gems-kernel/source/THIRDPARTY/xnu/bsd/kern/kern_control.c

2363 lines
57 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 1999-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Kernel Control domain - allows control connections to
* and to read/write data.
*
* Vincent Lubet, 040506
* Christophe Allie, 010928
* Justin C. Walker, 990319
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/sys_domain.h>
#include <sys/kern_event.h>
#include <sys/kern_control.h>
#include <sys/kauth.h>
#include <sys/sysctl.h>
#include <sys/proc_info.h>
#include <net/if_var.h>
#include <mach/vm_types.h>
#include <kern/thread.h>
struct kctl {
TAILQ_ENTRY(kctl) next; /* controller chain */
kern_ctl_ref kctlref;
/* controller information provided when registering */
char name[MAX_KCTL_NAME]; /* unique identifier */
u_int32_t id;
u_int32_t reg_unit;
/* misc communication information */
u_int32_t flags; /* support flags */
u_int32_t recvbufsize; /* request more than the default buffer size */
u_int32_t sendbufsize; /* request more than the default buffer size */
/* Dispatch functions */
ctl_setup_func setup; /* Setup contact */
ctl_bind_func bind; /* Prepare contact */
ctl_connect_func connect; /* Make contact */
ctl_disconnect_func disconnect; /* Break contact */
ctl_send_func send; /* Send data to nke */
ctl_send_list_func send_list; /* Send list of packets */
ctl_setopt_func setopt; /* set kctl configuration */
ctl_getopt_func getopt; /* get kctl configuration */
ctl_rcvd_func rcvd; /* Notify nke when client reads data */
TAILQ_HEAD(, ctl_cb) kcb_head;
u_int32_t lastunit;
};
#if DEVELOPMENT || DEBUG
enum ctl_status {
KCTL_DISCONNECTED = 0,
KCTL_CONNECTING = 1,
KCTL_CONNECTED = 2
};
#endif /* DEVELOPMENT || DEBUG */
struct ctl_cb {
TAILQ_ENTRY(ctl_cb) next; /* controller chain */
lck_mtx_t mtx;
struct socket *so; /* controlling socket */
struct kctl *kctl; /* back pointer to controller */
void *userdata;
struct sockaddr_ctl sac;
uint32_t usecount;
uint32_t kcb_usecount;
uint32_t require_clearing_count;
#if DEVELOPMENT || DEBUG
enum ctl_status status;
#endif /* DEVELOPMENT || DEBUG */
};
#ifndef ROUNDUP64
#define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t))
#endif
#ifndef ADVANCE64
#define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n))
#endif
/*
* Definitions and vars for we support
*/
#define CTL_SENDSIZE (2 * 1024) /* default buffer size */
#define CTL_RECVSIZE (8 * 1024) /* default buffer size */
/*
* Definitions and vars for we support
*/
const u_int32_t ctl_maxunit = 65536;
static LCK_ATTR_DECLARE(ctl_lck_attr, 0, 0);
static LCK_GRP_DECLARE(ctl_lck_grp, "Kernel Control Protocol");
static LCK_MTX_DECLARE_ATTR(ctl_mtx, &ctl_lck_grp, &ctl_lck_attr);
/* all the controllers are chained */
TAILQ_HEAD(kctl_list, kctl) ctl_head = TAILQ_HEAD_INITIALIZER(ctl_head);
static int ctl_attach(struct socket *, int, struct proc *);
static int ctl_detach(struct socket *);
static int ctl_sofreelastref(struct socket *so);
static int ctl_bind(struct socket *, struct sockaddr *, struct proc *);
static int ctl_connect(struct socket *, struct sockaddr *, struct proc *);
static int ctl_disconnect(struct socket *);
static int ctl_ioctl(struct socket *so, u_long cmd, caddr_t data,
struct ifnet *ifp, struct proc *p);
static int ctl_send(struct socket *, int, struct mbuf *,
struct sockaddr *, struct mbuf *, struct proc *);
static int ctl_send_list(struct socket *, struct mbuf *, u_int *, int);
static int ctl_ctloutput(struct socket *, struct sockopt *);
static int ctl_peeraddr(struct socket *so, struct sockaddr **nam);
static int ctl_usr_rcvd(struct socket *so, int flags);
static struct kctl *ctl_find_by_name(const char *);
static struct kctl *ctl_find_by_id_unit(u_int32_t id, u_int32_t unit);
static struct socket *kcb_find_socket(kern_ctl_ref kctlref, u_int32_t unit,
u_int32_t *);
static struct ctl_cb *kcb_find(struct kctl *, u_int32_t unit);
static void ctl_post_msg(u_int32_t event_code, u_int32_t id);
static int ctl_lock(struct socket *, int, void *);
static int ctl_unlock(struct socket *, int, void *);
static lck_mtx_t * ctl_getlock(struct socket *, int);
static struct pr_usrreqs ctl_usrreqs = {
.pru_attach = ctl_attach,
.pru_bind = ctl_bind,
.pru_connect = ctl_connect,
.pru_control = ctl_ioctl,
.pru_detach = ctl_detach,
.pru_disconnect = ctl_disconnect,
.pru_peeraddr = ctl_peeraddr,
.pru_rcvd = ctl_usr_rcvd,
.pru_send = ctl_send,
.pru_send_list = ctl_send_list,
.pru_sosend = sosend,
.pru_sosend_list = sosend_list,
.pru_soreceive = soreceive,
};
static struct protosw kctlsw[] = {
{
.pr_type = SOCK_DGRAM,
.pr_protocol = SYSPROTO_CONTROL,
.pr_flags = PR_ATOMIC | PR_CONNREQUIRED | PR_PCBLOCK | PR_WANTRCVD,
.pr_ctloutput = ctl_ctloutput,
.pr_usrreqs = &ctl_usrreqs,
.pr_lock = ctl_lock,
.pr_unlock = ctl_unlock,
.pr_getlock = ctl_getlock,
},
{
.pr_type = SOCK_STREAM,
.pr_protocol = SYSPROTO_CONTROL,
.pr_flags = PR_CONNREQUIRED | PR_PCBLOCK | PR_WANTRCVD,
.pr_ctloutput = ctl_ctloutput,
.pr_usrreqs = &ctl_usrreqs,
.pr_lock = ctl_lock,
.pr_unlock = ctl_unlock,
.pr_getlock = ctl_getlock,
}
};
__private_extern__ int kctl_reg_list SYSCTL_HANDLER_ARGS;
__private_extern__ int kctl_pcblist SYSCTL_HANDLER_ARGS;
__private_extern__ int kctl_getstat SYSCTL_HANDLER_ARGS;
SYSCTL_NODE(_net_systm, OID_AUTO, kctl,
CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Kernel control family");
struct kctlstat kctlstat;
SYSCTL_PROC(_net_systm_kctl, OID_AUTO, stats,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
kctl_getstat, "S,kctlstat", "");
SYSCTL_PROC(_net_systm_kctl, OID_AUTO, reg_list,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
kctl_reg_list, "S,xkctl_reg", "");
SYSCTL_PROC(_net_systm_kctl, OID_AUTO, pcblist,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
kctl_pcblist, "S,xkctlpcb", "");
u_int32_t ctl_autorcvbuf_max = 256 * 1024;
SYSCTL_INT(_net_systm_kctl, OID_AUTO, autorcvbufmax,
CTLFLAG_RW | CTLFLAG_LOCKED, &ctl_autorcvbuf_max, 0, "");
u_int32_t ctl_autorcvbuf_high = 0;
SYSCTL_INT(_net_systm_kctl, OID_AUTO, autorcvbufhigh,
CTLFLAG_RD | CTLFLAG_LOCKED, &ctl_autorcvbuf_high, 0, "");
u_int32_t ctl_debug = 0;
SYSCTL_INT(_net_systm_kctl, OID_AUTO, debug,
CTLFLAG_RW | CTLFLAG_LOCKED, &ctl_debug, 0, "");
#if DEVELOPMENT || DEBUG
u_int32_t ctl_panic_debug = 0;
SYSCTL_INT(_net_systm_kctl, OID_AUTO, panicdebug,
CTLFLAG_RW | CTLFLAG_LOCKED, &ctl_panic_debug, 0, "");
#endif /* DEVELOPMENT || DEBUG */
#define KCTL_TBL_INC 16
static uintptr_t kctl_tbl_size = 0;
static u_int32_t kctl_tbl_growing = 0;
static u_int32_t kctl_tbl_growing_waiting = 0;
static uintptr_t kctl_tbl_count = 0;
static struct kctl **kctl_table = NULL;
static uintptr_t kctl_ref_gencnt = 0;
static void kctl_tbl_grow(void);
static kern_ctl_ref kctl_make_ref(struct kctl *kctl);
static void kctl_delete_ref(kern_ctl_ref);
static struct kctl *kctl_from_ref(kern_ctl_ref);
/*
* Install the protosw's for the Kernel Control manager.
*/
__private_extern__ void
kern_control_init(struct domain *dp)
{
struct protosw *pr;
int i;
int kctl_proto_count = (sizeof(kctlsw) / sizeof(struct protosw));
VERIFY(!(dp->dom_flags & DOM_INITIALIZED));
VERIFY(dp == systemdomain);
for (i = 0, pr = &kctlsw[0]; i < kctl_proto_count; i++, pr++) {
net_add_proto(pr, dp, 1);
}
}
static void
kcb_delete(struct ctl_cb *kcb)
{
if (kcb != 0) {
lck_mtx_destroy(&kcb->mtx, &ctl_lck_grp);
kfree_type(struct ctl_cb, kcb);
}
}
/*
* Kernel Controller user-request functions
* attach function must exist and succeed
* detach not necessary
* we need a pcb for the per socket mutex
*/
static int
ctl_attach(struct socket *so, int proto, struct proc *p)
{
#pragma unused(proto, p)
struct ctl_cb *kcb = 0;
kcb = kalloc_type(struct ctl_cb, Z_WAITOK | Z_ZERO | Z_NOFAIL);
lck_mtx_init(&kcb->mtx, &ctl_lck_grp, &ctl_lck_attr);
kcb->so = so;
so->so_pcb = (caddr_t)kcb;
/*
* For datagram, use character count for sbspace as its value
* may be use for packetization and we do not want to
* drop packets based on the sbspace hint that was just provided
*/
if (SOCK_CHECK_TYPE(so, SOCK_DGRAM)) {
so->so_rcv.sb_flags |= SB_KCTL;
so->so_snd.sb_flags |= SB_KCTL;
}
return 0;
}
static int
ctl_sofreelastref(struct socket *so)
{
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
so->so_pcb = 0;
if (kcb != 0) {
struct kctl *kctl;
if ((kctl = kcb->kctl) != 0) {
lck_mtx_lock(&ctl_mtx);
TAILQ_REMOVE(&kctl->kcb_head, kcb, next);
kctlstat.kcs_pcbcount--;
kctlstat.kcs_gencnt++;
lck_mtx_unlock(&ctl_mtx);
}
kcb_delete(kcb);
}
sofreelastref(so, 1);
return 0;
}
/*
* Use this function and ctl_kcb_require_clearing to serialize
* critical calls into the kctl subsystem
*/
static void
ctl_kcb_increment_use_count(struct ctl_cb *kcb, lck_mtx_t *mutex_held)
{
LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
while (kcb->require_clearing_count > 0) {
msleep(&kcb->require_clearing_count, mutex_held, PSOCK | PCATCH, "kcb_require_clearing", NULL);
}
kcb->kcb_usecount++;
}
static void
ctl_kcb_require_clearing(struct ctl_cb *kcb, lck_mtx_t *mutex_held)
{
assert(kcb->kcb_usecount != 0);
kcb->require_clearing_count++;
kcb->kcb_usecount--;
while (kcb->kcb_usecount > 0) { // we need to wait until no one else is running
msleep(&kcb->kcb_usecount, mutex_held, PSOCK | PCATCH, "kcb_usecount", NULL);
}
kcb->kcb_usecount++;
}
static void
ctl_kcb_done_clearing(struct ctl_cb *kcb)
{
assert(kcb->require_clearing_count != 0);
kcb->require_clearing_count--;
wakeup((caddr_t)&kcb->require_clearing_count);
}
static void
ctl_kcb_decrement_use_count(struct ctl_cb *kcb)
{
assert(kcb->kcb_usecount != 0);
kcb->kcb_usecount--;
if (kcb->require_clearing_count != 0) {
wakeup((caddr_t)&kcb->kcb_usecount);
}
}
static int
ctl_detach(struct socket *so)
{
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
if (kcb == 0) {
return 0;
}
lck_mtx_t *mtx_held = socket_getlock(so, PR_F_WILLUNLOCK);
ctl_kcb_increment_use_count(kcb, mtx_held);
ctl_kcb_require_clearing(kcb, mtx_held);
if (kcb->kctl != NULL && kcb->kctl->bind != NULL &&
kcb->userdata != NULL && !(so->so_state & SS_ISCONNECTED)) {
// The unit was bound, but not connected
// Invoke the disconnected call to cleanup
if (kcb->kctl->disconnect != NULL) {
socket_unlock(so, 0);
(*kcb->kctl->disconnect)(kcb->kctl->kctlref,
kcb->sac.sc_unit, kcb->userdata);
socket_lock(so, 0);
}
}
soisdisconnected(so);
#if DEVELOPMENT || DEBUG
kcb->status = KCTL_DISCONNECTED;
#endif /* DEVELOPMENT || DEBUG */
so->so_flags |= SOF_PCBCLEARING;
ctl_kcb_done_clearing(kcb);
ctl_kcb_decrement_use_count(kcb);
return 0;
}
static int
ctl_setup_kctl(struct socket *so, struct sockaddr *nam, struct proc *p)
{
struct kctl *kctl = NULL;
int error = 0;
struct sockaddr_ctl sa;
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
struct ctl_cb *kcb_next = NULL;
if (kcb == 0) {
panic("ctl_setup_kctl so_pcb null");
}
if (kcb->kctl != NULL) {
// Already set up, skip
return 0;
}
if (nam->sa_len != sizeof(struct sockaddr_ctl)) {
return EINVAL;
}
bcopy(nam, &sa, sizeof(struct sockaddr_ctl));
lck_mtx_lock(&ctl_mtx);
kctl = ctl_find_by_id_unit(sa.sc_id, sa.sc_unit);
if (kctl == NULL) {
lck_mtx_unlock(&ctl_mtx);
return ENOENT;
}
if (((kctl->flags & CTL_FLAG_REG_SOCK_STREAM) &&
(so->so_type != SOCK_STREAM)) ||
(!(kctl->flags & CTL_FLAG_REG_SOCK_STREAM) &&
(so->so_type != SOCK_DGRAM))) {
lck_mtx_unlock(&ctl_mtx);
return EPROTOTYPE;
}
if (kctl->flags & CTL_FLAG_PRIVILEGED) {
if (p == 0) {
lck_mtx_unlock(&ctl_mtx);
return EINVAL;
}
if (kauth_cred_issuser(kauth_cred_get()) == 0) {
lck_mtx_unlock(&ctl_mtx);
return EPERM;
}
}
if (kctl->setup != NULL) {
error = (*kctl->setup)(&sa.sc_unit, &kcb->userdata);
if (error != 0) {
lck_mtx_unlock(&ctl_mtx);
return error;
}
} else if ((kctl->flags & CTL_FLAG_REG_ID_UNIT) || sa.sc_unit != 0) {
if (kcb_find(kctl, sa.sc_unit) != NULL) {
lck_mtx_unlock(&ctl_mtx);
return EBUSY;
}
} else {
/* Find an unused ID, assumes control IDs are in order */
u_int32_t unit = 1;
TAILQ_FOREACH(kcb_next, &kctl->kcb_head, next) {
if (kcb_next->sac.sc_unit > unit) {
/* Found a gap, lets fill it in */
break;
}
unit = kcb_next->sac.sc_unit + 1;
if (unit == ctl_maxunit) {
break;
}
}
if (unit == ctl_maxunit) {
lck_mtx_unlock(&ctl_mtx);
return EBUSY;
}
sa.sc_unit = unit;
}
bcopy(&sa, &kcb->sac, sizeof(struct sockaddr_ctl));
kcb->kctl = kctl;
if (kcb_next != NULL) {
TAILQ_INSERT_BEFORE(kcb_next, kcb, next);
} else {
TAILQ_INSERT_TAIL(&kctl->kcb_head, kcb, next);
}
kctlstat.kcs_pcbcount++;
kctlstat.kcs_gencnt++;
kctlstat.kcs_connections++;
lck_mtx_unlock(&ctl_mtx);
error = soreserve(so, kctl->sendbufsize, kctl->recvbufsize);
if (error) {
if (ctl_debug) {
printf("%s - soreserve(%llx, %u, %u) error %d\n",
__func__, (uint64_t)VM_KERNEL_ADDRPERM(so),
kctl->sendbufsize, kctl->recvbufsize, error);
}
goto done;
}
done:
if (error) {
soisdisconnected(so);
#if DEVELOPMENT || DEBUG
kcb->status = KCTL_DISCONNECTED;
#endif /* DEVELOPMENT || DEBUG */
lck_mtx_lock(&ctl_mtx);
TAILQ_REMOVE(&kctl->kcb_head, kcb, next);
kcb->kctl = NULL;
kcb->sac.sc_unit = 0;
kctlstat.kcs_pcbcount--;
kctlstat.kcs_gencnt++;
kctlstat.kcs_conn_fail++;
lck_mtx_unlock(&ctl_mtx);
}
return error;
}
static int
ctl_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
{
int error = 0;
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
if (kcb == NULL) {
panic("ctl_bind so_pcb null");
}
lck_mtx_t *mtx_held = socket_getlock(so, PR_F_WILLUNLOCK);
ctl_kcb_increment_use_count(kcb, mtx_held);
ctl_kcb_require_clearing(kcb, mtx_held);
error = ctl_setup_kctl(so, nam, p);
if (error) {
goto out;
}
if (kcb->kctl == NULL) {
panic("ctl_bind kctl null");
}
if (kcb->kctl->bind == NULL) {
error = EINVAL;
goto out;
}
socket_unlock(so, 0);
error = (*kcb->kctl->bind)(kcb->kctl->kctlref, &kcb->sac, &kcb->userdata);
socket_lock(so, 0);
out:
ctl_kcb_done_clearing(kcb);
ctl_kcb_decrement_use_count(kcb);
return error;
}
static int
ctl_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
{
int error = 0;
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
if (kcb == NULL) {
panic("ctl_connect so_pcb null");
}
lck_mtx_t *mtx_held = socket_getlock(so, PR_F_WILLUNLOCK);
ctl_kcb_increment_use_count(kcb, mtx_held);
ctl_kcb_require_clearing(kcb, mtx_held);
#if DEVELOPMENT || DEBUG
if (kcb->status != KCTL_DISCONNECTED && ctl_panic_debug) {
panic("kctl already connecting/connected");
}
kcb->status = KCTL_CONNECTING;
#endif /* DEVELOPMENT || DEBUG */
error = ctl_setup_kctl(so, nam, p);
if (error) {
goto out;
}
if (kcb->kctl == NULL) {
panic("ctl_connect kctl null");
}
soisconnecting(so);
socket_unlock(so, 0);
error = (*kcb->kctl->connect)(kcb->kctl->kctlref, &kcb->sac, &kcb->userdata);
socket_lock(so, 0);
if (error) {
goto end;
}
soisconnected(so);
#if DEVELOPMENT || DEBUG
kcb->status = KCTL_CONNECTED;
#endif /* DEVELOPMENT || DEBUG */
end:
if (error && kcb->kctl->disconnect) {
/*
* XXX Make sure we Don't check the return value
* of disconnect here.
* ipsec/utun_ctl_disconnect will return error when
* disconnect gets called after connect failure.
* However if we decide to check for disconnect return
* value here. Please make sure to revisit
* ipsec/utun_ctl_disconnect.
*/
socket_unlock(so, 0);
(*kcb->kctl->disconnect)(kcb->kctl->kctlref, kcb->sac.sc_unit, kcb->userdata);
socket_lock(so, 0);
}
if (error) {
soisdisconnected(so);
#if DEVELOPMENT || DEBUG
kcb->status = KCTL_DISCONNECTED;
#endif /* DEVELOPMENT || DEBUG */
lck_mtx_lock(&ctl_mtx);
TAILQ_REMOVE(&kcb->kctl->kcb_head, kcb, next);
kcb->kctl = NULL;
kcb->sac.sc_unit = 0;
kctlstat.kcs_pcbcount--;
kctlstat.kcs_gencnt++;
kctlstat.kcs_conn_fail++;
lck_mtx_unlock(&ctl_mtx);
}
out:
ctl_kcb_done_clearing(kcb);
ctl_kcb_decrement_use_count(kcb);
return error;
}
static int
ctl_disconnect(struct socket *so)
{
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
if ((kcb = (struct ctl_cb *)so->so_pcb)) {
lck_mtx_t *mtx_held = socket_getlock(so, PR_F_WILLUNLOCK);
ctl_kcb_increment_use_count(kcb, mtx_held);
ctl_kcb_require_clearing(kcb, mtx_held);
struct kctl *kctl = kcb->kctl;
if (kctl && kctl->disconnect) {
socket_unlock(so, 0);
(*kctl->disconnect)(kctl->kctlref, kcb->sac.sc_unit,
kcb->userdata);
socket_lock(so, 0);
}
soisdisconnected(so);
#if DEVELOPMENT || DEBUG
kcb->status = KCTL_DISCONNECTED;
#endif /* DEVELOPMENT || DEBUG */
socket_unlock(so, 0);
lck_mtx_lock(&ctl_mtx);
kcb->kctl = 0;
kcb->sac.sc_unit = 0;
while (kcb->usecount != 0) {
msleep(&kcb->usecount, &ctl_mtx, 0, "kcb->usecount", 0);
}
TAILQ_REMOVE(&kctl->kcb_head, kcb, next);
kctlstat.kcs_pcbcount--;
kctlstat.kcs_gencnt++;
lck_mtx_unlock(&ctl_mtx);
socket_lock(so, 0);
ctl_kcb_done_clearing(kcb);
ctl_kcb_decrement_use_count(kcb);
}
return 0;
}
static int
ctl_peeraddr(struct socket *so, struct sockaddr **nam)
{
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
struct kctl *kctl;
struct sockaddr_ctl sc;
if (kcb == NULL) { /* sanity check */
return ENOTCONN;
}
if ((kctl = kcb->kctl) == NULL) {
return EINVAL;
}
bzero(&sc, sizeof(struct sockaddr_ctl));
sc.sc_len = sizeof(struct sockaddr_ctl);
sc.sc_family = AF_SYSTEM;
sc.ss_sysaddr = AF_SYS_CONTROL;
sc.sc_id = kctl->id;
sc.sc_unit = kcb->sac.sc_unit;
*nam = dup_sockaddr((struct sockaddr *)&sc, 1);
return 0;
}
static void
ctl_sbrcv_trim(struct socket *so)
{
struct sockbuf *sb = &so->so_rcv;
if (sb->sb_hiwat > sb->sb_idealsize) {
u_int32_t diff;
int32_t trim;
/*
* The difference between the ideal size and the
* current size is the upper bound of the trimage
*/
diff = sb->sb_hiwat - sb->sb_idealsize;
/*
* We cannot trim below the outstanding data
*/
trim = sb->sb_hiwat - sb->sb_cc;
trim = imin(trim, (int32_t)diff);
if (trim > 0) {
sbreserve(sb, (sb->sb_hiwat - trim));
if (ctl_debug) {
printf("%s - shrunk to %d\n",
__func__, sb->sb_hiwat);
}
}
}
}
static int
ctl_usr_rcvd(struct socket *so, int flags)
{
int error = 0;
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
struct kctl *kctl;
if (kcb == NULL) {
return ENOTCONN;
}
lck_mtx_t *mtx_held = socket_getlock(so, PR_F_WILLUNLOCK);
ctl_kcb_increment_use_count(kcb, mtx_held);
if ((kctl = kcb->kctl) == NULL) {
error = EINVAL;
goto out;
}
if (kctl->rcvd) {
socket_unlock(so, 0);
(*kctl->rcvd)(kctl->kctlref, kcb->sac.sc_unit, kcb->userdata, flags);
socket_lock(so, 0);
}
ctl_sbrcv_trim(so);
out:
ctl_kcb_decrement_use_count(kcb);
return error;
}
static int
ctl_send(struct socket *so, int flags, struct mbuf *m,
struct sockaddr *addr, struct mbuf *control,
struct proc *p)
{
#pragma unused(addr, p)
int error = 0;
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
struct kctl *kctl;
if (control) {
m_freem(control);
}
if (kcb == NULL) { /* sanity check */
m_freem(m);
return ENOTCONN;
}
lck_mtx_t *mtx_held = socket_getlock(so, PR_F_WILLUNLOCK);
ctl_kcb_increment_use_count(kcb, mtx_held);
if (error == 0 && (kctl = kcb->kctl) == NULL) {
error = EINVAL;
}
if (error == 0 && kctl->send) {
so_tc_update_stats(m, so, m_get_service_class(m));
socket_unlock(so, 0);
error = (*kctl->send)(kctl->kctlref, kcb->sac.sc_unit, kcb->userdata,
m, flags);
socket_lock(so, 0);
} else {
m_freem(m);
if (error == 0) {
error = ENOTSUP;
}
}
if (error != 0) {
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_send_fail);
}
ctl_kcb_decrement_use_count(kcb);
return error;
}
static int
ctl_send_list(struct socket *so, struct mbuf *m, u_int *pktcnt, int flags)
{
int error = 0;
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
struct kctl *kctl;
const bool update_tc = SOCK_DOM(so) == PF_INET || SOCK_DOM(so) == PF_INET6;
if (kcb == NULL) { /* sanity check */
m_freem_list(m);
return ENOTCONN;
}
lck_mtx_t *mtx_held = socket_getlock(so, PR_F_WILLUNLOCK);
ctl_kcb_increment_use_count(kcb, mtx_held);
if ((kctl = kcb->kctl) == NULL) {
error = EINVAL;
goto done;
}
if (kctl->send_list != NULL) {
struct mbuf *nxt;
for (nxt = m; update_tc && nxt != NULL; nxt = nxt->m_nextpkt) {
so_tc_update_stats(nxt, so, m_get_service_class(nxt));
}
socket_unlock(so, 0);
error = (*kctl->send_list)(kctl->kctlref, kcb->sac.sc_unit,
kcb->userdata, m, flags);
socket_lock(so, 0);
} else {
*pktcnt = 0;
while (m != NULL && error == 0) {
struct mbuf *nextpkt = m->m_nextpkt;
m->m_nextpkt = NULL;
if (update_tc) {
so_tc_update_stats(m, so, m_get_service_class(m));
}
socket_unlock(so, 0);
error = (*kctl->send)(kctl->kctlref, kcb->sac.sc_unit,
kcb->userdata, m, flags);
socket_lock(so, 0);
m = nextpkt;
if (error == 0) {
*pktcnt += 1;
}
}
if (m != NULL) {
m_freem_list(m);
}
}
done:
if (error != 0) {
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_send_list_fail);
}
ctl_kcb_decrement_use_count(kcb);
return error;
}
static errno_t
ctl_rcvbspace(struct socket *so, size_t datasize,
u_int32_t kctlflags, u_int32_t flags)
{
struct sockbuf *sb = &so->so_rcv;
u_int32_t space = sbspace(sb);
errno_t error;
if ((kctlflags & CTL_FLAG_REG_CRIT) == 0) {
if ((u_int32_t) space >= datasize) {
error = 0;
} else {
error = ENOBUFS;
}
} else if ((flags & CTL_DATA_CRIT) == 0) {
/*
* Reserve 25% for critical messages
*/
if (space < (sb->sb_hiwat >> 2) ||
space < datasize) {
error = ENOBUFS;
} else {
error = 0;
}
} else {
size_t autorcvbuf_max;
/*
* Allow overcommit of 25%
*/
autorcvbuf_max = min(sb->sb_idealsize + (sb->sb_idealsize >> 2),
ctl_autorcvbuf_max);
if ((u_int32_t) space >= datasize) {
error = 0;
} else if (sb->sb_hiwat < autorcvbuf_max) {
/*
* Grow with a little bit of leeway
*/
size_t grow = datasize - space + _MSIZE;
u_int32_t cc = (u_int32_t)MIN(MIN((sb->sb_hiwat + grow), autorcvbuf_max), UINT32_MAX);
if (sbreserve(sb, cc) == 1) {
if (sb->sb_hiwat > ctl_autorcvbuf_high) {
ctl_autorcvbuf_high = sb->sb_hiwat;
}
/*
* A final check
*/
if ((u_int32_t) sbspace(sb) >= datasize) {
error = 0;
} else {
error = ENOBUFS;
}
if (ctl_debug) {
printf("%s - grown to %d error %d\n",
__func__, sb->sb_hiwat, error);
}
} else {
error = ENOBUFS;
}
} else {
error = ENOBUFS;
}
}
return error;
}
errno_t
ctl_enqueuembuf(kern_ctl_ref kctlref, u_int32_t unit, struct mbuf *m,
u_int32_t flags)
{
struct socket *so;
errno_t error = 0;
int len = m->m_pkthdr.len;
u_int32_t kctlflags;
so = kcb_find_socket(kctlref, unit, &kctlflags);
if (so == NULL) {
return EINVAL;
}
if (ctl_rcvbspace(so, len, kctlflags, flags) != 0) {
error = ENOBUFS;
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock);
goto bye;
}
if ((flags & CTL_DATA_EOR)) {
m->m_flags |= M_EOR;
}
so_recv_data_stat(so, m, 0);
if (sbappend_nodrop(&so->so_rcv, m) != 0) {
if ((flags & CTL_DATA_NOWAKEUP) == 0) {
sorwakeup(so);
}
} else {
error = ENOBUFS;
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock);
}
bye:
if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) {
printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
__func__, error, len,
so->so_rcv.sb_hiwat, so->so_rcv.sb_cc);
}
socket_unlock(so, 1);
if (error != 0) {
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail);
}
return error;
}
/*
* Compute space occupied by mbuf like sbappendrecord
*/
static int
m_space(struct mbuf *m)
{
int space = 0;
struct mbuf *nxt;
for (nxt = m; nxt != NULL; nxt = nxt->m_next) {
space += nxt->m_len;
}
return space;
}
errno_t
ctl_enqueuembuf_list(void *kctlref, u_int32_t unit, struct mbuf *m_list,
u_int32_t flags, struct mbuf **m_remain)
{
struct socket *so = NULL;
errno_t error = 0;
struct mbuf *m, *nextpkt;
int needwakeup = 0;
int len = 0;
u_int32_t kctlflags;
/*
* Need to point the beginning of the list in case of early exit
*/
m = m_list;
/*
* kcb_find_socket takes the socket lock with a reference
*/
so = kcb_find_socket(kctlref, unit, &kctlflags);
if (so == NULL) {
error = EINVAL;
goto done;
}
if (kctlflags & CTL_FLAG_REG_SOCK_STREAM) {
error = EOPNOTSUPP;
goto done;
}
if (flags & CTL_DATA_EOR) {
error = EINVAL;
goto done;
}
for (m = m_list; m != NULL; m = nextpkt) {
nextpkt = m->m_nextpkt;
if (m->m_pkthdr.len == 0 && ctl_debug) {
printf("%s: %llx m_pkthdr.len is 0",
__func__, (uint64_t)VM_KERNEL_ADDRPERM(m));
}
/*
* The mbuf is either appended or freed by sbappendrecord()
* so it's not reliable from a data standpoint
*/
len = m_space(m);
if (ctl_rcvbspace(so, len, kctlflags, flags) != 0) {
error = ENOBUFS;
OSIncrementAtomic64(
(SInt64 *)&kctlstat.kcs_enqueue_fullsock);
break;
} else {
/*
* Unlink from the list, m is on its own
*/
m->m_nextpkt = NULL;
so_recv_data_stat(so, m, 0);
if (sbappendrecord_nodrop(&so->so_rcv, m) != 0) {
needwakeup = 1;
} else {
/*
* We free or return the remaining
* mbufs in the list
*/
m = nextpkt;
error = ENOBUFS;
OSIncrementAtomic64(
(SInt64 *)&kctlstat.kcs_enqueue_fullsock);
break;
}
}
}
if (needwakeup && (flags & CTL_DATA_NOWAKEUP) == 0) {
sorwakeup(so);
}
done:
if (so != NULL) {
if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) {
printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
__func__, error, len,
so->so_rcv.sb_hiwat, so->so_rcv.sb_cc);
}
socket_unlock(so, 1);
}
if (m_remain) {
*m_remain = m;
if (m != NULL && socket_debug && so != NULL &&
(so->so_options & SO_DEBUG)) {
struct mbuf *n;
printf("%s m_list %llx\n", __func__,
(uint64_t) VM_KERNEL_ADDRPERM(m_list));
for (n = m; n != NULL; n = n->m_nextpkt) {
printf(" remain %llx m_next %llx\n",
(uint64_t) VM_KERNEL_ADDRPERM(n),
(uint64_t) VM_KERNEL_ADDRPERM(n->m_next));
}
}
} else {
if (m != NULL) {
m_freem_list(m);
}
}
if (error != 0) {
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail);
}
return error;
}
errno_t
ctl_enqueuedata(void *kctlref, u_int32_t unit, void *data, size_t len,
u_int32_t flags)
{
struct socket *so;
struct mbuf *m;
errno_t error = 0;
unsigned int num_needed;
struct mbuf *n;
size_t curlen = 0;
u_int32_t kctlflags;
so = kcb_find_socket(kctlref, unit, &kctlflags);
if (so == NULL) {
return EINVAL;
}
if (ctl_rcvbspace(so, len, kctlflags, flags) != 0) {
error = ENOBUFS;
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock);
goto bye;
}
num_needed = 1;
m = m_allocpacket_internal(&num_needed, len, NULL, M_NOWAIT, 1, 0);
if (m == NULL) {
kctlstat.kcs_enqdata_mb_alloc_fail++;
if (ctl_debug) {
printf("%s: m_allocpacket_internal(%lu) failed\n",
__func__, len);
}
error = ENOMEM;
goto bye;
}
for (n = m; n != NULL; n = n->m_next) {
size_t mlen = mbuf_maxlen(n);
if (mlen + curlen > len) {
mlen = len - curlen;
}
n->m_len = (int32_t)mlen;
bcopy((char *)data + curlen, m_mtod_current(n), mlen);
curlen += mlen;
}
mbuf_pkthdr_setlen(m, curlen);
if ((flags & CTL_DATA_EOR)) {
m->m_flags |= M_EOR;
}
so_recv_data_stat(so, m, 0);
/*
* No need to call the "nodrop" variant of sbappend
* because the mbuf is local to the scope of the function
*/
if (sbappend(&so->so_rcv, m) != 0) {
if ((flags & CTL_DATA_NOWAKEUP) == 0) {
sorwakeup(so);
}
} else {
kctlstat.kcs_enqdata_sbappend_fail++;
error = ENOBUFS;
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock);
}
bye:
if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) {
printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
__func__, error, (int)len,
so->so_rcv.sb_hiwat, so->so_rcv.sb_cc);
}
socket_unlock(so, 1);
if (error != 0) {
OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail);
}
return error;
}
errno_t
ctl_getenqueuepacketcount(kern_ctl_ref kctlref, u_int32_t unit, u_int32_t *pcnt)
{
struct socket *so;
u_int32_t cnt;
struct mbuf *m1;
if (pcnt == NULL) {
return EINVAL;
}
so = kcb_find_socket(kctlref, unit, NULL);
if (so == NULL) {
return EINVAL;
}
cnt = 0;
m1 = so->so_rcv.sb_mb;
while (m1 != NULL) {
if (m_has_mtype(m1, MTF_DATA | MTF_HEADER | MTF_OOBDATA)) {
cnt += 1;
}
m1 = m1->m_nextpkt;
}
*pcnt = cnt;
socket_unlock(so, 1);
return 0;
}
errno_t
ctl_getenqueuespace(kern_ctl_ref kctlref, u_int32_t unit, size_t *space)
{
struct socket *so;
long avail;
if (space == NULL) {
return EINVAL;
}
so = kcb_find_socket(kctlref, unit, NULL);
if (so == NULL) {
return EINVAL;
}
avail = sbspace(&so->so_rcv);
*space = (avail < 0) ? 0 : avail;
socket_unlock(so, 1);
return 0;
}
errno_t
ctl_getenqueuereadable(kern_ctl_ref kctlref, u_int32_t unit,
u_int32_t *difference)
{
struct socket *so;
if (difference == NULL) {
return EINVAL;
}
so = kcb_find_socket(kctlref, unit, NULL);
if (so == NULL) {
return EINVAL;
}
if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat) {
*difference = 0;
} else {
*difference = (so->so_rcv.sb_lowat - so->so_rcv.sb_cc);
}
socket_unlock(so, 1);
return 0;
}
static int
ctl_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
struct kctl *kctl;
int error = 0;
void *data = NULL;
size_t data_len = 0;
size_t len;
if (sopt->sopt_level != SYSPROTO_CONTROL) {
return EINVAL;
}
if (kcb == NULL) { /* sanity check */
return ENOTCONN;
}
if ((kctl = kcb->kctl) == NULL) {
return EINVAL;
}
lck_mtx_t *mtx_held = socket_getlock(so, PR_F_WILLUNLOCK);
ctl_kcb_increment_use_count(kcb, mtx_held);
switch (sopt->sopt_dir) {
case SOPT_SET:
if (kctl->setopt == NULL) {
error = ENOTSUP;
goto out;
}
if (sopt->sopt_valsize != 0) {
data_len = sopt->sopt_valsize;
data = kalloc_data(data_len, Z_WAITOK | Z_ZERO);
if (data == NULL) {
data_len = 0;
error = ENOMEM;
goto out;
}
error = sooptcopyin(sopt, data,
sopt->sopt_valsize, sopt->sopt_valsize);
}
if (error == 0) {
socket_unlock(so, 0);
error = (*kctl->setopt)(kctl->kctlref,
kcb->sac.sc_unit, kcb->userdata, sopt->sopt_name,
data, sopt->sopt_valsize);
socket_lock(so, 0);
}
kfree_data(data, data_len);
break;
case SOPT_GET:
if (kctl->getopt == NULL) {
error = ENOTSUP;
goto out;
}
if (sopt->sopt_valsize && sopt->sopt_val) {
data_len = sopt->sopt_valsize;
data = kalloc_data(data_len, Z_WAITOK | Z_ZERO);
if (data == NULL) {
data_len = 0;
error = ENOMEM;
goto out;
}
/*
* 4108337 - copy user data in case the
* kernel control needs it
*/
error = sooptcopyin(sopt, data,
sopt->sopt_valsize, sopt->sopt_valsize);
}
if (error == 0) {
len = sopt->sopt_valsize;
socket_unlock(so, 0);
error = (*kctl->getopt)(kctl->kctlref, kcb->sac.sc_unit,
kcb->userdata, sopt->sopt_name,
data, &len);
if (data != NULL && len > sopt->sopt_valsize) {
panic_plain("ctl_ctloutput: ctl %s returned "
"len (%lu) > sopt_valsize (%lu)\n",
kcb->kctl->name, len,
sopt->sopt_valsize);
}
socket_lock(so, 0);
if (error == 0) {
if (data != NULL) {
error = sooptcopyout(sopt, data, len);
} else {
sopt->sopt_valsize = len;
}
}
}
kfree_data(data, data_len);
break;
}
out:
ctl_kcb_decrement_use_count(kcb);
return error;
}
static int
ctl_ioctl(struct socket *so, u_long cmd, caddr_t data,
struct ifnet *ifp, struct proc *p)
{
#pragma unused(so, ifp, p)
int error = ENOTSUP;
switch (cmd) {
/* get the number of controllers */
case CTLIOCGCOUNT: {
struct kctl *kctl;
u_int32_t n = 0;
lck_mtx_lock(&ctl_mtx);
TAILQ_FOREACH(kctl, &ctl_head, next)
n++;
lck_mtx_unlock(&ctl_mtx);
bcopy(&n, data, sizeof(n));
error = 0;
break;
}
case CTLIOCGINFO: {
struct ctl_info ctl_info;
struct kctl *kctl = 0;
size_t name_len;
bcopy(data, &ctl_info, sizeof(ctl_info));
name_len = strnlen(ctl_info.ctl_name, MAX_KCTL_NAME);
if (name_len == 0 || name_len + 1 > MAX_KCTL_NAME) {
error = EINVAL;
break;
}
lck_mtx_lock(&ctl_mtx);
kctl = ctl_find_by_name(ctl_info.ctl_name);
lck_mtx_unlock(&ctl_mtx);
if (kctl == 0) {
error = ENOENT;
break;
}
ctl_info.ctl_id = kctl->id;
bcopy(&ctl_info, data, sizeof(ctl_info));
error = 0;
break;
}
/* add controls to get list of NKEs */
}
return error;
}
static void
kctl_tbl_grow(void)
{
struct kctl **new_table;
uintptr_t new_size;
lck_mtx_assert(&ctl_mtx, LCK_MTX_ASSERT_OWNED);
if (kctl_tbl_growing) {
/* Another thread is allocating */
kctl_tbl_growing_waiting++;
do {
(void) msleep((caddr_t) &kctl_tbl_growing, &ctl_mtx,
PSOCK | PCATCH, "kctl_tbl_growing", 0);
} while (kctl_tbl_growing);
kctl_tbl_growing_waiting--;
}
/* Another thread grew the table */
if (kctl_table != NULL && kctl_tbl_count < kctl_tbl_size) {
return;
}
/* Verify we have a sane size */
if (kctl_tbl_size + KCTL_TBL_INC >= UINT16_MAX) {
kctlstat.kcs_tbl_size_too_big++;
if (ctl_debug) {
printf("%s kctl_tbl_size %lu too big\n",
__func__, kctl_tbl_size);
}
return;
}
kctl_tbl_growing = 1;
new_size = kctl_tbl_size + KCTL_TBL_INC;
lck_mtx_unlock(&ctl_mtx);
new_table = kalloc_type(struct kctl *, new_size, Z_WAITOK | Z_ZERO);
lck_mtx_lock(&ctl_mtx);
if (new_table != NULL) {
if (kctl_table != NULL) {
bcopy(kctl_table, new_table,
kctl_tbl_size * sizeof(struct kctl *));
kfree_type(struct kctl *, kctl_tbl_size, kctl_table);
}
kctl_table = new_table;
kctl_tbl_size = new_size;
}
kctl_tbl_growing = 0;
if (kctl_tbl_growing_waiting) {
wakeup(&kctl_tbl_growing);
}
}
#define KCTLREF_INDEX_MASK 0x0000FFFF
#define KCTLREF_GENCNT_MASK 0xFFFF0000
#define KCTLREF_GENCNT_SHIFT 16
static kern_ctl_ref
kctl_make_ref(struct kctl *kctl)
{
uintptr_t i;
lck_mtx_assert(&ctl_mtx, LCK_MTX_ASSERT_OWNED);
if (kctl_tbl_count >= kctl_tbl_size) {
kctl_tbl_grow();
}
kctl->kctlref = NULL;
for (i = 0; i < kctl_tbl_size; i++) {
if (kctl_table[i] == NULL) {
uintptr_t ref;
/*
* Reference is index plus one
*/
kctl_ref_gencnt += 1;
/*
* Add generation count as salt to reference to prevent
* use after deregister
*/
ref = ((kctl_ref_gencnt << KCTLREF_GENCNT_SHIFT) &
KCTLREF_GENCNT_MASK) +
((i + 1) & KCTLREF_INDEX_MASK);
kctl->kctlref = (void *)(ref);
kctl_table[i] = kctl;
kctl_tbl_count++;
break;
}
}
if (kctl->kctlref == NULL) {
panic("%s no space in table", __func__);
}
if (ctl_debug > 0) {
printf("%s %p for %p\n",
__func__, kctl->kctlref, kctl);
}
return kctl->kctlref;
}
static void
kctl_delete_ref(kern_ctl_ref kctlref)
{
/*
* Reference is index plus one
*/
uintptr_t i = (((uintptr_t)kctlref) & KCTLREF_INDEX_MASK) - 1;
lck_mtx_assert(&ctl_mtx, LCK_MTX_ASSERT_OWNED);
if (i < kctl_tbl_size) {
struct kctl *kctl = kctl_table[i];
if (kctl->kctlref == kctlref) {
kctl_table[i] = NULL;
kctl_tbl_count--;
} else {
kctlstat.kcs_bad_kctlref++;
}
} else {
kctlstat.kcs_bad_kctlref++;
}
}
static struct kctl *
kctl_from_ref(kern_ctl_ref kctlref)
{
/*
* Reference is index plus one
*/
uintptr_t i = (((uintptr_t)kctlref) & KCTLREF_INDEX_MASK) - 1;
struct kctl *kctl = NULL;
lck_mtx_assert(&ctl_mtx, LCK_MTX_ASSERT_OWNED);
if (i >= kctl_tbl_size) {
kctlstat.kcs_bad_kctlref++;
return NULL;
}
kctl = kctl_table[i];
if (kctl->kctlref != kctlref) {
kctlstat.kcs_bad_kctlref++;
return NULL;
}
return kctl;
}
/*
* Register/unregister a NKE
*/
errno_t
ctl_register(struct kern_ctl_reg *userkctl, kern_ctl_ref *kctlref)
{
struct kctl *kctl = NULL;
struct kctl *kctl_next = NULL;
u_int32_t id = 1;
size_t name_len;
int is_extended = 0;
int is_setup = 0;
if (userkctl == NULL) { /* sanity check */
return EINVAL;
}
if (userkctl->ctl_connect == NULL) {
return EINVAL;
}
name_len = strlen(userkctl->ctl_name);
if (name_len == 0 || name_len + 1 > MAX_KCTL_NAME) {
return EINVAL;
}
kctl = kalloc_type(struct kctl, Z_WAITOK | Z_ZERO | Z_NOFAIL);
lck_mtx_lock(&ctl_mtx);
if (kctl_make_ref(kctl) == NULL) {
lck_mtx_unlock(&ctl_mtx);
kfree_type(struct kctl, kctl);
return ENOMEM;
}
/*
* Kernel Control IDs
*
* CTL_FLAG_REG_ID_UNIT indicates the control ID and unit number are
* static. If they do not exist, add them to the list in order. If the
* flag is not set, we must find a new unique value. We assume the
* list is in order. We find the last item in the list and add one. If
* this leads to wrapping the id around, we start at the front of the
* list and look for a gap.
*/
if ((userkctl->ctl_flags & CTL_FLAG_REG_ID_UNIT) == 0) {
/* Must dynamically assign an unused ID */
/* Verify the same name isn't already registered */
if (ctl_find_by_name(userkctl->ctl_name) != NULL) {
kctl_delete_ref(kctl->kctlref);
lck_mtx_unlock(&ctl_mtx);
kfree_type(struct kctl, kctl);
return EEXIST;
}
/* Start with 1 in case the list is empty */
id = 1;
kctl_next = TAILQ_LAST(&ctl_head, kctl_list);
if (kctl_next != NULL) {
/* List was not empty, add one to the last item */
id = kctl_next->id + 1;
kctl_next = NULL;
/*
* If this wrapped the id number, start looking at
* the front of the list for an unused id.
*/
if (id == 0) {
/* Find the next unused ID */
id = 1;
TAILQ_FOREACH(kctl_next, &ctl_head, next) {
if (kctl_next->id > id) {
/* We found a gap */
break;
}
id = kctl_next->id + 1;
}
}
}
userkctl->ctl_id = id;
kctl->id = id;
kctl->reg_unit = -1;
} else {
TAILQ_FOREACH(kctl_next, &ctl_head, next) {
if (kctl_next->id > userkctl->ctl_id) {
break;
}
}
if (ctl_find_by_id_unit(userkctl->ctl_id, userkctl->ctl_unit)) {
kctl_delete_ref(kctl->kctlref);
lck_mtx_unlock(&ctl_mtx);
kfree_type(struct kctl, kctl);
return EEXIST;
}
kctl->id = userkctl->ctl_id;
kctl->reg_unit = userkctl->ctl_unit;
}
is_extended = (userkctl->ctl_flags & CTL_FLAG_REG_EXTENDED);
is_setup = (userkctl->ctl_flags & CTL_FLAG_REG_SETUP);
strlcpy(kctl->name, userkctl->ctl_name, MAX_KCTL_NAME);
kctl->flags = userkctl->ctl_flags;
/*
* Let the caller know the default send and receive sizes
*/
if (userkctl->ctl_sendsize == 0) {
kctl->sendbufsize = CTL_SENDSIZE;
userkctl->ctl_sendsize = kctl->sendbufsize;
} else {
kctl->sendbufsize = userkctl->ctl_sendsize;
}
if (userkctl->ctl_recvsize == 0) {
kctl->recvbufsize = CTL_RECVSIZE;
userkctl->ctl_recvsize = kctl->recvbufsize;
} else {
kctl->recvbufsize = userkctl->ctl_recvsize;
}
if (is_setup) {
kctl->setup = userkctl->ctl_setup;
}
kctl->bind = userkctl->ctl_bind;
kctl->connect = userkctl->ctl_connect;
kctl->disconnect = userkctl->ctl_disconnect;
kctl->send = userkctl->ctl_send;
kctl->setopt = userkctl->ctl_setopt;
kctl->getopt = userkctl->ctl_getopt;
if (is_extended) {
kctl->rcvd = userkctl->ctl_rcvd;
kctl->send_list = userkctl->ctl_send_list;
}
TAILQ_INIT(&kctl->kcb_head);
if (kctl_next) {
TAILQ_INSERT_BEFORE(kctl_next, kctl, next);
} else {
TAILQ_INSERT_TAIL(&ctl_head, kctl, next);
}
kctlstat.kcs_reg_count++;
kctlstat.kcs_gencnt++;
lck_mtx_unlock(&ctl_mtx);
*kctlref = kctl->kctlref;
ctl_post_msg(KEV_CTL_REGISTERED, kctl->id);
return 0;
}
errno_t
ctl_deregister(void *kctlref)
{
struct kctl *kctl;
lck_mtx_lock(&ctl_mtx);
if ((kctl = kctl_from_ref(kctlref)) == NULL) {
kctlstat.kcs_bad_kctlref++;
lck_mtx_unlock(&ctl_mtx);
if (ctl_debug != 0) {
printf("%s invalid kctlref %p\n",
__func__, kctlref);
}
return EINVAL;
}
if (!TAILQ_EMPTY(&kctl->kcb_head)) {
lck_mtx_unlock(&ctl_mtx);
return EBUSY;
}
TAILQ_REMOVE(&ctl_head, kctl, next);
kctlstat.kcs_reg_count--;
kctlstat.kcs_gencnt++;
kctl_delete_ref(kctl->kctlref);
lck_mtx_unlock(&ctl_mtx);
ctl_post_msg(KEV_CTL_DEREGISTERED, kctl->id);
kfree_type(struct kctl, kctl);
return 0;
}
/*
* Must be called with global ctl_mtx lock taked
*/
static struct kctl *
ctl_find_by_name(const char *name)
{
struct kctl *kctl;
lck_mtx_assert(&ctl_mtx, LCK_MTX_ASSERT_OWNED);
TAILQ_FOREACH(kctl, &ctl_head, next)
if (strncmp(kctl->name, name, sizeof(kctl->name)) == 0) {
return kctl;
}
return NULL;
}
u_int32_t
ctl_id_by_name(const char *name)
{
u_int32_t ctl_id = 0;
struct kctl *kctl;
lck_mtx_lock(&ctl_mtx);
kctl = ctl_find_by_name(name);
if (kctl) {
ctl_id = kctl->id;
}
lck_mtx_unlock(&ctl_mtx);
return ctl_id;
}
errno_t
ctl_name_by_id(u_int32_t id, char *out_name, size_t maxsize)
{
int found = 0;
struct kctl *kctl;
lck_mtx_lock(&ctl_mtx);
TAILQ_FOREACH(kctl, &ctl_head, next) {
if (kctl->id == id) {
break;
}
}
if (kctl) {
if (maxsize > MAX_KCTL_NAME) {
maxsize = MAX_KCTL_NAME;
}
strlcpy(out_name, kctl->name, maxsize);
found = 1;
}
lck_mtx_unlock(&ctl_mtx);
return found ? 0 : ENOENT;
}
/*
* Must be called with global ctl_mtx lock taked
*
*/
static struct kctl *
ctl_find_by_id_unit(u_int32_t id, u_int32_t unit)
{
struct kctl *kctl;
lck_mtx_assert(&ctl_mtx, LCK_MTX_ASSERT_OWNED);
TAILQ_FOREACH(kctl, &ctl_head, next) {
if (kctl->id == id && (kctl->flags & CTL_FLAG_REG_ID_UNIT) == 0) {
return kctl;
} else if (kctl->id == id && kctl->reg_unit == unit) {
return kctl;
}
}
return NULL;
}
/*
* Must be called with kernel controller lock taken
*/
static struct ctl_cb *
kcb_find(struct kctl *kctl, u_int32_t unit)
{
struct ctl_cb *kcb;
lck_mtx_assert(&ctl_mtx, LCK_MTX_ASSERT_OWNED);
TAILQ_FOREACH(kcb, &kctl->kcb_head, next)
if (kcb->sac.sc_unit == unit) {
return kcb;
}
return NULL;
}
static struct socket *
kcb_find_socket(kern_ctl_ref kctlref, u_int32_t unit, u_int32_t *kctlflags)
{
struct socket *so = NULL;
struct ctl_cb *kcb;
void *lr_saved;
struct kctl *kctl;
int i;
lr_saved = __builtin_return_address(0);
lck_mtx_lock(&ctl_mtx);
/*
* First validate the kctlref
*/
if ((kctl = kctl_from_ref(kctlref)) == NULL) {
kctlstat.kcs_bad_kctlref++;
lck_mtx_unlock(&ctl_mtx);
if (ctl_debug != 0) {
printf("%s invalid kctlref %p\n",
__func__, kctlref);
}
return NULL;
}
kcb = kcb_find(kctl, unit);
if (kcb == NULL || kcb->kctl != kctl || (so = kcb->so) == NULL) {
lck_mtx_unlock(&ctl_mtx);
return NULL;
}
/*
* This prevents the socket from being closed
*/
kcb->usecount++;
/*
* Respect lock ordering: socket before ctl_mtx
*/
lck_mtx_unlock(&ctl_mtx);
socket_lock(so, 1);
/*
* The socket lock history is more useful if we store
* the address of the caller.
*/
i = (so->next_lock_lr + SO_LCKDBG_MAX - 1) % SO_LCKDBG_MAX;
so->lock_lr[i] = lr_saved;
lck_mtx_lock(&ctl_mtx);
if ((kctl = kctl_from_ref(kctlref)) == NULL || kcb->kctl == NULL) {
lck_mtx_unlock(&ctl_mtx);
socket_unlock(so, 1);
so = NULL;
lck_mtx_lock(&ctl_mtx);
} else if (kctlflags != NULL) {
*kctlflags = kctl->flags;
}
kcb->usecount--;
if (kcb->usecount == 0 && kcb->require_clearing_count != 0) {
wakeup((event_t)&kcb->usecount);
}
lck_mtx_unlock(&ctl_mtx);
return so;
}
static void
ctl_post_msg(u_int32_t event_code, u_int32_t id)
{
struct ctl_event_data ctl_ev_data;
struct kev_msg ev_msg;
lck_mtx_assert(&ctl_mtx, LCK_MTX_ASSERT_NOTOWNED);
bzero(&ev_msg, sizeof(struct kev_msg));
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_SYSTEM_CLASS;
ev_msg.kev_subclass = KEV_CTL_SUBCLASS;
ev_msg.event_code = event_code;
/* common nke subclass data */
bzero(&ctl_ev_data, sizeof(ctl_ev_data));
ctl_ev_data.ctl_id = id;
ev_msg.dv[0].data_ptr = &ctl_ev_data;
ev_msg.dv[0].data_length = sizeof(ctl_ev_data);
ev_msg.dv[1].data_length = 0;
kev_post_msg(&ev_msg);
}
static int
ctl_lock(struct socket *so, int refcount, void *lr)
{
void *lr_saved;
if (lr == NULL) {
lr_saved = __builtin_return_address(0);
} else {
lr_saved = lr;
}
if (so->so_pcb != NULL) {
lck_mtx_lock(&((struct ctl_cb *)so->so_pcb)->mtx);
} else {
panic("ctl_lock: so=%p NO PCB! lr=%p lrh= %s",
so, lr_saved, solockhistory_nr(so));
/* NOTREACHED */
}
if (so->so_usecount < 0) {
panic("ctl_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s",
so, so->so_pcb, lr_saved, so->so_usecount,
solockhistory_nr(so));
/* NOTREACHED */
}
if (refcount) {
so->so_usecount++;
}
so->lock_lr[so->next_lock_lr] = lr_saved;
so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX;
return 0;
}
static int
ctl_unlock(struct socket *so, int refcount, void *lr)
{
void *lr_saved;
lck_mtx_t *mutex_held;
if (lr == NULL) {
lr_saved = __builtin_return_address(0);
} else {
lr_saved = lr;
}
#if (MORE_KCTLLOCK_DEBUG && (DEVELOPMENT || DEBUG))
printf("ctl_unlock: so=%llx sopcb=%x lock=%llx ref=%u lr=%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(so),
(uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb,
(uint64_t)VM_KERNEL_ADDRPERM(&((struct ctl_cb *)so->so_pcb)->mtx),
so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved));
#endif /* (MORE_KCTLLOCK_DEBUG && (DEVELOPMENT || DEBUG)) */
if (refcount) {
so->so_usecount--;
}
if (so->so_usecount < 0) {
panic("ctl_unlock: so=%p usecount=%x lrh= %s",
so, so->so_usecount, solockhistory_nr(so));
/* NOTREACHED */
}
if (so->so_pcb == NULL) {
panic("ctl_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s",
so, so->so_usecount, (void *)lr_saved,
solockhistory_nr(so));
/* NOTREACHED */
}
mutex_held = &((struct ctl_cb *)so->so_pcb)->mtx;
lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
so->unlock_lr[so->next_unlock_lr] = lr_saved;
so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
lck_mtx_unlock(mutex_held);
if (so->so_usecount == 0) {
ctl_sofreelastref(so);
}
return 0;
}
static lck_mtx_t *
ctl_getlock(struct socket *so, int flags)
{
#pragma unused(flags)
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
if (so->so_pcb) {
if (so->so_usecount < 0) {
panic("ctl_getlock: so=%p usecount=%x lrh= %s",
so, so->so_usecount, solockhistory_nr(so));
}
return &kcb->mtx;
} else {
panic("ctl_getlock: so=%p NULL NO so_pcb %s",
so, solockhistory_nr(so));
return so->so_proto->pr_domain->dom_mtx;
}
}
__private_extern__ int
kctl_reg_list SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error = 0;
u_int64_t i, n;
struct xsystmgen xsg;
void *buf = NULL;
struct kctl *kctl;
size_t item_size = ROUNDUP64(sizeof(struct xkctl_reg));
buf = kalloc_data(item_size, Z_WAITOK | Z_ZERO | Z_NOFAIL);
lck_mtx_lock(&ctl_mtx);
n = kctlstat.kcs_reg_count;
if (req->oldptr == USER_ADDR_NULL) {
req->oldidx = (size_t)(n + n / 8) * sizeof(struct xkctl_reg);
goto done;
}
if (req->newptr != USER_ADDR_NULL) {
error = EPERM;
goto done;
}
bzero(&xsg, sizeof(xsg));
xsg.xg_len = sizeof(xsg);
xsg.xg_count = n;
xsg.xg_gen = kctlstat.kcs_gencnt;
xsg.xg_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xsg, sizeof(xsg));
if (error) {
goto done;
}
/*
* We are done if there is no pcb
*/
if (n == 0) {
goto done;
}
for (i = 0, kctl = TAILQ_FIRST(&ctl_head);
i < n && kctl != NULL;
i++, kctl = TAILQ_NEXT(kctl, next)) {
struct xkctl_reg *xkr = (struct xkctl_reg *)buf;
struct ctl_cb *kcb;
u_int32_t pcbcount = 0;
TAILQ_FOREACH(kcb, &kctl->kcb_head, next)
pcbcount++;
bzero(buf, item_size);
xkr->xkr_len = sizeof(struct xkctl_reg);
xkr->xkr_kind = XSO_KCREG;
xkr->xkr_id = kctl->id;
xkr->xkr_reg_unit = kctl->reg_unit;
xkr->xkr_flags = kctl->flags;
xkr->xkr_kctlref = (uint64_t)(kctl->kctlref);
xkr->xkr_recvbufsize = kctl->recvbufsize;
xkr->xkr_sendbufsize = kctl->sendbufsize;
xkr->xkr_lastunit = kctl->lastunit;
xkr->xkr_pcbcount = pcbcount;
xkr->xkr_connect = (uint64_t)VM_KERNEL_UNSLIDE(kctl->connect);
xkr->xkr_disconnect =
(uint64_t)VM_KERNEL_UNSLIDE(kctl->disconnect);
xkr->xkr_send = (uint64_t)VM_KERNEL_UNSLIDE(kctl->send);
xkr->xkr_send_list =
(uint64_t)VM_KERNEL_UNSLIDE(kctl->send_list);
xkr->xkr_setopt = (uint64_t)VM_KERNEL_UNSLIDE(kctl->setopt);
xkr->xkr_getopt = (uint64_t)VM_KERNEL_UNSLIDE(kctl->getopt);
xkr->xkr_rcvd = (uint64_t)VM_KERNEL_UNSLIDE(kctl->rcvd);
strlcpy(xkr->xkr_name, kctl->name, sizeof(xkr->xkr_name));
error = SYSCTL_OUT(req, buf, item_size);
}
if (error == 0) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
bzero(&xsg, sizeof(xsg));
xsg.xg_len = sizeof(xsg);
xsg.xg_count = n;
xsg.xg_gen = kctlstat.kcs_gencnt;
xsg.xg_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xsg, sizeof(xsg));
if (error) {
goto done;
}
}
done:
lck_mtx_unlock(&ctl_mtx);
kfree_data(buf, item_size);
return error;
}
__private_extern__ int
kctl_pcblist SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error = 0;
u_int64_t n, i;
struct xsystmgen xsg;
void *buf = NULL;
struct kctl *kctl;
size_t item_size = ROUNDUP64(sizeof(struct xkctlpcb)) +
ROUNDUP64(sizeof(struct xsocket_n)) +
2 * ROUNDUP64(sizeof(struct xsockbuf_n)) +
ROUNDUP64(sizeof(struct xsockstat_n));
buf = kalloc_data(item_size, Z_WAITOK | Z_ZERO | Z_NOFAIL);
lck_mtx_lock(&ctl_mtx);
n = kctlstat.kcs_pcbcount;
if (req->oldptr == USER_ADDR_NULL) {
req->oldidx = (size_t)(n + n / 8) * item_size;
goto done;
}
if (req->newptr != USER_ADDR_NULL) {
error = EPERM;
goto done;
}
bzero(&xsg, sizeof(xsg));
xsg.xg_len = sizeof(xsg);
xsg.xg_count = n;
xsg.xg_gen = kctlstat.kcs_gencnt;
xsg.xg_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xsg, sizeof(xsg));
if (error) {
goto done;
}
/*
* We are done if there is no pcb
*/
if (n == 0) {
goto done;
}
for (i = 0, kctl = TAILQ_FIRST(&ctl_head);
i < n && kctl != NULL;
kctl = TAILQ_NEXT(kctl, next)) {
struct ctl_cb *kcb;
for (kcb = TAILQ_FIRST(&kctl->kcb_head);
i < n && kcb != NULL;
i++, kcb = TAILQ_NEXT(kcb, next)) {
struct xkctlpcb *xk = (struct xkctlpcb *)buf;
struct xsocket_n *xso = (struct xsocket_n *)
ADVANCE64(xk, sizeof(*xk));
struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *)
ADVANCE64(xso, sizeof(*xso));
struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *)
ADVANCE64(xsbrcv, sizeof(*xsbrcv));
struct xsockstat_n *xsostats = (struct xsockstat_n *)
ADVANCE64(xsbsnd, sizeof(*xsbsnd));
bzero(buf, item_size);
xk->xkp_len = sizeof(struct xkctlpcb);
xk->xkp_kind = XSO_KCB;
xk->xkp_unit = kcb->sac.sc_unit;
xk->xkp_kctpcb = (uint64_t)VM_KERNEL_ADDRPERM(kcb);
xk->xkp_kctlref = (uint64_t)VM_KERNEL_ADDRPERM(kctl);
xk->xkp_kctlid = kctl->id;
strlcpy(xk->xkp_kctlname, kctl->name,
sizeof(xk->xkp_kctlname));
sotoxsocket_n(kcb->so, xso);
sbtoxsockbuf_n(kcb->so ?
&kcb->so->so_rcv : NULL, xsbrcv);
sbtoxsockbuf_n(kcb->so ?
&kcb->so->so_snd : NULL, xsbsnd);
sbtoxsockstat_n(kcb->so, xsostats);
error = SYSCTL_OUT(req, buf, item_size);
}
}
if (error == 0) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
bzero(&xsg, sizeof(xsg));
xsg.xg_len = sizeof(xsg);
xsg.xg_count = n;
xsg.xg_gen = kctlstat.kcs_gencnt;
xsg.xg_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xsg, sizeof(xsg));
if (error) {
goto done;
}
}
done:
lck_mtx_unlock(&ctl_mtx);
kfree_data(buf, item_size);
return error;
}
int
kctl_getstat SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error = 0;
lck_mtx_lock(&ctl_mtx);
if (req->newptr != USER_ADDR_NULL) {
error = EPERM;
goto done;
}
if (req->oldptr == USER_ADDR_NULL) {
req->oldidx = sizeof(struct kctlstat);
goto done;
}
error = SYSCTL_OUT(req, &kctlstat,
MIN(sizeof(struct kctlstat), req->oldlen));
done:
lck_mtx_unlock(&ctl_mtx);
return error;
}
void
kctl_fill_socketinfo(struct socket *so, struct socket_info *si)
{
struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
struct kern_ctl_info *kcsi =
&si->soi_proto.pri_kern_ctl;
struct kctl *kctl = kcb->kctl;
si->soi_kind = SOCKINFO_KERN_CTL;
if (kctl == 0) {
return;
}
kcsi->kcsi_id = kctl->id;
kcsi->kcsi_reg_unit = kctl->reg_unit;
kcsi->kcsi_flags = kctl->flags;
kcsi->kcsi_recvbufsize = kctl->recvbufsize;
kcsi->kcsi_sendbufsize = kctl->sendbufsize;
kcsi->kcsi_unit = kcb->sac.sc_unit;
strlcpy(kcsi->kcsi_name, kctl->name, MAX_KCTL_NAME);
}