ip_chainsz) {
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
ipstat.ips_rxc_collisions++;
|
||
|
break;
|
||
|
}
|
||
|
} else if (retval == IPINPUT_DONTCHAIN) {
|
||
|
/* in order to preserve order, exit from chaining */
|
||
|
if (modm) {
|
||
|
packet = modm;
|
||
|
}
|
||
|
ipstat.ips_rxc_notchain++;
|
||
|
break;
|
||
|
} else {
|
||
|
/* packet was freed or delivered, do nothing. */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* do second pass here for pktchain_tbl */
|
||
|
if (chain) {
|
||
|
ip_input_second_pass_loop_tbl(&pktchain_tbl[0], &args);
|
||
|
}
|
||
|
|
||
|
if (packet) {
|
||
|
/*
|
||
|
* equivalent update in chaining case if performed in
|
||
|
* ip_input_second_pass_loop_tbl().
|
||
|
*/
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
if (ip_input_measure) {
|
||
|
net_perf_histogram(&net_perf, 1);
|
||
|
}
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
ip_input_second_pass(packet, packet->m_pkthdr.rcvif,
|
||
|
1, packet->m_pkthdr.len, &args);
|
||
|
}
|
||
|
|
||
|
if (packet_list) {
|
||
|
goto restart_list_process;
|
||
|
}
|
||
|
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
if (ip_input_measure) {
|
||
|
net_perf_measure_time(&net_perf, &start_tv, num_pkts);
|
||
|
}
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
}
|
||
|
/*
|
||
|
* Ip input routine. Checksum and byte swap header. If fragmented
|
||
|
* try to reassemble. Process options. Pass to next level.
|
||
|
*/
|
||
|
void
|
||
|
ip_input(struct mbuf *m)
|
||
|
{
|
||
|
struct ip *ip;
|
||
|
unsigned int hlen;
|
||
|
u_short sum = 0;
|
||
|
#if DUMMYNET
|
||
|
struct ip_fw_args args;
|
||
|
struct m_tag *tag;
|
||
|
#endif
|
||
|
ipfilter_t inject_filter_ref = NULL;
|
||
|
struct ifnet *inifp;
|
||
|
|
||
|
/* Check if the mbuf is still valid after interface filter processing */
|
||
|
MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
|
||
|
inifp = m->m_pkthdr.rcvif;
|
||
|
VERIFY(inifp != NULL);
|
||
|
|
||
|
m_add_crumb(m, PKT_CRUMB_IP_INPUT);
|
||
|
|
||
|
ipstat.ips_rxc_notlist++;
|
||
|
|
||
|
/* Perform IP header alignment fixup, if needed */
|
||
|
IP_HDR_ALIGNMENT_FIXUP(m, inifp, goto bad);
|
||
|
|
||
|
m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
|
||
|
|
||
|
#if DUMMYNET
|
||
|
bzero(&args, sizeof(struct ip_fw_args));
|
||
|
|
||
|
/*
|
||
|
* Don't bother searching for tag(s) if there's none.
|
||
|
*/
|
||
|
if (SLIST_EMPTY(&m->m_pkthdr.tags)) {
|
||
|
goto ipfw_tags_done;
|
||
|
}
|
||
|
|
||
|
/* Grab info from mtags prepended to the chain */
|
||
|
if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
|
||
|
KERNEL_TAG_TYPE_DUMMYNET)) != NULL) {
|
||
|
struct dn_pkt_tag *dn_tag;
|
||
|
|
||
|
dn_tag = (struct dn_pkt_tag *)(tag->m_tag_data);
|
||
|
args.fwa_pf_rule = dn_tag->dn_pf_rule;
|
||
|
|
||
|
m_tag_delete(m, tag);
|
||
|
}
|
||
|
|
||
|
#if DIAGNOSTIC
|
||
|
if (m == NULL || !(m->m_flags & M_PKTHDR)) {
|
||
|
panic("ip_input no HDR");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (args.fwa_pf_rule) {
|
||
|
/* dummynet already filtered us */
|
||
|
ip = mtod(m, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
inject_filter_ref = ipf_get_inject_filter(m);
|
||
|
if (args.fwa_pf_rule) {
|
||
|
goto check_with_pf;
|
||
|
}
|
||
|
}
|
||
|
ipfw_tags_done:
|
||
|
#endif /* DUMMYNET */
|
||
|
|
||
|
/*
|
||
|
* No need to process packet twice if we've already seen it.
|
||
|
*/
|
||
|
if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
|
||
|
inject_filter_ref = ipf_get_inject_filter(m);
|
||
|
}
|
||
|
if (inject_filter_ref != NULL) {
|
||
|
ip = mtod(m, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
|
||
|
DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
|
||
|
struct ip *, ip, struct ifnet *, inifp,
|
||
|
struct ip *, ip, struct ip6_hdr *, NULL);
|
||
|
|
||
|
ip->ip_len = ntohs(ip->ip_len) - (u_short)hlen;
|
||
|
ip->ip_off = ntohs(ip->ip_off);
|
||
|
ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (__improbable(m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) {
|
||
|
if_ports_used_match_mbuf(inifp, PF_INET, m);
|
||
|
}
|
||
|
|
||
|
OSAddAtomic(1, &ipstat.ips_total);
|
||
|
if (m->m_pkthdr.len < sizeof(struct ip)) {
|
||
|
goto tooshort;
|
||
|
}
|
||
|
|
||
|
if (m->m_len < sizeof(struct ip) &&
|
||
|
(m = m_pullup(m, sizeof(struct ip))) == NULL) {
|
||
|
OSAddAtomic(1, &ipstat.ips_toosmall);
|
||
|
return;
|
||
|
}
|
||
|
ip = mtod(m, struct ip *);
|
||
|
|
||
|
KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
|
||
|
ip->ip_p, ip->ip_off, ip->ip_len);
|
||
|
|
||
|
if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
|
||
|
OSAddAtomic(1, &ipstat.ips_badvers);
|
||
|
goto bad;
|
||
|
}
|
||
|
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
if (hlen < sizeof(struct ip)) { /* minimum header length */
|
||
|
OSAddAtomic(1, &ipstat.ips_badhlen);
|
||
|
goto bad;
|
||
|
}
|
||
|
if (hlen > m->m_len) {
|
||
|
if ((m = m_pullup(m, hlen)) == NULL) {
|
||
|
OSAddAtomic(1, &ipstat.ips_badhlen);
|
||
|
return;
|
||
|
}
|
||
|
ip = mtod(m, struct ip *);
|
||
|
}
|
||
|
|
||
|
/* 127/8 must not appear on wire - RFC1122 */
|
||
|
if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
|
||
|
(ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
|
||
|
/*
|
||
|
* Allow for the following exceptions:
|
||
|
*
|
||
|
* 1. If the packet was sent to loopback (i.e. rcvif
|
||
|
* would have been set earlier at output time.)
|
||
|
*
|
||
|
* 2. If the packet was sent out on loopback from a local
|
||
|
* source address which belongs to a non-loopback
|
||
|
* interface (i.e. rcvif may not necessarily be a
|
||
|
* loopback interface, hence the test for PKTF_LOOP.)
|
||
|
* Unlike IPv6, there is no interface scope ID, and
|
||
|
* therefore we don't care so much about PKTF_IFINFO.
|
||
|
*/
|
||
|
if (!(inifp->if_flags & IFF_LOOPBACK) &&
|
||
|
!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
|
||
|
OSAddAtomic(1, &ipstat.ips_badaddr);
|
||
|
goto bad;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* IPv4 Link-Local Addresses as defined in RFC3927 */
|
||
|
if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
|
||
|
IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) {
|
||
|
ip_linklocal_stat.iplls_in_total++;
|
||
|
if (ip->ip_ttl != MAXTTL) {
|
||
|
OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl);
|
||
|
/* Silently drop link local traffic with bad TTL */
|
||
|
if (!ip_linklocal_in_allowbadttl) {
|
||
|
goto bad;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sum = ip_cksum(m, hlen);
|
||
|
if (sum) {
|
||
|
goto bad;
|
||
|
}
|
||
|
|
||
|
DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
|
||
|
struct ip *, ip, struct ifnet *, inifp,
|
||
|
struct ip *, ip, struct ip6_hdr *, NULL);
|
||
|
|
||
|
/*
|
||
|
* Naively assume we can attribute inbound data to the route we would
|
||
|
* use to send to this destination. Asymmetric routing breaks this
|
||
|
* assumption, but it still allows us to account for traffic from
|
||
|
* a remote node in the routing table.
|
||
|
* this has a very significant performance impact so we bypass
|
||
|
* if nstat_collect is disabled. We may also bypass if the
|
||
|
* protocol is tcp in the future because tcp will have a route that
|
||
|
* we can use to attribute the data to. That does mean we would not
|
||
|
* account for forwarded tcp traffic.
|
||
|
*/
|
||
|
if (nstat_collect) {
|
||
|
struct rtentry *rt =
|
||
|
ifnet_cached_rtlookup_inet(inifp, ip->ip_src);
|
||
|
if (rt != NULL) {
|
||
|
nstat_route_rx(rt, 1, m->m_pkthdr.len, 0);
|
||
|
rtfree(rt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert fields to host representation.
|
||
|
*/
|
||
|
#if BYTE_ORDER != BIG_ENDIAN
|
||
|
NTOHS(ip->ip_len);
|
||
|
#endif
|
||
|
|
||
|
if (ip->ip_len < hlen) {
|
||
|
OSAddAtomic(1, &ipstat.ips_badlen);
|
||
|
goto bad;
|
||
|
}
|
||
|
|
||
|
#if BYTE_ORDER != BIG_ENDIAN
|
||
|
NTOHS(ip->ip_off);
|
||
|
#endif
|
||
|
/*
|
||
|
* Check that the amount of data in the buffers
|
||
|
* is as at least much as the IP header would have us expect.
|
||
|
* Trim mbufs if longer than we expect.
|
||
|
* Drop packet if shorter than we expect.
|
||
|
*/
|
||
|
if (m->m_pkthdr.len < ip->ip_len) {
|
||
|
tooshort:
|
||
|
OSAddAtomic(1, &ipstat.ips_tooshort);
|
||
|
goto bad;
|
||
|
}
|
||
|
if (m->m_pkthdr.len > ip->ip_len) {
|
||
|
ip_input_adjust(m, ip, inifp);
|
||
|
}
|
||
|
|
||
|
#if DUMMYNET
|
||
|
check_with_pf:
|
||
|
#endif
|
||
|
#if PF
|
||
|
/* Invoke inbound packet filter */
|
||
|
if (PF_IS_ENABLED) {
|
||
|
int error;
|
||
|
#if DUMMYNET
|
||
|
error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, &args);
|
||
|
#else
|
||
|
error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, NULL);
|
||
|
#endif /* DUMMYNET */
|
||
|
if (error != 0 || m == NULL) {
|
||
|
if (m != NULL) {
|
||
|
panic("%s: unexpected packet %p",
|
||
|
__func__, m);
|
||
|
/* NOTREACHED */
|
||
|
}
|
||
|
/* Already freed by callee */
|
||
|
return;
|
||
|
}
|
||
|
ip = mtod(m, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
}
|
||
|
#endif /* PF */
|
||
|
|
||
|
#if IPSEC
|
||
|
if (ipsec_bypass == 0 && ipsec_get_history_count(m)) {
|
||
|
goto pass;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
pass:
|
||
|
/*
|
||
|
* Process options and, if not destined for us,
|
||
|
* ship it on. ip_dooptions returns 1 when an
|
||
|
* error was detected (causing an icmp message
|
||
|
* to be sent and the original packet to be freed).
|
||
|
*/
|
||
|
ip_nhops = 0; /* for source routed packets */
|
||
|
if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, NULL)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check our list of addresses, to see if the packet is for us.
|
||
|
* If we don't have any addresses, assume any unicast packet
|
||
|
* we receive might be for us (and let the upper layers deal
|
||
|
* with it).
|
||
|
*/
|
||
|
if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST))) {
|
||
|
ip_setdstifaddr_info(m, inifp->if_index, NULL);
|
||
|
goto ours;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enable a consistency check between the destination address
|
||
|
* and the arrival interface for a unicast packet (the RFC 1122
|
||
|
* strong ES model) if IP forwarding is disabled and the packet
|
||
|
* is not locally generated and the packet is not subject to
|
||
|
* 'ipfw fwd'.
|
||
|
*
|
||
|
* XXX - Checking also should be disabled if the destination
|
||
|
* address is ipnat'ed to a different interface.
|
||
|
*
|
||
|
* XXX - Checking is incompatible with IP aliases added
|
||
|
* to the loopback interface instead of the interface where
|
||
|
* the packets are received.
|
||
|
*/
|
||
|
if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
|
||
|
ip_check_if_result_t check_if_result = IP_CHECK_IF_NONE;
|
||
|
|
||
|
check_if_result = ip_input_check_interface(&m, ip, inifp);
|
||
|
ASSERT(check_if_result != IP_CHECK_IF_NONE);
|
||
|
if (check_if_result == IP_CHECK_IF_OURS) {
|
||
|
goto ours;
|
||
|
} else if (check_if_result == IP_CHECK_IF_DROP) {
|
||
|
return;
|
||
|
}
|
||
|
} else {
|
||
|
struct in_multi *inm;
|
||
|
/*
|
||
|
* See if we belong to the destination multicast group on the
|
||
|
* arrival interface.
|
||
|
*/
|
||
|
in_multihead_lock_shared();
|
||
|
IN_LOOKUP_MULTI(&ip->ip_dst, inifp, inm);
|
||
|
in_multihead_lock_done();
|
||
|
if (inm == NULL) {
|
||
|
OSAddAtomic(1, &ipstat.ips_notmember);
|
||
|
m_freem(m);
|
||
|
return;
|
||
|
}
|
||
|
ip_setdstifaddr_info(m, inifp->if_index, NULL);
|
||
|
INM_REMREF(inm);
|
||
|
goto ours;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Not for us; forward if possible and desirable.
|
||
|
*/
|
||
|
if (ipforwarding == 0) {
|
||
|
OSAddAtomic(1, &ipstat.ips_cantforward);
|
||
|
m_freem(m);
|
||
|
} else {
|
||
|
ip_forward(m, 0, NULL);
|
||
|
}
|
||
|
return;
|
||
|
|
||
|
ours:
|
||
|
/*
|
||
|
* If offset or IP_MF are set, must reassemble.
|
||
|
*/
|
||
|
if (ip->ip_off & ~(IP_DF | IP_RF)) {
|
||
|
m = ip_reass(m);
|
||
|
if (m == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
ip = mtod(m, struct ip *);
|
||
|
/* Get the header length of the reassembled packet */
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Further protocols expect the packet length to be w/o the
|
||
|
* IP header.
|
||
|
*/
|
||
|
ip->ip_len -= hlen;
|
||
|
|
||
|
|
||
|
#if IPSEC
|
||
|
/*
|
||
|
* enforce IPsec policy checking if we are seeing last header.
|
||
|
* note that we do not visit this with protocols with pcb layer
|
||
|
* code - like udp/tcp/raw ip.
|
||
|
*/
|
||
|
if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR)) {
|
||
|
if (ipsec4_in_reject(m, NULL)) {
|
||
|
IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
|
||
|
goto bad;
|
||
|
}
|
||
|
}
|
||
|
#endif /* IPSEC */
|
||
|
|
||
|
/*
|
||
|
* Switch out to protocol's input routine.
|
||
|
*/
|
||
|
OSAddAtomic(1, &ipstat.ips_delivered);
|
||
|
|
||
|
ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
|
||
|
return;
|
||
|
|
||
|
bad:
|
||
|
KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
|
||
|
m_freem(m);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ipq_updateparams(void)
|
||
|
{
|
||
|
LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED);
|
||
|
/*
|
||
|
* -1 for unlimited allocation.
|
||
|
*/
|
||
|
if (maxnipq < 0) {
|
||
|
ipq_limit = 0;
|
||
|
}
|
||
|
/*
|
||
|
* Positive number for specific bound.
|
||
|
*/
|
||
|
if (maxnipq > 0) {
|
||
|
ipq_limit = maxnipq;
|
||
|
}
|
||
|
/*
|
||
|
* Zero specifies no further fragment queue allocation -- set the
|
||
|
* bound very low, but rely on implementation elsewhere to actually
|
||
|
* prevent allocation and reclaim current queues.
|
||
|
*/
|
||
|
if (maxnipq == 0) {
|
||
|
ipq_limit = 1;
|
||
|
}
|
||
|
/*
|
||
|
* Arm the purge timer if not already and if there's work to do
|
||
|
*/
|
||
|
frag_sched_timeout();
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
sysctl_maxnipq SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(arg1, arg2)
|
||
|
int error, i;
|
||
|
|
||
|
lck_mtx_lock(&ipqlock);
|
||
|
i = maxnipq;
|
||
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
||
|
if (error || req->newptr == USER_ADDR_NULL) {
|
||
|
goto done;
|
||
|
}
|
||
|
/* impose bounds */
|
||
|
if (i < -1 || i > (nmbclusters / 4)) {
|
||
|
error = EINVAL;
|
||
|
goto done;
|
||
|
}
|
||
|
maxnipq = i;
|
||
|
ipq_updateparams();
|
||
|
done:
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(arg1, arg2)
|
||
|
int error, i;
|
||
|
|
||
|
lck_mtx_lock(&ipqlock);
|
||
|
i = maxfragsperpacket;
|
||
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
||
|
if (error || req->newptr == USER_ADDR_NULL) {
|
||
|
goto done;
|
||
|
}
|
||
|
maxfragsperpacket = i;
|
||
|
ipq_updateparams(); /* see if we need to arm timer */
|
||
|
done:
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Take incoming datagram fragment and try to reassemble it into
|
||
|
* whole datagram. If a chain for reassembly of this datagram already
|
||
|
* exists, then it is given as fp; otherwise have to make a chain.
|
||
|
*
|
||
|
* The IP header is *NOT* adjusted out of iplen (but in host byte order).
|
||
|
*/
|
||
|
static struct mbuf *
|
||
|
ip_reass(struct mbuf *m)
|
||
|
{
|
||
|
struct ip *ip;
|
||
|
struct mbuf *p, *q, *nq, *t;
|
||
|
struct ipq *fp = NULL;
|
||
|
struct ipqhead *head;
|
||
|
int i, hlen, next;
|
||
|
u_int8_t ecn, ecn0;
|
||
|
uint32_t csum, csum_flags;
|
||
|
uint16_t hash;
|
||
|
struct fq_head dfq;
|
||
|
|
||
|
MBUFQ_INIT(&dfq); /* for deferred frees */
|
||
|
|
||
|
/* If maxnipq or maxfragsperpacket is 0, never accept fragments. */
|
||
|
if (maxnipq == 0 || maxfragsperpacket == 0) {
|
||
|
ipstat.ips_fragments++;
|
||
|
ipstat.ips_fragdropped++;
|
||
|
m_freem(m);
|
||
|
if (nipq > 0) {
|
||
|
lck_mtx_lock(&ipqlock);
|
||
|
frag_sched_timeout(); /* purge stale fragments */
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
ip = mtod(m, struct ip *);
|
||
|
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
|
||
|
|
||
|
lck_mtx_lock(&ipqlock);
|
||
|
|
||
|
hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
|
||
|
head = &ipq[hash];
|
||
|
|
||
|
/*
|
||
|
* Look for queue of fragments
|
||
|
* of this datagram.
|
||
|
*/
|
||
|
TAILQ_FOREACH(fp, head, ipq_list) {
|
||
|
if (ip->ip_id == fp->ipq_id &&
|
||
|
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
|
||
|
ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
|
||
|
ip->ip_p == fp->ipq_p) {
|
||
|
goto found;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fp = NULL;
|
||
|
|
||
|
/*
|
||
|
* Attempt to trim the number of allocated fragment queues if it
|
||
|
* exceeds the administrative limit.
|
||
|
*/
|
||
|
if ((nipq > (unsigned)maxnipq) && (maxnipq > 0)) {
|
||
|
/*
|
||
|
* drop something from the tail of the current queue
|
||
|
* before proceeding further
|
||
|
*/
|
||
|
struct ipq *fq = TAILQ_LAST(head, ipqhead);
|
||
|
if (fq == NULL) { /* gak */
|
||
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
||
|
struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
|
||
|
if (r) {
|
||
|
ipstat.ips_fragtimeout += r->ipq_nfrags;
|
||
|
frag_freef(&ipq[i], r);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
ipstat.ips_fragtimeout += fq->ipq_nfrags;
|
||
|
frag_freef(head, fq);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
found:
|
||
|
/*
|
||
|
* Leverage partial checksum offload for IP fragments. Narrow down
|
||
|
* the scope to cover only UDP without IP options, as that is the
|
||
|
* most common case.
|
||
|
*
|
||
|
* Perform 1's complement adjustment of octets that got included/
|
||
|
* excluded in the hardware-calculated checksum value. Ignore cases
|
||
|
* where the value includes the entire IPv4 header span, as the sum
|
||
|
* for those octets would already be 0 by the time we get here; IP
|
||
|
* has already performed its header checksum validation. Also take
|
||
|
* care of any trailing bytes and subtract out their partial sum.
|
||
|
*/
|
||
|
if (ip->ip_p == IPPROTO_UDP && hlen == sizeof(struct ip) &&
|
||
|
(m->m_pkthdr.csum_flags &
|
||
|
(CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
|
||
|
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
|
||
|
uint32_t start = m->m_pkthdr.csum_rx_start;
|
||
|
int32_t trailer = (m_pktlen(m) - ip->ip_len);
|
||
|
uint32_t swbytes = (uint32_t)trailer;
|
||
|
|
||
|
csum = m->m_pkthdr.csum_rx_val;
|
||
|
|
||
|
ASSERT(trailer >= 0);
|
||
|
if ((start != 0 && start != hlen) || trailer != 0) {
|
||
|
uint32_t datalen = ip->ip_len - hlen;
|
||
|
|
||
|
#if BYTE_ORDER != BIG_ENDIAN
|
||
|
if (start < hlen) {
|
||
|
HTONS(ip->ip_len);
|
||
|
HTONS(ip->ip_off);
|
||
|
}
|
||
|
#endif /* BYTE_ORDER != BIG_ENDIAN */
|
||
|
/* callee folds in sum */
|
||
|
csum = m_adj_sum16(m, start, hlen, datalen, csum);
|
||
|
if (hlen > start) {
|
||
|
swbytes += (hlen - start);
|
||
|
} else {
|
||
|
swbytes += (start - hlen);
|
||
|
}
|
||
|
#if BYTE_ORDER != BIG_ENDIAN
|
||
|
if (start < hlen) {
|
||
|
NTOHS(ip->ip_off);
|
||
|
NTOHS(ip->ip_len);
|
||
|
}
|
||
|
#endif /* BYTE_ORDER != BIG_ENDIAN */
|
||
|
}
|
||
|
csum_flags = m->m_pkthdr.csum_flags;
|
||
|
|
||
|
if (swbytes != 0) {
|
||
|
udp_in_cksum_stats(swbytes);
|
||
|
}
|
||
|
if (trailer != 0) {
|
||
|
m_adj(m, -trailer);
|
||
|
}
|
||
|
} else {
|
||
|
csum = 0;
|
||
|
csum_flags = 0;
|
||
|
}
|
||
|
|
||
|
/* Invalidate checksum */
|
||
|
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
|
||
|
|
||
|
ipstat.ips_fragments++;
|
||
|
|
||
|
/*
|
||
|
* Adjust ip_len to not reflect header,
|
||
|
* convert offset of this to bytes.
|
||
|
*/
|
||
|
ip->ip_len -= hlen;
|
||
|
if (ip->ip_off & IP_MF) {
|
||
|
/*
|
||
|
* Make sure that fragments have a data length
|
||
|
* that's a non-zero multiple of 8 bytes.
|
||
|
*/
|
||
|
if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
|
||
|
OSAddAtomic(1, &ipstat.ips_toosmall);
|
||
|
/*
|
||
|
* Reassembly queue may have been found if previous
|
||
|
* fragments were valid; given that this one is bad,
|
||
|
* we need to drop it. Make sure to set fp to NULL
|
||
|
* if not already, since we don't want to decrement
|
||
|
* ipq_nfrags as it doesn't include this packet.
|
||
|
*/
|
||
|
fp = NULL;
|
||
|
goto dropfrag;
|
||
|
}
|
||
|
m->m_flags |= M_FRAG;
|
||
|
} else {
|
||
|
/* Clear the flag in case packet comes from loopback */
|
||
|
m->m_flags &= ~M_FRAG;
|
||
|
}
|
||
|
ip->ip_off = (u_short)(ip->ip_off << 3);
|
||
|
|
||
|
m->m_pkthdr.pkt_hdr = ip;
|
||
|
|
||
|
/* Previous ip_reass() started here. */
|
||
|
/*
|
||
|
* Presence of header sizes in mbufs
|
||
|
* would confuse code below.
|
||
|
*/
|
||
|
m->m_data += hlen;
|
||
|
m->m_len -= hlen;
|
||
|
|
||
|
/*
|
||
|
* If first fragment to arrive, create a reassembly queue.
|
||
|
*/
|
||
|
if (fp == NULL) {
|
||
|
fp = ipq_alloc();
|
||
|
if (fp == NULL) {
|
||
|
goto dropfrag;
|
||
|
}
|
||
|
TAILQ_INSERT_HEAD(head, fp, ipq_list);
|
||
|
nipq++;
|
||
|
fp->ipq_nfrags = 1;
|
||
|
fp->ipq_ttl = IPFRAGTTL;
|
||
|
fp->ipq_p = ip->ip_p;
|
||
|
fp->ipq_id = ip->ip_id;
|
||
|
fp->ipq_src = ip->ip_src;
|
||
|
fp->ipq_dst = ip->ip_dst;
|
||
|
fp->ipq_frags = m;
|
||
|
m->m_nextpkt = NULL;
|
||
|
/*
|
||
|
* If the first fragment has valid checksum offload
|
||
|
* info, the rest of fragments are eligible as well.
|
||
|
*/
|
||
|
if (csum_flags != 0) {
|
||
|
fp->ipq_csum = csum;
|
||
|
fp->ipq_csum_flags = csum_flags;
|
||
|
}
|
||
|
m = NULL; /* nothing to return */
|
||
|
goto done;
|
||
|
} else {
|
||
|
fp->ipq_nfrags++;
|
||
|
}
|
||
|
|
||
|
#define GETIP(m) ((struct ip *)((m)->m_pkthdr.pkt_hdr))
|
||
|
|
||
|
/*
|
||
|
* Handle ECN by comparing this segment with the first one;
|
||
|
* if CE is set, do not lose CE.
|
||
|
* drop if CE and not-ECT are mixed for the same packet.
|
||
|
*/
|
||
|
ecn = ip->ip_tos & IPTOS_ECN_MASK;
|
||
|
ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
|
||
|
if (ecn == IPTOS_ECN_CE) {
|
||
|
if (ecn0 == IPTOS_ECN_NOTECT) {
|
||
|
goto dropfrag;
|
||
|
}
|
||
|
if (ecn0 != IPTOS_ECN_CE) {
|
||
|
GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
|
||
|
}
|
||
|
}
|
||
|
if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
|
||
|
goto dropfrag;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find a segment which begins after this one does.
|
||
|
*/
|
||
|
for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
|
||
|
if (GETIP(q)->ip_off > ip->ip_off) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If there is a preceding segment, it may provide some of
|
||
|
* our data already. If so, drop the data from the incoming
|
||
|
* segment. If it provides all of our data, drop us, otherwise
|
||
|
* stick new segment in the proper place.
|
||
|
*
|
||
|
* If some of the data is dropped from the preceding
|
||
|
* segment, then it's checksum is invalidated.
|
||
|
*/
|
||
|
if (p) {
|
||
|
i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
|
||
|
if (i > 0) {
|
||
|
if (i >= ip->ip_len) {
|
||
|
goto dropfrag;
|
||
|
}
|
||
|
m_adj(m, i);
|
||
|
fp->ipq_csum_flags = 0;
|
||
|
ip->ip_off += i;
|
||
|
ip->ip_len -= i;
|
||
|
}
|
||
|
m->m_nextpkt = p->m_nextpkt;
|
||
|
p->m_nextpkt = m;
|
||
|
} else {
|
||
|
m->m_nextpkt = fp->ipq_frags;
|
||
|
fp->ipq_frags = m;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* While we overlap succeeding segments trim them or,
|
||
|
* if they are completely covered, dequeue them.
|
||
|
*/
|
||
|
for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
|
||
|
q = nq) {
|
||
|
i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
|
||
|
if (i < GETIP(q)->ip_len) {
|
||
|
GETIP(q)->ip_len -= i;
|
||
|
GETIP(q)->ip_off += i;
|
||
|
m_adj(q, i);
|
||
|
fp->ipq_csum_flags = 0;
|
||
|
break;
|
||
|
}
|
||
|
nq = q->m_nextpkt;
|
||
|
m->m_nextpkt = nq;
|
||
|
ipstat.ips_fragdropped++;
|
||
|
fp->ipq_nfrags--;
|
||
|
/* defer freeing until after lock is dropped */
|
||
|
MBUFQ_ENQUEUE(&dfq, q);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If this fragment contains similar checksum offload info
|
||
|
* as that of the existing ones, accumulate checksum. Otherwise,
|
||
|
* invalidate checksum offload info for the entire datagram.
|
||
|
*/
|
||
|
if (csum_flags != 0 && csum_flags == fp->ipq_csum_flags) {
|
||
|
fp->ipq_csum += csum;
|
||
|
} else if (fp->ipq_csum_flags != 0) {
|
||
|
fp->ipq_csum_flags = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Check for complete reassembly and perform frag per packet
|
||
|
* limiting.
|
||
|
*
|
||
|
* Frag limiting is performed here so that the nth frag has
|
||
|
* a chance to complete the packet before we drop the packet.
|
||
|
* As a result, n+1 frags are actually allowed per packet, but
|
||
|
* only n will ever be stored. (n = maxfragsperpacket.)
|
||
|
*
|
||
|
*/
|
||
|
next = 0;
|
||
|
for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
|
||
|
if (GETIP(q)->ip_off != next) {
|
||
|
if (fp->ipq_nfrags > maxfragsperpacket) {
|
||
|
ipstat.ips_fragdropped += fp->ipq_nfrags;
|
||
|
frag_freef(head, fp);
|
||
|
}
|
||
|
m = NULL; /* nothing to return */
|
||
|
goto done;
|
||
|
}
|
||
|
next += GETIP(q)->ip_len;
|
||
|
}
|
||
|
/* Make sure the last packet didn't have the IP_MF flag */
|
||
|
if (p->m_flags & M_FRAG) {
|
||
|
if (fp->ipq_nfrags > maxfragsperpacket) {
|
||
|
ipstat.ips_fragdropped += fp->ipq_nfrags;
|
||
|
frag_freef(head, fp);
|
||
|
}
|
||
|
m = NULL; /* nothing to return */
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reassembly is complete. Make sure the packet is a sane size.
|
||
|
*/
|
||
|
q = fp->ipq_frags;
|
||
|
ip = GETIP(q);
|
||
|
if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
|
||
|
ipstat.ips_toolong++;
|
||
|
ipstat.ips_fragdropped += fp->ipq_nfrags;
|
||
|
frag_freef(head, fp);
|
||
|
m = NULL; /* nothing to return */
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Concatenate fragments.
|
||
|
*/
|
||
|
m = q;
|
||
|
t = m->m_next;
|
||
|
m->m_next = NULL;
|
||
|
m_cat(m, t);
|
||
|
nq = q->m_nextpkt;
|
||
|
q->m_nextpkt = NULL;
|
||
|
for (q = nq; q != NULL; q = nq) {
|
||
|
nq = q->m_nextpkt;
|
||
|
q->m_nextpkt = NULL;
|
||
|
m_cat(m, q);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Store partial hardware checksum info from the fragment queue;
|
||
|
* the receive start offset is set to 20 bytes (see code at the
|
||
|
* top of this routine.)
|
||
|
*/
|
||
|
if (fp->ipq_csum_flags != 0) {
|
||
|
csum = fp->ipq_csum;
|
||
|
|
||
|
ADDCARRY(csum);
|
||
|
|
||
|
m->m_pkthdr.csum_rx_val = (uint16_t)csum;
|
||
|
m->m_pkthdr.csum_rx_start = sizeof(struct ip);
|
||
|
m->m_pkthdr.csum_flags = fp->ipq_csum_flags;
|
||
|
} else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
|
||
|
(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
|
||
|
/* loopback checksums are always OK */
|
||
|
m->m_pkthdr.csum_data = 0xffff;
|
||
|
m->m_pkthdr.csum_flags =
|
||
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
|
||
|
CSUM_IP_CHECKED | CSUM_IP_VALID;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Create header for new ip packet by modifying header of first
|
||
|
* packet; dequeue and discard fragment reassembly header.
|
||
|
* Make header visible.
|
||
|
*/
|
||
|
ip->ip_len = (u_short)((IP_VHL_HL(ip->ip_vhl) << 2) + next);
|
||
|
ip->ip_src = fp->ipq_src;
|
||
|
ip->ip_dst = fp->ipq_dst;
|
||
|
|
||
|
fp->ipq_frags = NULL; /* return to caller as 'm' */
|
||
|
frag_freef(head, fp);
|
||
|
fp = NULL;
|
||
|
|
||
|
m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
|
||
|
m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
|
||
|
/* some debugging cruft by sklower, below, will go away soon */
|
||
|
if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
|
||
|
m_fixhdr(m);
|
||
|
}
|
||
|
ipstat.ips_reassembled++;
|
||
|
|
||
|
/* arm the purge timer if not already and if there's work to do */
|
||
|
frag_sched_timeout();
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
/* perform deferred free (if needed) now that lock is dropped */
|
||
|
if (!MBUFQ_EMPTY(&dfq)) {
|
||
|
MBUFQ_DRAIN(&dfq);
|
||
|
}
|
||
|
VERIFY(MBUFQ_EMPTY(&dfq));
|
||
|
return m;
|
||
|
|
||
|
done:
|
||
|
VERIFY(m == NULL);
|
||
|
/* arm the purge timer if not already and if there's work to do */
|
||
|
frag_sched_timeout();
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
/* perform deferred free (if needed) */
|
||
|
if (!MBUFQ_EMPTY(&dfq)) {
|
||
|
MBUFQ_DRAIN(&dfq);
|
||
|
}
|
||
|
VERIFY(MBUFQ_EMPTY(&dfq));
|
||
|
return NULL;
|
||
|
|
||
|
dropfrag:
|
||
|
ipstat.ips_fragdropped++;
|
||
|
if (fp != NULL) {
|
||
|
fp->ipq_nfrags--;
|
||
|
}
|
||
|
/* arm the purge timer if not already and if there's work to do */
|
||
|
frag_sched_timeout();
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
m_freem(m);
|
||
|
/* perform deferred free (if needed) */
|
||
|
if (!MBUFQ_EMPTY(&dfq)) {
|
||
|
MBUFQ_DRAIN(&dfq);
|
||
|
}
|
||
|
VERIFY(MBUFQ_EMPTY(&dfq));
|
||
|
return NULL;
|
||
|
#undef GETIP
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free a fragment reassembly header and all
|
||
|
* associated datagrams.
|
||
|
*/
|
||
|
static void
|
||
|
frag_freef(struct ipqhead *fhp, struct ipq *fp)
|
||
|
{
|
||
|
LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED);
|
||
|
|
||
|
fp->ipq_nfrags = 0;
|
||
|
if (fp->ipq_frags != NULL) {
|
||
|
m_freem_list(fp->ipq_frags);
|
||
|
fp->ipq_frags = NULL;
|
||
|
}
|
||
|
TAILQ_REMOVE(fhp, fp, ipq_list);
|
||
|
nipq--;
|
||
|
ipq_free(fp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* IP reassembly timer processing
|
||
|
*/
|
||
|
static void
|
||
|
frag_timeout(void *arg)
|
||
|
{
|
||
|
#pragma unused(arg)
|
||
|
struct ipq *fp;
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Update coarse-grained networking timestamp (in sec.); the idea
|
||
|
* is to piggy-back on the timeout callout to update the counter
|
||
|
* returnable via net_uptime().
|
||
|
*/
|
||
|
net_update_uptime();
|
||
|
|
||
|
lck_mtx_lock(&ipqlock);
|
||
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
||
|
for (fp = TAILQ_FIRST(&ipq[i]); fp;) {
|
||
|
struct ipq *fpp;
|
||
|
|
||
|
fpp = fp;
|
||
|
fp = TAILQ_NEXT(fp, ipq_list);
|
||
|
if (--fpp->ipq_ttl == 0) {
|
||
|
ipstat.ips_fragtimeout += fpp->ipq_nfrags;
|
||
|
frag_freef(&ipq[i], fpp);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* If we are over the maximum number of fragments
|
||
|
* (due to the limit being lowered), drain off
|
||
|
* enough to get down to the new limit.
|
||
|
*/
|
||
|
if (maxnipq >= 0 && nipq > (unsigned)maxnipq) {
|
||
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
||
|
while (nipq > (unsigned)maxnipq &&
|
||
|
!TAILQ_EMPTY(&ipq[i])) {
|
||
|
ipstat.ips_fragdropped +=
|
||
|
TAILQ_FIRST(&ipq[i])->ipq_nfrags;
|
||
|
frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* re-arm the purge timer if there's work to do */
|
||
|
frag_timeout_run = 0;
|
||
|
frag_sched_timeout();
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
frag_sched_timeout(void)
|
||
|
{
|
||
|
LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED);
|
||
|
|
||
|
if (!frag_timeout_run && nipq > 0) {
|
||
|
frag_timeout_run = 1;
|
||
|
timeout(frag_timeout, NULL, hz);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Drain off all datagram fragments.
|
||
|
*/
|
||
|
static void
|
||
|
frag_drain(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
lck_mtx_lock(&ipqlock);
|
||
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
||
|
while (!TAILQ_EMPTY(&ipq[i])) {
|
||
|
ipstat.ips_fragdropped +=
|
||
|
TAILQ_FIRST(&ipq[i])->ipq_nfrags;
|
||
|
frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
|
||
|
}
|
||
|
}
|
||
|
lck_mtx_unlock(&ipqlock);
|
||
|
}
|
||
|
|
||
|
static struct ipq *
|
||
|
ipq_alloc(void)
|
||
|
{
|
||
|
struct ipq *fp;
|
||
|
|
||
|
/*
|
||
|
* See comments in ipq_updateparams(). Keep the count separate
|
||
|
* from nipq since the latter represents the elements already
|
||
|
* in the reassembly queues.
|
||
|
*/
|
||
|
if (ipq_limit > 0 && ipq_count > ipq_limit) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
fp = kalloc_type(struct ipq, Z_NOWAIT | Z_ZERO);
|
||
|
if (fp != NULL) {
|
||
|
os_atomic_inc(&ipq_count, relaxed);
|
||
|
}
|
||
|
return fp;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ipq_free(struct ipq *fp)
|
||
|
{
|
||
|
kfree_type(struct ipq, fp);
|
||
|
os_atomic_dec(&ipq_count, relaxed);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Drain callback
|
||
|
*/
|
||
|
void
|
||
|
ip_drain(void)
|
||
|
{
|
||
|
frag_drain(); /* fragments */
|
||
|
in_rtqdrain(); /* protocol cloned routes */
|
||
|
in_arpdrain(NULL); /* cloned routes: ARP */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Do option processing on a datagram,
|
||
|
* possibly discarding it if bad options are encountered,
|
||
|
* or forwarding it if source-routed.
|
||
|
* The pass argument is used when operating in the IPSTEALTH
|
||
|
* mode to tell what options to process:
|
||
|
* [LS]SRR (pass 0) or the others (pass 1).
|
||
|
* The reason for as many as two passes is that when doing IPSTEALTH,
|
||
|
* non-routing options should be processed only if the packet is for us.
|
||
|
* Returns 1 if packet has been forwarded/freed,
|
||
|
* 0 if the packet should be processed further.
|
||
|
*/
|
||
|
static int
|
||
|
ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
|
||
|
{
|
||
|
#pragma unused(pass)
|
||
|
struct ip *ip = mtod(m, struct ip *);
|
||
|
u_char *cp;
|
||
|
struct ip_timestamp *ipt;
|
||
|
struct in_ifaddr *ia;
|
||
|
int opt, optlen, cnt, off, type = ICMP_PARAMPROB, forward = 0;
|
||
|
uint8_t code = 0;
|
||
|
struct in_addr *sin, dst;
|
||
|
u_int32_t ntime;
|
||
|
struct sockaddr_in ipaddr = {
|
||
|
.sin_len = sizeof(ipaddr),
|
||
|
.sin_family = AF_INET,
|
||
|
.sin_port = 0,
|
||
|
.sin_addr = { .s_addr = 0 },
|
||
|
.sin_zero = { 0, }
|
||
|
};
|
||
|
|
||
|
/* Expect 32-bit aligned data pointer on strict-align platforms */
|
||
|
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
|
||
|
|
||
|
dst = ip->ip_dst;
|
||
|
cp = (u_char *)(ip + 1);
|
||
|
cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
|
||
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
||
|
opt = cp[IPOPT_OPTVAL];
|
||
|
if (opt == IPOPT_EOL) {
|
||
|
break;
|
||
|
}
|
||
|
if (opt == IPOPT_NOP) {
|
||
|
optlen = 1;
|
||
|
} else {
|
||
|
if (cnt < IPOPT_OLEN + sizeof(*cp)) {
|
||
|
code = (uint8_t)(&cp[IPOPT_OLEN] - (u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
optlen = cp[IPOPT_OLEN];
|
||
|
if (optlen < IPOPT_OLEN + sizeof(*cp) ||
|
||
|
optlen > cnt) {
|
||
|
code = (uint8_t)(&cp[IPOPT_OLEN] - (u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
}
|
||
|
switch (opt) {
|
||
|
default:
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Source routing with record.
|
||
|
* Find interface with current destination address.
|
||
|
* If none on this machine then drop if strictly routed,
|
||
|
* or do nothing if loosely routed.
|
||
|
* Record interface address and bring up next address
|
||
|
* component. If strictly routed make sure next
|
||
|
* address is on directly accessible net.
|
||
|
*/
|
||
|
case IPOPT_LSRR:
|
||
|
case IPOPT_SSRR:
|
||
|
if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
|
||
|
code = (uint8_t)(&cp[IPOPT_OLEN] - (u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
|
||
|
code = (uint8_t)(&cp[IPOPT_OFFSET] - (u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
ipaddr.sin_addr = ip->ip_dst;
|
||
|
ia = (struct in_ifaddr *)ifa_ifwithaddr(SA(&ipaddr));
|
||
|
if (ia == NULL) {
|
||
|
if (opt == IPOPT_SSRR) {
|
||
|
type = ICMP_UNREACH;
|
||
|
code = ICMP_UNREACH_SRCFAIL;
|
||
|
goto bad;
|
||
|
}
|
||
|
if (!ip_dosourceroute) {
|
||
|
goto nosourcerouting;
|
||
|
}
|
||
|
/*
|
||
|
* Loose routing, and not at next destination
|
||
|
* yet; nothing to do except forward.
|
||
|
*/
|
||
|
break;
|
||
|
} else {
|
||
|
ifa_remref(&ia->ia_ifa);
|
||
|
ia = NULL;
|
||
|
}
|
||
|
off--; /* 0 origin */
|
||
|
if (off > optlen - (int)sizeof(struct in_addr)) {
|
||
|
/*
|
||
|
* End of source route. Should be for us.
|
||
|
*/
|
||
|
if (!ip_acceptsourceroute) {
|
||
|
goto nosourcerouting;
|
||
|
}
|
||
|
save_rte(cp, ip->ip_src);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!ip_dosourceroute) {
|
||
|
if (ipforwarding) {
|
||
|
char buf[MAX_IPv4_STR_LEN];
|
||
|
char buf2[MAX_IPv4_STR_LEN];
|
||
|
/*
|
||
|
* Acting as a router, so generate ICMP
|
||
|
*/
|
||
|
nosourcerouting:
|
||
|
log(LOG_WARNING,
|
||
|
"attempted source route from %s "
|
||
|
"to %s\n",
|
||
|
inet_ntop(AF_INET, &ip->ip_src,
|
||
|
buf, sizeof(buf)),
|
||
|
inet_ntop(AF_INET, &ip->ip_dst,
|
||
|
buf2, sizeof(buf2)));
|
||
|
type = ICMP_UNREACH;
|
||
|
code = ICMP_UNREACH_SRCFAIL;
|
||
|
goto bad;
|
||
|
} else {
|
||
|
/*
|
||
|
* Not acting as a router,
|
||
|
* so silently drop.
|
||
|
*/
|
||
|
OSAddAtomic(1, &ipstat.ips_cantforward);
|
||
|
m_freem(m);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* locate outgoing interface
|
||
|
*/
|
||
|
(void) memcpy(&ipaddr.sin_addr, cp + off,
|
||
|
sizeof(ipaddr.sin_addr));
|
||
|
|
||
|
if (opt == IPOPT_SSRR) {
|
||
|
#define INA struct in_ifaddr *
|
||
|
if ((ia = (INA)ifa_ifwithdstaddr(
|
||
|
SA(&ipaddr))) == NULL) {
|
||
|
ia = (INA)ifa_ifwithnet(SA(&ipaddr));
|
||
|
}
|
||
|
} else {
|
||
|
ia = ip_rtaddr(ipaddr.sin_addr);
|
||
|
}
|
||
|
if (ia == NULL) {
|
||
|
type = ICMP_UNREACH;
|
||
|
code = ICMP_UNREACH_SRCFAIL;
|
||
|
goto bad;
|
||
|
}
|
||
|
ip->ip_dst = ipaddr.sin_addr;
|
||
|
IFA_LOCK(&ia->ia_ifa);
|
||
|
(void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
|
||
|
sizeof(struct in_addr));
|
||
|
IFA_UNLOCK(&ia->ia_ifa);
|
||
|
ifa_remref(&ia->ia_ifa);
|
||
|
ia = NULL;
|
||
|
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
|
||
|
/*
|
||
|
* Let ip_intr's mcast routing check handle mcast pkts
|
||
|
*/
|
||
|
forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
|
||
|
break;
|
||
|
|
||
|
case IPOPT_RR:
|
||
|
if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
|
||
|
code = (uint8_t)(&cp[IPOPT_OFFSET] - (u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
|
||
|
code = (uint8_t)(&cp[IPOPT_OFFSET] - (u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
/*
|
||
|
* If no space remains, ignore.
|
||
|
*/
|
||
|
off--; /* 0 origin */
|
||
|
if (off > optlen - (int)sizeof(struct in_addr)) {
|
||
|
break;
|
||
|
}
|
||
|
(void) memcpy(&ipaddr.sin_addr, &ip->ip_dst,
|
||
|
sizeof(ipaddr.sin_addr));
|
||
|
/*
|
||
|
* locate outgoing interface; if we're the destination,
|
||
|
* use the incoming interface (should be same).
|
||
|
*/
|
||
|
if ((ia = (INA)ifa_ifwithaddr(SA(&ipaddr))) == NULL) {
|
||
|
if ((ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
|
||
|
type = ICMP_UNREACH;
|
||
|
code = ICMP_UNREACH_HOST;
|
||
|
goto bad;
|
||
|
}
|
||
|
}
|
||
|
IFA_LOCK(&ia->ia_ifa);
|
||
|
(void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
|
||
|
sizeof(struct in_addr));
|
||
|
IFA_UNLOCK(&ia->ia_ifa);
|
||
|
ifa_remref(&ia->ia_ifa);
|
||
|
ia = NULL;
|
||
|
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
|
||
|
break;
|
||
|
|
||
|
case IPOPT_TS:
|
||
|
code = (uint8_t)(cp - (u_char *)ip);
|
||
|
ipt = (struct ip_timestamp *)(void *)cp;
|
||
|
if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
|
||
|
code = (uint8_t)((u_char *)&ipt->ipt_len -
|
||
|
(u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
if (ipt->ipt_ptr < 5) {
|
||
|
code = (uint8_t)((u_char *)&ipt->ipt_ptr -
|
||
|
(u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
if (ipt->ipt_ptr >
|
||
|
ipt->ipt_len - (int)sizeof(int32_t)) {
|
||
|
if (++ipt->ipt_oflw == 0) {
|
||
|
code = (uint8_t)((u_char *)&ipt->ipt_ptr -
|
||
|
(u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
sin = (struct in_addr *)(void *)(cp + ipt->ipt_ptr - 1);
|
||
|
switch (ipt->ipt_flg) {
|
||
|
case IPOPT_TS_TSONLY:
|
||
|
break;
|
||
|
|
||
|
case IPOPT_TS_TSANDADDR:
|
||
|
if (ipt->ipt_ptr - 1 + sizeof(n_time) +
|
||
|
sizeof(struct in_addr) > ipt->ipt_len) {
|
||
|
code = (uint8_t)((u_char *)&ipt->ipt_ptr -
|
||
|
(u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
ipaddr.sin_addr = dst;
|
||
|
ia = (INA)ifaof_ifpforaddr(SA(&ipaddr),
|
||
|
m->m_pkthdr.rcvif);
|
||
|
if (ia == NULL) {
|
||
|
continue;
|
||
|
}
|
||
|
IFA_LOCK(&ia->ia_ifa);
|
||
|
(void) memcpy(sin, &IA_SIN(ia)->sin_addr,
|
||
|
sizeof(struct in_addr));
|
||
|
IFA_UNLOCK(&ia->ia_ifa);
|
||
|
ipt->ipt_ptr += sizeof(struct in_addr);
|
||
|
ifa_remref(&ia->ia_ifa);
|
||
|
ia = NULL;
|
||
|
break;
|
||
|
|
||
|
case IPOPT_TS_PRESPEC:
|
||
|
if (ipt->ipt_ptr - 1 + sizeof(n_time) +
|
||
|
sizeof(struct in_addr) > ipt->ipt_len) {
|
||
|
code = (uint8_t)((u_char *)&ipt->ipt_ptr -
|
||
|
(u_char *)ip);
|
||
|
goto bad;
|
||
|
}
|
||
|
(void) memcpy(&ipaddr.sin_addr, sin,
|
||
|
sizeof(struct in_addr));
|
||
|
if ((ia = (struct in_ifaddr *)ifa_ifwithaddr(
|
||
|
SA(&ipaddr))) == NULL) {
|
||
|
continue;
|
||
|
}
|
||
|
ifa_remref(&ia->ia_ifa);
|
||
|
ia = NULL;
|
||
|
ipt->ipt_ptr += sizeof(struct in_addr);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
/* XXX can't take &ipt->ipt_flg */
|
||
|
code = (uint8_t)((u_char *)&ipt->ipt_ptr -
|
||
|
(u_char *)ip + 1);
|
||
|
goto bad;
|
||
|
}
|
||
|
ntime = iptime();
|
||
|
(void) memcpy(cp + ipt->ipt_ptr - 1, &ntime,
|
||
|
sizeof(n_time));
|
||
|
ipt->ipt_ptr += sizeof(n_time);
|
||
|
}
|
||
|
}
|
||
|
if (forward && ipforwarding) {
|
||
|
ip_forward(m, 1, next_hop);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
bad:
|
||
|
icmp_error(m, type, code, 0, 0);
|
||
|
OSAddAtomic(1, &ipstat.ips_badoptions);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check for the presence of the IP Router Alert option [RFC2113]
|
||
|
* in the header of an IPv4 datagram.
|
||
|
*
|
||
|
* This call is not intended for use from the forwarding path; it is here
|
||
|
* so that protocol domains may check for the presence of the option.
|
||
|
* Given how FreeBSD's IPv4 stack is currently structured, the Router Alert
|
||
|
* option does not have much relevance to the implementation, though this
|
||
|
* may change in future.
|
||
|
* Router alert options SHOULD be passed if running in IPSTEALTH mode and
|
||
|
* we are not the endpoint.
|
||
|
* Length checks on individual options should already have been peformed
|
||
|
* by ip_dooptions() therefore they are folded under DIAGNOSTIC here.
|
||
|
*
|
||
|
* Return zero if not present or options are invalid, non-zero if present.
|
||
|
*/
|
||
|
int
|
||
|
ip_checkrouteralert(struct mbuf *m)
|
||
|
{
|
||
|
struct ip *ip = mtod(m, struct ip *);
|
||
|
u_char *cp;
|
||
|
int opt, optlen, cnt, found_ra;
|
||
|
|
||
|
found_ra = 0;
|
||
|
cp = (u_char *)(ip + 1);
|
||
|
cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
|
||
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
||
|
opt = cp[IPOPT_OPTVAL];
|
||
|
if (opt == IPOPT_EOL) {
|
||
|
break;
|
||
|
}
|
||
|
if (opt == IPOPT_NOP) {
|
||
|
optlen = 1;
|
||
|
} else {
|
||
|
#ifdef DIAGNOSTIC
|
||
|
if (cnt < IPOPT_OLEN + sizeof(*cp)) {
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
optlen = cp[IPOPT_OLEN];
|
||
|
#ifdef DIAGNOSTIC
|
||
|
if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
switch (opt) {
|
||
|
case IPOPT_RA:
|
||
|
#ifdef DIAGNOSTIC
|
||
|
if (optlen != IPOPT_OFFSET + sizeof(uint16_t) ||
|
||
|
(*((uint16_t *)(void *)&cp[IPOPT_OFFSET]) != 0)) {
|
||
|
break;
|
||
|
} else
|
||
|
#endif
|
||
|
found_ra = 1;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return found_ra;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Given address of next destination (final or next hop),
|
||
|
* return internet address info of interface to be used to get there.
|
||
|
*/
|
||
|
struct in_ifaddr *
|
||
|
ip_rtaddr(struct in_addr dst)
|
||
|
{
|
||
|
struct sockaddr_in *sin;
|
||
|
struct ifaddr *rt_ifa;
|
||
|
struct route ro;
|
||
|
|
||
|
bzero(&ro, sizeof(ro));
|
||
|
sin = SIN(&ro.ro_dst);
|
||
|
sin->sin_family = AF_INET;
|
||
|
sin->sin_len = sizeof(*sin);
|
||
|
sin->sin_addr = dst;
|
||
|
|
||
|
rtalloc_ign(&ro, RTF_PRCLONING);
|
||
|
if (ro.ro_rt == NULL) {
|
||
|
ROUTE_RELEASE(&ro);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
RT_LOCK(ro.ro_rt);
|
||
|
if ((rt_ifa = ro.ro_rt->rt_ifa) != NULL) {
|
||
|
ifa_addref(rt_ifa);
|
||
|
}
|
||
|
RT_UNLOCK(ro.ro_rt);
|
||
|
ROUTE_RELEASE(&ro);
|
||
|
|
||
|
return (struct in_ifaddr *)rt_ifa;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Save incoming source route for use in replies,
|
||
|
* to be picked up later by ip_srcroute if the receiver is interested.
|
||
|
*/
|
||
|
void
|
||
|
save_rte(u_char *option, struct in_addr dst)
|
||
|
{
|
||
|
unsigned olen;
|
||
|
|
||
|
olen = option[IPOPT_OLEN];
|
||
|
#if DIAGNOSTIC
|
||
|
if (ipprintfs) {
|
||
|
printf("save_rte: olen %d\n", olen);
|
||
|
}
|
||
|
#endif
|
||
|
if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) {
|
||
|
return;
|
||
|
}
|
||
|
bcopy(option, ip_srcrt.srcopt, olen);
|
||
|
ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
|
||
|
ip_srcrt.dst = dst;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Retrieve incoming source route for use in replies,
|
||
|
* in the same form used by setsockopt.
|
||
|
* The first hop is placed before the options, will be removed later.
|
||
|
*/
|
||
|
struct mbuf *
|
||
|
ip_srcroute(void)
|
||
|
{
|
||
|
struct in_addr *p, *q;
|
||
|
struct mbuf *m;
|
||
|
|
||
|
if (ip_nhops == 0) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
m = m_get(M_DONTWAIT, MT_HEADER);
|
||
|
if (m == NULL) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
#define OPTSIZ (sizeof (ip_srcrt.nop) + sizeof (ip_srcrt.srcopt))
|
||
|
|
||
|
/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
|
||
|
m->m_len = ip_nhops * sizeof(struct in_addr) +
|
||
|
sizeof(struct in_addr) + OPTSIZ;
|
||
|
#if DIAGNOSTIC
|
||
|
if (ipprintfs) {
|
||
|
printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* First save first hop for return route
|
||
|
*/
|
||
|
p = &ip_srcrt.route[ip_nhops - 1];
|
||
|
*(mtod(m, struct in_addr *)) = *p--;
|
||
|
#if DIAGNOSTIC
|
||
|
if (ipprintfs) {
|
||
|
printf(" hops %lx",
|
||
|
(u_int32_t)ntohl(mtod(m, struct in_addr *)->s_addr));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Copy option fields and padding (nop) to mbuf.
|
||
|
*/
|
||
|
ip_srcrt.nop = IPOPT_NOP;
|
||
|
ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
|
||
|
(void) __nochk_memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
|
||
|
&ip_srcrt.nop, OPTSIZ);
|
||
|
q = (struct in_addr *)(void *)(mtod(m, caddr_t) +
|
||
|
sizeof(struct in_addr) + OPTSIZ);
|
||
|
#undef OPTSIZ
|
||
|
/*
|
||
|
* Record return path as an IP source route,
|
||
|
* reversing the path (pointers are now aligned).
|
||
|
*/
|
||
|
while (p >= ip_srcrt.route) {
|
||
|
#if DIAGNOSTIC
|
||
|
if (ipprintfs) {
|
||
|
printf(" %lx", (u_int32_t)ntohl(q->s_addr));
|
||
|
}
|
||
|
#endif
|
||
|
*q++ = *p--;
|
||
|
}
|
||
|
/*
|
||
|
* Last hop goes to final destination.
|
||
|
*/
|
||
|
*q = ip_srcrt.dst;
|
||
|
#if DIAGNOSTIC
|
||
|
if (ipprintfs) {
|
||
|
printf(" %lx\n", (u_int32_t)ntohl(q->s_addr));
|
||
|
}
|
||
|
#endif
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Strip out IP options, at higher level protocol in the kernel.
|
||
|
*/
|
||
|
void
|
||
|
ip_stripoptions(struct mbuf *m)
|
||
|
{
|
||
|
int i;
|
||
|
struct ip *ip = mtod(m, struct ip *);
|
||
|
caddr_t opts;
|
||
|
int olen;
|
||
|
|
||
|
/* Expect 32-bit aligned data pointer on strict-align platforms */
|
||
|
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
|
||
|
|
||
|
/* use bcopy() since it supports overlapping range */
|
||
|
olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
|
||
|
opts = (caddr_t)(ip + 1);
|
||
|
i = m->m_len - (sizeof(struct ip) + olen);
|
||
|
bcopy(opts + olen, opts, (unsigned)i);
|
||
|
m->m_len -= olen;
|
||
|
if (m->m_flags & M_PKTHDR) {
|
||
|
m->m_pkthdr.len -= olen;
|
||
|
}
|
||
|
ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
|
||
|
|
||
|
/*
|
||
|
* We expect ip_{off,len} to be in host order by now, and
|
||
|
* that the original IP header length has been subtracted
|
||
|
* out from ip_len. Temporarily adjust ip_len for checksum
|
||
|
* recalculation, and restore it afterwards.
|
||
|
*/
|
||
|
ip->ip_len += sizeof(struct ip);
|
||
|
|
||
|
/* recompute checksum now that IP header is smaller */
|
||
|
#if BYTE_ORDER != BIG_ENDIAN
|
||
|
HTONS(ip->ip_len);
|
||
|
HTONS(ip->ip_off);
|
||
|
#endif /* BYTE_ORDER != BIG_ENDIAN */
|
||
|
ip->ip_sum = in_cksum_hdr(ip);
|
||
|
#if BYTE_ORDER != BIG_ENDIAN
|
||
|
NTOHS(ip->ip_off);
|
||
|
NTOHS(ip->ip_len);
|
||
|
#endif /* BYTE_ORDER != BIG_ENDIAN */
|
||
|
|
||
|
ip->ip_len -= sizeof(struct ip);
|
||
|
|
||
|
/*
|
||
|
* Given that we've just stripped IP options from the header,
|
||
|
* we need to adjust the start offset accordingly if this
|
||
|
* packet had gone thru partial checksum offload.
|
||
|
*/
|
||
|
if ((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) ==
|
||
|
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
|
||
|
if (m->m_pkthdr.csum_rx_start >= (sizeof(struct ip) + olen)) {
|
||
|
/* most common case */
|
||
|
m->m_pkthdr.csum_rx_start -= olen;
|
||
|
} else {
|
||
|
/* compute checksum in software instead */
|
||
|
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
|
||
|
m->m_pkthdr.csum_data = 0;
|
||
|
ipstat.ips_adj_hwcsum_clr++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
u_char inetctlerrmap[PRC_NCMDS] = {
|
||
|
0, 0, 0, 0,
|
||
|
0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
|
||
|
ENETUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
|
||
|
EMSGSIZE, EHOSTUNREACH, 0, 0,
|
||
|
0, 0, EHOSTUNREACH, 0,
|
||
|
ENOPROTOOPT, ECONNREFUSED
|
||
|
};
|
||
|
|
||
|
static int
|
||
|
sysctl_ipforwarding SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(arg1, arg2)
|
||
|
int i, was_ipforwarding = ipforwarding;
|
||
|
|
||
|
i = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
|
||
|
if (i != 0 || req->newptr == USER_ADDR_NULL) {
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
if (was_ipforwarding && !ipforwarding) {
|
||
|
/* clean up IPv4 forwarding cached routes */
|
||
|
ifnet_head_lock_shared();
|
||
|
for (i = 0; i <= if_index; i++) {
|
||
|
struct ifnet *ifp = ifindex2ifnet[i];
|
||
|
if (ifp != NULL) {
|
||
|
lck_mtx_lock(&ifp->if_cached_route_lock);
|
||
|
ROUTE_RELEASE(&ifp->if_fwd_route);
|
||
|
bzero(&ifp->if_fwd_route,
|
||
|
sizeof(ifp->if_fwd_route));
|
||
|
lck_mtx_unlock(&ifp->if_cached_route_lock);
|
||
|
}
|
||
|
}
|
||
|
ifnet_head_done();
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Similar to inp_route_{copyout,copyin} routines except that these copy
|
||
|
* out the cached IPv4 forwarding route from struct ifnet instead of the
|
||
|
* inpcb. See comments for those routines for explanations.
|
||
|
*/
|
||
|
static void
|
||
|
ip_fwd_route_copyout(struct ifnet *ifp, struct route *dst)
|
||
|
{
|
||
|
struct route *src = &ifp->if_fwd_route;
|
||
|
|
||
|
lck_mtx_lock_spin(&ifp->if_cached_route_lock);
|
||
|
lck_mtx_convert_spin(&ifp->if_cached_route_lock);
|
||
|
|
||
|
/* Minor sanity check */
|
||
|
if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) {
|
||
|
panic("%s: wrong or corrupted route: %p", __func__, src);
|
||
|
}
|
||
|
|
||
|
route_copyout(dst, src, sizeof(*dst));
|
||
|
|
||
|
lck_mtx_unlock(&ifp->if_cached_route_lock);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ip_fwd_route_copyin(struct ifnet *ifp, struct route *src)
|
||
|
{
|
||
|
struct route *dst = &ifp->if_fwd_route;
|
||
|
|
||
|
lck_mtx_lock_spin(&ifp->if_cached_route_lock);
|
||
|
lck_mtx_convert_spin(&ifp->if_cached_route_lock);
|
||
|
|
||
|
/* Minor sanity check */
|
||
|
if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) {
|
||
|
panic("%s: wrong or corrupted route: %p", __func__, src);
|
||
|
}
|
||
|
|
||
|
if (ifp->if_fwd_cacheok) {
|
||
|
route_copyin(src, dst, sizeof(*src));
|
||
|
}
|
||
|
|
||
|
lck_mtx_unlock(&ifp->if_cached_route_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Forward a packet. If some error occurs return the sender
|
||
|
* an icmp packet. Note we can't always generate a meaningful
|
||
|
* icmp message because icmp doesn't have a large enough repertoire
|
||
|
* of codes and types.
|
||
|
*
|
||
|
* If not forwarding, just drop the packet. This could be confusing
|
||
|
* if ipforwarding was zero but some routing protocol was advancing
|
||
|
* us as a gateway to somewhere. However, we must let the routing
|
||
|
* protocol deal with that.
|
||
|
*
|
||
|
* The srcrt parameter indicates whether the packet is being forwarded
|
||
|
* via a source route.
|
||
|
*/
|
||
|
static void
|
||
|
ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
|
||
|
{
|
||
|
#pragma unused(next_hop)
|
||
|
struct ip *ip = mtod(m, struct ip *);
|
||
|
struct sockaddr_in *sin;
|
||
|
struct rtentry *rt;
|
||
|
struct route fwd_rt;
|
||
|
int error, type = 0, code = 0;
|
||
|
struct mbuf *mcopy;
|
||
|
n_long dest;
|
||
|
struct in_addr pkt_dst;
|
||
|
u_int32_t nextmtu = 0, len;
|
||
|
struct ip_out_args ipoa;
|
||
|
struct ifnet *rcvifp = m->m_pkthdr.rcvif;
|
||
|
|
||
|
bzero(&ipoa, sizeof(ipoa));
|
||
|
ipoa.ipoa_boundif = IFSCOPE_NONE;
|
||
|
ipoa.ipoa_sotc = SO_TC_UNSPEC;
|
||
|
ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC;
|
||
|
|
||
|
#if IPSEC
|
||
|
struct secpolicy *sp = NULL;
|
||
|
int ipsecerror;
|
||
|
#endif /* IPSEC */
|
||
|
#if PF
|
||
|
struct pf_mtag *pf_mtag;
|
||
|
#endif /* PF */
|
||
|
|
||
|
dest = 0;
|
||
|
pkt_dst = ip->ip_dst;
|
||
|
|
||
|
#if DIAGNOSTIC
|
||
|
if (ipprintfs) {
|
||
|
printf("forward: src %lx dst %lx ttl %x\n",
|
||
|
(u_int32_t)ip->ip_src.s_addr, (u_int32_t)pkt_dst.s_addr,
|
||
|
ip->ip_ttl);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
|
||
|
OSAddAtomic(1, &ipstat.ips_cantforward);
|
||
|
m_freem(m);
|
||
|
return;
|
||
|
}
|
||
|
#if IPSTEALTH
|
||
|
if (!ipstealth) {
|
||
|
#endif /* IPSTEALTH */
|
||
|
if (ip->ip_ttl <= IPTTLDEC) {
|
||
|
icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
|
||
|
dest, 0);
|
||
|
return;
|
||
|
}
|
||
|
#if IPSTEALTH
|
||
|
}
|
||
|
#endif /* IPSTEALTH */
|
||
|
|
||
|
#if PF
|
||
|
pf_mtag = pf_find_mtag(m);
|
||
|
if (pf_mtag != NULL && pf_mtag->pftag_rtableid != IFSCOPE_NONE) {
|
||
|
ipoa.ipoa_boundif = pf_mtag->pftag_rtableid;
|
||
|
ipoa.ipoa_flags |= IPOAF_BOUND_IF;
|
||
|
}
|
||
|
#endif /* PF */
|
||
|
|
||
|
ip_fwd_route_copyout(rcvifp, &fwd_rt);
|
||
|
|
||
|
sin = SIN(&fwd_rt.ro_dst);
|
||
|
if (ROUTE_UNUSABLE(&fwd_rt) || pkt_dst.s_addr != sin->sin_addr.s_addr) {
|
||
|
ROUTE_RELEASE(&fwd_rt);
|
||
|
|
||
|
sin->sin_family = AF_INET;
|
||
|
sin->sin_len = sizeof(*sin);
|
||
|
sin->sin_addr = pkt_dst;
|
||
|
|
||
|
rtalloc_scoped_ign(&fwd_rt, RTF_PRCLONING, ipoa.ipoa_boundif);
|
||
|
if (fwd_rt.ro_rt == NULL) {
|
||
|
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
|
||
|
goto done;
|
||
|
}
|
||
|
}
|
||
|
rt = fwd_rt.ro_rt;
|
||
|
|
||
|
/*
|
||
|
* Save the IP header and at most 8 bytes of the payload,
|
||
|
* in case we need to generate an ICMP message to the src.
|
||
|
*
|
||
|
* We don't use m_copy() because it might return a reference
|
||
|
* to a shared cluster. Both this function and ip_output()
|
||
|
* assume exclusive access to the IP header in `m', so any
|
||
|
* data in a cluster may change before we reach icmp_error().
|
||
|
*/
|
||
|
MGET(mcopy, M_DONTWAIT, m->m_type);
|
||
|
if (mcopy != NULL && m_dup_pkthdr(mcopy, m, M_DONTWAIT) == 0) {
|
||
|
mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
|
||
|
(int)ip->ip_len);
|
||
|
m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
|
||
|
}
|
||
|
|
||
|
#if IPSTEALTH
|
||
|
if (!ipstealth) {
|
||
|
#endif /* IPSTEALTH */
|
||
|
ip->ip_ttl -= IPTTLDEC;
|
||
|
#if IPSTEALTH
|
||
|
}
|
||
|
#endif /* IPSTEALTH */
|
||
|
|
||
|
/*
|
||
|
* If forwarding packet using same interface that it came in on,
|
||
|
* perhaps should send a redirect to sender to shortcut a hop.
|
||
|
* Only send redirect if source is sending directly to us,
|
||
|
* and if packet was not source routed (or has any options).
|
||
|
* Also, don't send redirect if forwarding using a default route
|
||
|
* or a route modified by a redirect.
|
||
|
*/
|
||
|
RT_LOCK_SPIN(rt);
|
||
|
if (rt->rt_ifp == m->m_pkthdr.rcvif &&
|
||
|
!(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
|
||
|
satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
|
||
|
ipsendredirects && !srcrt && rt->rt_ifa != NULL) {
|
||
|
struct in_ifaddr *ia = (struct in_ifaddr *)rt->rt_ifa;
|
||
|
u_int32_t src = ntohl(ip->ip_src.s_addr);
|
||
|
|
||
|
/* Become a regular mutex */
|
||
|
RT_CONVERT_LOCK(rt);
|
||
|
IFA_LOCK_SPIN(&ia->ia_ifa);
|
||
|
if ((src & ia->ia_subnetmask) == ia->ia_subnet) {
|
||
|
if (rt->rt_flags & RTF_GATEWAY) {
|
||
|
dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
|
||
|
} else {
|
||
|
dest = pkt_dst.s_addr;
|
||
|
}
|
||
|
/*
|
||
|
* Router requirements says to only send
|
||
|
* host redirects.
|
||
|
*/
|
||
|
type = ICMP_REDIRECT;
|
||
|
code = ICMP_REDIRECT_HOST;
|
||
|
#if DIAGNOSTIC
|
||
|
if (ipprintfs) {
|
||
|
printf("redirect (%d) to %lx\n", code,
|
||
|
(u_int32_t)dest);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
IFA_UNLOCK(&ia->ia_ifa);
|
||
|
}
|
||
|
RT_UNLOCK(rt);
|
||
|
|
||
|
|
||
|
/* Mark this packet as being forwarded from another interface */
|
||
|
m->m_pkthdr.pkt_flags |= PKTF_FORWARDED;
|
||
|
len = m_pktlen(m);
|
||
|
|
||
|
error = ip_output(m, NULL, &fwd_rt, IP_FORWARDING | IP_OUTARGS,
|
||
|
NULL, &ipoa);
|
||
|
|
||
|
/* Refresh rt since the route could have changed while in IP */
|
||
|
rt = fwd_rt.ro_rt;
|
||
|
|
||
|
if (error != 0) {
|
||
|
OSAddAtomic(1, &ipstat.ips_cantforward);
|
||
|
} else {
|
||
|
/*
|
||
|
* Increment stats on the source interface; the ones
|
||
|
* for destination interface has been taken care of
|
||
|
* during output above by virtue of PKTF_FORWARDED.
|
||
|
*/
|
||
|
rcvifp->if_fpackets++;
|
||
|
rcvifp->if_fbytes += len;
|
||
|
|
||
|
OSAddAtomic(1, &ipstat.ips_forward);
|
||
|
if (type != 0) {
|
||
|
OSAddAtomic(1, &ipstat.ips_redirectsent);
|
||
|
} else {
|
||
|
if (mcopy != NULL) {
|
||
|
/*
|
||
|
* If we didn't have to go thru ipflow and
|
||
|
* the packet was successfully consumed by
|
||
|
* ip_output, the mcopy is rather a waste;
|
||
|
* this could be further optimized.
|
||
|
*/
|
||
|
m_freem(mcopy);
|
||
|
}
|
||
|
goto done;
|
||
|
}
|
||
|
}
|
||
|
if (mcopy == NULL) {
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
switch (error) {
|
||
|
case 0: /* forwarded, but need redirect */
|
||
|
/* type, code set above */
|
||
|
break;
|
||
|
|
||
|
case ENETUNREACH: /* shouldn't happen, checked above */
|
||
|
case EHOSTUNREACH:
|
||
|
case ENETDOWN:
|
||
|
case EHOSTDOWN:
|
||
|
default:
|
||
|
type = ICMP_UNREACH;
|
||
|
code = ICMP_UNREACH_HOST;
|
||
|
break;
|
||
|
|
||
|
case EMSGSIZE:
|
||
|
type = ICMP_UNREACH;
|
||
|
code = ICMP_UNREACH_NEEDFRAG;
|
||
|
|
||
|
if (rt == NULL) {
|
||
|
break;
|
||
|
} else {
|
||
|
RT_LOCK_SPIN(rt);
|
||
|
if (rt->rt_ifp != NULL) {
|
||
|
nextmtu = rt->rt_ifp->if_mtu;
|
||
|
}
|
||
|
RT_UNLOCK(rt);
|
||
|
}
|
||
|
#ifdef IPSEC
|
||
|
if (ipsec_bypass) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the packet is routed over IPsec tunnel, tell the
|
||
|
* originator the tunnel MTU.
|
||
|
* tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
|
||
|
* XXX quickhack!!!
|
||
|
*/
|
||
|
sp = ipsec4_getpolicybyaddr(mcopy, IPSEC_DIR_OUTBOUND,
|
||
|
IP_FORWARDING, &ipsecerror);
|
||
|
|
||
|
if (sp == NULL) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* find the correct route for outer IPv4
|
||
|
* header, compute tunnel MTU.
|
||
|
*/
|
||
|
nextmtu = 0;
|
||
|
|
||
|
if (sp->req != NULL &&
|
||
|
sp->req->saidx.mode == IPSEC_MODE_TUNNEL) {
|
||
|
struct secasindex saidx;
|
||
|
struct secasvar *sav;
|
||
|
struct route *ro;
|
||
|
struct ip *ipm;
|
||
|
size_t ipsechdr;
|
||
|
|
||
|
/* count IPsec header size */
|
||
|
ipsechdr = ipsec_hdrsiz(sp);
|
||
|
|
||
|
ipm = mtod(mcopy, struct ip *);
|
||
|
bcopy(&sp->req->saidx, &saidx, sizeof(saidx));
|
||
|
saidx.mode = sp->req->saidx.mode;
|
||
|
saidx.reqid = sp->req->saidx.reqid;
|
||
|
sin = SIN(&saidx.src);
|
||
|
if (sin->sin_len == 0) {
|
||
|
sin->sin_len = sizeof(*sin);
|
||
|
sin->sin_family = AF_INET;
|
||
|
sin->sin_port = IPSEC_PORT_ANY;
|
||
|
bcopy(&ipm->ip_src, &sin->sin_addr,
|
||
|
sizeof(sin->sin_addr));
|
||
|
}
|
||
|
sin = SIN(&saidx.dst);
|
||
|
if (sin->sin_len == 0) {
|
||
|
sin->sin_len = sizeof(*sin);
|
||
|
sin->sin_family = AF_INET;
|
||
|
sin->sin_port = IPSEC_PORT_ANY;
|
||
|
bcopy(&ipm->ip_dst, &sin->sin_addr,
|
||
|
sizeof(sin->sin_addr));
|
||
|
}
|
||
|
sav = key_allocsa_policy(&saidx);
|
||
|
if (sav != NULL) {
|
||
|
lck_mtx_lock(sadb_mutex);
|
||
|
if (sav->sah != NULL) {
|
||
|
ro = (struct route *)&sav->sah->sa_route;
|
||
|
if (ro->ro_rt != NULL) {
|
||
|
RT_LOCK(ro->ro_rt);
|
||
|
if (ro->ro_rt->rt_ifp != NULL) {
|
||
|
nextmtu = ro->ro_rt->
|
||
|
rt_ifp->if_mtu;
|
||
|
nextmtu -= ipsechdr;
|
||
|
}
|
||
|
RT_UNLOCK(ro->ro_rt);
|
||
|
}
|
||
|
}
|
||
|
key_freesav(sav, KEY_SADB_LOCKED);
|
||
|
lck_mtx_unlock(sadb_mutex);
|
||
|
}
|
||
|
}
|
||
|
key_freesp(sp, KEY_SADB_UNLOCKED);
|
||
|
#endif /* IPSEC */
|
||
|
break;
|
||
|
|
||
|
case ENOBUFS:
|
||
|
/*
|
||
|
* A router should not generate ICMP_SOURCEQUENCH as
|
||
|
* required in RFC1812 Requirements for IP Version 4 Routers.
|
||
|
* Source quench could be a big problem under DoS attacks,
|
||
|
* or if the underlying interface is rate-limited.
|
||
|
* Those who need source quench packets may re-enable them
|
||
|
* via the net.inet.ip.sendsourcequench sysctl.
|
||
|
*/
|
||
|
if (ip_sendsourcequench == 0) {
|
||
|
m_freem(mcopy);
|
||
|
goto done;
|
||
|
} else {
|
||
|
type = ICMP_SOURCEQUENCH;
|
||
|
code = 0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case EACCES:
|
||
|
m_freem(mcopy);
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG) {
|
||
|
OSAddAtomic(1, &ipstat.ips_cantfrag);
|
||
|
}
|
||
|
|
||
|
icmp_error(mcopy, type, code, dest, nextmtu);
|
||
|
done:
|
||
|
ip_fwd_route_copyin(rcvifp, &fwd_rt);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
|
||
|
struct mbuf *m)
|
||
|
{
|
||
|
*mp = NULL;
|
||
|
if (inp->inp_socket->so_options & SO_TIMESTAMP) {
|
||
|
struct timeval tv;
|
||
|
|
||
|
getmicrotime(&tv);
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof(tv),
|
||
|
SCM_TIMESTAMP, SOL_SOCKET, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
if (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) {
|
||
|
uint64_t time;
|
||
|
|
||
|
time = mach_absolute_time();
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof(time),
|
||
|
SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
if (inp->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) {
|
||
|
uint64_t time;
|
||
|
|
||
|
time = mach_continuous_time();
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof(time),
|
||
|
SCM_TIMESTAMP_CONTINUOUS, SOL_SOCKET, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
if (inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) {
|
||
|
int tc = m_get_traffic_class(m);
|
||
|
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof(tc),
|
||
|
SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
if ((inp->inp_socket->so_flags & SOF_RECV_WAKE_PKT) &&
|
||
|
(m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) {
|
||
|
int flag = 1;
|
||
|
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&flag, sizeof(flag),
|
||
|
SO_RECV_WAKE_PKT, SOL_SOCKET, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (inp->inp_flags & INP_RECVDSTADDR || SOFLOW_ENABLED(inp->inp_socket)) {
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_dst,
|
||
|
sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
#ifdef notyet
|
||
|
/*
|
||
|
* XXX
|
||
|
* Moving these out of udp_input() made them even more broken
|
||
|
* than they already were.
|
||
|
*/
|
||
|
/* options were tossed already */
|
||
|
if (inp->inp_flags & INP_RECVOPTS) {
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)opts_deleted_above,
|
||
|
sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
/* ip_srcroute doesn't do what we want here, need to fix */
|
||
|
if (inp->inp_flags & INP_RECVRETOPTS) {
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)ip_srcroute(),
|
||
|
sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
#endif /* notyet */
|
||
|
if (inp->inp_flags & INP_RECVIF) {
|
||
|
struct ifnet *ifp;
|
||
|
uint8_t sdlbuf[SOCK_MAXADDRLEN + 1];
|
||
|
struct sockaddr_dl *sdl2 = SDL(sdlbuf);
|
||
|
|
||
|
/*
|
||
|
* Make sure to accomodate the largest possible
|
||
|
* size of SA(if_lladdr)->sa_len.
|
||
|
*/
|
||
|
_CASSERT(sizeof(sdlbuf) == (SOCK_MAXADDRLEN + 1));
|
||
|
|
||
|
ifnet_head_lock_shared();
|
||
|
if ((ifp = m->m_pkthdr.rcvif) != NULL &&
|
||
|
ifp->if_index && IF_INDEX_IN_RANGE(ifp->if_index)) {
|
||
|
struct ifaddr *ifa = ifnet_addrs[ifp->if_index - 1];
|
||
|
struct sockaddr_dl *sdp;
|
||
|
|
||
|
if (!ifa || !ifa->ifa_addr) {
|
||
|
goto makedummy;
|
||
|
}
|
||
|
|
||
|
IFA_LOCK_SPIN(ifa);
|
||
|
sdp = SDL(ifa->ifa_addr);
|
||
|
/*
|
||
|
* Change our mind and don't try copy.
|
||
|
*/
|
||
|
if (sdp->sdl_family != AF_LINK) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
goto makedummy;
|
||
|
}
|
||
|
/* the above _CASSERT ensures sdl_len fits in sdlbuf */
|
||
|
SOCKADDR_COPY(sdp, sdl2, sdp->sdl_len);
|
||
|
IFA_UNLOCK(ifa);
|
||
|
} else {
|
||
|
makedummy:
|
||
|
sdl2->sdl_len =
|
||
|
offsetof(struct sockaddr_dl, sdl_data[0]);
|
||
|
sdl2->sdl_family = AF_LINK;
|
||
|
sdl2->sdl_index = 0;
|
||
|
sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
|
||
|
}
|
||
|
ifnet_head_done();
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)sdl2, sdl2->sdl_len,
|
||
|
IP_RECVIF, IPPROTO_IP, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
if (inp->inp_flags & INP_RECVTTL) {
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_ttl,
|
||
|
sizeof(ip->ip_ttl), IP_RECVTTL, IPPROTO_IP, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
if (inp->inp_flags & INP_PKTINFO) {
|
||
|
struct in_pktinfo pi;
|
||
|
|
||
|
bzero(&pi, sizeof(struct in_pktinfo));
|
||
|
bcopy(&ip->ip_dst, &pi.ipi_addr, sizeof(struct in_addr));
|
||
|
pi.ipi_ifindex = (m != NULL && m->m_pkthdr.rcvif != NULL) ?
|
||
|
m->m_pkthdr.rcvif->if_index : 0;
|
||
|
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&pi,
|
||
|
sizeof(struct in_pktinfo), IP_RECVPKTINFO, IPPROTO_IP, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
if (inp->inp_flags & INP_RECVTOS) {
|
||
|
mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_tos,
|
||
|
sizeof(u_char), IP_RECVTOS, IPPROTO_IP, mp);
|
||
|
if (*mp == NULL) {
|
||
|
goto no_mbufs;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
no_mbufs:
|
||
|
ipstat.ips_pktdropcntrl++;
|
||
|
return ENOBUFS;
|
||
|
}
|
||
|
|
||
|
static inline u_short
|
||
|
ip_cksum(struct mbuf *m, int hlen)
|
||
|
{
|
||
|
u_short sum;
|
||
|
|
||
|
if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
|
||
|
sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
|
||
|
} else if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
|
||
|
!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
|
||
|
/*
|
||
|
* The packet arrived on an interface which isn't capable
|
||
|
* of performing IP header checksum; compute it now.
|
||
|
*/
|
||
|
sum = ip_cksum_hdr_in(m, hlen);
|
||
|
} else {
|
||
|
sum = 0;
|
||
|
m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
|
||
|
CSUM_IP_CHECKED | CSUM_IP_VALID);
|
||
|
m->m_pkthdr.csum_data = 0xffff;
|
||
|
}
|
||
|
|
||
|
if (sum != 0) {
|
||
|
OSAddAtomic(1, &ipstat.ips_badsum);
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
ip_getstat SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(oidp, arg1, arg2)
|
||
|
if (req->oldptr == USER_ADDR_NULL) {
|
||
|
req->oldlen = (size_t)sizeof(struct ipstat);
|
||
|
}
|
||
|
|
||
|
return SYSCTL_OUT(req, &ipstat, MIN(sizeof(ipstat), req->oldlen));
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ip_setsrcifaddr_info(struct mbuf *m, uint16_t src_idx, struct in_ifaddr *ia)
|
||
|
{
|
||
|
VERIFY(m->m_flags & M_PKTHDR);
|
||
|
|
||
|
/*
|
||
|
* If the source ifaddr is specified, pick up the information
|
||
|
* from there; otherwise just grab the passed-in ifindex as the
|
||
|
* caller may not have the ifaddr available.
|
||
|
*/
|
||
|
if (ia != NULL) {
|
||
|
m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
|
||
|
m->m_pkthdr.src_ifindex = ia->ia_ifp->if_index;
|
||
|
} else {
|
||
|
m->m_pkthdr.src_ifindex = src_idx;
|
||
|
if (src_idx != 0) {
|
||
|
m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ip_setdstifaddr_info(struct mbuf *m, uint16_t dst_idx, struct in_ifaddr *ia)
|
||
|
{
|
||
|
VERIFY(m->m_flags & M_PKTHDR);
|
||
|
|
||
|
/*
|
||
|
* If the destination ifaddr is specified, pick up the information
|
||
|
* from there; otherwise just grab the passed-in ifindex as the
|
||
|
* caller may not have the ifaddr available.
|
||
|
*/
|
||
|
if (ia != NULL) {
|
||
|
m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
|
||
|
m->m_pkthdr.dst_ifindex = ia->ia_ifp->if_index;
|
||
|
} else {
|
||
|
m->m_pkthdr.dst_ifindex = dst_idx;
|
||
|
if (dst_idx != 0) {
|
||
|
m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int
|
||
|
ip_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *iaf)
|
||
|
{
|
||
|
VERIFY(m->m_flags & M_PKTHDR);
|
||
|
|
||
|
if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (src_idx != NULL) {
|
||
|
*src_idx = m->m_pkthdr.src_ifindex;
|
||
|
}
|
||
|
|
||
|
if (iaf != NULL) {
|
||
|
*iaf = 0;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
ip_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *iaf)
|
||
|
{
|
||
|
VERIFY(m->m_flags & M_PKTHDR);
|
||
|
|
||
|
if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (dst_idx != NULL) {
|
||
|
*dst_idx = m->m_pkthdr.dst_ifindex;
|
||
|
}
|
||
|
|
||
|
if (iaf != NULL) {
|
||
|
*iaf = 0;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Protocol input handler for IPPROTO_GRE.
|
||
|
*/
|
||
|
void
|
||
|
gre_input(struct mbuf *m, int off)
|
||
|
{
|
||
|
gre_input_func_t fn = gre_input_func;
|
||
|
|
||
|
/*
|
||
|
* If there is a registered GRE input handler, pass mbuf to it.
|
||
|
*/
|
||
|
if (fn != NULL) {
|
||
|
lck_mtx_unlock(inet_domain_mutex);
|
||
|
m = fn(m, off, (mtod(m, struct ip *))->ip_p);
|
||
|
lck_mtx_lock(inet_domain_mutex);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If no matching tunnel that is up is found, we inject
|
||
|
* the mbuf to raw ip socket to see if anyone picks it up.
|
||
|
*/
|
||
|
if (m != NULL) {
|
||
|
rip_input(m, off);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Private KPI for PPP/PPTP.
|
||
|
*/
|
||
|
int
|
||
|
ip_gre_register_input(gre_input_func_t fn)
|
||
|
{
|
||
|
lck_mtx_lock(inet_domain_mutex);
|
||
|
gre_input_func = fn;
|
||
|
lck_mtx_unlock(inet_domain_mutex);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#if (DEBUG || DEVELOPMENT)
|
||
|
static int
|
||
|
sysctl_reset_ip_input_stats SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(arg1, arg2)
|
||
|
int error, i;
|
||
|
|
||
|
i = ip_input_measure;
|
||
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
||
|
if (error || req->newptr == USER_ADDR_NULL) {
|
||
|
goto done;
|
||
|
}
|
||
|
/* impose bounds */
|
||
|
if (i < 0 || i > 1) {
|
||
|
error = EINVAL;
|
||
|
goto done;
|
||
|
}
|
||
|
if (ip_input_measure != i && i == 1) {
|
||
|
net_perf_initialize(&net_perf, ip_input_measure_bins);
|
||
|
}
|
||
|
ip_input_measure = i;
|
||
|
done:
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
sysctl_ip_input_measure_bins SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(arg1, arg2)
|
||
|
int error;
|
||
|
uint64_t i;
|
||
|
|
||
|
i = ip_input_measure_bins;
|
||
|
error = sysctl_handle_quad(oidp, &i, 0, req);
|
||
|
if (error || req->newptr == USER_ADDR_NULL) {
|
||
|
goto done;
|
||
|
}
|
||
|
/* validate data */
|
||
|
if (!net_perf_validate_bins(i)) {
|
||
|
error = EINVAL;
|
||
|
goto done;
|
||
|
}
|
||
|
ip_input_measure_bins = i;
|
||
|
done:
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
sysctl_ip_input_getperf SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(oidp, arg1, arg2)
|
||
|
if (req->oldptr == USER_ADDR_NULL) {
|
||
|
req->oldlen = (size_t)sizeof(struct ipstat);
|
||
|
}
|
||
|
|
||
|
return SYSCTL_OUT(req, &net_perf, MIN(sizeof(net_perf), req->oldlen));
|
||
|
}
|
||
|
#endif /* (DEBUG || DEVELOPMENT) */
|
||
|
|
||
|
static int
|
||
|
sysctl_ip_checkinterface SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(arg1, arg2)
|
||
|
int error, i;
|
||
|
|
||
|
i = ip_checkinterface;
|
||
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
||
|
if (error != 0 || req->newptr == USER_ADDR_NULL) {
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
switch (i) {
|
||
|
case IP_CHECKINTERFACE_WEAK_ES:
|
||
|
case IP_CHECKINTERFACE_HYBRID_ES:
|
||
|
case IP_CHECKINTERFACE_STRONG_ES:
|
||
|
if (ip_checkinterface != i) {
|
||
|
ip_checkinterface = i;
|
||
|
os_log(OS_LOG_DEFAULT, "%s: ip_checkinterface is now %d\n",
|
||
|
__func__, ip_checkinterface);
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
error = EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
return error;
|
||
|
}
|