gems-kernel/source/THIRDPARTY/xnu/bsd/dev/arm64/dtrace_isa.c

685 lines
16 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2005-2018 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <arm/caches_internal.h>
#include <kern/thread.h>
#if __has_include(<ptrauth.h>)
#include <ptrauth.h>
#endif
#include <stdarg.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/dtrace.h>
#include <sys/dtrace_impl.h>
#include <machine/atomic.h>
#include <kern/cambria_layout.h>
#include <kern/simple_lock.h>
#include <kern/sched_prim.h> /* for thread_wakeup() */
#include <kern/thread_call.h>
#include <kern/task.h>
#include <machine/atomic.h>
#include <machine/machine_routines.h>
extern struct arm_saved_state *find_kern_regs(thread_t);
extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
typedef arm_saved_state_t savearea_t;
struct frame {
struct frame *backchain;
uintptr_t retaddr;
};
/*
* Atomicity and synchronization
*/
inline void
dtrace_membar_producer(void)
{
__builtin_arm_dmb(DMB_ISH);
}
inline void
dtrace_membar_consumer(void)
{
__builtin_arm_dmb(DMB_ISH);
}
/*
* Interrupt manipulation
* XXX dtrace_getipl() can be called from probe context.
*/
int
dtrace_getipl(void)
{
/*
* XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE
* in osfmk/kern/cpu_data.h
*/
/* return get_interrupt_level(); */
return ml_at_interrupt_context() ? 1 : 0;
}
/*
* MP coordination
*/
static LCK_MTX_DECLARE_ATTR(dt_xc_lock, &dtrace_lck_grp, &dtrace_lck_attr);
static uint32_t dt_xc_sync;
typedef struct xcArg {
processorid_t cpu;
dtrace_xcall_t f;
void *arg;
} xcArg_t;
static void
xcRemote(void *foo)
{
xcArg_t *pArg = (xcArg_t *) foo;
if (pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL) {
(pArg->f)(pArg->arg);
}
if (os_atomic_dec(&dt_xc_sync, relaxed) == 0) {
thread_wakeup((event_t) &dt_xc_sync);
}
}
/*
* dtrace_xcall() is not called from probe context.
*/
void
dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg)
{
/* Only one dtrace_xcall in flight allowed */
lck_mtx_lock(&dt_xc_lock);
xcArg_t xcArg;
xcArg.cpu = cpu;
xcArg.f = f;
xcArg.arg = arg;
cpu_broadcast_xcall(&dt_xc_sync, TRUE, xcRemote, (void*) &xcArg);
lck_mtx_unlock(&dt_xc_lock);
return;
}
/**
* Register definitions
*/
#define ARM64_FP 29
#define ARM64_LR 30
#define ARM64_SP 31
#define ARM64_PC 32
#define ARM64_CPSR 33
/*
* Runtime and ABI
*/
uint64_t
dtrace_getreg(struct regs * savearea, uint_t reg)
{
struct arm_saved_state *regs = (struct arm_saved_state *) savearea;
if (regs == NULL) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return 0;
}
if (!check_saved_state_reglimit(regs, reg)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return 0;
}
return (uint64_t)get_saved_state_reg(regs, reg);
}
uint64_t
dtrace_getvmreg(uint_t ndx)
{
#pragma unused(ndx)
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return 0;
}
void
dtrace_livedump(char *filename, size_t len)
{
#pragma unused(filename)
#pragma unused(len)
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
}
#define RETURN_OFFSET64 8
static int
dtrace_getustack_common(uint64_t * pcstack, int pcstack_limit, user_addr_t pc,
user_addr_t sp)
{
volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
int ret = 0;
ASSERT(pcstack == NULL || pcstack_limit > 0);
while (pc != 0) {
ret++;
if (pcstack != NULL) {
*pcstack++ = (uint64_t) pc;
pcstack_limit--;
if (pcstack_limit <= 0) {
break;
}
}
if (sp == 0) {
break;
}
pc = dtrace_fuword64((sp + RETURN_OFFSET64));
sp = dtrace_fuword64(sp);
/* Truncate ustack if the iterator causes fault. */
if (*flags & CPU_DTRACE_FAULT) {
*flags &= ~CPU_DTRACE_FAULT;
break;
}
}
return ret;
}
void
dtrace_getupcstack(uint64_t * pcstack, int pcstack_limit)
{
thread_t thread = current_thread();
savearea_t *regs;
user_addr_t pc, sp, fp;
volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
int n;
if (*flags & CPU_DTRACE_FAULT) {
return;
}
if (pcstack_limit <= 0) {
return;
}
/*
* If there's no user context we still need to zero the stack.
*/
if (thread == NULL) {
goto zero;
}
regs = (savearea_t *) find_user_regs(thread);
if (regs == NULL) {
goto zero;
}
*pcstack++ = (uint64_t)dtrace_proc_selfpid();
pcstack_limit--;
if (pcstack_limit <= 0) {
return;
}
pc = get_saved_state_pc(regs);
sp = get_saved_state_sp(regs);
{
fp = get_saved_state_fp(regs);
}
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
*pcstack++ = (uint64_t) pc;
pcstack_limit--;
if (pcstack_limit <= 0) {
return;
}
pc = get_saved_state_lr(regs);
}
n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp);
ASSERT(n >= 0);
ASSERT(n <= pcstack_limit);
pcstack += n;
pcstack_limit -= n;
zero:
while (pcstack_limit-- > 0) {
*pcstack++ = 0ULL;
}
}
int
dtrace_getustackdepth(void)
{
thread_t thread = current_thread();
savearea_t *regs;
user_addr_t pc, sp, fp;
int n = 0;
if (thread == NULL) {
return 0;
}
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) {
return -1;
}
regs = (savearea_t *) find_user_regs(thread);
if (regs == NULL) {
return 0;
}
pc = get_saved_state_pc(regs);
sp = get_saved_state_sp(regs);
fp = get_saved_state_fp(regs);
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
n++;
pc = get_saved_state_lr(regs);
}
/*
* Note that unlike ppc, the arm code does not use
* CPU_DTRACE_USTACK_FP. This is because arm always
* traces from the sp, even in syscall/profile/fbt
* providers.
*/
n += dtrace_getustack_common(NULL, 0, pc, fp);
return n;
}
void
dtrace_getufpstack(uint64_t * pcstack, uint64_t * fpstack, int pcstack_limit)
{
thread_t thread = current_thread();
boolean_t is64bit = proc_is64bit_data(current_proc());
savearea_t *regs;
user_addr_t pc, sp;
volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
if (*flags & CPU_DTRACE_FAULT) {
return;
}
if (pcstack_limit <= 0) {
return;
}
/*
* If there's no user context we still need to zero the stack.
*/
if (thread == NULL) {
goto zero;
}
regs = (savearea_t *) find_user_regs(thread);
if (regs == NULL) {
goto zero;
}
*pcstack++ = (uint64_t)dtrace_proc_selfpid();
pcstack_limit--;
if (pcstack_limit <= 0) {
return;
}
pc = get_saved_state_pc(regs);
sp = get_saved_state_lr(regs);
#if 0 /* XXX signal stack crawl */
oldcontext = lwp->lwp_oldcontext;
if (p->p_model == DATAMODEL_NATIVE) {
s1 = sizeof(struct frame) + 2 * sizeof(long);
s2 = s1 + sizeof(siginfo_t);
} else {
s1 = sizeof(struct frame32) + 3 * sizeof(int);
s2 = s1 + sizeof(siginfo32_t);
}
#endif
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
*pcstack++ = (uint64_t) pc;
*fpstack++ = 0;
pcstack_limit--;
if (pcstack_limit <= 0) {
return;
}
if (is64bit) {
pc = dtrace_fuword64(sp);
} else {
pc = dtrace_fuword32(sp);
}
}
while (pc != 0 && sp != 0) {
*pcstack++ = (uint64_t) pc;
*fpstack++ = sp;
pcstack_limit--;
if (pcstack_limit <= 0) {
break;
}
#if 0 /* XXX signal stack crawl */
if (oldcontext == sp + s1 || oldcontext == sp + s2) {
if (p->p_model == DATAMODEL_NATIVE) {
ucontext_t *ucp = (ucontext_t *) oldcontext;
greg_t *gregs = ucp->uc_mcontext.gregs;
sp = dtrace_fulword(&gregs[REG_FP]);
pc = dtrace_fulword(&gregs[REG_PC]);
oldcontext = dtrace_fulword(&ucp->uc_link);
} else {
ucontext_t *ucp = (ucontext_t *) oldcontext;
greg_t *gregs = ucp->uc_mcontext.gregs;
sp = dtrace_fuword32(&gregs[EBP]);
pc = dtrace_fuword32(&gregs[EIP]);
oldcontext = dtrace_fuword32(&ucp->uc_link);
}
} else
#endif
{
pc = dtrace_fuword64((sp + RETURN_OFFSET64));
sp = dtrace_fuword64(sp);
}
/* Truncate ustack if the iterator causes fault. */
if (*flags & CPU_DTRACE_FAULT) {
*flags &= ~CPU_DTRACE_FAULT;
break;
}
}
zero:
while (pcstack_limit-- > 0) {
*pcstack++ = 0ULL;
}
}
/**
* Return whether a frame is located within the current thread's kernel stack.
*
* @param fp The frame to check.
*/
static inline bool
dtrace_frame_in_kernel_stack(struct frame * fp)
{
const uintptr_t bottom = dtrace_get_kernel_stack(current_thread());
/* Return early if there is no kernel stack. */
if (bottom == 0) {
return false;
}
const uintptr_t top = bottom + kernel_stack_size;
return ((uintptr_t)fp >= bottom) && ((uintptr_t)fp < top);
}
void
dtrace_getpcstack(pc_t * pcstack, int pcstack_limit, int aframes,
uint32_t * intrpc)
{
struct frame *fp = (struct frame *) __builtin_frame_address(0);
struct frame *nextfp;
int depth = 0;
int on_intr = CPU_ON_INTR(CPU);
int last = 0;
uintptr_t pc;
uintptr_t caller = CPU->cpu_dtrace_caller;
aframes++;
if (intrpc != NULL && depth < pcstack_limit) {
pcstack[depth++] = (pc_t) intrpc;
}
while (depth < pcstack_limit) {
nextfp = fp->backchain;
pc = fp->retaddr;
/*
* Stacks grow down; backtracing should always be moving to higher
* addresses except when the backtrace spans multiple different stacks.
*/
if (nextfp <= fp) {
if (on_intr) {
/*
* Let's check whether we're moving from the interrupt stack to
* either a kernel stack or a non-XNU stack.
*/
arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread());
if (arm_kern_regs) {
/*
* If this frame is not stitching from the interrupt stack
* to either the kernel stack or a known non-XNU stack, then
* stop the backtrace.
*/
if (!dtrace_frame_in_kernel_stack(nextfp) &&
!ml_addr_in_non_xnu_stack((uintptr_t)nextfp)) {
last = 1;
}
/* Not on the interrupt stack anymore. */
on_intr = 0;
} else {
/*
* If this thread was on the interrupt stack, but did not
* take an interrupt (i.e, the idle thread), there is no
* explicit saved state for us to use.
*/
last = 1;
}
} else if (!ml_addr_in_non_xnu_stack((uintptr_t)fp) &&
!ml_addr_in_non_xnu_stack((uintptr_t)nextfp)) {
/*
* This is the last frame we can process; indicate that we
* should return after processing this frame.
*
* This could be for a few reasons. If the nextfp is NULL, then
* this logic will be triggered. Beyond that, the only valid
* stack switches are either going from kernel stack to non-xnu
* stack, non-xnu stack to kernel stack, or between one non-xnu
* stack and another. So if none of those transitions are
* happening, then stop the backtrace.
*/
last = 1;
}
}
if (aframes > 0) {
if (--aframes == 0 && caller != (uintptr_t)NULL) {
/*
* We've just run out of artificial frames,
* and we have a valid caller -- fill it in
* now.
*/
ASSERT(depth < pcstack_limit);
pcstack[depth++] = (pc_t) caller;
caller = (uintptr_t)NULL;
}
} else {
if (depth < pcstack_limit) {
pcstack[depth++] = (pc_t) pc;
}
}
if (last) {
while (depth < pcstack_limit) {
pcstack[depth++] = (pc_t) NULL;
}
return;
}
fp = nextfp;
}
}
uint64_t
dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
{
#pragma unused(arg, aframes)
uint64_t val = 0;
struct frame *fp = (struct frame *)__builtin_frame_address(0);
uintptr_t *stack;
uintptr_t pc;
int i;
/*
* A total of 8 arguments are passed via registers; any argument with
* index of 7 or lower is therefore in a register.
*/
int inreg = 7;
for (i = 1; i <= aframes; ++i) {
#if __has_feature(ptrauth_frames)
fp = ptrauth_strip(fp->backchain, ptrauth_key_frame_pointer);
#else
fp = fp->backchain;
#endif
#if __has_feature(ptrauth_returns)
pc = (uintptr_t)ptrauth_strip((void*)fp->retaddr, ptrauth_key_return_address);
#else
pc = fp->retaddr;
#endif
if (dtrace_invop_callsite_pre != NULL
&& pc > (uintptr_t) dtrace_invop_callsite_pre
&& pc <= (uintptr_t) dtrace_invop_callsite_post) {
/* fp points to frame of dtrace_invop() activation */
fp = fp->backchain; /* to fbt_perfCallback activation */
fp = fp->backchain; /* to sleh_synchronous activation */
fp = fp->backchain; /* to fleh_synchronous activation */
arm_saved_state_t *tagged_regs = (arm_saved_state_t*) ((void*) &fp[1]);
arm_saved_state64_t *saved_state = saved_state64(tagged_regs);
if (arg <= inreg) {
/* the argument will be found in a register */
stack = (uintptr_t*) &saved_state->x[0];
} else {
/* the argument will be found in the stack */
fp = (struct frame*) saved_state->sp;
stack = (uintptr_t*) &fp[1];
arg -= (inreg + 1);
}
goto load;
}
}
/*
* We know that we did not come through a trap to get into
* dtrace_probe() -- We arrive here when the provider has
* called dtrace_probe() directly.
* The probe ID is the first argument to dtrace_probe().
* We must advance beyond that to get the argX.
*/
arg++; /* Advance past probeID */
if (arg <= inreg) {
/*
* This shouldn't happen. If the argument is passed in a
* register then it should have been, well, passed in a
* register...
*/
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return 0;
}
arg -= (inreg + 1);
stack = (uintptr_t*) &fp[1]; /* Find marshalled arguments */
load:
if (dtrace_canload((uint64_t)(stack + arg), sizeof(uint64_t),
mstate, vstate)) {
/* dtrace_probe arguments arg0 ... arg4 are 64bits wide */
val = dtrace_load64((uint64_t)(stack + arg));
}
return val;
}
void
dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which,
int fltoffs, int fault, uint64_t illval)
{
/* XXX ARMTODO */
/*
* For the case of the error probe firing lets
* stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG.
*/
state->dts_arg_error_illval = illval;
dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault );
}
void
dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
{
/* XXX ARMTODO check copied from ppc/x86*/
/*
* "base" is the smallest toxic address in the range, "limit" is the first
* VALID address greater than "base".
*/
func(0x0, VM_MIN_KERNEL_ADDRESS);
if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) {
func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0);
}
}
void
dtrace_flush_caches(void)
{
/* TODO There were some problems with flushing just the cache line that had been modified.
* For now, we'll flush the entire cache, until we figure out how to flush just the patched block.
*/
FlushPoU_Dcache();
InvalidatePoU_Icache();
}