gems-kernel/source/THIRDPARTY/xnu/bsd/kern/kern_memorystatus.c

8901 lines
281 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2006-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*
*/
#include <kern/sched_prim.h>
#include <kern/kalloc.h>
#include <kern/assert.h>
#include <kern/debug.h>
#include <kern/locks.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/host.h>
#include <kern/policy_internal.h>
#include <kern/thread_group.h>
#include <corpses/task_corpse.h>
#include <libkern/libkern.h>
#include <mach/mach_time.h>
#include <mach/task.h>
#include <mach/host_priv.h>
#include <mach/mach_host.h>
#include <pexpert/pexpert.h>
#include <sys/coalition.h>
#include <sys/code_signing.h>
#include <sys/kern_event.h>
#include <sys/proc.h>
#include <sys/proc_info.h>
#include <sys/reason.h>
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/spawn_internal.h>
#include <sys/wait.h>
#include <sys/tree.h>
#include <sys/priv.h>
#include <vm/pmap.h>
#include <vm/vm_reclaim_internal.h>
#include <vm/vm_pageout.h>
#include <vm/vm_protos.h>
#include <mach/machine/sdt.h>
#include <libkern/section_keywords.h>
#include <stdatomic.h>
#include <os/atomic_private.h>
#include <IOKit/IOBSD.h>
#if CONFIG_MACF
#include <security/mac_framework.h>
#endif
#if CONFIG_FREEZE
#include <vm/vm_map.h>
#endif /* CONFIG_FREEZE */
#include <kern/kern_memorystatus_internal.h>
#include <sys/kern_memorystatus.h>
#include <sys/kern_memorystatus_freeze.h>
#include <sys/kern_memorystatus_notify.h>
#include <sys/kdebug_triage.h>
extern uint32_t vm_compressor_pool_size(void);
extern uint32_t vm_compressor_fragmentation_level(void);
extern uint32_t vm_compression_ratio(void);
pid_t memorystatus_freeze_last_pid_thawed = 0;
uint64_t memorystatus_freeze_last_pid_thawed_ts = 0;
int block_corpses = 0; /* counter to block new corpses if jetsam purges them */
/* For logging clarity */
static const char *memorystatus_kill_cause_name[] = {
"", /* kMemorystatusInvalid */
"jettisoned", /* kMemorystatusKilled */
"highwater", /* kMemorystatusKilledHiwat */
"vnode-limit", /* kMemorystatusKilledVnodes */
"vm-pageshortage", /* kMemorystatusKilledVMPageShortage */
"proc-thrashing", /* kMemorystatusKilledProcThrashing */
"fc-thrashing", /* kMemorystatusKilledFCThrashing */
"per-process-limit", /* kMemorystatusKilledPerProcessLimit */
"disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */
"idle-exit", /* kMemorystatusKilledIdleExit */
"zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */
"vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */
"vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */
"low-swap", /* kMemorystatusKilledLowSwap */
"sustained-memory-pressure", /* kMemorystatusKilledSustainedPressure */
"vm-pageout-starvation", /* kMemorystatusKilledVMPageoutStarvation */
};
static const char *
memorystatus_priority_band_name(int32_t priority)
{
switch (priority) {
case JETSAM_PRIORITY_FOREGROUND:
return "FOREGROUND";
case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY:
return "AUDIO_AND_ACCESSORY";
case JETSAM_PRIORITY_CONDUCTOR:
return "CONDUCTOR";
case JETSAM_PRIORITY_DRIVER_APPLE:
return "DRIVER_APPLE";
case JETSAM_PRIORITY_HOME:
return "HOME";
case JETSAM_PRIORITY_EXECUTIVE:
return "EXECUTIVE";
case JETSAM_PRIORITY_IMPORTANT:
return "IMPORTANT";
case JETSAM_PRIORITY_CRITICAL:
return "CRITICAL";
}
return "?";
}
bool
is_reason_thrashing(unsigned cause)
{
switch (cause) {
case kMemorystatusKilledFCThrashing:
case kMemorystatusKilledVMCompressorThrashing:
case kMemorystatusKilledVMCompressorSpaceShortage:
return true;
default:
return false;
}
}
bool
is_reason_zone_map_exhaustion(unsigned cause)
{
return cause == kMemorystatusKilledZoneMapExhaustion;
}
/*
* Returns the current zone map size and capacity to include in the jetsam snapshot.
* Defined in zalloc.c
*/
extern void get_zone_map_size(uint64_t *current_size, uint64_t *capacity);
/*
* Returns the name of the largest zone and its size to include in the jetsam snapshot.
* Defined in zalloc.c
*/
extern void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size);
/*
* Active / Inactive limit support
* proc list must be locked
*
* The SET_*** macros are used to initialize a limit
* for the first time.
*
* The CACHE_*** macros are use to cache the limit that will
* soon be in effect down in the ledgers.
*/
#define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
MACRO_BEGIN \
(p)->p_memstat_memlimit_active = (limit); \
if (is_fatal) { \
(p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
} else { \
(p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
} \
MACRO_END
#define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
MACRO_BEGIN \
(p)->p_memstat_memlimit_inactive = (limit); \
if (is_fatal) { \
(p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
} else { \
(p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
} \
MACRO_END
#define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
MACRO_BEGIN \
(p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
(p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
is_fatal = TRUE; \
} else { \
(p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
is_fatal = FALSE; \
} \
MACRO_END
#define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
MACRO_BEGIN \
(p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
(p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
is_fatal = TRUE; \
} else { \
(p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
is_fatal = FALSE; \
} \
MACRO_END
#pragma mark General Tunables
#define MEMORYSTATUS_SMALL_MEMORY_THRESHOLD (3UL * (1UL << 30))
#define MEMORYSTATUS_MEDIUM_MEMORY_THRESHOLD (6UL * (1UL << 30))
#define MEMORYSTATUS_MORE_FREE_OFFSET_PERCENTAGE 5UL
#define MEMORYSTATUS_AGGR_SYSPROC_AGING_PERCENTAGE 7UL
#define MEMORYSTATUS_DELTA_PERCENTAGE_LARGE 4UL
#define MEMORYSTATUS_DELTA_PERCENTAGE_SMALL 5UL
/*
* Fall back to these percentages/ratios if a mb value is not provided via EDT
* DRAM (GB) | critical | idle | pressure | freeze
* (0,3] | 5% | 10% | 15% | 50%
* (3,6] | 4% | 9% | 15% | 50%
* (6,) | 4% | 8% | 12% | 50%
*/
#define MEMORYSTATUS_CRITICAL_BASE_PERCENTAGE_SMALL 5UL
#define MEMORYSTATUS_CRITICAL_BASE_PERCENTAGE_LARGE 4UL
#define MEMORYSTATUS_CRITICAL_IDLE_RATIO_NUM 2UL
#define MEMORYSTATUS_CRITICAL_IDLE_RATIO_DENOM 1UL
#define MEMORYSTATUS_PRESSURE_RATIO_NUM 3UL
#define MEMORYSTATUS_PRESSURE_RATIO_DENOM 1UL
/*
* For historical reasons, devices with "medium"-sized memory configs have a critical:idle:pressure ratio of
* 4:9:15. This ratio is preserved for these devices when a fixed-mb base value has not been provided by EDT/boot-arg;
* all other devices use a 1:2:3 ratio.
*/
#define MEMORYSTATUS_CRITICAL_IDLE_RATIO_NUM_MEDIUM 9UL
#define MEMORYSTATUS_CRITICAL_IDLE_RATIO_DENOM_MEDIUM 4UL
#define MEMORYSTATUS_PRESSURE_RATIO_NUM_MEDIUM 15UL
#define MEMORYSTATUS_PRESSURE_RATIO_DENOM_MEDIUM 4UL
#if CONFIG_JETSAM
static int32_t memorystatus_get_default_task_active_limit(proc_t p);
#endif /* CONFIG_JETSAM */
/*
* default jetsam snapshot support
*/
memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot;
#if CONFIG_FREEZE
memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot_freezer;
/*
* The size of the freezer snapshot is given by memorystatus_jetsam_snapshot_max / JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR
* The freezer snapshot can be much smaller than the default snapshot
* because it only includes apps that have been killed and dasd consumes it every 30 minutes.
* Since the snapshots are always wired we don't want to overallocate too much.
*/
#define JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR 20
unsigned int memorystatus_jetsam_snapshot_freezer_max;
unsigned int memorystatus_jetsam_snapshot_freezer_size;
TUNABLE(bool, memorystatus_jetsam_use_freezer_snapshot, "kern.jetsam_user_freezer_snapshot", true);
#define MEMORYSTATUS_FREEZE_THRESHOLD_PERCENTAGE 50UL
TUNABLE_DT(uint32_t, memorystatus_freeze_threshold_mb, "/defaults", "kern.memstat_freeze_mb",
"memorystatus_freeze_threshold_mb", 0, TUNABLE_DT_NONE);
#endif /* CONFIG_FREEZE */
unsigned int memorystatus_jetsam_snapshot_count = 0;
unsigned int memorystatus_jetsam_snapshot_max = 0;
unsigned int memorystatus_jetsam_snapshot_size = 0;
uint64_t memorystatus_jetsam_snapshot_last_timestamp = 0;
uint64_t memorystatus_jetsam_snapshot_timeout = 0;
#if DEVELOPMENT || DEBUG
/*
* On development and debug kernels, we allow one pid to take ownership
* of some memorystatus data structures for testing purposes (via memorystatus_control).
* If there's an owner, then only they may consume the jetsam snapshot & set freezer probabilities.
* This is used when testing these interface to avoid racing with other
* processes on the system that typically use them (namely OSAnalytics & dasd).
*/
static pid_t memorystatus_testing_pid = 0;
SYSCTL_INT(_kern, OID_AUTO, memorystatus_testing_pid, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_testing_pid, 0, "");
#endif /* DEVELOPMENT || DEBUG */
static void memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t *snapshot);
/* General memorystatus stuff */
uint64_t memorystatus_sysprocs_idle_delay_time = 0;
uint64_t memorystatus_apps_idle_delay_time = 0;
/* 2GB devices support an entitlement for a higher app memory limit of "almost 2GB". */
static int32_t memorystatus_ios13extended_footprint_limit_mb = 1800;
/* Some devices give entitled apps a higher memory limit */
TUNABLE_DT_WRITEABLE(int32_t, memorystatus_entitled_max_task_footprint_mb, "/defaults", "kern.entitled_max_task_pmem", "entitled_max_task_pmem", 0, TUNABLE_DT_NONE);
#if __arm64__
#if DEVELOPMENT || DEBUG
SYSCTL_INT(_kern, OID_AUTO, ios13extended_footprint_limit_mb, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_ios13extended_footprint_limit_mb, 0, "");
SYSCTL_INT(_kern, OID_AUTO, entitled_max_task_pmem, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &memorystatus_entitled_max_task_footprint_mb, 0, "");
#else /* !(DEVELOPMENT || DEBUG) */
SYSCTL_INT(_kern, OID_AUTO, entitled_max_task_pmem, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED | CTLFLAG_KERN, &memorystatus_entitled_max_task_footprint_mb, 0, "");
#endif /* DEVELOPMENT || DEBUG */
#endif /* __arm64__ */
#pragma mark Logging
os_log_t memorystatus_log_handle;
TUNABLE_WRITEABLE(memorystatus_log_level_t, memorystatus_log_level, "memorystatus_log_level", MEMORYSTATUS_LOG_LEVEL_DEFAULT);
#if DEBUG || DEVELOPMENT
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_log_level, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_log_level, MEMORYSTATUS_LOG_LEVEL_DEFAULT, "");
#endif
static LCK_GRP_DECLARE(memorystatus_jetsam_fg_band_lock_grp,
"memorystatus_jetsam_fg_band");
LCK_MTX_DECLARE(memorystatus_jetsam_fg_band_lock,
&memorystatus_jetsam_fg_band_lock_grp);
/* Idle guard handling */
static int32_t memorystatus_scheduled_idle_demotions_sysprocs = 0;
static int32_t memorystatus_scheduled_idle_demotions_apps = 0;
static void memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2);
static void memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state);
static void memorystatus_reschedule_idle_demotion_locked(void);
int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap);
vm_pressure_level_t convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t);
boolean_t is_knote_registered_modify_task_pressure_bits(struct knote*, int, task_t, vm_pressure_level_t, vm_pressure_level_t);
void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear);
void memorystatus_send_low_swap_note(void);
boolean_t memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count,
uint32_t *errors, uint64_t *memory_reclaimed);
uint64_t memorystatus_available_memory_internal(proc_t p);
void memorystatus_thread_wake(void);
unsigned int memorystatus_level = 0;
static int memorystatus_list_count = 0;
memstat_bucket_t memstat_bucket[MEMSTAT_BUCKET_COUNT];
static thread_call_t memorystatus_idle_demotion_call;
uint64_t memstat_idle_demotion_deadline = 0;
#ifdef XNU_TARGET_OS_OSX
/*
* Effectively disable the system process and application demotion
* logic on macOS. This means system processes and apps won't get the
* 10 second protection before landing in the IDLE band after moving
* out of their active band. Reasons:-
* - daemons + extensions + apps on macOS don't behave the way they
* do on iOS and so they are confusing the demotion logic. For example,
* not all apps go from FG to IDLE. Some sit in higher bands instead. This
* is causing multiple asserts to fire internally.
* - we use the aging bands to protect processes from jetsam. But on macOS,
* we have a very limited jetsam that is only invoked under extreme conditions
* where we have no more swap / compressor space OR are under critical pressure.
*/
int system_procs_aging_band = 0;
int applications_aging_band = 0;
#else /* XNU_TARGET_OS_OSX */
int system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
int applications_aging_band = JETSAM_PRIORITY_AGING_BAND2;
#endif /* XNU_TARGET_OS_OSX */
_Atomic bool memorystatus_zone_map_is_exhausted = false;
_Atomic bool memorystatus_compressor_space_shortage = false;
_Atomic bool memorystatus_pageout_starved = false;
#if CONFIG_PHANTOM_CACHE
_Atomic bool memorystatus_phantom_cache_pressure = false;
#endif /* CONFIG_PHANTOM_CACHE */
#define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
/*
* For a while we had support for a couple of different aging policies in the kernel,
* but the sysproc aging policy is now the default on all platforms.
* This flag was exported as RO via sysctl & is only kept for backwards compatability.
*/
unsigned int jetsam_aging_policy = kJetsamAgingPolicySysProcsReclaimedFirst;
bool memorystatus_should_issue_fg_band_notify = true;
extern uint64_t vm_purgeable_purge_task_owned(task_t task);
extern void coalition_mark_swappable(coalition_t coal);
extern bool coalition_is_swappable(coalition_t coal);
boolean_t memorystatus_allowed_vm_map_fork(task_t, bool *);
#if DEVELOPMENT || DEBUG
void memorystatus_abort_vm_map_fork(task_t);
#endif
/*
* Idle delay timeout factors for daemons based on relaunch behavior. Only used in
* kJetsamAgingPolicySysProcsReclaimedFirst aging policy.
*/
#define kJetsamSysProcsIdleDelayTimeLowRatio (5)
#define kJetsamSysProcsIdleDelayTimeMedRatio (2)
#define kJetsamSysProcsIdleDelayTimeHighRatio (1)
static_assert(kJetsamSysProcsIdleDelayTimeLowRatio <= DEFERRED_IDLE_EXIT_TIME_SECS, "sysproc idle delay time for low relaunch daemons would be 0");
/*
* For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, treat apps as well
* behaved daemons for aging purposes.
*/
#define kJetsamAppsIdleDelayTimeRatio (kJetsamSysProcsIdleDelayTimeLowRatio)
static uint64_t
memorystatus_sysprocs_idle_time(proc_t p)
{
uint64_t idle_delay_time = 0;
/*
* For system processes, base the idle delay time on the
* jetsam relaunch behavior specified by launchd. The idea
* is to provide extra protection to the daemons which would
* relaunch immediately after jetsam.
*/
switch (p->p_memstat_relaunch_flags) {
case P_MEMSTAT_RELAUNCH_UNKNOWN:
case P_MEMSTAT_RELAUNCH_LOW:
idle_delay_time = memorystatus_sysprocs_idle_delay_time / kJetsamSysProcsIdleDelayTimeLowRatio;
break;
case P_MEMSTAT_RELAUNCH_MED:
idle_delay_time = memorystatus_sysprocs_idle_delay_time / kJetsamSysProcsIdleDelayTimeMedRatio;
break;
case P_MEMSTAT_RELAUNCH_HIGH:
idle_delay_time = memorystatus_sysprocs_idle_delay_time / kJetsamSysProcsIdleDelayTimeHighRatio;
break;
default:
panic("Unknown relaunch flags on process!");
break;
}
return idle_delay_time;
}
static uint64_t
memorystatus_apps_idle_time(__unused proc_t p)
{
return memorystatus_apps_idle_delay_time / kJetsamAppsIdleDelayTimeRatio;
}
static int
sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error = 0, val = 0, old_time_in_secs = 0;
uint64_t old_time_in_ns = 0;
absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time, &old_time_in_ns);
old_time_in_secs = (int) (old_time_in_ns / NSEC_PER_SEC);
error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL);
if (error || !req->newptr) {
return error;
}
if ((val < 0) || (val > INT32_MAX)) {
memorystatus_log_error("jetsam: new idle delay interval has invalid value.\n");
return EINVAL;
}
nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time);
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_sysprocs_idle_delay_time, CTLTYPE_INT | CTLFLAG_RW,
0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time, "I", "Aging window for system processes");
static int
sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error = 0, val = 0, old_time_in_secs = 0;
uint64_t old_time_in_ns = 0;
absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time, &old_time_in_ns);
old_time_in_secs = (int) (old_time_in_ns / NSEC_PER_SEC);
error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL);
if (error || !req->newptr) {
return error;
}
if ((val < 0) || (val > INT32_MAX)) {
memorystatus_log_error("jetsam: new idle delay interval has invalid value.\n");
return EINVAL;
}
nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time);
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_apps_idle_delay_time, CTLTYPE_INT | CTLFLAG_RW,
0, 0, sysctl_jetsam_set_apps_idle_delay_time, "I", "Aging window for applications");
SYSCTL_INT(_kern, OID_AUTO, jetsam_aging_policy, CTLTYPE_INT | CTLFLAG_RD, &jetsam_aging_policy, 0, "");
static unsigned int memorystatus_dirty_count = 0;
SYSCTL_INT(_kern, OID_AUTO, max_task_pmem, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED | CTLFLAG_KERN, &max_task_footprint_mb, 0, "");
static int memorystatus_highwater_enabled = 1; /* Update the cached memlimit data. */
static boolean_t proc_jetsam_state_is_active_locked(proc_t);
#if __arm64__
int legacy_footprint_bonus_mb = 50; /* This value was chosen after looking at the top 30 apps
* that needed the additional room in their footprint when
* the 'correct' accounting methods were applied to them.
*/
#if DEVELOPMENT || DEBUG
SYSCTL_INT(_kern, OID_AUTO, legacy_footprint_bonus_mb, CTLFLAG_RW | CTLFLAG_LOCKED, &legacy_footprint_bonus_mb, 0, "");
#endif /* DEVELOPMENT || DEBUG */
/*
* Raise the inactive and active memory limits to new values.
* Will only raise the limits and will do nothing if either of the current
* limits are 0.
* Caller must hold the proc_list_lock
*/
static void
memorystatus_raise_memlimit(proc_t p, int new_memlimit_active, int new_memlimit_inactive)
{
int memlimit_mb_active = 0, memlimit_mb_inactive = 0;
boolean_t memlimit_active_is_fatal = FALSE, memlimit_inactive_is_fatal = FALSE, use_active_limit = FALSE;
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
if (p->p_memstat_memlimit_active > 0) {
memlimit_mb_active = p->p_memstat_memlimit_active;
} else if (p->p_memstat_memlimit_active == -1) {
memlimit_mb_active = max_task_footprint_mb;
} else {
/*
* Nothing to do for '0' which is
* a special value only used internally
* to test 'no limits'.
*/
return;
}
if (p->p_memstat_memlimit_inactive > 0) {
memlimit_mb_inactive = p->p_memstat_memlimit_inactive;
} else if (p->p_memstat_memlimit_inactive == -1) {
memlimit_mb_inactive = max_task_footprint_mb;
} else {
/*
* Nothing to do for '0' which is
* a special value only used internally
* to test 'no limits'.
*/
return;
}
memlimit_mb_active = MAX(new_memlimit_active, memlimit_mb_active);
memlimit_mb_inactive = MAX(new_memlimit_inactive, memlimit_mb_inactive);
memlimit_active_is_fatal = (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL);
memlimit_inactive_is_fatal = (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL);
SET_ACTIVE_LIMITS_LOCKED(p, memlimit_mb_active, memlimit_active_is_fatal);
SET_INACTIVE_LIMITS_LOCKED(p, memlimit_mb_inactive, memlimit_inactive_is_fatal);
if (proc_jetsam_state_is_active_locked(p) == TRUE) {
use_active_limit = TRUE;
CACHE_ACTIVE_LIMITS_LOCKED(p, memlimit_active_is_fatal);
} else {
CACHE_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive_is_fatal);
}
if (memorystatus_highwater_enabled) {
task_set_phys_footprint_limit_internal(proc_task(p),
(p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1,
NULL, /*return old value */
use_active_limit, /*active limit?*/
(use_active_limit ? memlimit_active_is_fatal : memlimit_inactive_is_fatal));
}
}
void
memorystatus_act_on_legacy_footprint_entitlement(proc_t p, boolean_t footprint_increase)
{
int memlimit_mb_active = 0, memlimit_mb_inactive = 0;
if (p == NULL) {
return;
}
proc_list_lock();
if (p->p_memstat_memlimit_active > 0) {
memlimit_mb_active = p->p_memstat_memlimit_active;
} else if (p->p_memstat_memlimit_active == -1) {
memlimit_mb_active = max_task_footprint_mb;
} else {
/*
* Nothing to do for '0' which is
* a special value only used internally
* to test 'no limits'.
*/
proc_list_unlock();
return;
}
if (p->p_memstat_memlimit_inactive > 0) {
memlimit_mb_inactive = p->p_memstat_memlimit_inactive;
} else if (p->p_memstat_memlimit_inactive == -1) {
memlimit_mb_inactive = max_task_footprint_mb;
} else {
/*
* Nothing to do for '0' which is
* a special value only used internally
* to test 'no limits'.
*/
proc_list_unlock();
return;
}
if (footprint_increase) {
memlimit_mb_active += legacy_footprint_bonus_mb;
memlimit_mb_inactive += legacy_footprint_bonus_mb;
} else {
memlimit_mb_active -= legacy_footprint_bonus_mb;
if (memlimit_mb_active == max_task_footprint_mb) {
memlimit_mb_active = -1; /* reverting back to default system limit */
}
memlimit_mb_inactive -= legacy_footprint_bonus_mb;
if (memlimit_mb_inactive == max_task_footprint_mb) {
memlimit_mb_inactive = -1; /* reverting back to default system limit */
}
}
memorystatus_raise_memlimit(p, memlimit_mb_active, memlimit_mb_inactive);
proc_list_unlock();
}
void
memorystatus_act_on_ios13extended_footprint_entitlement(proc_t p)
{
proc_list_lock();
memorystatus_raise_memlimit(p, memorystatus_ios13extended_footprint_limit_mb,
memorystatus_ios13extended_footprint_limit_mb);
proc_list_unlock();
}
void
memorystatus_act_on_entitled_task_limit(proc_t p)
{
if (memorystatus_entitled_max_task_footprint_mb == 0) {
// Entitlement is not supported on this device.
return;
}
proc_list_lock();
memorystatus_raise_memlimit(p, memorystatus_entitled_max_task_footprint_mb, memorystatus_entitled_max_task_footprint_mb);
proc_list_unlock();
}
#endif /* __arm64__ */
SYSCTL_INT(_kern, OID_AUTO, memorystatus_level, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_level, 0, "");
int
memorystatus_get_level(__unused struct proc *p, struct memorystatus_get_level_args *args, __unused int *ret)
{
user_addr_t level = 0;
level = args->level;
if (copyout(&memorystatus_level, level, sizeof(memorystatus_level)) != 0) {
return EFAULT;
}
return 0;
}
static void memorystatus_thread(void *param __unused, wait_result_t wr __unused);
/* Memory Limits */
static boolean_t memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason);
static boolean_t memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason);
static int memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
#if DEBUG || DEVELOPMENT
static int memorystatus_cmd_set_diag_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
static int memorystatus_cmd_get_diag_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
static int memorystatus_set_diag_memlimit_properties_internal(proc_t p, memorystatus_diag_memlimit_properties_t *p_entry);
static int memorystatus_get_diag_memlimit_properties_internal(proc_t p, memorystatus_diag_memlimit_properties_t *p_entry);
#endif // DEBUG || DEVELOPMENT
static int memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry);
static int memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
static void memorystatus_get_memlimit_properties_internal(proc_t p, memorystatus_memlimit_properties_t *p_entry);
static int memorystatus_set_memlimit_properties_internal(proc_t p, memorystatus_memlimit_properties_t *p_entry);
int proc_get_memstat_priority(proc_t, boolean_t);
static boolean_t memorystatus_idle_snapshot = 0;
unsigned int memorystatus_delta = 0;
/* Jetsam Loop Detection */
boolean_t memorystatus_jld_enabled = FALSE; /* Enable jetsam loop detection */
uint32_t memorystatus_jld_eval_period_msecs = 0; /* Init pass sets this based on device memory size */
int memorystatus_jld_eval_aggressive_count = 3; /* Raise the priority max after 'n' aggressive loops */
int memorystatus_jld_eval_aggressive_priority_band_max = 15; /* Kill aggressively up through this band */
int memorystatus_jld_max_kill_loops = 2; /* How many times should we try and kill up to the target band */
/*
* A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
* --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
*
* RESTRICTIONS:
* - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
* needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
*
* - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
*
* - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
*/
#define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
boolean_t memorystatus_aggressive_jetsam_lenient_allowed = FALSE;
boolean_t memorystatus_aggressive_jetsam_lenient = FALSE;
#if DEVELOPMENT || DEBUG
/*
* Jetsam Loop Detection tunables.
*/
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_period_msecs, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_count, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_count, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_priority_band_max, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_priority_band_max, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_max_kill_loops, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_max_kill_loops, 0, "");
#endif /* DEVELOPMENT || DEBUG */
/*
* snapshot support for memstats collected at boot.
*/
static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot;
static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count);
static boolean_t memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount);
static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime);
static void memorystatus_clear_errors(void);
static void memorystatus_get_task_phys_footprint_page_counts(task_t task,
uint64_t *internal_pages, uint64_t *internal_compressed_pages,
uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages,
uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages,
uint64_t *iokit_mapped_pages, uint64_t *page_table_pages, uint64_t *frozen_to_swap_pages);
static void memorystatus_get_task_memory_region_count(task_t task, uint64_t *count);
static uint32_t memorystatus_build_state(proc_t p);
//static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
static bool memorystatus_kill_top_process(bool any, bool sort_flag, uint32_t cause, os_reason_t jetsam_reason,
int32_t max_priority, bool only_swappable,
int32_t *priority, uint32_t *errors, uint64_t *memory_reclaimed);
static boolean_t memorystatus_kill_processes_aggressive(uint32_t cause, int aggr_count, int32_t priority_max, int32_t max_kills, uint32_t *errors, uint64_t *memory_reclaimed);
static boolean_t memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged, uint64_t *memory_reclaimed);
/* Priority Band Sorting Routines */
static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order);
static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order);
static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index);
static int memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz);
/* qsort routines */
typedef int (*cmpfunc_t)(const void *a, const void *b);
extern void qsort(void *a, size_t n, size_t es, cmpfunc_t cmp);
static int memstat_asc_cmp(const void *a, const void *b);
/* VM pressure */
#if CONFIG_SECLUDED_MEMORY
extern unsigned int vm_page_secluded_count;
extern unsigned int vm_page_secluded_count_over_target;
#endif /* CONFIG_SECLUDED_MEMORY */
/* Aggressive jetsam pages threshold for sysproc aging policy */
unsigned int memorystatus_sysproc_aging_aggr_pages = 0;
#if CONFIG_JETSAM
/* Jetsam Thresholds in MB */
TUNABLE_DT(uint32_t, memorystatus_critical_threshold_mb, "/defaults",
"kern.memstat_critical_mb", "memorystatus_critical_threshold_mb", 0, TUNABLE_DT_NONE);
TUNABLE_DT(uint32_t, memorystatus_idle_threshold_mb, "/defaults",
"kern.memstat_idle_mb", "memorystatus_idle_threshold_mb", 0, TUNABLE_DT_NONE);
TUNABLE_DT(uint32_t, memorystatus_pressure_threshold_mb, "/defaults",
"kern.memstat_pressure_mb", "memorystatus_pressure_threshold_mb", 0, TUNABLE_DT_NONE);
TUNABLE_DT(uint32_t, memorystatus_more_free_offset_mb, "/defaults",
"kern.memstat_more_free_mb", "memorystatus_more_free_offset_mb", 0, TUNABLE_DT_NONE);
/*
* Available Pages Thresholds
* critical_base: jetsam above the idle band
* critical_idle: jetsam in the idle band
* more_free_offset: offset applied to critical/idle upon request from userspace
* sysproc_aging_aggr: allow aggressive jetsam due to sysproc aging
* pressure: jetsam hwm violators
*/
unsigned int memorystatus_available_pages = (unsigned int)-1;
unsigned int memorystatus_available_pages_pressure = 0;
unsigned int memorystatus_available_pages_critical = 0;
unsigned int memorystatus_available_pages_critical_base = 0;
unsigned int memorystatus_available_pages_critical_idle = 0;
TUNABLE_DT_WRITEABLE(unsigned int, memorystatus_swap_all_apps, "/defaults", "kern.swap_all_apps", "kern.swap_all_apps", false, TUNABLE_DT_NONE);
/* Will compact the early swapin queue if there are >= this many csegs on it. */
static unsigned int memorystatus_swapin_trigger_segments = 10;
unsigned int memorystatus_swapin_trigger_pages = 0;
#if DEVELOPMENT || DEBUG
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_swapin_trigger_pages, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_swapin_trigger_pages, 0, "");
#else
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "");
#endif /* DEVELOPMENT || DEBUG */
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_swap_all_apps, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_swap_all_apps, 0, "");
static unsigned int memorystatus_jetsam_policy = kPolicyDefault;
unsigned int memorystatus_policy_more_free_offset_pages = 0;
static void memorystatus_update_levels_locked(void);
static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit);
int32_t max_kill_priority = JETSAM_PRIORITY_MAX;
proc_name_t memorystatus_jetsam_proc_name_panic; /* Panic when we are about to jetsam this process. */
uint32_t memorystatus_jetsam_proc_cause_panic = 0; /* If specified, panic only when we are about to jetsam the process above for this cause. */
uint32_t memorystatus_jetsam_proc_size_panic = 0; /* If specified, panic only when we are about to jetsam the process above and its footprint is more than this in MB. */
/* If set, kill swappable processes when we're low on swap space. Currently off until we can allocate more swap space (rdar://87800902) */
uint32_t jetsam_kill_on_low_swap = 0;
#else /* CONFIG_JETSAM */
uint64_t memorystatus_available_pages = (uint64_t)-1;
uint64_t memorystatus_available_pages_pressure = (uint64_t)-1;
uint64_t memorystatus_available_pages_critical = (uint64_t)-1;
int32_t max_kill_priority = JETSAM_PRIORITY_IDLE;
#endif /* CONFIG_JETSAM */
#if DEVELOPMENT || DEBUG
static LCK_GRP_DECLARE(disconnect_page_mappings_lck_grp, "disconnect_page_mappings");
static LCK_MTX_DECLARE(disconnect_page_mappings_mutex, &disconnect_page_mappings_lck_grp);
extern bool kill_on_no_paging_space;
#endif /* DEVELOPMENT || DEBUG */
#if DEVELOPMENT || DEBUG
static inline uint32_t
roundToNearestMB(uint32_t in)
{
return (in + ((1 << 20) - 1)) >> 20;
}
static int memorystatus_cmd_increase_jetsam_task_limit(pid_t pid, uint32_t byte_increase);
#endif
#if __arm64__
extern int legacy_footprint_entitlement_mode;
#endif /* __arm64__ */
/* Debug */
extern struct knote *vm_find_knote_from_pid(pid_t, struct klist *);
#if DEVELOPMENT || DEBUG
static unsigned int memorystatus_debug_dump_this_bucket = 0;
static void
memorystatus_debug_dump_bucket_locked(unsigned int bucket_index)
{
proc_t p = NULL;
uint64_t bytes = 0;
int ledger_limit = 0;
unsigned int b = bucket_index;
boolean_t traverse_all_buckets = FALSE;
if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
traverse_all_buckets = TRUE;
b = 0;
} else {
traverse_all_buckets = FALSE;
b = bucket_index;
}
/*
* footprint reported in [pages / MB ]
* limits reported as:
* L-limit proc's Ledger limit
* C-limit proc's Cached limit, should match Ledger
* A-limit proc's Active limit
* IA-limit proc's Inactive limit
* F==Fatal, NF==NonFatal
*/
memorystatus_log_debug("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64);
memorystatus_log_debug("bucket [pid] [pages / MB] [state] [EP / RP / AP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
p = memorystatus_get_first_proc_locked(&b, traverse_all_buckets);
while (p) {
bytes = get_task_phys_footprint(proc_task(p));
task_get_phys_footprint_limit(proc_task(p), &ledger_limit);
memorystatus_log_debug("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
b, proc_getpid(p),
(bytes / PAGE_SIZE_64), /* task's footprint converted from bytes to pages */
(bytes / (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
p->p_memstat_state, p->p_memstat_effectivepriority, p->p_memstat_requestedpriority, p->p_memstat_assertionpriority,
p->p_memstat_dirty, p->p_memstat_idledeadline,
ledger_limit,
p->p_memstat_memlimit,
(p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"),
p->p_memstat_memlimit_active,
(p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL ? "F " : "NF"),
p->p_memstat_memlimit_inactive,
(p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL ? "F " : "NF"),
(*p->p_name ? p->p_name : "unknown"));
p = memorystatus_get_next_proc_locked(&b, p, traverse_all_buckets);
}
memorystatus_log_debug("memorystatus_debug_dump ***END***\n");
}
static int
sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg2)
int bucket_index = 0;
int error;
error = SYSCTL_OUT(req, arg1, sizeof(int));
if (error || !req->newptr) {
return error;
}
error = SYSCTL_IN(req, &bucket_index, sizeof(int));
if (error || !req->newptr) {
return error;
}
if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
/*
* All jetsam buckets will be dumped.
*/
} else {
/*
* Only a single bucket will be dumped.
*/
}
proc_list_lock();
memorystatus_debug_dump_bucket_locked(bucket_index);
proc_list_unlock();
memorystatus_debug_dump_this_bucket = bucket_index;
return error;
}
/*
* Debug aid to look at jetsam buckets and proc jetsam fields.
* Use this sysctl to act on a particular jetsam bucket.
* Writing the sysctl triggers the dump.
* Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
*/
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_debug_dump_this_bucket, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_debug_dump_this_bucket, 0, sysctl_memorystatus_debug_dump_bucket, "I", "");
/* Debug aid to aid determination of limit */
static int
sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg2)
proc_t p;
unsigned int b = 0;
int error, enable = 0;
boolean_t use_active; /* use the active limit and active limit attributes */
boolean_t is_fatal;
error = SYSCTL_OUT(req, arg1, sizeof(int));
if (error || !req->newptr) {
return error;
}
error = SYSCTL_IN(req, &enable, sizeof(int));
if (error || !req->newptr) {
return error;
}
if (!(enable == 0 || enable == 1)) {
return EINVAL;
}
proc_list_lock();
p = memorystatus_get_first_proc_locked(&b, TRUE);
while (p) {
use_active = proc_jetsam_state_is_active_locked(p);
if (enable) {
if (use_active == TRUE) {
CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
} else {
CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
}
} else {
/*
* Disabling limits does not touch the stored variants.
* Set the cached limit fields to system_wide defaults.
*/
p->p_memstat_memlimit = -1;
p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT;
is_fatal = TRUE;
}
/*
* Enforce the cached limit by writing to the ledger.
*/
task_set_phys_footprint_limit_internal(proc_task(p), (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit: -1, NULL, use_active, is_fatal);
p = memorystatus_get_next_proc_locked(&b, p, TRUE);
}
memorystatus_highwater_enabled = enable;
proc_list_unlock();
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_highwater_enabled, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_highwater_enabled, 0, sysctl_memorystatus_highwater_enable, "I", "");
SYSCTL_INT(_kern, OID_AUTO, memorystatus_idle_snapshot, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_idle_snapshot, 0, "");
#if CONFIG_JETSAM
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages_critical, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_base, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages_critical_base, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_idle, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages_critical_idle, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_policy_more_free_offset_pages, CTLFLAG_RD, &memorystatus_policy_more_free_offset_pages, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_aggr_sysproc_aging, CTLFLAG_RD, &memorystatus_sysproc_aging_aggr_pages, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_kill_on_low_swap, CTLFLAG_RW, &jetsam_kill_on_low_swap, 0, "");
#if VM_PRESSURE_EVENTS
SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_pressure, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_available_pages_pressure, 0, "");
#endif /* VM_PRESSURE_EVENTS */
#endif /* CONFIG_JETSAM */
#endif /* DEVELOPMENT || DEBUG */
extern kern_return_t kernel_thread_start_priority(thread_continue_t continuation,
void *parameter,
integer_t priority,
thread_t *new_thread);
#if DEVELOPMENT || DEBUG
static int
sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error = 0, pid = 0;
proc_t p;
error = sysctl_handle_int(oidp, &pid, 0, req);
if (error || !req->newptr) {
return error;
}
lck_mtx_lock(&disconnect_page_mappings_mutex);
if (pid == -1) {
vm_pageout_disconnect_all_pages();
} else {
p = proc_find(pid);
if (p != NULL) {
error = task_disconnect_page_mappings(proc_task(p));
proc_rele(p);
if (error) {
error = EIO;
}
} else {
error = EINVAL;
}
}
lck_mtx_unlock(&disconnect_page_mappings_mutex);
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_disconnect_page_mappings, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED,
0, 0, &sysctl_memorystatus_disconnect_page_mappings, "I", "");
#endif /* DEVELOPMENT || DEBUG */
/*
* Sorts the given bucket.
*
* Input:
* bucket_index - jetsam priority band to be sorted.
* sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
* Currently sort_order is only meaningful when handling
* coalitions.
*
* proc_list_lock must be held by the caller.
*/
static void
memorystatus_sort_bucket_locked(unsigned int bucket_index, int sort_order)
{
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
if (memstat_bucket[bucket_index].count == 0) {
return;
}
switch (bucket_index) {
case JETSAM_PRIORITY_FOREGROUND:
if (memorystatus_sort_by_largest_coalition_locked(bucket_index, sort_order) == 0) {
/*
* Fall back to per process sorting when zero coalitions are found.
*/
memorystatus_sort_by_largest_process_locked(bucket_index);
}
break;
default:
memorystatus_sort_by_largest_process_locked(bucket_index);
break;
}
}
/*
* Picks the sorting routine for a given jetsam priority band.
*
* Input:
* bucket_index - jetsam priority band to be sorted.
* sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
* Currently sort_order is only meaningful when handling
* coalitions.
*
* Return:
* 0 on success
* non-0 on failure
*/
static int
memorystatus_sort_bucket(unsigned int bucket_index, int sort_order)
{
int coal_sort_order;
/*
* Verify the jetsam priority
*/
if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
return EINVAL;
}
#if DEVELOPMENT || DEBUG
if (sort_order == JETSAM_SORT_DEFAULT) {
coal_sort_order = COALITION_SORT_DEFAULT;
} else {
coal_sort_order = sort_order; /* only used for testing scenarios */
}
#else
/* Verify default */
if (sort_order == JETSAM_SORT_DEFAULT) {
coal_sort_order = COALITION_SORT_DEFAULT;
} else {
return EINVAL;
}
#endif
proc_list_lock();
memorystatus_sort_bucket_locked(bucket_index, coal_sort_order);
proc_list_unlock();
return 0;
}
/*
* Sort processes by size for a single jetsam bucket.
*/
static void
memorystatus_sort_by_largest_process_locked(unsigned int bucket_index)
{
proc_t p = NULL, insert_after_proc = NULL, max_proc = NULL;
proc_t next_p = NULL, prev_max_proc = NULL;
uint32_t pages = 0, max_pages = 0;
memstat_bucket_t *current_bucket;
if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
return;
}
current_bucket = &memstat_bucket[bucket_index];
p = TAILQ_FIRST(&current_bucket->list);
while (p) {
memorystatus_get_task_page_counts(proc_task(p), &pages, NULL, NULL);
max_pages = pages;
max_proc = p;
prev_max_proc = p;
while ((next_p = TAILQ_NEXT(p, p_memstat_list)) != NULL) {
/* traversing list until we find next largest process */
p = next_p;
memorystatus_get_task_page_counts(proc_task(p), &pages, NULL, NULL);
if (pages > max_pages) {
max_pages = pages;
max_proc = p;
}
}
if (prev_max_proc != max_proc) {
/* found a larger process, place it in the list */
TAILQ_REMOVE(&current_bucket->list, max_proc, p_memstat_list);
if (insert_after_proc == NULL) {
TAILQ_INSERT_HEAD(&current_bucket->list, max_proc, p_memstat_list);
} else {
TAILQ_INSERT_AFTER(&current_bucket->list, insert_after_proc, max_proc, p_memstat_list);
}
prev_max_proc = max_proc;
}
insert_after_proc = max_proc;
p = TAILQ_NEXT(max_proc, p_memstat_list);
}
}
proc_t
memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search)
{
memstat_bucket_t *current_bucket;
proc_t next_p;
if ((*bucket_index) >= MEMSTAT_BUCKET_COUNT) {
return NULL;
}
current_bucket = &memstat_bucket[*bucket_index];
next_p = TAILQ_FIRST(&current_bucket->list);
if (!next_p && search) {
while (!next_p && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) {
current_bucket = &memstat_bucket[*bucket_index];
next_p = TAILQ_FIRST(&current_bucket->list);
}
}
return next_p;
}
proc_t
memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search)
{
memstat_bucket_t *current_bucket;
proc_t next_p;
if (!p || ((*bucket_index) >= MEMSTAT_BUCKET_COUNT)) {
return NULL;
}
next_p = TAILQ_NEXT(p, p_memstat_list);
while (!next_p && search && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) {
current_bucket = &memstat_bucket[*bucket_index];
next_p = TAILQ_FIRST(&current_bucket->list);
}
return next_p;
}
jetsam_thread_state_t *jetsam_threads;
/* Maximum number of jetsam threads allowed */
#define JETSAM_THREADS_LIMIT 3
/* Number of active jetsam threads */
_Atomic int active_jetsam_threads = 1;
/* Number of maximum jetsam threads configured */
int max_jetsam_threads = JETSAM_THREADS_LIMIT;
/*
* Global switch for enabling fast jetsam. Fast jetsam is
* hooked up via the system_override() system call. It has the
* following effects:
* - Raise the jetsam threshold ("clear-the-deck")
* - Enabled parallel jetsam on eligible devices
*/
#if __AMP__
int fast_jetsam_enabled = 1;
#else /* __AMP__ */
int fast_jetsam_enabled = 0;
#endif /* __AMP__ */
static jetsam_thread_state_t *
jetsam_current_thread()
{
for (int thr_id = 0; thr_id < max_jetsam_threads; thr_id++) {
if (jetsam_threads[thr_id].thread == current_thread()) {
return &(jetsam_threads[thr_id]);
}
}
return NULL;
}
#if CONFIG_JETSAM
static void
initialize_entitled_max_task_limit()
{
/**
* We've already stored the potential boot-arg "entitled_max_task_pmem" in
* memorystatus_entitled_max_task_footprint_mb as a TUNABLE_DT. We provide
* argptr=NULL and max_len=0 here to check only for existence of the boot-arg.
*
* The boot-arg takes precedence over memorystatus_swap_all_apps.
*/
if (!PE_parse_boot_argn("entitled_max_task_pmem", NULL, 0) && memorystatus_swap_all_apps) {
/*
* When we have swap, we let entitled apps go up to the dram config
* regardless of what's set in EDT,
* This can still be overriden with the entitled_max_task_pmem boot-arg.
*/
memorystatus_entitled_max_task_footprint_mb = (int32_t) (max_mem_actual / (1ULL << 20));
}
if (memorystatus_entitled_max_task_footprint_mb < 0) {
memorystatus_log_error("Invalid value (%d) for entitled_max_task_pmem. Setting to 0\n",
memorystatus_entitled_max_task_footprint_mb);
memorystatus_entitled_max_task_footprint_mb = 0;
}
}
#endif /* CONFIG_JETSAM */
__private_extern__ void
memorystatus_init(void)
{
kern_return_t result;
int i;
#if CONFIG_FREEZE
memorystatus_freeze_jetsam_band = JETSAM_PRIORITY_FREEZER;
memorystatus_frozen_processes_max = FREEZE_PROCESSES_MAX;
memorystatus_frozen_shared_mb_max = ((MAX_FROZEN_SHARED_MB_PERCENT * max_task_footprint_mb) / 100); /* 10% of the system wide task limit */
memorystatus_freeze_shared_mb_per_process_max = (memorystatus_frozen_shared_mb_max / 4);
memorystatus_freeze_pages_min = FREEZE_PAGES_MIN;
memorystatus_freeze_pages_max = FREEZE_PAGES_MAX;
memorystatus_max_frozen_demotions_daily = MAX_FROZEN_PROCESS_DEMOTIONS;
memorystatus_thaw_count_demotion_threshold = MIN_THAW_DEMOTION_THRESHOLD;
memorystatus_min_thaw_refreeze_threshold = MIN_THAW_REFREEZE_THRESHOLD;
#endif /* CONFIG_FREEZE */
#if DEVELOPMENT || DEBUG
if (kill_on_no_paging_space) {
max_kill_priority = JETSAM_PRIORITY_MAX;
}
#endif
// Note: no-op pending rdar://27006343 (Custom kernel log handles)
memorystatus_log_handle = os_log_create("com.apple.xnu", "memorystatus");
/* Init buckets */
for (i = 0; i < MEMSTAT_BUCKET_COUNT; i++) {
TAILQ_INIT(&memstat_bucket[i].list);
memstat_bucket[i].count = 0;
memstat_bucket[i].relaunch_high_count = 0;
}
memorystatus_idle_demotion_call = thread_call_allocate((thread_call_func_t)memorystatus_perform_idle_demotion, NULL);
nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time);
nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time);
#if CONFIG_JETSAM
bzero(memorystatus_jetsam_proc_name_panic, sizeof(memorystatus_jetsam_proc_name_panic));
if (PE_parse_boot_argn("jetsam_proc_name_panic", &memorystatus_jetsam_proc_name_panic, sizeof(memorystatus_jetsam_proc_name_panic))) {
/*
* No bounds check to see if this is a valid cause.
* This is a debugging aid. The callers should know precisely which cause they wish to track.
*/
PE_parse_boot_argn("jetsam_proc_cause_panic", &memorystatus_jetsam_proc_cause_panic, sizeof(memorystatus_jetsam_proc_cause_panic));
PE_parse_boot_argn("jetsam_proc_size_panic", &memorystatus_jetsam_proc_size_panic, sizeof(memorystatus_jetsam_proc_size_panic));
}
if (memorystatus_swap_all_apps && vm_page_donate_mode == VM_PAGE_DONATE_DISABLED) {
panic("kern.swap_all_apps is not supported on this platform");
}
/*
* The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
* band and must be below it in priority. This is so that we don't have to make
* our 'aging' code worry about a mix of processes, some of which need to age
* and some others that need to stay elevated in the jetsam bands.
*/
assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > system_procs_aging_band);
assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > applications_aging_band);
/* Take snapshots for idle-exit kills by default? First check the boot-arg... */
if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot))) {
/* ...no boot-arg, so check the device tree */
PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot));
}
memorystatus_sysproc_aging_aggr_pages = (unsigned int)MEMSTAT_PERCENT_TOTAL_PAGES(MEMORYSTATUS_AGGR_SYSPROC_AGING_PERCENTAGE);
if (max_mem <= MEMORYSTATUS_SMALL_MEMORY_THRESHOLD) {
memorystatus_delta = (unsigned int)MEMSTAT_PERCENT_TOTAL_PAGES(MEMORYSTATUS_DELTA_PERCENTAGE_SMALL);
} else {
memorystatus_delta = (unsigned int)MEMSTAT_PERCENT_TOTAL_PAGES(MEMORYSTATUS_DELTA_PERCENTAGE_LARGE);
}
if (memorystatus_critical_threshold_mb != 0) {
memorystatus_available_pages_critical_base = (unsigned int)atop_64((uint64_t)memorystatus_critical_threshold_mb << 20);
} else if (max_mem <= MEMORYSTATUS_SMALL_MEMORY_THRESHOLD) {
memorystatus_available_pages_critical_base = (unsigned int)MEMSTAT_PERCENT_TOTAL_PAGES(MEMORYSTATUS_CRITICAL_BASE_PERCENTAGE_SMALL);
} else {
memorystatus_available_pages_critical_base = (unsigned int)MEMSTAT_PERCENT_TOTAL_PAGES(MEMORYSTATUS_CRITICAL_BASE_PERCENTAGE_LARGE);
}
assert(memorystatus_available_pages_critical_base < (unsigned int)atop_64(max_mem));
/*
* For historical reasons, devices with "medium"-sized memory configs have a different critical:idle:pressure ratio
*/
if ((memorystatus_idle_threshold_mb != 0)) {
memorystatus_available_pages_critical_idle = (unsigned int)atop_64((uint64_t)memorystatus_idle_threshold_mb << 20);
} else {
if ((max_mem > MEMORYSTATUS_SMALL_MEMORY_THRESHOLD) &&
(max_mem <= MEMORYSTATUS_MEDIUM_MEMORY_THRESHOLD)) {
memorystatus_available_pages_critical_idle = (MEMORYSTATUS_CRITICAL_IDLE_RATIO_NUM_MEDIUM * memorystatus_available_pages_critical_base) /
MEMORYSTATUS_CRITICAL_IDLE_RATIO_DENOM_MEDIUM;
} else {
memorystatus_available_pages_critical_idle = (MEMORYSTATUS_CRITICAL_IDLE_RATIO_NUM * memorystatus_available_pages_critical_base) /
MEMORYSTATUS_CRITICAL_IDLE_RATIO_DENOM;
}
}
assert(memorystatus_available_pages_critical_idle < (unsigned int)atop_64(max_mem));
if (memorystatus_pressure_threshold_mb != 0) {
memorystatus_available_pages_pressure = (unsigned int)atop_64((uint64_t)memorystatus_pressure_threshold_mb << 20);
} else {
if ((max_mem > MEMORYSTATUS_SMALL_MEMORY_THRESHOLD) &&
(max_mem <= MEMORYSTATUS_MEDIUM_MEMORY_THRESHOLD)) {
memorystatus_available_pages_pressure = (MEMORYSTATUS_PRESSURE_RATIO_NUM_MEDIUM * memorystatus_available_pages_critical_base) /
MEMORYSTATUS_PRESSURE_RATIO_DENOM_MEDIUM;
} else {
memorystatus_available_pages_pressure = (MEMORYSTATUS_PRESSURE_RATIO_NUM * memorystatus_available_pages_critical_base) /
MEMORYSTATUS_PRESSURE_RATIO_DENOM;
}
}
assert(memorystatus_available_pages_pressure < (unsigned int)atop_64(max_mem));
if (memorystatus_more_free_offset_mb != 0) {
memorystatus_policy_more_free_offset_pages = (unsigned int)atop_64((uint64_t)memorystatus_more_free_offset_mb);
} else {
memorystatus_policy_more_free_offset_pages = (unsigned int)MEMSTAT_PERCENT_TOTAL_PAGES(MEMORYSTATUS_MORE_FREE_OFFSET_PERCENTAGE);
}
assert(memorystatus_policy_more_free_offset_pages < (unsigned int)atop_64(max_mem));
/* Set the swapin trigger in pages based on the maximum size allocated for each c_seg */
memorystatus_swapin_trigger_pages = (unsigned int) atop_64(memorystatus_swapin_trigger_segments * c_seg_allocsize);
/* Jetsam Loop Detection */
if (max_mem <= (512 * 1024 * 1024)) {
/* 512 MB devices */
memorystatus_jld_eval_period_msecs = 8000; /* 8000 msecs == 8 second window */
} else {
/* 1GB and larger devices */
memorystatus_jld_eval_period_msecs = 6000; /* 6000 msecs == 6 second window */
}
memorystatus_jld_enabled = TRUE;
/* No contention at this point */
memorystatus_update_levels_locked();
initialize_entitled_max_task_limit();
#endif /* CONFIG_JETSAM */
memorystatus_jetsam_snapshot_max = maxproc;
memorystatus_jetsam_snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
(sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_max);
memorystatus_jetsam_snapshot = kalloc_data(memorystatus_jetsam_snapshot_size, Z_WAITOK | Z_ZERO);
if (!memorystatus_jetsam_snapshot) {
panic("Could not allocate memorystatus_jetsam_snapshot");
}
#if CONFIG_FREEZE
memorystatus_jetsam_snapshot_freezer_max = memorystatus_jetsam_snapshot_max / JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR;
memorystatus_jetsam_snapshot_freezer_size = sizeof(memorystatus_jetsam_snapshot_t) +
(sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_freezer_max);
memorystatus_jetsam_snapshot_freezer =
zalloc_permanent(memorystatus_jetsam_snapshot_freezer_size, ZALIGN_PTR);
#endif /* CONFIG_FREEZE */
nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS * NSEC_PER_SEC, &memorystatus_jetsam_snapshot_timeout);
memset(&memorystatus_at_boot_snapshot, 0, sizeof(memorystatus_jetsam_snapshot_t));
#if CONFIG_FREEZE
if (memorystatus_freeze_threshold_mb != 0) {
memorystatus_freeze_threshold = (unsigned int)atop_64((uint64_t)memorystatus_freeze_threshold_mb << 20);
} else {
memorystatus_freeze_threshold = (unsigned int)MEMSTAT_PERCENT_TOTAL_PAGES(MEMORYSTATUS_FREEZE_THRESHOLD_PERCENTAGE);
}
assert(memorystatus_freeze_threshold < (unsigned int)atop_64(max_mem));
if (memorystatus_swap_all_apps) {
/*
* Swap is enabled, so we expect a larger working set & larger apps.
* Adjust thresholds accordingly.
*/
memorystatus_freeze_configure_for_swap();
}
#endif
/* Check the boot-arg to see if fast jetsam is allowed */
if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled, sizeof(fast_jetsam_enabled))) {
fast_jetsam_enabled = 0;
}
/* Check the boot-arg to configure the maximum number of jetsam threads */
if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads, sizeof(max_jetsam_threads))) {
max_jetsam_threads = JETSAM_THREADS_LIMIT;
}
/* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */
if (max_jetsam_threads > JETSAM_THREADS_LIMIT) {
max_jetsam_threads = JETSAM_THREADS_LIMIT;
}
/* For low CPU systems disable fast jetsam mechanism */
if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
max_jetsam_threads = 1;
fast_jetsam_enabled = 0;
}
#if DEVELOPMENT || DEBUG
if (PE_parse_boot_argn("-memorystatus-skip-fg-notify", &i, sizeof(i))) {
memorystatus_should_issue_fg_band_notify = false;
}
#endif /* DEVELOPMENT || DEBUG */
/* Initialize the jetsam_threads state array */
jetsam_threads = zalloc_permanent(sizeof(jetsam_thread_state_t) *
max_jetsam_threads, ZALIGN(jetsam_thread_state_t));
/* Initialize all the jetsam threads */
for (i = 0; i < max_jetsam_threads; i++) {
jetsam_threads[i].inited = FALSE;
jetsam_threads[i].index = i;
result = kernel_thread_start_priority(memorystatus_thread, NULL, 95 /* MAXPRI_KERNEL */, &jetsam_threads[i].thread);
if (result != KERN_SUCCESS) {
panic("Could not create memorystatus_thread %d", i);
}
thread_deallocate(jetsam_threads[i].thread);
}
#if VM_PRESSURE_EVENTS
memorystatus_notify_init();
#endif /* VM_PRESSURE_EVENTS */
}
#if CONFIG_JETSAM
bool
memorystatus_disable_swap(void)
{
#if DEVELOPMENT || DEBUG
int boot_arg_val = 0;
if (PE_parse_boot_argn("kern.swap_all_apps", &boot_arg_val, sizeof(boot_arg_val))) {
if (boot_arg_val) {
/* Can't disable app swap if it was set via a boot-arg */
return false;
}
}
#endif /* DEVELOPMENT || DEBUG */
memorystatus_swap_all_apps = false;
#if CONFIG_FREEZE
/* Go back to the smaller freezer thresholds */
memorystatus_freeze_disable_swap();
#endif /* CONFIG_FREEZE */
initialize_entitled_max_task_limit();
return true;
}
#endif /* CONFIG_JETSAM */
/* Centralised for the purposes of allowing panic-on-jetsam */
extern void
vm_run_compactor(void);
extern void
vm_wake_compactor_swapper(void);
/*
* The jetsam no frills kill call
* Return: 0 on success
* error code on failure (EINVAL...)
*/
static int
jetsam_do_kill(proc_t p, int jetsam_flags, os_reason_t jetsam_reason)
{
int error = 0;
error = exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, jetsam_flags, jetsam_reason);
return error;
}
/*
* Wrapper for processes exiting with memorystatus details
*/
static boolean_t
memorystatus_do_kill(proc_t p, uint32_t cause, os_reason_t jetsam_reason, uint64_t *footprint_of_killed_proc)
{
int error = 0;
__unused pid_t victim_pid = proc_getpid(p);
uint64_t footprint = get_task_phys_footprint(proc_task(p));
#if (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD)
int32_t memstat_effectivepriority = p->p_memstat_effectivepriority;
#endif /* (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD) */
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_DO_KILL) | DBG_FUNC_START,
victim_pid, cause, vm_page_free_count, footprint);
DTRACE_MEMORYSTATUS4(memorystatus_do_kill, proc_t, p, os_reason_t, jetsam_reason, uint32_t, cause, uint64_t, footprint);
#if CONFIG_JETSAM
if (*p->p_name && !strncmp(memorystatus_jetsam_proc_name_panic, p->p_name, sizeof(p->p_name))) { /* name */
if ((!memorystatus_jetsam_proc_cause_panic || cause == memorystatus_jetsam_proc_cause_panic) && /* cause */
(!memorystatus_jetsam_proc_size_panic || (footprint >> 20) >= memorystatus_jetsam_proc_size_panic)) { /* footprint */
panic("memorystatus_do_kill(): requested panic on jetsam of %s (cause: %d and footprint: %llu mb)",
memorystatus_jetsam_proc_name_panic, cause, footprint >> 20);
}
}
#else /* CONFIG_JETSAM */
#pragma unused(cause)
#endif /* CONFIG_JETSAM */
if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) {
memorystatus_log(
"memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n",
proc_getpid(p), (*p->p_name ? p->p_name : "unknown"),
memorystatus_priority_band_name(p->p_memstat_effectivepriority), p->p_memstat_effectivepriority,
(uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
}
/*
* The jetsam_reason (os_reason_t) has enough information about the kill cause.
* We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped.
*/
int jetsam_flags = P_LTERM_JETSAM;
switch (cause) {
case kMemorystatusKilledHiwat: jetsam_flags |= P_JETSAM_HIWAT; break;
case kMemorystatusKilledVnodes: jetsam_flags |= P_JETSAM_VNODE; break;
case kMemorystatusKilledVMPageShortage: jetsam_flags |= P_JETSAM_VMPAGESHORTAGE; break;
case kMemorystatusKilledVMCompressorThrashing:
case kMemorystatusKilledVMCompressorSpaceShortage: jetsam_flags |= P_JETSAM_VMTHRASHING; break;
case kMemorystatusKilledFCThrashing: jetsam_flags |= P_JETSAM_FCTHRASHING; break;
case kMemorystatusKilledPerProcessLimit: jetsam_flags |= P_JETSAM_PID; break;
case kMemorystatusKilledIdleExit: jetsam_flags |= P_JETSAM_IDLEEXIT; break;
}
/* jetsam_do_kill drops a reference. */
os_reason_ref(jetsam_reason);
error = jetsam_do_kill(p, jetsam_flags, jetsam_reason);
*footprint_of_killed_proc = ((error == 0) ? footprint : 0);
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_DO_KILL) | DBG_FUNC_END,
victim_pid, memstat_effectivepriority, vm_page_free_count, error);
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_COMPACTOR_RUN) | DBG_FUNC_START,
victim_pid, cause, vm_page_free_count, *footprint_of_killed_proc);
if (jetsam_reason->osr_code == JETSAM_REASON_VNODE) {
/*
* vnode jetsams are syncronous and not caused by memory pressure.
* Running the compactor on this thread adds significant latency to the filesystem operation
* that triggered this jetsam.
* Kick of compactor thread asyncronously instead.
*/
vm_wake_compactor_swapper();
} else {
vm_run_compactor();
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_COMPACTOR_RUN) | DBG_FUNC_END,
victim_pid, cause, vm_page_free_count);
os_reason_free(jetsam_reason);
return error == 0;
}
/*
* Node manipulation
*/
static void
memorystatus_check_levels_locked(void)
{
#if CONFIG_JETSAM
/* Update levels */
memorystatus_update_levels_locked();
#else /* CONFIG_JETSAM */
/*
* Nothing to do here currently since we update
* memorystatus_available_pages in vm_pressure_response.
*/
#endif /* CONFIG_JETSAM */
}
/*
* Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
* For an application: that means no longer in the FG band
* For a daemon: that means no longer in its 'requested' jetsam priority band
*/
int
memorystatus_update_inactive_jetsam_priority_band(pid_t pid, uint32_t op_flags, int jetsam_prio, boolean_t effective_now)
{
int error = 0;
boolean_t enable = FALSE;
proc_t p = NULL;
if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE) {
enable = TRUE;
} else if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE) {
enable = FALSE;
} else {
return EINVAL;
}
p = proc_find(pid);
if (p != NULL) {
if ((enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) ||
(!enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == 0))) {
/*
* No change in state.
*/
} else {
proc_list_lock();
if (enable) {
p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND;
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
if (effective_now) {
if (p->p_memstat_effectivepriority < jetsam_prio) {
if (memorystatus_highwater_enabled) {
/*
* Process is about to transition from
* inactive --> active
* assign active state
*/
boolean_t is_fatal;
boolean_t use_active = TRUE;
CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
task_set_phys_footprint_limit_internal(proc_task(p), (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal);
}
memorystatus_update_priority_locked(p, jetsam_prio, FALSE, FALSE);
}
} else {
if (isProcessInAgingBands(p)) {
memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
}
}
} else {
p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND;
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
if (effective_now) {
if (p->p_memstat_effectivepriority == jetsam_prio) {
memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
}
} else {
if (isProcessInAgingBands(p)) {
memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
}
}
}
proc_list_unlock();
}
proc_rele(p);
error = 0;
} else {
error = ESRCH;
}
return error;
}
static void
memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2)
{
proc_t p;
uint64_t current_time = 0, idle_delay_time = 0;
int demote_prio_band = 0;
memstat_bucket_t *demotion_bucket;
memorystatus_log_debug("memorystatus_perform_idle_demotion()\n");
if (!system_procs_aging_band && !applications_aging_band) {
return;
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_START);
current_time = mach_absolute_time();
proc_list_lock();
demote_prio_band = JETSAM_PRIORITY_IDLE + 1;
for (; demote_prio_band < JETSAM_PRIORITY_MAX; demote_prio_band++) {
if (demote_prio_band != system_procs_aging_band && demote_prio_band != applications_aging_band) {
continue;
}
demotion_bucket = &memstat_bucket[demote_prio_band];
p = TAILQ_FIRST(&demotion_bucket->list);
while (p) {
memorystatus_log_debug("memorystatus_perform_idle_demotion() found %d\n", proc_getpid(p));
assert(p->p_memstat_idledeadline);
assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS);
if (current_time >= p->p_memstat_idledeadline) {
if ((isSysProc(p) &&
((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED | P_DIRTY_IS_DIRTY)) != P_DIRTY_IDLE_EXIT_ENABLED)) || /* system proc marked dirty*/
task_has_assertions((struct task *)(proc_task(p)))) { /* has outstanding assertions which might indicate outstanding work too */
idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_time(p) : memorystatus_apps_idle_time(p);
p->p_memstat_idledeadline += idle_delay_time;
p = TAILQ_NEXT(p, p_memstat_list);
} else {
proc_t next_proc = NULL;
next_proc = TAILQ_NEXT(p, p_memstat_list);
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, false, true);
p = next_proc;
continue;
}
} else {
// No further candidates
break;
}
}
}
memorystatus_reschedule_idle_demotion_locked();
proc_list_unlock();
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_END);
}
static void
memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state)
{
boolean_t present_in_sysprocs_aging_bucket = FALSE;
boolean_t present_in_apps_aging_bucket = FALSE;
uint64_t idle_delay_time = 0;
if (!system_procs_aging_band && !applications_aging_band) {
return;
}
if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) ||
(p->p_memstat_state & P_MEMSTAT_PRIORITY_ASSERTION)) {
/*
* This process isn't going to be making the trip to the lower bands.
*/
return;
}
if (isProcessInAgingBands(p)) {
assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) != P_DIRTY_AGING_IN_PROGRESS);
if (isSysProc(p) && system_procs_aging_band) {
present_in_sysprocs_aging_bucket = TRUE;
} else if (isApp(p) && applications_aging_band) {
present_in_apps_aging_bucket = TRUE;
}
}
assert(!present_in_sysprocs_aging_bucket);
assert(!present_in_apps_aging_bucket);
memorystatus_log_info(
"memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
proc_getpid(p), p->p_memstat_dirty, set_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps));
if (isSysProc(p)) {
assert((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED);
}
idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_time(p) : memorystatus_apps_idle_time(p);
if (set_state) {
p->p_memstat_dirty |= P_DIRTY_AGING_IN_PROGRESS;
p->p_memstat_idledeadline = mach_absolute_time() + idle_delay_time;
}
assert(p->p_memstat_idledeadline);
if (isSysProc(p) && present_in_sysprocs_aging_bucket == FALSE) {
memorystatus_scheduled_idle_demotions_sysprocs++;
} else if (isApp(p) && present_in_apps_aging_bucket == FALSE) {
memorystatus_scheduled_idle_demotions_apps++;
}
}
void
memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clear_state)
{
boolean_t present_in_sysprocs_aging_bucket = FALSE;
boolean_t present_in_apps_aging_bucket = FALSE;
if (!system_procs_aging_band && !applications_aging_band) {
return;
}
if ((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == 0) {
return;
}
if (isProcessInAgingBands(p)) {
assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == P_DIRTY_AGING_IN_PROGRESS);
if (isSysProc(p) && system_procs_aging_band) {
assert(p->p_memstat_effectivepriority == system_procs_aging_band);
assert(p->p_memstat_idledeadline);
present_in_sysprocs_aging_bucket = TRUE;
} else if (isApp(p) && applications_aging_band) {
assert(p->p_memstat_effectivepriority == applications_aging_band);
assert(p->p_memstat_idledeadline);
present_in_apps_aging_bucket = TRUE;
}
}
memorystatus_log_info(
"memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
proc_getpid(p), clear_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps));
if (clear_state) {
p->p_memstat_idledeadline = 0;
p->p_memstat_dirty &= ~P_DIRTY_AGING_IN_PROGRESS;
}
if (isSysProc(p) && present_in_sysprocs_aging_bucket == TRUE) {
memorystatus_scheduled_idle_demotions_sysprocs--;
assert(memorystatus_scheduled_idle_demotions_sysprocs >= 0);
} else if (isApp(p) && present_in_apps_aging_bucket == TRUE) {
memorystatus_scheduled_idle_demotions_apps--;
assert(memorystatus_scheduled_idle_demotions_apps >= 0);
}
assert((memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps) >= 0);
}
static void
memorystatus_reschedule_idle_demotion_locked(void)
{
if (!system_procs_aging_band && !applications_aging_band) {
return;
}
if (0 == (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)) {
if (memstat_idle_demotion_deadline) {
/* Transitioned 1->0, so cancel next call */
thread_call_cancel(memorystatus_idle_demotion_call);
memstat_idle_demotion_deadline = 0;
}
} else {
memstat_bucket_t *demotion_bucket;
proc_t p = NULL, p1 = NULL, p2 = NULL;
if (system_procs_aging_band) {
demotion_bucket = &memstat_bucket[system_procs_aging_band];
p1 = TAILQ_FIRST(&demotion_bucket->list);
p = p1;
}
if (applications_aging_band) {
demotion_bucket = &memstat_bucket[applications_aging_band];
p2 = TAILQ_FIRST(&demotion_bucket->list);
if (p1 && p2) {
p = (p1->p_memstat_idledeadline > p2->p_memstat_idledeadline) ? p2 : p1;
} else {
p = (p1 == NULL) ? p2 : p1;
}
}
assert(p);
if (p != NULL) {
assert(p && p->p_memstat_idledeadline);
if (memstat_idle_demotion_deadline != p->p_memstat_idledeadline) {
thread_call_enter_delayed(memorystatus_idle_demotion_call, p->p_memstat_idledeadline);
memstat_idle_demotion_deadline = p->p_memstat_idledeadline;
}
}
}
}
/*
* List manipulation
*/
int
memorystatus_add(proc_t p, boolean_t locked)
{
memstat_bucket_t *bucket;
memorystatus_log_debug("memorystatus_list_add(): adding pid %d with priority %d.\n",
proc_getpid(p), p->p_memstat_effectivepriority);
if (!locked) {
proc_list_lock();
}
DTRACE_MEMORYSTATUS2(memorystatus_add, proc_t, p, int32_t, p->p_memstat_effectivepriority);
/* Processes marked internal do not have priority tracked */
if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
goto exit;
}
/*
* Opt out system processes from being frozen by default.
* For coalition-based freezing, we only want to freeze sysprocs that have specifically opted in.
*/
if (isSysProc(p)) {
p->p_memstat_state |= P_MEMSTAT_FREEZE_DISABLED;
}
#if CONFIG_FREEZE
memorystatus_freeze_init_proc(p);
#endif
bucket = &memstat_bucket[p->p_memstat_effectivepriority];
if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) {
assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs - 1);
} else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) {
assert(bucket->count == memorystatus_scheduled_idle_demotions_apps - 1);
} else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
/*
* Entering the idle band.
* Record idle start time.
*/
p->p_memstat_idle_start = mach_absolute_time();
}
TAILQ_INSERT_TAIL(&bucket->list, p, p_memstat_list);
bucket->count++;
if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
bucket->relaunch_high_count++;
}
memorystatus_list_count++;
memorystatus_check_levels_locked();
exit:
if (!locked) {
proc_list_unlock();
}
return 0;
}
/*
* Description:
* Moves a process from one jetsam bucket to another.
* which changes the LRU position of the process.
*
* Monitors transition between buckets and if necessary
* will update cached memory limits accordingly.
*
* skip_demotion_check:
* - if the 'jetsam aging policy' is NOT 'legacy':
* When this flag is TRUE, it means we are going
* to age the ripe processes out of the aging bands and into the
* IDLE band and apply their inactive memory limits.
*
* - if the 'jetsam aging policy' is 'legacy':
* When this flag is TRUE, it might mean the above aging mechanism
* OR
* It might be that we have a process that has used up its 'idle deferral'
* stay that is given to it once per lifetime. And in this case, the process
* won't be going through any aging codepaths. But we still need to apply
* the right inactive limits and so we explicitly set this to TRUE if the
* new priority for the process is the IDLE band.
*/
void
memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check)
{
memstat_bucket_t *old_bucket, *new_bucket;
assert(priority < MEMSTAT_BUCKET_COUNT);
/* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
if (proc_list_exited(p)) {
return;
}
memorystatus_log_info("memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
(*p->p_name ? p->p_name : "unknown"), proc_getpid(p), priority, head_insert ? "head" : "tail");
DTRACE_MEMORYSTATUS3(memorystatus_update_priority, proc_t, p, int32_t, p->p_memstat_effectivepriority, int, priority);
old_bucket = &memstat_bucket[p->p_memstat_effectivepriority];
if (skip_demotion_check == FALSE) {
if (isSysProc(p)) {
/*
* For system processes, the memorystatus_dirty_* routines take care of adding/removing
* the processes from the aging bands and balancing the demotion counts.
* We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
*/
if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
/*
* 2 types of processes can use the non-standard elevated inactive band:
* - Frozen processes that always land in memorystatus_freeze_jetsam_band
* OR
* - processes that specifically opt-in to the elevated inactive support e.g. docked processes.
*/
#if CONFIG_FREEZE
if (p->p_memstat_state & P_MEMSTAT_FROZEN) {
if (priority <= memorystatus_freeze_jetsam_band) {
priority = memorystatus_freeze_jetsam_band;
}
} else
#endif /* CONFIG_FREEZE */
{
if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) {
priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
}
}
assert(!(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS));
}
} else if (isApp(p)) {
/*
* Check to see if the application is being lowered in jetsam priority. If so, and:
* - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band.
* - it is a normal application, then let it age in the aging band if that policy is in effect.
*/
if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
#if CONFIG_FREEZE
if (p->p_memstat_state & P_MEMSTAT_FROZEN) {
if (priority <= memorystatus_freeze_jetsam_band) {
priority = memorystatus_freeze_jetsam_band;
}
} else
#endif /* CONFIG_FREEZE */
{
if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) {
priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
}
}
} else {
if (applications_aging_band) {
if (p->p_memstat_effectivepriority == applications_aging_band) {
assert(old_bucket->count == (memorystatus_scheduled_idle_demotions_apps + 1));
}
if (priority <= applications_aging_band) {
assert(!(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS));
priority = applications_aging_band;
memorystatus_schedule_idle_demotion_locked(p, TRUE);
}
}
}
}
}
if ((system_procs_aging_band && (priority == system_procs_aging_band)) || (applications_aging_band && (priority == applications_aging_band))) {
assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS);
}
#if DEVELOPMENT || DEBUG
if (priority == JETSAM_PRIORITY_IDLE && /* if the process is on its way into the IDLE band */
(system_procs_aging_band && applications_aging_band) && /* we have support for _both_ aging bands */
(skip_demotion_check == FALSE) && /* and it isn't via the path that will set the INACTIVE memlimits */
(p->p_memstat_dirty & P_DIRTY_TRACK) && /* and it has 'DIRTY' tracking enabled */
((p->p_memstat_memlimit != p->p_memstat_memlimit_inactive) || /* and we notice that the current limit isn't the right value (inactive) */
((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) ? (!(p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)) : (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)))) { /* OR type (fatal vs non-fatal) */
memorystatus_log_error("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n",
p->p_name, p->p_memstat_state, priority, p->p_memstat_memlimit); /* then we must catch this */
}
#endif /* DEVELOPMENT || DEBUG */
TAILQ_REMOVE(&old_bucket->list, p, p_memstat_list);
old_bucket->count--;
if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
old_bucket->relaunch_high_count--;
}
new_bucket = &memstat_bucket[priority];
if (head_insert) {
TAILQ_INSERT_HEAD(&new_bucket->list, p, p_memstat_list);
} else {
TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list);
}
new_bucket->count++;
if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
new_bucket->relaunch_high_count++;
}
if (memorystatus_highwater_enabled) {
boolean_t is_fatal;
boolean_t use_active;
/*
* If cached limit data is updated, then the limits
* will be enforced by writing to the ledgers.
*/
boolean_t ledger_update_needed = TRUE;
/*
* Here, we must update the cached memory limit if the task
* is transitioning between:
* active <--> inactive
* FG <--> BG
* but:
* dirty <--> clean is ignored
*
* We bypass non-idle processes that have opted into dirty tracking because
* a move between buckets does not imply a transition between the
* dirty <--> clean state.
*/
if (p->p_memstat_dirty & P_DIRTY_TRACK) {
if (skip_demotion_check == TRUE && priority == JETSAM_PRIORITY_IDLE) {
CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = FALSE;
} else {
ledger_update_needed = FALSE;
}
} else if ((priority >= JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority < JETSAM_PRIORITY_FOREGROUND)) {
/*
* inactive --> active
* BG --> FG
* assign active state
*/
CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = TRUE;
} else if ((priority < JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) {
/*
* active --> inactive
* FG --> BG
* assign inactive state
*/
CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = FALSE;
} else {
/*
* The transition between jetsam priority buckets apparently did
* not affect active/inactive state.
* This is not unusual... especially during startup when
* processes are getting established in their respective bands.
*/
ledger_update_needed = FALSE;
}
/*
* Enforce the new limits by writing to the ledger
*/
if (ledger_update_needed) {
task_set_phys_footprint_limit_internal(proc_task(p), (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal);
memorystatus_log_info("memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
proc_getpid(p), (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
(p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, priority, p->p_memstat_dirty,
(p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
}
}
/*
* Record idle start or idle delta.
*/
if (p->p_memstat_effectivepriority == priority) {
/*
* This process is not transitioning between
* jetsam priority buckets. Do nothing.
*/
} else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
uint64_t now;
/*
* Transitioning out of the idle priority bucket.
* Record idle delta.
*/
assert(p->p_memstat_idle_start != 0);
now = mach_absolute_time();
if (now > p->p_memstat_idle_start) {
p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
}
/*
* About to become active and so memory footprint could change.
* So mark it eligible for freeze-considerations next time around.
*/
if (p->p_memstat_state & P_MEMSTAT_FREEZE_IGNORE) {
p->p_memstat_state &= ~P_MEMSTAT_FREEZE_IGNORE;
}
} else if (priority == JETSAM_PRIORITY_IDLE) {
/*
* Transitioning into the idle priority bucket.
* Record idle start.
*/
p->p_memstat_idle_start = mach_absolute_time();
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_CHANGE_PRIORITY), proc_getpid(p), priority, p->p_memstat_effectivepriority);
p->p_memstat_effectivepriority = priority;
#if CONFIG_SECLUDED_MEMORY
if (secluded_for_apps &&
task_could_use_secluded_mem(proc_task(p))) {
task_set_can_use_secluded_mem(
proc_task(p),
(priority >= JETSAM_PRIORITY_FOREGROUND));
}
#endif /* CONFIG_SECLUDED_MEMORY */
memorystatus_check_levels_locked();
}
int
memorystatus_relaunch_flags_update(proc_t p, int relaunch_flags)
{
p->p_memstat_relaunch_flags = relaunch_flags;
KDBG(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_RELAUNCH_FLAGS), proc_getpid(p), relaunch_flags);
return 0;
}
#if DEVELOPMENT || DEBUG
static int sysctl_memorystatus_relaunch_flags SYSCTL_HANDLER_ARGS {
#pragma unused(oidp, arg1, arg2)
proc_t p;
int relaunch_flags = 0;
p = current_proc();
relaunch_flags = p->p_memstat_relaunch_flags;
switch (relaunch_flags) {
case P_MEMSTAT_RELAUNCH_LOW:
relaunch_flags = POSIX_SPAWN_JETSAM_RELAUNCH_BEHAVIOR_LOW;
break;
case P_MEMSTAT_RELAUNCH_MED:
relaunch_flags = POSIX_SPAWN_JETSAM_RELAUNCH_BEHAVIOR_MED;
break;
case P_MEMSTAT_RELAUNCH_HIGH:
relaunch_flags = POSIX_SPAWN_JETSAM_RELAUNCH_BEHAVIOR_HIGH;
break;
}
return SYSCTL_OUT(req, &relaunch_flags, sizeof(relaunch_flags));
}
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_relaunch_flags, CTLTYPE_INT | CTLFLAG_RD |
CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, sysctl_memorystatus_relaunch_flags, "I", "get relaunch flags for current process");
#endif /* DEVELOPMENT || DEBUG */
/*
* Everything between the idle band and the application agining band
* are reserved for internal use. We allow some entitled user space programs
* to use this range for experimentation.
*/
static bool
current_task_can_use_entitled_range()
{
static const char kInternalJetsamRangeEntitlement[] = "com.apple.private.internal-jetsam-range";
task_t task = current_task();
if (task == kernel_task) {
return true;
}
return IOTaskHasEntitlement(task, kInternalJetsamRangeEntitlement);
}
/*
*
* Description: Update the jetsam priority and memory limit attributes for a given process.
*
* Parameters:
* p init this process's jetsam information.
* priority The jetsam priority band
* user_data user specific data, unused by the kernel
* is_assertion When true, a priority update is driven by an assertion.
* effective guards against race if process's update already occurred
* update_memlimit When true we know this is the init step via the posix_spawn path.
*
* memlimit_active Value in megabytes; The monitored footprint level while the
* process is active. Exceeding it may result in termination
* based on it's associated fatal flag.
*
* memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
* this describes whether or not it should be immediately fatal.
*
* memlimit_inactive Value in megabytes; The monitored footprint level while the
* process is inactive. Exceeding it may result in termination
* based on it's associated fatal flag.
*
* memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
* this describes whether or not it should be immediatly fatal.
*
* Returns: 0 Success
* non-0 Failure
*/
int
memorystatus_update(proc_t p, int priority, uint64_t user_data, boolean_t is_assertion, boolean_t effective, boolean_t update_memlimit,
int32_t memlimit_active, boolean_t memlimit_active_is_fatal,
int32_t memlimit_inactive, boolean_t memlimit_inactive_is_fatal)
{
int ret;
boolean_t head_insert = false;
memorystatus_log_info("memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n",
(*p->p_name ? p->p_name : "unknown"), proc_getpid(p), priority, user_data);
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_UPDATE) | DBG_FUNC_START, proc_getpid(p), priority, user_data, effective);
if (priority == -1) {
/* Use as shorthand for default priority */
priority = JETSAM_PRIORITY_DEFAULT;
} else if (priority > JETSAM_PRIORITY_IDLE && priority <= applications_aging_band) {
/*
* Everything between idle and the aging bands are reserved for internal use.
* if requested, adjust to JETSAM_PRIORITY_IDLE.
* Entitled processes (just munch) can use a subset of this range for testing.
*/
if (priority > JETSAM_PRIORITY_ENTITLED_MAX ||
!current_task_can_use_entitled_range()) {
priority = JETSAM_PRIORITY_IDLE;
}
} else if (priority == JETSAM_PRIORITY_IDLE_HEAD) {
/* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
priority = JETSAM_PRIORITY_IDLE;
head_insert = TRUE;
} else if ((priority < 0) || (priority >= MEMSTAT_BUCKET_COUNT)) {
/* Sanity check */
ret = EINVAL;
goto out;
}
proc_list_lock();
assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL));
if (effective && (p->p_memstat_state & P_MEMSTAT_PRIORITYUPDATED)) {
ret = EALREADY;
proc_list_unlock();
memorystatus_log_debug("memorystatus_update: effective change specified for pid %d, but change already occurred.\n",
proc_getpid(p));
goto out;
}
if ((p->p_memstat_state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_SKIP)) || proc_list_exited(p)) {
/*
* This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
*/
ret = EBUSY;
proc_list_unlock();
goto out;
}
p->p_memstat_state |= P_MEMSTAT_PRIORITYUPDATED;
p->p_memstat_userdata = user_data;
if (is_assertion) {
if (priority == JETSAM_PRIORITY_IDLE) {
/*
* Assertions relinquish control when the process is heading to IDLE.
*/
if (p->p_memstat_state & P_MEMSTAT_PRIORITY_ASSERTION) {
/*
* Mark the process as no longer being managed by assertions.
*/
p->p_memstat_state &= ~P_MEMSTAT_PRIORITY_ASSERTION;
} else {
/*
* Ignore an idle priority transition if the process is not
* already managed by assertions. We won't treat this as
* an error, but we will log the unexpected behavior and bail.
*/
memorystatus_log_error(
"memorystatus: Ignore assertion driven idle priority. Process not previously controlled %s:%d\n",
(*p->p_name ? p->p_name : "unknown"), proc_getpid(p));
ret = 0;
proc_list_unlock();
goto out;
}
} else {
/*
* Process is now being managed by assertions,
*/
p->p_memstat_state |= P_MEMSTAT_PRIORITY_ASSERTION;
}
/* Always update the assertion priority in this path */
p->p_memstat_assertionpriority = priority;
int memstat_dirty_flags = memorystatus_dirty_get(p, TRUE); /* proc_list_lock is held */
if (memstat_dirty_flags != 0) {
/*
* Calculate maximum priority only when dirty tracking processes are involved.
*/
int maxpriority;
if (memstat_dirty_flags & PROC_DIRTY_IS_DIRTY) {
maxpriority = MAX(p->p_memstat_assertionpriority, p->p_memstat_requestedpriority);
} else {
/* clean */
if (memstat_dirty_flags & PROC_DIRTY_ALLOWS_IDLE_EXIT) {
/*
* The aging policy must be evaluated and applied here because runnningboardd
* has relinquished its hold on the jetsam priority by attempting to move a
* clean process to the idle band.
*/
int newpriority = JETSAM_PRIORITY_IDLE;
if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED | P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) {
newpriority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE;
}
maxpriority = MAX(p->p_memstat_assertionpriority, newpriority );
if (newpriority == system_procs_aging_band) {
memorystatus_schedule_idle_demotion_locked(p, FALSE);
}
} else {
/*
* Preserves requestedpriority when the process does not support pressured exit.
*/
maxpriority = MAX(p->p_memstat_assertionpriority, p->p_memstat_requestedpriority);
}
}
priority = maxpriority;
}
} else {
p->p_memstat_requestedpriority = priority;
}
if (update_memlimit) {
boolean_t is_fatal;
boolean_t use_active;
/*
* Posix_spawn'd processes come through this path to instantiate ledger limits.
* Forked processes do not come through this path, so no ledger limits exist.
* (That's why forked processes can consume unlimited memory.)
*/
memorystatus_log_info(
"memorystatus_update: update memlimit (%s) pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
(*p->p_name ? p->p_name : "unknown"), proc_getpid(p), priority, p->p_memstat_dirty,
memlimit_active, (memlimit_active_is_fatal ? "F " : "NF"),
memlimit_inactive, (memlimit_inactive_is_fatal ? "F " : "NF"));
if (memlimit_active <= 0) {
/*
* This process will have a system_wide task limit when active.
* System_wide task limit is always fatal.
* It's quite common to see non-fatal flag passed in here.
* It's not an error, we just ignore it.
*/
/*
* For backward compatibility with some unexplained launchd behavior,
* we allow a zero sized limit. But we still enforce system_wide limit
* when written to the ledgers.
*/
if (memlimit_active < 0) {
memlimit_active = -1; /* enforces system_wide task limit */
}
memlimit_active_is_fatal = TRUE;
}
if (memlimit_inactive <= 0) {
/*
* This process will have a system_wide task limit when inactive.
* System_wide task limit is always fatal.
*/
memlimit_inactive = -1;
memlimit_inactive_is_fatal = TRUE;
}
/*
* Initialize the active limit variants for this process.
*/
SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal);
/*
* Initialize the inactive limit variants for this process.
*/
SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal);
/*
* Initialize the cached limits for target process.
* When the target process is dirty tracked, it's typically
* in a clean state. Non dirty tracked processes are
* typically active (Foreground or above).
* But just in case, we don't make assumptions...
*/
if (proc_jetsam_state_is_active_locked(p) == TRUE) {
CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = TRUE;
} else {
CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = FALSE;
}
/*
* Enforce the cached limit by writing to the ledger.
*/
if (memorystatus_highwater_enabled) {
/* apply now */
task_set_phys_footprint_limit_internal(proc_task(p),
((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal);
}
}
/*
* We can't add to the aging bands buckets here.
* But, we could be removing it from those buckets.
* Check and take appropriate steps if so.
*/
if (isProcessInAgingBands(p)) {
if (isApp(p) && (priority > applications_aging_band)) {
/*
* Runningboardd is pulling up an application that is in the aging band.
* We reset the app's state here so that it'll get a fresh stay in the
* aging band on the way back.
*
* We always handled the app 'aging' in the memorystatus_update_priority_locked()
* function. Daemons used to be handled via the dirty 'set/clear/track' path.
* But with extensions (daemon-app hybrid), runningboardd is now going through
* this routine for daemons too and things have gotten a bit tangled. This should
* be simplified/untangled at some point and might require some assistance from
* runningboardd.
*/
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
} else {
memorystatus_invalidate_idle_demotion_locked(p, FALSE);
}
memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
}
memorystatus_update_priority_locked(p, priority, head_insert, FALSE);
proc_list_unlock();
ret = 0;
out:
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_UPDATE) | DBG_FUNC_END, ret);
return ret;
}
int
memorystatus_remove(proc_t p)
{
int ret;
memstat_bucket_t *bucket;
boolean_t reschedule = FALSE;
memorystatus_log_debug("memorystatus_list_remove: removing pid %d\n", proc_getpid(p));
/* Processes marked internal do not have priority tracked */
if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
return 0;
}
/*
* Check if this proc is locked (because we're performing a freeze).
* If so, we fail and instruct the caller to try again later.
*/
if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
return EAGAIN;
}
assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL));
bucket = &memstat_bucket[p->p_memstat_effectivepriority];
if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) {
assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs);
reschedule = TRUE;
} else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) {
assert(bucket->count == memorystatus_scheduled_idle_demotions_apps);
reschedule = TRUE;
}
/*
* Record idle delta
*/
if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
uint64_t now = mach_absolute_time();
if (now > p->p_memstat_idle_start) {
p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
}
}
TAILQ_REMOVE(&bucket->list, p, p_memstat_list);
bucket->count--;
if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
bucket->relaunch_high_count--;
}
memorystatus_list_count--;
/* If awaiting demotion to the idle band, clean up */
if (reschedule) {
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
memorystatus_reschedule_idle_demotion_locked();
}
memorystatus_check_levels_locked();
#if CONFIG_FREEZE
if (p->p_memstat_state & (P_MEMSTAT_FROZEN)) {
if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) {
p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE;
memorystatus_refreeze_eligible_count--;
}
memorystatus_frozen_count--;
if (p->p_memstat_state & P_MEMSTAT_FROZEN_XPC_SERVICE) {
memorystatus_frozen_count_xpc_service--;
}
if (strcmp(p->p_name, "com.apple.WebKit.WebContent") == 0) {
memorystatus_frozen_count_webcontent--;
}
memorystatus_frozen_shared_mb -= p->p_memstat_freeze_sharedanon_pages;
p->p_memstat_freeze_sharedanon_pages = 0;
}
if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
memorystatus_suspended_count--;
}
#endif
#if DEVELOPMENT || DEBUG
if (proc_getpid(p) == memorystatus_testing_pid) {
memorystatus_testing_pid = 0;
}
#endif /* DEVELOPMENT || DEBUG */
if (p) {
ret = 0;
} else {
ret = ESRCH;
}
return ret;
}
/*
* Validate dirty tracking flags with process state.
*
* Return:
* 0 on success
* non-0 on failure
*
* The proc_list_lock is held by the caller.
*/
static int
memorystatus_validate_track_flags(struct proc *target_p, uint32_t pcontrol)
{
/* See that the process isn't marked for termination */
if (target_p->p_memstat_dirty & P_DIRTY_TERMINATED) {
return EBUSY;
}
/* Idle exit requires that process be tracked */
if ((pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) &&
!(pcontrol & PROC_DIRTY_TRACK)) {
return EINVAL;
}
/* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
if ((pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) &&
!(pcontrol & PROC_DIRTY_TRACK)) {
return EINVAL;
}
/* Only one type of DEFER behavior is allowed.*/
if ((pcontrol & PROC_DIRTY_DEFER) &&
(pcontrol & PROC_DIRTY_DEFER_ALWAYS)) {
return EINVAL;
}
/* Deferral is only relevant if idle exit is specified */
if (((pcontrol & PROC_DIRTY_DEFER) ||
(pcontrol & PROC_DIRTY_DEFER_ALWAYS)) &&
!(pcontrol & PROC_DIRTY_ALLOWS_IDLE_EXIT)) {
return EINVAL;
}
return 0;
}
static void
memorystatus_update_idle_priority_locked(proc_t p)
{
int32_t priority;
memorystatus_log_debug("memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n",
proc_getpid(p), p->p_memstat_dirty);
assert(isSysProc(p));
if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED | P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) {
priority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE;
} else {
priority = p->p_memstat_requestedpriority;
}
if (p->p_memstat_state & P_MEMSTAT_PRIORITY_ASSERTION) {
/*
* This process has a jetsam priority managed by an assertion.
* Policy is to choose the max priority.
*/
if (p->p_memstat_assertionpriority > priority) {
memorystatus_log_debug("memorystatus: assertion priority %d overrides priority %d for %s:%d\n",
p->p_memstat_assertionpriority, priority,
(*p->p_name ? p->p_name : "unknown"), proc_getpid(p));
priority = p->p_memstat_assertionpriority;
}
}
if (priority != p->p_memstat_effectivepriority) {
memorystatus_update_priority_locked(p, priority, false, false);
}
}
/*
* Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
* (clean). They may also indicate that they support termination when idle, with the result that they are promoted
* to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
* priority idle band when clean (and killed earlier, protecting higher priority procesess).
*
* If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
* memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
* with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
* make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
* band. The deferral can be cleared early by clearing the appropriate flag.
*
* The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
* is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
* re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
*/
int
memorystatus_dirty_track(proc_t p, uint32_t pcontrol)
{
unsigned int old_dirty;
boolean_t reschedule = FALSE;
boolean_t already_deferred = FALSE;
boolean_t defer_now = FALSE;
int ret = 0;
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_DIRTY_TRACK),
proc_getpid(p), p->p_memstat_dirty, pcontrol);
proc_list_lock();
if (proc_list_exited(p)) {
/*
* Process is on its way out.
*/
ret = EBUSY;
goto exit;
}
if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
ret = EPERM;
goto exit;
}
if ((ret = memorystatus_validate_track_flags(p, pcontrol)) != 0) {
/* error */
goto exit;
}
old_dirty = p->p_memstat_dirty;
/* These bits are cumulative, as per <rdar://problem/11159924> */
if (pcontrol & PROC_DIRTY_TRACK) {
/*Request to turn ON Dirty tracking...*/
if (p->p_memstat_state & P_MEMSTAT_MANAGED) {
/* on a process managed by RunningBoard or its equivalent...*/
if (!(p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)) {
/* but this might be an app because there's no fatal limits
* NB: This _big_ assumption is not universal. What we really
* need is a way to say this is an _APP_ and we can't have dirty
* tracking turned ON for it. Lacking that functionality we clump
* together some checks and try to do the best detection we can.
* Reason we can't allow addition of these flags is because, per the
* kernel checks, they change the role of a process from app to daemon. And the
* AGING_IN_PROGRESS bits might still be set i.e. it needs to be demoted
* correctly from the right aging band (app or sysproc). We can't simply try
* to invalidate the demotion here because, owing to assertion priorities, we
* might not be in the aging bands.
*/
#if DEVELOPMENT || DEBUG
memorystatus_log_info(
"memorystatus: Denying dirty-tracking opt-in for app %s (pid %d)\n",
(*p->p_name ? p->p_name : "unknown"), proc_getpid(p));
#endif /*DEVELOPMENT || DEBUG*/
/* fail silently to avoid an XPC assertion... */
ret = 0;
goto exit;
}
}
p->p_memstat_dirty |= P_DIRTY_TRACK;
}
if (pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) {
p->p_memstat_dirty |= P_DIRTY_ALLOW_IDLE_EXIT;
}
if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) {
p->p_memstat_dirty |= P_DIRTY_LAUNCH_IN_PROGRESS;
}
if (old_dirty & P_DIRTY_AGING_IN_PROGRESS) {
already_deferred = TRUE;
}
/* This can be set and cleared exactly once. */
if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) {
if ((pcontrol & (PROC_DIRTY_DEFER)) &&
!(old_dirty & P_DIRTY_DEFER)) {
p->p_memstat_dirty |= P_DIRTY_DEFER;
}
if ((pcontrol & (PROC_DIRTY_DEFER_ALWAYS)) &&
!(old_dirty & P_DIRTY_DEFER_ALWAYS)) {
p->p_memstat_dirty |= P_DIRTY_DEFER_ALWAYS;
}
defer_now = TRUE;
}
memorystatus_log_info(
"memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) ? "Y" : "N",
defer_now ? "Y" : "N", p->p_memstat_dirty & P_DIRTY ? "Y" : "N", proc_getpid(p));
/* Kick off or invalidate the idle exit deferment if there's a state transition. */
if (!(p->p_memstat_dirty & P_DIRTY_IS_DIRTY)) {
if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
if (defer_now && !already_deferred) {
/*
* Request to defer a clean process that's idle-exit enabled
* and not already in the jetsam deferred band. Most likely a
* new launch.
*/
memorystatus_schedule_idle_demotion_locked(p, TRUE);
reschedule = TRUE;
} else if (!defer_now) {
/*
* The process isn't asking for the 'aging' facility.
* Could be that it is:
*/
if (already_deferred) {
/*
* already in the aging bands. Traditionally,
* some processes have tried to use this to
* opt out of the 'aging' facility.
*/
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
} else {
/*
* agnostic to the 'aging' facility. In that case,
* we'll go ahead and opt it in because this is likely
* a new launch (clean process, dirty tracking enabled)
*/
memorystatus_schedule_idle_demotion_locked(p, TRUE);
}
reschedule = TRUE;
}
}
} else {
/*
* We are trying to operate on a dirty process. Dirty processes have to
* be removed from the deferred band & their state has to be reset.
*
* This could be a legal request like:
* - this process had opted into the 'aging' band
* - but it's now dirty and requests to opt out.
* In this case, we remove the process from the band and reset its
* state too. It'll opt back in properly when needed.
*
* OR, this request could be a user-space bug. E.g.:
* - this process had opted into the 'aging' band when clean
* - and, then issues another request to again put it into the band except
* this time the process is dirty.
* The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
* the deferred band with its state intact. So our request below is no-op.
* But we do it here anyways for coverage.
*
* memorystatus_update_idle_priority_locked()
* single-mindedly treats a dirty process as "cannot be in the aging band".
*/
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
reschedule = TRUE;
}
memorystatus_update_idle_priority_locked(p);
if (reschedule) {
memorystatus_reschedule_idle_demotion_locked();
}
ret = 0;
exit:
proc_list_unlock();
return ret;
}
int
memorystatus_dirty_set(proc_t p, boolean_t self, uint32_t pcontrol)
{
int ret;
boolean_t kill = false;
boolean_t reschedule = FALSE;
boolean_t was_dirty = FALSE;
boolean_t now_dirty = FALSE;
memorystatus_log_debug("memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self, proc_getpid(p), pcontrol, p->p_memstat_dirty);
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_DIRTY_SET), proc_getpid(p), self, pcontrol);
proc_list_lock();
if (proc_list_exited(p)) {
/*
* Process is on its way out.
*/
ret = EBUSY;
goto exit;
}
if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
ret = EPERM;
goto exit;
}
if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
was_dirty = TRUE;
}
if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) {
/* Dirty tracking not enabled */
ret = EINVAL;
} else if (pcontrol && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) {
/*
* Process is set to be terminated and we're attempting to mark it dirty.
* Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
*/
ret = EBUSY;
} else {
int flag = (self == TRUE) ? P_DIRTY : P_DIRTY_SHUTDOWN;
if (pcontrol && !(p->p_memstat_dirty & flag)) {
/* Mark the process as having been dirtied at some point */
p->p_memstat_dirty |= (flag | P_DIRTY_MARKED);
memorystatus_dirty_count++;
ret = 0;
} else if ((pcontrol == 0) && (p->p_memstat_dirty & flag)) {
if ((flag == P_DIRTY_SHUTDOWN) && (!(p->p_memstat_dirty & P_DIRTY))) {
/* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
p->p_memstat_dirty |= P_DIRTY_TERMINATED;
kill = true;
} else if ((flag == P_DIRTY) && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) {
/* Kill previously terminated processes if set clean */
kill = true;
}
p->p_memstat_dirty &= ~flag;
memorystatus_dirty_count--;
ret = 0;
} else {
/* Already set */
ret = EALREADY;
}
}
if (ret != 0) {
goto exit;
}
if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
now_dirty = TRUE;
}
if ((was_dirty == TRUE && now_dirty == FALSE) ||
(was_dirty == FALSE && now_dirty == TRUE)) {
/* Manage idle exit deferral, if applied */
if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
/*
* Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
* there once it's clean again. For the legacy case, this only applies if it has some protection window left.
* P_DIRTY_DEFER: one-time protection window given at launch
* P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode.
*
* Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
* in that band on it's way to IDLE.
*/
if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
/*
* New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
*
* The process will move from its aging band to its higher requested
* jetsam band.
*/
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
reschedule = TRUE;
} else {
/*
* Process is back from "dirty" to "clean".
*/
memorystatus_schedule_idle_demotion_locked(p, TRUE);
reschedule = TRUE;
}
}
memorystatus_update_idle_priority_locked(p);
if (memorystatus_highwater_enabled) {
boolean_t ledger_update_needed = TRUE;
boolean_t use_active;
boolean_t is_fatal;
/*
* We are in this path because this process transitioned between
* dirty <--> clean state. Update the cached memory limits.
*/
if (proc_jetsam_state_is_active_locked(p) == TRUE) {
/*
* process is pinned in elevated band
* or
* process is dirty
*/
CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = TRUE;
ledger_update_needed = TRUE;
} else {
/*
* process is clean...but if it has opted into pressured-exit
* we don't apply the INACTIVE limit till the process has aged
* out and is entering the IDLE band.
* See memorystatus_update_priority_locked() for that.
*/
if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) {
ledger_update_needed = FALSE;
} else {
CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = FALSE;
ledger_update_needed = TRUE;
}
}
/*
* Enforce the new limits by writing to the ledger.
*
* This is a hot path and holding the proc_list_lock while writing to the ledgers,
* (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
* We aren't traversing the jetsam bucket list here, so we should be safe.
* See rdar://21394491.
*/
if (ledger_update_needed && proc_ref(p, true) == p) {
int ledger_limit;
if (p->p_memstat_memlimit > 0) {
ledger_limit = p->p_memstat_memlimit;
} else {
ledger_limit = -1;
}
proc_list_unlock();
task_set_phys_footprint_limit_internal(proc_task(p), ledger_limit, NULL, use_active, is_fatal);
proc_list_lock();
proc_rele(p);
memorystatus_log_debug(
"memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
proc_getpid(p), (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
(p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty,
(p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
}
}
/* If the deferral state changed, reschedule the demotion timer */
if (reschedule) {
memorystatus_reschedule_idle_demotion_locked();
}
/* Settle dirty time in ledger, and update transition timestamp */
task_t t = proc_task(p);
if (was_dirty) {
task_ledger_settle_dirty_time(t);
task_set_dirty_start(t, 0);
} else {
task_set_dirty_start(t, mach_absolute_time());
}
}
if (kill) {
if (proc_ref(p, true) == p) {
proc_list_unlock();
psignal(p, SIGKILL);
proc_list_lock();
proc_rele(p);
}
}
exit:
proc_list_unlock();
return ret;
}
int
memorystatus_dirty_clear(proc_t p, uint32_t pcontrol)
{
int ret = 0;
memorystatus_log_debug("memorystatus_dirty_clear(): %d 0x%x 0x%x\n", proc_getpid(p), pcontrol, p->p_memstat_dirty);
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_DIRTY_CLEAR), proc_getpid(p), pcontrol);
proc_list_lock();
if (proc_list_exited(p)) {
/*
* Process is on its way out.
*/
ret = EBUSY;
goto exit;
}
if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
ret = EPERM;
goto exit;
}
if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) {
/* Dirty tracking not enabled */
ret = EINVAL;
goto exit;
}
if (!pcontrol || (pcontrol & (PROC_DIRTY_LAUNCH_IN_PROGRESS | PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) == 0) {
ret = EINVAL;
goto exit;
}
if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) {
p->p_memstat_dirty &= ~P_DIRTY_LAUNCH_IN_PROGRESS;
}
/* This can be set and cleared exactly once. */
if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) {
if (p->p_memstat_dirty & P_DIRTY_DEFER) {
p->p_memstat_dirty &= ~(P_DIRTY_DEFER);
}
if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) {
p->p_memstat_dirty &= ~(P_DIRTY_DEFER_ALWAYS);
}
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
memorystatus_update_idle_priority_locked(p);
memorystatus_reschedule_idle_demotion_locked();
}
ret = 0;
exit:
proc_list_unlock();
return ret;
}
int
memorystatus_dirty_get(proc_t p, boolean_t locked)
{
int ret = 0;
if (!locked) {
proc_list_lock();
}
if (p->p_memstat_dirty & P_DIRTY_TRACK) {
ret |= PROC_DIRTY_TRACKED;
if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) {
ret |= PROC_DIRTY_ALLOWS_IDLE_EXIT;
}
if (p->p_memstat_dirty & P_DIRTY) {
ret |= PROC_DIRTY_IS_DIRTY;
}
if (p->p_memstat_dirty & P_DIRTY_LAUNCH_IN_PROGRESS) {
ret |= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS;
}
}
if (!locked) {
proc_list_unlock();
}
return ret;
}
int
memorystatus_on_terminate(proc_t p)
{
int sig;
proc_list_lock();
p->p_memstat_dirty |= P_DIRTY_TERMINATED;
if (((p->p_memstat_dirty & (P_DIRTY_TRACK | P_DIRTY_IS_DIRTY)) == P_DIRTY_TRACK) ||
(p->p_memstat_state & P_MEMSTAT_SUSPENDED)) {
/*
* Mark as terminated and issue SIGKILL if:-
* - process is clean, or,
* - if process is dirty but suspended. This case is likely
* an extension because apps don't opt into dirty-tracking
* and daemons aren't suspended.
*/
#if DEVELOPMENT || DEBUG
if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
memorystatus_log_info(
"memorystatus: sending suspended process %s (pid %d) SIGKILL\n",
(*p->p_name ? p->p_name : "unknown"), proc_getpid(p));
}
#endif /* DEVELOPMENT || DEBUG */
sig = SIGKILL;
} else {
/* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
sig = SIGTERM;
}
proc_list_unlock();
return sig;
}
void
memorystatus_on_suspend(proc_t p)
{
#if CONFIG_FREEZE
uint32_t pages;
memorystatus_get_task_page_counts(proc_task(p), &pages, NULL, NULL);
#endif
proc_list_lock();
#if CONFIG_FREEZE
memorystatus_suspended_count++;
#endif
p->p_memstat_state |= P_MEMSTAT_SUSPENDED;
/* Check if proc is marked for termination */
bool kill_process = !!(p->p_memstat_dirty & P_DIRTY_TERMINATED);
proc_list_unlock();
if (kill_process) {
psignal(p, SIGKILL);
}
#if CONFIG_DEFERRED_RECLAIM
vm_deferred_reclamation_reclaim_from_task_async(proc_task(p));
#endif /* CONFIG_DEFERRED_RECLAIM */
}
extern uint64_t memorystatus_thaw_count_since_boot;
void
memorystatus_on_resume(proc_t p)
{
#if CONFIG_FREEZE
boolean_t frozen;
pid_t pid;
#endif
proc_list_lock();
#if CONFIG_FREEZE
frozen = (p->p_memstat_state & P_MEMSTAT_FROZEN);
if (frozen) {
/*
* Now that we don't _thaw_ a process completely,
* resuming it (and having some on-demand swapins)
* shouldn't preclude it from being counted as frozen.
*
* memorystatus_frozen_count--;
*
* We preserve the P_MEMSTAT_FROZEN state since the process
* could have state on disk AND so will deserve some protection
* in the jetsam bands.
*/
if ((p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) == 0) {
p->p_memstat_state |= P_MEMSTAT_REFREEZE_ELIGIBLE;
memorystatus_refreeze_eligible_count++;
}
if (p->p_memstat_thaw_count == 0 || p->p_memstat_last_thaw_interval < memorystatus_freeze_current_interval) {
os_atomic_inc(&(memorystatus_freezer_stats.mfs_processes_thawed), relaxed);
if (strcmp(p->p_name, "com.apple.WebKit.WebContent") == 0) {
os_atomic_inc(&(memorystatus_freezer_stats.mfs_processes_thawed_webcontent), relaxed);
}
}
p->p_memstat_last_thaw_interval = memorystatus_freeze_current_interval;
p->p_memstat_thaw_count++;
memorystatus_freeze_last_pid_thawed = p->p_pid;
memorystatus_freeze_last_pid_thawed_ts = mach_absolute_time();
memorystatus_thaw_count++;
memorystatus_thaw_count_since_boot++;
}
if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
memorystatus_suspended_count--;
}
pid = proc_getpid(p);
#endif
/*
* P_MEMSTAT_FROZEN will remain unchanged. This used to be:
* p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
*/
p->p_memstat_state &= ~P_MEMSTAT_SUSPENDED;
proc_list_unlock();
#if CONFIG_FREEZE
if (frozen) {
memorystatus_freeze_entry_t data = { pid, FALSE, 0 };
memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data));
}
#endif
}
void
memorystatus_on_inactivity(proc_t p)
{
#pragma unused(p)
#if CONFIG_FREEZE
/* Wake the freeze thread */
thread_wakeup((event_t)&memorystatus_freeze_wakeup);
#endif
}
/*
* The proc_list_lock is held by the caller.
*/
static uint32_t
memorystatus_build_state(proc_t p)
{
uint32_t snapshot_state = 0;
/* General */
if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
snapshot_state |= kMemorystatusSuspended;
}
if (p->p_memstat_state & P_MEMSTAT_FROZEN) {
snapshot_state |= kMemorystatusFrozen;
}
if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) {
snapshot_state |= kMemorystatusWasThawed;
}
if (p->p_memstat_state & P_MEMSTAT_PRIORITY_ASSERTION) {
snapshot_state |= kMemorystatusAssertion;
}
/* Tracking */
if (p->p_memstat_dirty & P_DIRTY_TRACK) {
snapshot_state |= kMemorystatusTracked;
}
if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
snapshot_state |= kMemorystatusSupportsIdleExit;
}
if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
snapshot_state |= kMemorystatusDirty;
}
return snapshot_state;
}
static boolean_t
kill_idle_exit_proc(void)
{
proc_t p, victim_p = PROC_NULL;
uint64_t current_time, footprint_of_killed_proc;
boolean_t killed = FALSE;
unsigned int i = 0;
os_reason_t jetsam_reason = OS_REASON_NULL;
/* Pick next idle exit victim. */
current_time = mach_absolute_time();
jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_IDLE_EXIT);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("kill_idle_exit_proc: failed to allocate jetsam reason\n");
}
proc_list_lock();
p = memorystatus_get_first_proc_locked(&i, FALSE);
while (p) {
/* No need to look beyond the idle band */
if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) {
break;
}
if ((p->p_memstat_dirty & (P_DIRTY_ALLOW_IDLE_EXIT | P_DIRTY_IS_DIRTY | P_DIRTY_TERMINATED)) == (P_DIRTY_ALLOW_IDLE_EXIT)) {
if (current_time >= p->p_memstat_idledeadline) {
p->p_memstat_dirty |= P_DIRTY_TERMINATED;
victim_p = proc_ref(p, true);
break;
}
}
p = memorystatus_get_next_proc_locked(&i, p, FALSE);
}
proc_list_unlock();
if (victim_p) {
memorystatus_log(
"memorystatus: killing_idle_process pid %d [%s] jetsam_reason->osr_code: %llu\n",
proc_getpid(victim_p), (*victim_p->p_name ? victim_p->p_name : "unknown"), jetsam_reason->osr_code);
killed = memorystatus_do_kill(victim_p, kMemorystatusKilledIdleExit, jetsam_reason, &footprint_of_killed_proc);
proc_rele(victim_p);
} else {
os_reason_free(jetsam_reason);
}
return killed;
}
void
memorystatus_thread_wake()
{
int thr_id = 0;
int active_thr = atomic_load(&active_jetsam_threads);
/* Wakeup all the jetsam threads */
for (thr_id = 0; thr_id < active_thr; thr_id++) {
jetsam_thread_state_t *jetsam_thread = &jetsam_threads[thr_id];
sched_cond_signal(&(jetsam_thread->jt_wakeup_cond), jetsam_thread->thread);
}
}
#if CONFIG_JETSAM
static void
memorystatus_thread_pool_max()
{
/* Increase the jetsam thread pool to max_jetsam_threads */
int max_threads = max_jetsam_threads;
memorystatus_log_info("Expanding memorystatus pool to %d!\n", max_threads);
atomic_store(&active_jetsam_threads, max_threads);
}
static void
memorystatus_thread_pool_default()
{
/* Restore the jetsam thread pool to a single thread */
memorystatus_log_info("Reverting memorystatus pool back to 1\n");
atomic_store(&active_jetsam_threads, 1);
}
#endif /* CONFIG_JETSAM */
extern void vm_pressure_response(void);
bool
memorystatus_avail_pages_below_pressure(void)
{
#if CONFIG_JETSAM
return memorystatus_available_pages <= memorystatus_available_pages_pressure;
#else /* CONFIG_JETSAM */
return false;
#endif /* CONFIG_JETSAM */
}
bool
memorystatus_avail_pages_below_critical(void)
{
#if CONFIG_JETSAM
return memorystatus_available_pages <= memorystatus_available_pages_critical;
#else /* CONFIG_JETSAM */
return false;
#endif /* CONFIG_JETSAM */
}
#if CONFIG_JETSAM
static uint64_t
memorystatus_swap_trigger_pages(void)
{
/*
* The swapout trigger varies based on the current memorystatus_level.
* When available memory is somewhat high (at memorystatus_available_pages_pressure)
* we keep more swappable compressor segments in memory.
* However, as available memory drops to our idle and eventually critical kill
* thresholds we start swapping more aggressively.
*/
static uint32_t available_pages_factor[] = {0, 1, 1, 1, 2, 2, 3, 5, 7, 8, 10, 13, 15, 17, 20};
size_t index = MIN(memorystatus_level, sizeof(available_pages_factor) / sizeof(uint32_t) - 1);
return available_pages_factor[index] * memorystatus_available_pages / 10;
}
static int
sysctl_memorystatus_swap_trigger_pages SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint64_t trigger_pages = memorystatus_swap_trigger_pages();
return SYSCTL_OUT(req, &trigger_pages, sizeof(trigger_pages));
}
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_swap_trigger_pages, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, &sysctl_memorystatus_swap_trigger_pages, "I", "");
/*
* Check if the number of full swappable csegments is over the trigger
* threshold to start swapping.
* The adjustment_factor is applied to the trigger to raise or lower
* it. For example an adjustement factor of 110 will raise the threshold by 10%.
*/
bool
memorystatus_swap_over_trigger(uint64_t adjustment_factor)
{
if (!memorystatus_swap_all_apps) {
return false;
}
uint64_t trigger_pages = memorystatus_swap_trigger_pages();
trigger_pages = trigger_pages * adjustment_factor / 100;
return atop_64(c_late_swapout_count * c_seg_allocsize) > trigger_pages;
}
/*
* Check if the number of segments on the early swapin queue
* is over the trigger to start compacting it.
*/
bool
memorystatus_swapin_over_trigger(void)
{
return atop_64(c_late_swappedin_count * c_seg_allocsize) > memorystatus_swapin_trigger_pages;
}
#endif /* CONFIG_JETSAM */
#if DEVELOPMENT || DEBUG
SYSCTL_UINT(_vm, OID_AUTO, c_late_swapout_count, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, &c_late_swapout_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, c_seg_allocsize, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, &c_seg_allocsize, 0, "");
#if CONFIG_FREEZE
extern int32_t c_segment_pages_compressed_incore_late_swapout;
SYSCTL_INT(_vm, OID_AUTO, c_segment_pages_compressed_incore_late_swapout, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, &c_segment_pages_compressed_incore_late_swapout, 0, "");
#endif /* CONFIG_FREEZE */
#endif /* DEVELOPMENT || DEBUG */
static boolean_t
memorystatus_should_post_snapshot(int32_t priority, uint32_t cause)
{
boolean_t is_idle_priority;
is_idle_priority = (priority == JETSAM_PRIORITY_IDLE || priority == JETSAM_PRIORITY_IDLE_DEFERRED);
#if CONFIG_JETSAM
#pragma unused(cause)
/*
* Don't generate logs for steady-state idle-exit kills,
* unless it is overridden for debug or by the device
* tree.
*/
return !is_idle_priority || memorystatus_idle_snapshot;
#else /* CONFIG_JETSAM */
/*
* Don't generate logs for steady-state idle-exit kills,
* unless
* - it is overridden for debug or by the device
* tree.
* OR
* - the kill causes are important i.e. not kMemorystatusKilledIdleExit
*/
boolean_t snapshot_eligible_kill_cause = (is_reason_thrashing(cause) || is_reason_zone_map_exhaustion(cause));
return !is_idle_priority || memorystatus_idle_snapshot || snapshot_eligible_kill_cause;
#endif /* CONFIG_JETSAM */
}
static boolean_t
memorystatus_act_on_hiwat_processes(uint32_t *errors, uint32_t *hwm_kill, bool *post_snapshot, uint64_t *memory_reclaimed)
{
boolean_t purged = FALSE, killed = FALSE;
*memory_reclaimed = 0;
killed = memorystatus_kill_hiwat_proc(errors, &purged, memory_reclaimed);
if (killed) {
*hwm_kill = *hwm_kill + 1;
*post_snapshot = TRUE;
return TRUE;
} else {
if (purged == FALSE) {
/* couldn't purge and couldn't kill */
memorystatus_hwm_candidates = FALSE;
}
}
return killed;
}
static bool
memorystatus_dump_caches(bool purge_corpses)
{
pmap_release_pages_fast();
if (purge_corpses && total_corpses_count() > 0) {
os_atomic_inc(&block_corpses, relaxed);
assert(block_corpses > 0);
task_purge_all_corpses();
return true;
}
return false;
}
/*
* Called before jetsamming in the foreground band in the hope that we'll
* avoid a jetsam.
*/
static void
memorystatus_approaching_fg_band(bool *corpse_list_purged)
{
bool corpses_purged = false;
assert(corpse_list_purged != NULL);
if (memorystatus_should_issue_fg_band_notify) {
memorystatus_issue_fg_band_notify();
}
corpses_purged = memorystatus_dump_caches(!(*corpse_list_purged));
*corpse_list_purged |= corpses_purged;
#if CONFIG_DEFERRED_RECLAIM
vm_deferred_reclamation_reclaim_all_memory();
#endif /* CONFIG_DEFERRED_RECLAIM */
}
int jld_eval_aggressive_count = 0;
int32_t jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT;
uint64_t jld_timestamp_msecs = 0;
int jld_idle_kill_candidates = 0;
static boolean_t
memorystatus_act_aggressive(uint32_t cause, os_reason_t jetsam_reason, int *jld_idle_kills, bool *corpse_list_purged, bool *post_snapshot, uint64_t *memory_reclaimed)
{
boolean_t killed;
uint32_t errors = 0;
uint64_t footprint_of_killed_proc = 0;
int elevated_bucket_count = 0, maximum_kills = 0, band = 0;
*memory_reclaimed = 0;
jld_eval_aggressive_count++;
if (jld_eval_aggressive_count == memorystatus_jld_eval_aggressive_count) {
memorystatus_approaching_fg_band(corpse_list_purged);
} else if (jld_eval_aggressive_count > memorystatus_jld_eval_aggressive_count) {
/*
* Bump up the jetsam priority limit (eg: the bucket index)
* Enforce bucket index sanity.
*/
if ((memorystatus_jld_eval_aggressive_priority_band_max < 0) ||
(memorystatus_jld_eval_aggressive_priority_band_max >= MEMSTAT_BUCKET_COUNT)) {
/*
* Do nothing. Stick with the default level.
*/
} else {
jld_priority_band_max = memorystatus_jld_eval_aggressive_priority_band_max;
}
}
proc_list_lock();
elevated_bucket_count = memstat_bucket[JETSAM_PRIORITY_ELEVATED_INACTIVE].count;
proc_list_unlock();
/* Visit elevated processes first */
while (elevated_bucket_count) {
elevated_bucket_count--;
/*
* memorystatus_kill_elevated_process() drops a reference,
* so take another one so we can continue to use this exit reason
* even after it returns.
*/
os_reason_ref(jetsam_reason);
killed = memorystatus_kill_elevated_process(
cause,
jetsam_reason,
JETSAM_PRIORITY_ELEVATED_INACTIVE,
jld_eval_aggressive_count,
&errors, &footprint_of_killed_proc);
if (killed) {
*post_snapshot = true;
*memory_reclaimed += footprint_of_killed_proc;
if (memorystatus_avail_pages_below_pressure()) {
/*
* Still under pressure.
* Find another pinned processes.
*/
continue;
} else {
return TRUE;
}
} else {
/*
* No pinned processes left to kill.
* Abandon elevated band.
*/
break;
}
}
proc_list_lock();
for (band = 0; band < jld_priority_band_max; band++) {
maximum_kills += memstat_bucket[band].count;
}
proc_list_unlock();
maximum_kills *= memorystatus_jld_max_kill_loops;
/*
* memorystatus_kill_processes_aggressive() allocates its own
* jetsam_reason so the kMemorystatusKilledProcThrashing cause
* is consistent throughout the aggressive march.
*/
killed = memorystatus_kill_processes_aggressive(
kMemorystatusKilledProcThrashing,
jld_eval_aggressive_count,
jld_priority_band_max,
maximum_kills,
&errors, &footprint_of_killed_proc);
if (killed) {
/* Always generate logs after aggressive kill */
*post_snapshot = true;
*memory_reclaimed += footprint_of_killed_proc;
*jld_idle_kills = 0;
return TRUE;
}
return FALSE;
}
/*
* Sets up a new jetsam thread.
*/
static void
memorystatus_thread_init(jetsam_thread_state_t *jetsam_thread)
{
char name[32];
thread_wire(host_priv_self(), current_thread(), TRUE);
snprintf(name, 32, "VM_memorystatus_%d", jetsam_thread->index + 1);
/* Limit all but one thread to the lower jetsam bands, as that's where most of the victims are. */
if (jetsam_thread->index == 0) {
if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
thread_vm_bind_group_add();
}
jetsam_thread->limit_to_low_bands = FALSE;
} else {
jetsam_thread->limit_to_low_bands = TRUE;
}
#if CONFIG_THREAD_GROUPS
thread_group_vm_add();
#endif
thread_set_thread_name(current_thread(), name);
sched_cond_init(&(jetsam_thread->jt_wakeup_cond));
jetsam_thread->inited = TRUE;
}
/*
* Create a new jetsam reason from the given kill cause.
*/
static os_reason_t
create_jetsam_reason(memorystatus_kill_cause_t cause)
{
os_reason_t jetsam_reason = OS_REASON_NULL;
jetsam_reason_t reason_code = (jetsam_reason_t)cause;
assert3u(reason_code, <=, JETSAM_REASON_MEMORYSTATUS_MAX);
jetsam_reason = os_reason_create(OS_REASON_JETSAM, reason_code);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("memorystatus: failed to allocate jetsam reason for cause %u\n", cause);
}
return jetsam_reason;
}
/*
* Do one kill as we're marching up the priority bands.
* This is a wrapper around memorystatus_kill_top_process that also
* sets post_snapshot, tracks jld_idle_kills, and notifies if we're appraoching the fg band.
*/
static bool
memorystatus_do_priority_kill(jetsam_thread_state_t *thread,
uint32_t kill_cause, int32_t max_priority, bool only_swappable)
{
os_reason_t jetsam_reason = OS_REASON_NULL;
bool killed = false;
int priority;
jetsam_reason = create_jetsam_reason(kill_cause);
/*
* memorystatus_kill_top_process() drops a reference,
* so take another one so we can continue to use this exit reason
* even after it returns
*/
os_reason_ref(jetsam_reason);
/* LRU */
killed = memorystatus_kill_top_process(true, thread->sort_flag, kill_cause, jetsam_reason, max_priority,
only_swappable, &priority, &thread->errors, &thread->memory_reclaimed);
thread->sort_flag = false;
if (killed) {
if (memorystatus_should_post_snapshot(priority, kill_cause) == TRUE) {
thread->post_snapshot = true;
}
/* Jetsam Loop Detection */
if (memorystatus_jld_enabled == TRUE) {
if (priority <= applications_aging_band) {
thread->jld_idle_kills++;
} else {
/*
* We've reached into bands beyond idle deferred.
* We make no attempt to monitor them
*/
}
}
/*
* If we have jetsammed a process in or above JETSAM_PRIORITY_FREEZER
* then we attempt to relieve pressure by purging corpse memory and notifying
* anybody wanting to know this.
*/
if (priority >= JETSAM_PRIORITY_FREEZER) {
memorystatus_approaching_fg_band(&thread->corpse_list_purged);
}
}
os_reason_free(jetsam_reason);
return killed;
}
static bool
memorystatus_do_action(jetsam_thread_state_t *thread, memorystatus_action_t action, uint32_t kill_cause)
{
bool killed = false;
os_reason_t jetsam_reason = OS_REASON_NULL;
switch (action) {
case MEMORYSTATUS_KILL_HIWATER:
killed = memorystatus_act_on_hiwat_processes(&thread->errors, &thread->hwm_kills,
&thread->post_snapshot, &thread->memory_reclaimed);
break;
case MEMORYSTATUS_KILL_AGGRESSIVE:
jetsam_reason = create_jetsam_reason(kill_cause);
killed = memorystatus_act_aggressive(kill_cause, jetsam_reason,
&thread->jld_idle_kills, &thread->corpse_list_purged, &thread->post_snapshot,
&thread->memory_reclaimed);
os_reason_free(jetsam_reason);
break;
case MEMORYSTATUS_KILL_TOP_PROCESS:
killed = memorystatus_do_priority_kill(thread, kill_cause, max_kill_priority, false);
break;
case MEMORYSTATUS_WAKE_SWAPPER:
memorystatus_log_info(
"memorystatus_do_action: Waking up swap thread. memorystatus_available_pages: %llu\n",
(uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
os_atomic_store(&vm_swapout_wake_pending, true, relaxed);
thread_wakeup((event_t)&vm_swapout_thread);
break;
case MEMORYSTATUS_PROCESS_SWAPIN_QUEUE:
memorystatus_log_info(
"memorystatus_do_action: Processing swapin queue of length: %u memorystatus_available_pages: %llu\n",
c_late_swappedin_count, (uint64_t) MEMORYSTATUS_LOG_AVAILABLE_PAGES);
vm_compressor_process_special_swapped_in_segments();
break;
case MEMORYSTATUS_KILL_SUSPENDED_SWAPPABLE:
killed = memorystatus_do_priority_kill(thread, kill_cause, JETSAM_PRIORITY_BACKGROUND - 1, true);
break;
case MEMORYSTATUS_KILL_SWAPPABLE:
killed = memorystatus_do_priority_kill(thread, kill_cause, max_kill_priority, true);
break;
case MEMORYSTATUS_KILL_NONE:
panic("memorystatus_do_action: Impossible! memorystatus_do_action called with action = NONE\n");
}
return killed;
}
static void
memorystatus_post_snapshot()
{
proc_list_lock();
size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count);
uint64_t timestamp_now = mach_absolute_time();
memorystatus_jetsam_snapshot->notification_time = timestamp_now;
memorystatus_jetsam_snapshot->js_gencount++;
if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 ||
timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) {
proc_list_unlock();
int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size));
if (!ret) {
proc_list_lock();
memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; proc_list_unlock();
}
} else {
proc_list_unlock();
}
}
/* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
extern void vm_thrashing_jetsam_done(void);
/*
* Main entrypoint for the memorystatus thread.
* This thread is woken up when we're low on one of the following resources:
* - available pages (free + filebacked)
* - zone memory
* - compressor space
*
* Or when thrashing is detected in the compressor or file cache.
*/
static void
memorystatus_thread_internal(jetsam_thread_state_t *jetsam_thread)
{
uint64_t total_memory_reclaimed = 0;
bool highwater_remaining = true;
bool swappable_apps_remaining = false;
bool suspended_swappable_apps_remaining = false;
#if CONFIG_JETSAM
swappable_apps_remaining = memorystatus_swap_all_apps;
suspended_swappable_apps_remaining = memorystatus_swap_all_apps;
#endif /* CONFIG_JETSAM */
assert(jetsam_thread != NULL);
jetsam_thread->jld_idle_kills = 0;
jetsam_thread->errors = 0;
jetsam_thread->hwm_kills = 0;
jetsam_thread->sort_flag = true;
jetsam_thread->corpse_list_purged = false;
jetsam_thread->post_snapshot = FALSE;
jetsam_thread->memory_reclaimed = 0;
if (jetsam_thread->inited == FALSE) {
/*
* It's the first time the thread has run, so just mark the thread as privileged and block.
*/
memorystatus_thread_init(jetsam_thread);
sched_cond_wait(&(jetsam_thread->jt_wakeup_cond), THREAD_UNINT, memorystatus_thread);
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_SCAN) | DBG_FUNC_START,
MEMORYSTATUS_LOG_AVAILABLE_PAGES, memorystatus_jld_enabled, memorystatus_jld_eval_period_msecs, memorystatus_jld_eval_aggressive_count);
extern uint32_t c_segment_count;
extern mach_timespec_t major_compact_ts;
clock_sec_t now;
clock_nsec_t nsec;
clock_get_system_nanotime(&now, &nsec);
mach_timespec_t major_compact_diff = {.tv_sec = (int)now, .tv_nsec = nsec};
SUB_MACH_TIMESPEC(&major_compact_diff, &major_compact_ts);
memorystatus_log_info(
"memorystatus: c_segment_count=%u major compaction occurred %u seconds ago\n",
c_segment_count, major_compact_diff.tv_sec);
/*
* Jetsam aware version.
*
* The VM pressure notification thread is working its way through clients in parallel.
*
* So, while the pressure notification thread is targeting processes in order of
* increasing jetsam priority, we can hopefully reduce / stop its work by killing
* any processes that have exceeded their highwater mark.
*
* If we run out of HWM processes and our available pages drops below the critical threshold, then,
* we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
*/
while (true) {
bool killed;
jetsam_thread->memory_reclaimed = 0;
uint32_t cause = 0;
memorystatus_action_t action = memorystatus_pick_action(jetsam_thread, &cause,
highwater_remaining, suspended_swappable_apps_remaining, swappable_apps_remaining,
&jetsam_thread->jld_idle_kills);
if (action == MEMORYSTATUS_KILL_NONE) {
break;
}
if (cause == kMemorystatusKilledVMCompressorThrashing || cause == kMemorystatusKilledVMCompressorSpaceShortage) {
memorystatus_log("memorystatus: killing due to \"%s\" - compression_ratio=%u\n", memorystatus_kill_cause_name[cause], vm_compression_ratio());
}
killed = memorystatus_do_action(jetsam_thread, action, cause);
total_memory_reclaimed += jetsam_thread->memory_reclaimed;
if (!killed) {
if (action == MEMORYSTATUS_KILL_HIWATER) {
highwater_remaining = false;
} else if (action == MEMORYSTATUS_KILL_SWAPPABLE) {
swappable_apps_remaining = false;
suspended_swappable_apps_remaining = false;
} else if (action == MEMORYSTATUS_KILL_SUSPENDED_SWAPPABLE) {
suspended_swappable_apps_remaining = false;
}
} else {
if (cause == kMemorystatusKilledVMCompressorThrashing || cause == kMemorystatusKilledVMCompressorSpaceShortage) {
memorystatus_log("memorystatus: post-jetsam compressor fragmentation_level=%u\n", vm_compressor_fragmentation_level());
}
/* Always re-check for highwater and swappable kills after doing a kill. */
highwater_remaining = true;
swappable_apps_remaining = true;
suspended_swappable_apps_remaining = true;
}
if ((action == MEMORYSTATUS_KILL_TOP_PROCESS || action == MEMORYSTATUS_KILL_AGGRESSIVE) && !killed && total_memory_reclaimed == 0 && memorystatus_avail_pages_below_critical()) {
/*
* Still under pressure and unable to kill a process - purge corpse memory
* and get everything back from the pmap.
*/
memorystatus_dump_caches(true);
if (!jetsam_thread->limit_to_low_bands && memorystatus_avail_pages_below_critical()) {
/*
* Still under pressure and unable to kill a process - panic
*/
panic("memorystatus_jetsam_thread: no victim! available pages:%llu", (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
}
}
/*
* If we did a kill on behalf of another subsystem (compressor or zalloc)
* notify them.
*/
if (killed && is_reason_thrashing(cause)) {
os_atomic_store(&memorystatus_compressor_space_shortage, false, release);
#if CONFIG_PHANTOM_CACHE
os_atomic_store(&memorystatus_phantom_cache_pressure, false, release);
#endif /* CONFIG_PHANTOM_CACHE */
#if CONFIG_JETSAM
vm_thrashing_jetsam_done();
#endif /* CONFIG_JETSAM */
} else if (killed && is_reason_zone_map_exhaustion(cause)) {
os_atomic_store(&memorystatus_zone_map_is_exhausted, false, release);
} else if (killed && cause == kMemorystatusKilledVMPageoutStarvation) {
os_atomic_store(&memorystatus_pageout_starved, false, release);
}
}
if (jetsam_thread->errors) {
memorystatus_clear_errors();
}
if (jetsam_thread->post_snapshot) {
memorystatus_post_snapshot();
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_SCAN) | DBG_FUNC_END,
MEMORYSTATUS_LOG_AVAILABLE_PAGES, total_memory_reclaimed);
if (jetsam_thread->corpse_list_purged) {
os_atomic_dec(&block_corpses, relaxed);
assert(block_corpses >= 0);
}
}
OS_NORETURN
static void
memorystatus_thread(void *param __unused, wait_result_t wr __unused)
{
jetsam_thread_state_t *jetsam_thread = jetsam_current_thread();
sched_cond_ack(&(jetsam_thread->jt_wakeup_cond));
while (1) {
memorystatus_thread_internal(jetsam_thread);
sched_cond_wait(&(jetsam_thread->jt_wakeup_cond), THREAD_UNINT, memorystatus_thread);
}
}
/*
* This section defines when we deploy aggressive jetsam.
* Aggressive jetsam kills everything up to the jld_priority_band_max band.
*/
/*
* Returns TRUE:
* when an idle-exitable proc was killed
* Returns FALSE:
* when there are no more idle-exitable procs found
* when the attempt to kill an idle-exitable proc failed
*/
boolean_t
memorystatus_idle_exit_from_VM(void)
{
/*
* This routine should no longer be needed since we are
* now using jetsam bands on all platforms and so will deal
* with IDLE processes within the memorystatus thread itself.
*
* But we still use it because we observed that macos systems
* started heavy compression/swapping with a bunch of
* idle-exitable processes alive and doing nothing. We decided
* to rather kill those processes than start swapping earlier.
*/
return kill_idle_exit_proc();
}
/*
* Callback invoked when allowable physical memory footprint exceeded
* (dirty pages + IOKit mappings)
*
* This is invoked for both advisory, non-fatal per-task high watermarks,
* as well as the fatal task memory limits.
*/
void
memorystatus_on_ledger_footprint_exceeded(boolean_t warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal)
{
os_reason_t jetsam_reason = OS_REASON_NULL;
proc_t p = current_proc();
#if VM_PRESSURE_EVENTS
if (warning == TRUE) {
/*
* This is a warning path which implies that the current process is close, but has
* not yet exceeded its per-process memory limit.
*/
if (memorystatus_warn_process(p, memlimit_is_active, memlimit_is_fatal, FALSE /* not exceeded */) != TRUE) {
/* Print warning, since it's possible that task has not registered for pressure notifications */
memorystatus_log_error(
"memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n",
proc_getpid(p));
}
return;
}
#endif /* VM_PRESSURE_EVENTS */
if (memlimit_is_fatal) {
/*
* If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
* has violated either the system-wide per-task memory limit OR its own task limit.
*/
jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_PERPROCESSLIMIT);
if (jetsam_reason == NULL) {
memorystatus_log_error("task_exceeded footprint: failed to allocate jetsam reason\n");
} else if (corpse_for_fatal_memkill && proc_send_synchronous_EXC_RESOURCE(p) == FALSE) {
/* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
jetsam_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
}
if (memorystatus_kill_process_sync(proc_getpid(p), kMemorystatusKilledPerProcessLimit, jetsam_reason) != TRUE) {
memorystatus_log_error("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
}
} else {
/*
* HWM offender exists. Done without locks or synchronization.
* See comment near its declaration for more details.
*/
memorystatus_hwm_candidates = TRUE;
#if VM_PRESSURE_EVENTS
/*
* The current process is not in the warning path.
* This path implies the current process has exceeded a non-fatal (soft) memory limit.
* Failure to send note is ignored here.
*/
(void)memorystatus_warn_process(p, memlimit_is_active, memlimit_is_fatal, TRUE /* exceeded */);
#endif /* VM_PRESSURE_EVENTS */
}
}
inline void
memorystatus_log_exception(const int max_footprint_mb, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal)
{
proc_t p = current_proc();
/*
* The limit violation is logged here, but only once per process per limit.
* Soft memory limit is a non-fatal high-water-mark
* Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
*/
memorystatus_log("EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
((p && *p->p_name) ? p->p_name : "unknown"), (p ? proc_getpid(p) : -1), (memlimit_is_active ? "Active" : "Inactive"),
(memlimit_is_fatal ? "Hard" : "Soft"), max_footprint_mb,
(memlimit_is_fatal ? "fatal" : "non-fatal"));
}
inline void
memorystatus_log_diag_threshold_exception(const int diag_threshold_value)
{
proc_t p = current_proc();
/*
* The limit violation is logged here, but only once per process per limit.
* Soft memory limit is a non-fatal high-water-mark
* Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
*/
memorystatus_log("EXC_RESOURCE -> %s[%d] exceeded diag threshold limit: %d MB \n",
((p && *p->p_name) ? p->p_name : "unknown"), (p ? proc_getpid(p) : -1), diag_threshold_value);
}
/*
* Description:
* Evaluates process state to determine which limit
* should be applied (active vs. inactive limit).
*
* Processes that have the 'elevated inactive jetsam band' attribute
* are first evaluated based on their current priority band.
* presently elevated ==> active
*
* Processes that opt into dirty tracking are evaluated
* based on clean vs dirty state.
* dirty ==> active
* clean ==> inactive
*
* Process that do not opt into dirty tracking are
* evalulated based on priority level.
* Foreground or above ==> active
* Below Foreground ==> inactive
*
* Return: TRUE if active
* False if inactive
*/
static boolean_t
proc_jetsam_state_is_active_locked(proc_t p)
{
if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) &&
(p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE)) {
/*
* process has the 'elevated inactive jetsam band' attribute
* and process is present in the elevated band
* implies active state
*/
return TRUE;
} else if (p->p_memstat_dirty & P_DIRTY_TRACK) {
/*
* process has opted into dirty tracking
* active state is based on dirty vs. clean
*/
if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
/*
* process is dirty
* implies active state
*/
return TRUE;
} else {
/*
* process is clean
* implies inactive state
*/
return FALSE;
}
} else if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) {
/*
* process is Foreground or higher
* implies active state
*/
return TRUE;
} else {
/*
* process found below Foreground
* implies inactive state
*/
return FALSE;
}
}
static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason)
{
boolean_t res;
uint32_t errors = 0;
uint64_t memory_reclaimed = 0;
if (victim_pid == -1) {
/* No pid, so kill first process */
res = memorystatus_kill_top_process(true, true, cause, jetsam_reason,
max_kill_priority, false, NULL, &errors, &memory_reclaimed);
} else {
res = memorystatus_kill_specific_process(victim_pid, cause, jetsam_reason);
}
if (errors) {
memorystatus_clear_errors();
}
if (res == TRUE) {
/* Fire off snapshot notification */
proc_list_lock();
size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_count;
uint64_t timestamp_now = mach_absolute_time();
memorystatus_jetsam_snapshot->notification_time = timestamp_now;
if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 ||
timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) {
proc_list_unlock();
int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size));
if (!ret) {
proc_list_lock();
memorystatus_jetsam_snapshot_last_timestamp = timestamp_now;
proc_list_unlock();
}
} else {
proc_list_unlock();
}
}
return res;
}
/*
* Jetsam a specific process.
*/
static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason)
{
boolean_t killed;
proc_t p;
uint64_t killtime = 0;
uint64_t footprint_of_killed_proc;
clock_sec_t tv_sec;
clock_usec_t tv_usec;
uint32_t tv_msec;
/* TODO - add a victim queue and push this into the main jetsam thread */
p = proc_find(victim_pid);
if (!p) {
os_reason_free(jetsam_reason);
return FALSE;
}
proc_list_lock();
if (p->p_memstat_state & P_MEMSTAT_TERMINATED) {
/*
* Someone beat us to this kill.
* Nothing to do here.
*/
proc_list_unlock();
os_reason_free(jetsam_reason);
proc_rele(p);
return FALSE;
}
p->p_memstat_state |= P_MEMSTAT_TERMINATED;
if (memorystatus_jetsam_snapshot_count == 0) {
memorystatus_init_jetsam_snapshot_locked(NULL, 0);
}
killtime = mach_absolute_time();
absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
tv_msec = tv_usec / 1000;
memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
proc_list_unlock();
killed = memorystatus_do_kill(p, cause, jetsam_reason, &footprint_of_killed_proc);
memorystatus_log("%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
(unsigned long)tv_sec, tv_msec, victim_pid, ((p && *p->p_name) ? p->p_name : "unknown"),
memorystatus_kill_cause_name[cause], (p ? p->p_memstat_effectivepriority: -1),
footprint_of_killed_proc >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
if (!killed) {
proc_list_lock();
p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
proc_list_unlock();
}
proc_rele(p);
return killed;
}
/*
* Toggle the P_MEMSTAT_SKIP bit.
* Takes the proc_list_lock.
*/
void
proc_memstat_skip(proc_t p, boolean_t set)
{
#if DEVELOPMENT || DEBUG
if (p) {
proc_list_lock();
if (set == TRUE) {
p->p_memstat_state |= P_MEMSTAT_SKIP;
} else {
p->p_memstat_state &= ~P_MEMSTAT_SKIP;
}
proc_list_unlock();
}
#else
#pragma unused(p, set)
/*
* do nothing
*/
#endif /* DEVELOPMENT || DEBUG */
return;
}
#if CONFIG_JETSAM
/*
* This is invoked when cpulimits have been exceeded while in fatal mode.
* The jetsam_flags do not apply as those are for memory related kills.
* We call this routine so that the offending process is killed with
* a non-zero exit status.
*/
void
jetsam_on_ledger_cpulimit_exceeded(void)
{
int retval = 0;
int jetsam_flags = 0; /* make it obvious */
proc_t p = current_proc();
os_reason_t jetsam_reason = OS_REASON_NULL;
memorystatus_log("task_exceeded_cpulimit: killing pid %d [%s]\n", proc_getpid(p), (*p->p_name ? p->p_name : "(unknown)"));
jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_CPULIMIT);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
}
retval = jetsam_do_kill(p, jetsam_flags, jetsam_reason);
if (retval) {
memorystatus_log_error("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
}
}
#endif /* CONFIG_JETSAM */
static void
memorystatus_get_task_memory_region_count(task_t task, uint64_t *count)
{
assert(task);
assert(count);
*count = get_task_memory_region_count(task);
}
#define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
#define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
#if DEVELOPMENT || DEBUG
/*
* Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
* set a new pidwatch value
* or
* get the current pidwatch value
*
* The pidwatch_val starts out with a PID to watch for in the map_fork path.
* Its value is:
* - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
* - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
* - set to -1ull if the map_fork() is aborted for other reasons.
*/
uint64_t memorystatus_vm_map_fork_pidwatch_val = 0;
static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS {
#pragma unused(oidp, arg1, arg2)
uint64_t new_value = 0;
uint64_t old_value = 0;
int error = 0;
/*
* The pid is held in the low 32 bits.
* The 'allowed' flags are in the upper 32 bits.
*/
old_value = memorystatus_vm_map_fork_pidwatch_val;
error = sysctl_io_number(req, old_value, sizeof(old_value), &new_value, NULL);
if (error || !req->newptr) {
/*
* No new value passed in.
*/
return error;
}
/*
* A new pid was passed in via req->newptr.
* Ignore any attempt to set the higher order bits.
*/
memorystatus_vm_map_fork_pidwatch_val = new_value & 0xFFFFFFFF;
memorystatus_log_debug("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx\n", old_value, new_value);
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_map_fork_pidwatch, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED,
0, 0, sysctl_memorystatus_vm_map_fork_pidwatch, "Q", "get/set pid watched for in vm_map_fork");
/*
* Record if a watched process fails to qualify for a vm_map_fork().
*/
void
memorystatus_abort_vm_map_fork(task_t task)
{
if (memorystatus_vm_map_fork_pidwatch_val != 0) {
proc_t p = get_bsdtask_info(task);
if (p != NULL && memorystatus_vm_map_fork_pidwatch_val == (uint64_t)proc_getpid(p)) {
memorystatus_vm_map_fork_pidwatch_val = -1ull;
}
}
}
static void
set_vm_map_fork_pidwatch(task_t task, uint64_t x)
{
if (memorystatus_vm_map_fork_pidwatch_val != 0) {
proc_t p = get_bsdtask_info(task);
if (p && (memorystatus_vm_map_fork_pidwatch_val == (uint64_t)proc_getpid(p))) {
memorystatus_vm_map_fork_pidwatch_val |= x;
}
}
}
#else /* DEVELOPMENT || DEBUG */
static void
set_vm_map_fork_pidwatch(task_t task, uint64_t x)
{
#pragma unused(task)
#pragma unused(x)
}
#endif /* DEVELOPMENT || DEBUG */
/*
* Called during EXC_RESOURCE handling when a process exceeds a soft
* memory limit. This is the corpse fork path and here we decide if
* vm_map_fork will be allowed when creating the corpse.
* The task being considered is suspended.
*
* By default, a vm_map_fork is allowed to proceed.
*
* A few simple policy assumptions:
* If the device has a zero system-wide task limit,
* then the vm_map_fork is allowed. macOS always has a zero
* system wide task limit (unless overriden by a boot-arg).
*
* And if a process's memory footprint calculates less
* than or equal to quarter of the system-wide task limit,
* then the vm_map_fork is allowed. This calculation
* is based on the assumption that a process can
* munch memory up to the system-wide task limit.
*
* For watchOS, which has a low task limit, we use a
* different value. Current task limit has been reduced
* to 300MB and it's been decided the limit should be 200MB.
*/
int large_corpse_count = 0;
boolean_t
memorystatus_allowed_vm_map_fork(task_t task, bool *is_large)
{
boolean_t is_allowed = TRUE; /* default */
uint64_t footprint_in_bytes;
uint64_t max_allowed_bytes;
thread_t self = current_thread();
*is_large = false;
/* Jetsam in high bands blocks any new corpse */
if (os_atomic_load(&block_corpses, relaxed) != 0) {
memorystatus_log("memorystatus_allowed_vm_map_fork: corpse for pid %d blocked by jetsam).\n", task_pid(task));
ktriage_record(thread_tid(self), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_CORPSE, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_CORPSE_BLOCKED_JETSAM), 0 /* arg */);
return FALSE;
}
if (max_task_footprint_mb == 0) {
set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED);
return is_allowed;
}
footprint_in_bytes = get_task_phys_footprint(task);
/*
* Maximum is 1/4 of the system-wide task limit by default.
*/
max_allowed_bytes = ((uint64_t)max_task_footprint_mb * 1024 * 1024) >> 2;
#if XNU_TARGET_OS_WATCH
/*
* For watches with > 1G, use a limit of 200MB and allow
* one corpse at a time of up to 300MB.
*/
#define LARGE_CORPSE_LIMIT 1
if (sane_size > 1 * 1024 * 1024 * 1024) {
int cnt = large_corpse_count;
if (footprint_in_bytes > 200 * 1024 * 1024 &&
footprint_in_bytes <= 300 * 1024 * 1024 &&
cnt < LARGE_CORPSE_LIMIT &&
OSCompareAndSwap(cnt, cnt + 1, &large_corpse_count)) {
*is_large = true;
max_allowed_bytes = MAX(max_allowed_bytes, 300 * 1024 * 1024);
} else {
max_allowed_bytes = MAX(max_allowed_bytes, 200 * 1024 * 1024);
}
}
#endif /* XNU_TARGET_OS_WATCH */
#if DEBUG || DEVELOPMENT
if (corpse_threshold_system_limit) {
max_allowed_bytes = (uint64_t)max_task_footprint_mb * (1UL << 20);
}
#endif /* DEBUG || DEVELOPMENT */
if (footprint_in_bytes > max_allowed_bytes) {
memorystatus_log("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes, max_allowed_bytes);
set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED);
ktriage_record(thread_tid(self), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_CORPSE, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_CORPSE_PROC_TOO_BIG), 0 /* arg */);
return !is_allowed;
}
set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED);
return is_allowed;
}
void
memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages)
{
assert(task);
assert(footprint);
uint64_t pages;
pages = (get_task_phys_footprint(task) / PAGE_SIZE_64);
assert(((uint32_t)pages) == pages);
*footprint = (uint32_t)pages;
if (max_footprint_lifetime) {
pages = (get_task_phys_footprint_lifetime_max(task) / PAGE_SIZE_64);
assert(((uint32_t)pages) == pages);
*max_footprint_lifetime = (uint32_t)pages;
}
if (purgeable_pages) {
pages = (get_task_purgeable_size(task) / PAGE_SIZE_64);
assert(((uint32_t)pages) == pages);
*purgeable_pages = (uint32_t)pages;
}
}
static void
memorystatus_get_task_phys_footprint_page_counts(task_t task,
uint64_t *internal_pages, uint64_t *internal_compressed_pages,
uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages,
uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages,
uint64_t *iokit_mapped_pages, uint64_t *page_table_pages, uint64_t *frozen_to_swap_pages)
{
assert(task);
if (internal_pages) {
*internal_pages = (get_task_internal(task) / PAGE_SIZE_64);
}
if (internal_compressed_pages) {
*internal_compressed_pages = (get_task_internal_compressed(task) / PAGE_SIZE_64);
}
if (purgeable_nonvolatile_pages) {
*purgeable_nonvolatile_pages = (get_task_purgeable_nonvolatile(task) / PAGE_SIZE_64);
}
if (purgeable_nonvolatile_compressed_pages) {
*purgeable_nonvolatile_compressed_pages = (get_task_purgeable_nonvolatile_compressed(task) / PAGE_SIZE_64);
}
if (alternate_accounting_pages) {
*alternate_accounting_pages = (get_task_alternate_accounting(task) / PAGE_SIZE_64);
}
if (alternate_accounting_compressed_pages) {
*alternate_accounting_compressed_pages = (get_task_alternate_accounting_compressed(task) / PAGE_SIZE_64);
}
if (iokit_mapped_pages) {
*iokit_mapped_pages = (get_task_iokit_mapped(task) / PAGE_SIZE_64);
}
if (page_table_pages) {
*page_table_pages = (get_task_page_table(task) / PAGE_SIZE_64);
}
#if CONFIG_FREEZE
if (frozen_to_swap_pages) {
*frozen_to_swap_pages = (get_task_frozen_to_swap(task) / PAGE_SIZE_64);
}
#else /* CONFIG_FREEZE */
#pragma unused(frozen_to_swap_pages)
#endif /* CONFIG_FREEZE */
}
#if CONFIG_FREEZE
/*
* Copies the source entry into the destination snapshot.
* Returns true on success. Fails if the destination snapshot is full.
* Caller must hold the proc list lock.
*/
static bool
memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_t *dst_snapshot, unsigned int dst_snapshot_size, const memorystatus_jetsam_snapshot_entry_t *src_entry)
{
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
assert(dst_snapshot);
if (dst_snapshot->entry_count == dst_snapshot_size) {
/* Destination snapshot is full. Can not be updated until it is consumed. */
return false;
}
if (dst_snapshot->entry_count == 0) {
memorystatus_init_jetsam_snapshot_header(dst_snapshot);
}
memorystatus_jetsam_snapshot_entry_t *dst_entry = &dst_snapshot->entries[dst_snapshot->entry_count++];
memcpy(dst_entry, src_entry, sizeof(memorystatus_jetsam_snapshot_entry_t));
return true;
}
#endif /* CONFIG_FREEZE */
static bool
memorystatus_init_jetsam_snapshot_entry_with_kill_locked(memorystatus_jetsam_snapshot_t *snapshot, proc_t p, uint32_t kill_cause, uint64_t killtime, memorystatus_jetsam_snapshot_entry_t **entry)
{
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
memorystatus_jetsam_snapshot_entry_t *snapshot_list = snapshot->entries;
size_t i = snapshot->entry_count;
if (memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], (snapshot->js_gencount)) == TRUE) {
*entry = &snapshot_list[i];
(*entry)->killed = kill_cause;
(*entry)->jse_killtime = killtime;
snapshot->entry_count = i + 1;
return true;
}
return false;
}
/*
* This routine only acts on the global jetsam event snapshot.
* Updating the process's entry can race when the memorystatus_thread
* has chosen to kill a process that is racing to exit on another core.
*/
static void
memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime)
{
memorystatus_jetsam_snapshot_entry_t *entry = NULL;
memorystatus_jetsam_snapshot_t *snapshot = NULL;
memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL;
unsigned int i;
#if CONFIG_FREEZE
bool copied_to_freezer_snapshot = false;
#endif /* CONFIG_FREEZE */
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
if (memorystatus_jetsam_snapshot_count == 0) {
/*
* No active snapshot.
* Nothing to do.
*/
goto exit;
}
/*
* Sanity check as this routine should only be called
* from a jetsam kill path.
*/
assert(kill_cause != 0 && killtime != 0);
snapshot = memorystatus_jetsam_snapshot;
snapshot_list = memorystatus_jetsam_snapshot->entries;
for (i = 0; i < memorystatus_jetsam_snapshot_count; i++) {
if (snapshot_list[i].pid == proc_getpid(p)) {
entry = &snapshot_list[i];
if (entry->killed || entry->jse_killtime) {
/*
* We apparently raced on the exit path
* for this process, as it's snapshot entry
* has already recorded a kill.
*/
assert(entry->killed && entry->jse_killtime);
break;
}
/*
* Update the entry we just found in the snapshot.
*/
entry->killed = kill_cause;
entry->jse_killtime = killtime;
entry->jse_gencount = snapshot->js_gencount;
entry->jse_idle_delta = p->p_memstat_idle_delta;
#if CONFIG_FREEZE
entry->jse_thaw_count = p->p_memstat_thaw_count;
entry->jse_freeze_skip_reason = p->p_memstat_freeze_skip_reason;
#else /* CONFIG_FREEZE */
entry->jse_thaw_count = 0;
entry->jse_freeze_skip_reason = kMemorystatusFreezeSkipReasonNone;
#endif /* CONFIG_FREEZE */
/*
* If a process has moved between bands since snapshot was
* initialized, then likely these fields changed too.
*/
if (entry->priority != p->p_memstat_effectivepriority) {
strlcpy(entry->name, p->p_name, sizeof(entry->name));
entry->priority = p->p_memstat_effectivepriority;
entry->state = memorystatus_build_state(p);
entry->user_data = p->p_memstat_userdata;
entry->fds = p->p_fd.fd_nfiles;
}
/*
* Always update the page counts on a kill.
*/
uint32_t pages = 0;
uint32_t max_pages_lifetime = 0;
uint32_t purgeable_pages = 0;
memorystatus_get_task_page_counts(proc_task(p), &pages, &max_pages_lifetime, &purgeable_pages);
entry->pages = (uint64_t)pages;
entry->max_pages_lifetime = (uint64_t)max_pages_lifetime;
entry->purgeable_pages = (uint64_t)purgeable_pages;
uint64_t internal_pages = 0;
uint64_t internal_compressed_pages = 0;
uint64_t purgeable_nonvolatile_pages = 0;
uint64_t purgeable_nonvolatile_compressed_pages = 0;
uint64_t alternate_accounting_pages = 0;
uint64_t alternate_accounting_compressed_pages = 0;
uint64_t iokit_mapped_pages = 0;
uint64_t page_table_pages = 0;
uint64_t frozen_to_swap_pages = 0;
memorystatus_get_task_phys_footprint_page_counts(proc_task(p), &internal_pages, &internal_compressed_pages,
&purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages,
&alternate_accounting_pages, &alternate_accounting_compressed_pages,
&iokit_mapped_pages, &page_table_pages, &frozen_to_swap_pages);
entry->jse_internal_pages = internal_pages;
entry->jse_internal_compressed_pages = internal_compressed_pages;
entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages;
entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages;
entry->jse_alternate_accounting_pages = alternate_accounting_pages;
entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages;
entry->jse_iokit_mapped_pages = iokit_mapped_pages;
entry->jse_page_table_pages = page_table_pages;
entry->jse_frozen_to_swap_pages = frozen_to_swap_pages;
uint64_t region_count = 0;
memorystatus_get_task_memory_region_count(proc_task(p), &region_count);
entry->jse_memory_region_count = region_count;
entry->csflags = proc_getcsflags(p);
goto exit;
}
}
if (entry == NULL) {
/*
* The entry was not found in the snapshot, so the process must have
* launched after the snapshot was initialized.
* Let's try to append the new entry.
*/
if (memorystatus_jetsam_snapshot_count < memorystatus_jetsam_snapshot_max) {
/*
* A populated snapshot buffer exists
* and there is room to init a new entry.
*/
assert(memorystatus_jetsam_snapshot_count == snapshot->entry_count);
if (memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot, p, kill_cause, killtime, &entry)) {
memorystatus_jetsam_snapshot_count++;
if (memorystatus_jetsam_snapshot_count >= memorystatus_jetsam_snapshot_max) {
/*
* We just used the last slot in the snapshot buffer.
* We only want to log it once... so we do it here
* when we notice we've hit the max.
*/
memorystatus_log_error("memorystatus: WARNING snapshot buffer is full, count %d\n", memorystatus_jetsam_snapshot_count);
}
}
}
}
exit:
if (entry) {
#if CONFIG_FREEZE
if (memorystatus_jetsam_use_freezer_snapshot && isApp(p)) {
/* This is an app kill. Record it in the freezer snapshot so dasd can incorporate this in its recommendations. */
copied_to_freezer_snapshot = memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_freezer, memorystatus_jetsam_snapshot_freezer_max, entry);
if (copied_to_freezer_snapshot && memorystatus_jetsam_snapshot_freezer->entry_count == memorystatus_jetsam_snapshot_freezer_max) {
/*
* We just used the last slot in the freezer snapshot buffer.
* We only want to log it once... so we do it here
* when we notice we've hit the max.
*/
memorystatus_log_error("memorystatus: WARNING freezer snapshot buffer is full, count %zu\n",
memorystatus_jetsam_snapshot_freezer->entry_count);
}
}
#endif /* CONFIG_FREEZE */
} else {
/*
* If we reach here, the snapshot buffer could not be updated.
* Most likely, the buffer is full, in which case we would have
* logged a warning in the previous call.
*
* For now, we will stop appending snapshot entries.
* When the buffer is consumed, the snapshot state will reset.
*/
memorystatus_log_error(
"memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
proc_getpid(p), p->p_memstat_effectivepriority, memorystatus_jetsam_snapshot_count);
#if CONFIG_FREEZE
/* We still attempt to record this in the freezer snapshot */
if (memorystatus_jetsam_use_freezer_snapshot && isApp(p)) {
snapshot = memorystatus_jetsam_snapshot_freezer;
if (snapshot->entry_count < memorystatus_jetsam_snapshot_freezer_max) {
copied_to_freezer_snapshot = memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot, p, kill_cause, killtime, &entry);
if (copied_to_freezer_snapshot && memorystatus_jetsam_snapshot_freezer->entry_count == memorystatus_jetsam_snapshot_freezer_max) {
/*
* We just used the last slot in the freezer snapshot buffer.
* We only want to log it once... so we do it here
* when we notice we've hit the max.
*/
memorystatus_log_error("memorystatus: WARNING freezer snapshot buffer is full, count %zu\n",
memorystatus_jetsam_snapshot_freezer->entry_count);
}
}
}
#endif /* CONFIG_FREEZE */
}
return;
}
#if CONFIG_JETSAM
void
memorystatus_pages_update(unsigned int pages_avail)
{
memorystatus_available_pages = pages_avail;
#if VM_PRESSURE_EVENTS
/*
* Since memorystatus_available_pages changes, we should
* re-evaluate the pressure levels on the system and
* check if we need to wake the pressure thread.
* We also update memorystatus_level in that routine.
*/
vm_pressure_response();
if (memorystatus_available_pages <= memorystatus_available_pages_pressure) {
if (memorystatus_hwm_candidates || (memorystatus_available_pages <= memorystatus_available_pages_critical)) {
memorystatus_thread_wake();
}
}
#if CONFIG_FREEZE
/*
* We can't grab the freezer_mutex here even though that synchronization would be correct to inspect
* the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this
* code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here
* will result in the "mutex with preemption disabled" panic.
*/
if (memorystatus_freeze_thread_should_run()) {
/*
* The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process).
* That trigger isn't invoked often enough and so we are enabling this explicit wakeup here.
*/
if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
thread_wakeup((event_t)&memorystatus_freeze_wakeup);
}
}
#endif /* CONFIG_FREEZE */
#else /* VM_PRESSURE_EVENTS */
boolean_t critical, delta;
if (!memorystatus_delta) {
return;
}
critical = (pages_avail < memorystatus_available_pages_critical) ? TRUE : FALSE;
delta = ((pages_avail >= (memorystatus_available_pages + memorystatus_delta))
|| (memorystatus_available_pages >= (pages_avail + memorystatus_delta))) ? TRUE : FALSE;
if (critical || delta) {
unsigned int total_pages;
total_pages = (unsigned int) atop_64(max_mem);
#if CONFIG_SECLUDED_MEMORY
total_pages -= vm_page_secluded_count;
#endif /* CONFIG_SECLUDED_MEMORY */
memorystatus_level = memorystatus_available_pages * 100 / total_pages;
memorystatus_thread_wake();
}
#endif /* VM_PRESSURE_EVENTS */
}
#endif /* CONFIG_JETSAM */
static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount)
{
clock_sec_t tv_sec;
clock_usec_t tv_usec;
uint32_t pages = 0;
uint32_t max_pages_lifetime = 0;
uint32_t purgeable_pages = 0;
uint64_t internal_pages = 0;
uint64_t internal_compressed_pages = 0;
uint64_t purgeable_nonvolatile_pages = 0;
uint64_t purgeable_nonvolatile_compressed_pages = 0;
uint64_t alternate_accounting_pages = 0;
uint64_t alternate_accounting_compressed_pages = 0;
uint64_t iokit_mapped_pages = 0;
uint64_t page_table_pages = 0;
uint64_t frozen_to_swap_pages = 0;
uint64_t region_count = 0;
uint64_t cids[COALITION_NUM_TYPES];
uint32_t trust = 0;
kern_return_t ret = 0;
memset(entry, 0, sizeof(memorystatus_jetsam_snapshot_entry_t));
entry->pid = proc_getpid(p);
strlcpy(&entry->name[0], p->p_name, sizeof(entry->name));
entry->priority = p->p_memstat_effectivepriority;
memorystatus_get_task_page_counts(proc_task(p), &pages, &max_pages_lifetime, &purgeable_pages);
entry->pages = (uint64_t)pages;
entry->max_pages_lifetime = (uint64_t)max_pages_lifetime;
entry->purgeable_pages = (uint64_t)purgeable_pages;
memorystatus_get_task_phys_footprint_page_counts(proc_task(p), &internal_pages, &internal_compressed_pages,
&purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages,
&alternate_accounting_pages, &alternate_accounting_compressed_pages,
&iokit_mapped_pages, &page_table_pages, &frozen_to_swap_pages);
entry->jse_internal_pages = internal_pages;
entry->jse_internal_compressed_pages = internal_compressed_pages;
entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages;
entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages;
entry->jse_alternate_accounting_pages = alternate_accounting_pages;
entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages;
entry->jse_iokit_mapped_pages = iokit_mapped_pages;
entry->jse_page_table_pages = page_table_pages;
entry->jse_frozen_to_swap_pages = frozen_to_swap_pages;
memorystatus_get_task_memory_region_count(proc_task(p), &region_count);
entry->jse_memory_region_count = region_count;
entry->state = memorystatus_build_state(p);
entry->user_data = p->p_memstat_userdata;
proc_getexecutableuuid(p, &entry->uuid[0], sizeof(entry->uuid));
entry->fds = p->p_fd.fd_nfiles;
absolutetime_to_microtime(get_task_cpu_time(proc_task(p)), &tv_sec, &tv_usec);
entry->cpu_time.tv_sec = (int64_t)tv_sec;
entry->cpu_time.tv_usec = (int64_t)tv_usec;
assert(p->p_stats != NULL);
entry->jse_starttime = p->p_stats->ps_start; /* abstime process started */
entry->jse_killtime = 0; /* abstime jetsam chose to kill process */
entry->killed = 0; /* the jetsam kill cause */
entry->jse_gencount = gencount; /* indicates a pass through jetsam thread, when process was targeted to be killed */
entry->jse_idle_delta = p->p_memstat_idle_delta; /* Most recent timespan spent in idle-band */
#if CONFIG_FREEZE
entry->jse_freeze_skip_reason = p->p_memstat_freeze_skip_reason;
entry->jse_thaw_count = p->p_memstat_thaw_count;
#else /* CONFIG_FREEZE */
entry->jse_thaw_count = 0;
entry->jse_freeze_skip_reason = kMemorystatusFreezeSkipReasonNone;
#endif /* CONFIG_FREEZE */
proc_coalitionids(p, cids);
entry->jse_coalition_jetsam_id = cids[COALITION_TYPE_JETSAM];
entry->csflags = proc_getcsflags(p);
ret = get_trust_level_kdp(get_task_pmap(proc_task(p)), &trust);
if (ret != KERN_SUCCESS) {
trust = KCDATA_INVALID_CS_TRUST_LEVEL;
}
entry->cs_trust_level = trust;
return TRUE;
}
static void
memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t *snapshot)
{
kern_return_t kr = KERN_SUCCESS;
mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
vm_statistics64_data_t vm_stat;
if ((kr = host_statistics64(host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stat, &count)) != KERN_SUCCESS) {
memorystatus_log_error("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr);
memset(&snapshot->stats, 0, sizeof(snapshot->stats));
} else {
snapshot->stats.free_pages = vm_stat.free_count;
snapshot->stats.active_pages = vm_stat.active_count;
snapshot->stats.inactive_pages = vm_stat.inactive_count;
snapshot->stats.throttled_pages = vm_stat.throttled_count;
snapshot->stats.purgeable_pages = vm_stat.purgeable_count;
snapshot->stats.wired_pages = vm_stat.wire_count;
snapshot->stats.speculative_pages = vm_stat.speculative_count;
snapshot->stats.filebacked_pages = vm_stat.external_page_count;
snapshot->stats.anonymous_pages = vm_stat.internal_page_count;
snapshot->stats.compressions = vm_stat.compressions;
snapshot->stats.decompressions = vm_stat.decompressions;
snapshot->stats.compressor_pages = vm_stat.compressor_page_count;
snapshot->stats.total_uncompressed_pages_in_compressor = vm_stat.total_uncompressed_pages_in_compressor;
}
get_zone_map_size(&snapshot->stats.zone_map_size, &snapshot->stats.zone_map_capacity);
bzero(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name));
get_largest_zone_info(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name),
&snapshot->stats.largest_zone_size);
}
/*
* Collect vm statistics at boot.
* Called only once (see kern_exec.c)
* Data can be consumed at any time.
*/
void
memorystatus_init_at_boot_snapshot()
{
memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot);
memorystatus_at_boot_snapshot.entry_count = 0;
memorystatus_at_boot_snapshot.notification_time = 0; /* updated when consumed */
memorystatus_at_boot_snapshot.snapshot_time = mach_absolute_time();
}
static void
memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t *snapshot)
{
memorystatus_init_snapshot_vmstats(snapshot);
snapshot->snapshot_time = mach_absolute_time();
snapshot->notification_time = 0;
snapshot->js_gencount = 0;
}
static void
memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count )
{
proc_t p, next_p;
unsigned int b = 0, i = 0;
memorystatus_jetsam_snapshot_t *snapshot = NULL;
memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL;
unsigned int snapshot_max = 0;
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
if (od_snapshot) {
/*
* This is an on_demand snapshot
*/
snapshot = od_snapshot;
snapshot_list = od_snapshot->entries;
snapshot_max = ods_list_count;
} else {
/*
* This is a jetsam event snapshot
*/
snapshot = memorystatus_jetsam_snapshot;
snapshot_list = memorystatus_jetsam_snapshot->entries;
snapshot_max = memorystatus_jetsam_snapshot_max;
}
memorystatus_init_jetsam_snapshot_header(snapshot);
next_p = memorystatus_get_first_proc_locked(&b, TRUE);
while (next_p) {
p = next_p;
next_p = memorystatus_get_next_proc_locked(&b, p, TRUE);
if (FALSE == memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], snapshot->js_gencount)) {
continue;
}
if (++i == snapshot_max) {
break;
}
}
/* Log launchd and kernel_task as well to see more context, even though jetsam doesn't apply to them. */
if (i < snapshot_max) {
memorystatus_init_jetsam_snapshot_entry_locked(initproc, &snapshot_list[i], snapshot->js_gencount);
i++;
}
if (i < snapshot_max) {
memorystatus_init_jetsam_snapshot_entry_locked(kernproc, &snapshot_list[i], snapshot->js_gencount);
i++;
}
snapshot->entry_count = i;
if (!od_snapshot) {
/* update the system buffer count */
memorystatus_jetsam_snapshot_count = i;
}
}
#if DEVELOPMENT || DEBUG
/*
* Verify that the given bucket has been sorted correctly.
*
* Walks through the bucket and verifies that all pids in the
* expected_order buffer are in that bucket and in the same
* relative order.
*
* The proc_list_lock must be held by the caller.
*/
static int
memorystatus_verify_sort_order(unsigned int bucket_index, pid_t *expected_order, size_t num_pids)
{
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
int error = 0;
proc_t p = NULL;
size_t i = 0;
/*
* NB: We allow other procs to be mixed in within the expected ones.
* We just need the expected procs to be in the right order relative to each other.
*/
p = memorystatus_get_first_proc_locked(&bucket_index, FALSE);
while (p) {
if (proc_getpid(p) == expected_order[i]) {
i++;
}
if (i == num_pids) {
break;
}
p = memorystatus_get_next_proc_locked(&bucket_index, p, FALSE);
}
if (i != num_pids) {
char buffer[128];
size_t len = sizeof(buffer);
size_t buffer_idx = 0;
memorystatus_log_error("memorystatus_verify_sort_order: Processes in bucket %d were not sorted properly\n", bucket_index);
for (i = 0; i < num_pids; i++) {
int num_written = snprintf(buffer + buffer_idx, len - buffer_idx, "%d,", expected_order[i]);
if (num_written <= 0) {
break;
}
if (buffer_idx + (unsigned int) num_written >= len) {
break;
}
buffer_idx += num_written;
}
memorystatus_log_error("memorystatus_verify_sort_order: Expected order [%s]\n", buffer);
memset(buffer, 0, len);
buffer_idx = 0;
p = memorystatus_get_first_proc_locked(&bucket_index, FALSE);
i = 0;
memorystatus_log_error("memorystatus_verify_sort_order: Actual order:\n");
while (p) {
int num_written;
if (buffer_idx == 0) {
num_written = snprintf(buffer + buffer_idx, len - buffer_idx, "%zu: %d,", i, proc_getpid(p));
} else {
num_written = snprintf(buffer + buffer_idx, len - buffer_idx, "%d,", proc_getpid(p));
}
if (num_written <= 0) {
break;
}
buffer_idx += (unsigned int) num_written;
assert(buffer_idx <= len);
if (i % 10 == 0) {
memorystatus_log_error("memorystatus_verify_sort_order: %s\n", buffer);
buffer_idx = 0;
}
p = memorystatus_get_next_proc_locked(&bucket_index, p, FALSE);
i++;
}
if (buffer_idx != 0) {
memorystatus_log_error("memorystatus_verify_sort_order: %s\n", buffer);
}
error = EINVAL;
}
return error;
}
/*
* Triggers a sort_order on a specified jetsam priority band.
* This is for testing only, used to force a path through the sort
* function.
*/
static int
memorystatus_cmd_test_jetsam_sort(int priority,
int sort_order,
user_addr_t expected_order_user,
size_t expected_order_user_len)
{
int error = 0;
unsigned int bucket_index = 0;
static size_t kMaxPids = 8;
pid_t expected_order[kMaxPids];
size_t copy_size = sizeof(expected_order);
size_t num_pids;
if (expected_order_user_len < copy_size) {
copy_size = expected_order_user_len;
}
num_pids = copy_size / sizeof(pid_t);
error = copyin(expected_order_user, expected_order, copy_size);
if (error != 0) {
return error;
}
if (priority == -1) {
/* Use as shorthand for default priority */
bucket_index = JETSAM_PRIORITY_DEFAULT;
} else {
bucket_index = (unsigned int)priority;
}
/*
* Acquire lock before sorting so we can check the sort order
* while still holding the lock.
*/
proc_list_lock();
memorystatus_sort_bucket_locked(bucket_index, sort_order);
if (expected_order_user != CAST_USER_ADDR_T(NULL) && expected_order_user_len > 0) {
error = memorystatus_verify_sort_order(bucket_index, expected_order, num_pids);
}
proc_list_unlock();
return error;
}
#endif /* DEVELOPMENT || DEBUG */
/*
* Prepare the process to be killed (set state, update snapshot) and kill it.
*/
static uint64_t memorystatus_purge_before_jetsam_success = 0;
static boolean_t
memorystatus_kill_proc(proc_t p, uint32_t cause, os_reason_t jetsam_reason, bool *killed, uint64_t *footprint_of_killed_proc)
{
pid_t aPid = 0;
uint32_t aPid_ep = 0;
uint64_t killtime = 0;
clock_sec_t tv_sec;
clock_usec_t tv_usec;
uint32_t tv_msec;
boolean_t retval = FALSE;
aPid = proc_getpid(p);
aPid_ep = p->p_memstat_effectivepriority;
if (cause != kMemorystatusKilledVnodes && cause != kMemorystatusKilledZoneMapExhaustion) {
/*
* Genuine memory pressure and not other (vnode/zone) resource exhaustion.
*/
boolean_t success = FALSE;
uint64_t num_pages_purged;
uint64_t num_pages_reclaimed = 0;
uint64_t num_pages_unsecluded = 0;
networking_memstatus_callout(p, cause);
num_pages_purged = vm_purgeable_purge_task_owned(proc_task(p));
num_pages_reclaimed += num_pages_purged;
#if CONFIG_SECLUDED_MEMORY
if (cause == kMemorystatusKilledVMPageShortage &&
vm_page_secluded_count > 0 &&
task_can_use_secluded_mem(proc_task(p), FALSE)) {
/*
* We're about to kill a process that has access
* to the secluded pool. Drain that pool into the
* free or active queues to make these pages re-appear
* as "available", which might make us no longer need
* to kill that process.
* Since the secluded pool does not get refilled while
* a process has access to it, it should remain
* drained.
*/
num_pages_unsecluded = vm_page_secluded_drain();
num_pages_reclaimed += num_pages_unsecluded;
}
#endif /* CONFIG_SECLUDED_MEMORY */
if (num_pages_reclaimed) {
/*
* We actually reclaimed something and so let's
* check if we need to continue with the kill.
*/
if (cause == kMemorystatusKilledHiwat) {
uint64_t footprint_in_bytes = get_task_phys_footprint(proc_task(p));
uint64_t memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */
success = (footprint_in_bytes <= memlimit_in_bytes);
} else {
success = !memorystatus_avail_pages_below_pressure();
#if CONFIG_SECLUDED_MEMORY
if (!success && num_pages_unsecluded) {
/*
* We just drained the secluded pool
* because we're about to kill a
* process that has access to it.
* This is an important process and
* we'd rather not kill it unless
* absolutely necessary, so declare
* success even if draining the pool
* did not quite get us out of the
* "pressure" level but still got
* us out of the "critical" level.
*/
success = !memorystatus_avail_pages_below_critical();
}
#endif /* CONFIG_SECLUDED_MEMORY */
}
if (success) {
memorystatus_purge_before_jetsam_success++;
memorystatus_log_info("memorystatus: reclaimed %llu pages (%llu purged, %llu unsecluded) from pid %d [%s] and avoided %s\n",
num_pages_reclaimed, num_pages_purged, num_pages_unsecluded, aPid, ((p && *p->p_name) ? p->p_name : "unknown"), memorystatus_kill_cause_name[cause]);
*killed = false;
*footprint_of_killed_proc = num_pages_reclaimed + num_pages_purged + num_pages_unsecluded;
return TRUE;
}
}
}
killtime = mach_absolute_time();
absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
tv_msec = tv_usec / 1000;
proc_list_lock();
memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
proc_list_unlock();
char kill_reason_string[128];
if (cause == kMemorystatusKilledHiwat) {
strlcpy(kill_reason_string, "killing_highwater_process", 128);
} else {
if (aPid_ep == JETSAM_PRIORITY_IDLE) {
strlcpy(kill_reason_string, "killing_idle_process", 128);
} else {
strlcpy(kill_reason_string, "killing_top_process", 128);
}
}
/*
* memorystatus_do_kill drops a reference, so take another one so we can
* continue to use this exit reason even after memorystatus_do_kill()
* returns
*/
os_reason_ref(jetsam_reason);
retval = memorystatus_do_kill(p, cause, jetsam_reason, footprint_of_killed_proc);
*killed = retval;
memorystatus_log("%lu.%03d memorystatus: %s pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu compressor_size:%u\n",
(unsigned long)tv_sec, tv_msec, kill_reason_string,
aPid, ((p && *p->p_name) ? p->p_name : "unknown"),
memorystatus_kill_cause_name[cause], aPid_ep,
(*footprint_of_killed_proc) >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES, vm_compressor_pool_size());
return retval;
}
/*
* Jetsam the first process in the queue.
*/
static bool
memorystatus_kill_top_process(bool any, bool sort_flag, uint32_t cause, os_reason_t jetsam_reason,
int32_t max_priority, bool only_swappable,
int32_t *priority, uint32_t *errors, uint64_t *memory_reclaimed)
{
pid_t aPid;
proc_t p = PROC_NULL, next_p = PROC_NULL;
bool new_snapshot = false, force_new_snapshot = false, killed = false, freed_mem = false;
unsigned int i = 0;
uint32_t aPid_ep;
int32_t local_max_kill_prio = JETSAM_PRIORITY_IDLE;
uint64_t footprint_of_killed_proc = 0;
#ifndef CONFIG_FREEZE
#pragma unused(any)
#endif
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
MEMORYSTATUS_LOG_AVAILABLE_PAGES);
#if CONFIG_JETSAM
if (sort_flag) {
(void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT);
}
*memory_reclaimed = 0;
local_max_kill_prio = MIN(max_kill_priority, max_priority);
#if VM_PRESSURE_EVENTS
if (cause == kMemorystatusKilledSustainedPressure) {
local_max_kill_prio = memorystatus_sustained_pressure_maximum_band;
}
#endif /* VM_PRESSURE_EVENTS */
force_new_snapshot = false;
#else /* CONFIG_JETSAM */
(void) max_priority;
if (sort_flag) {
(void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE, JETSAM_SORT_DEFAULT);
}
/*
* On macos, we currently only have 2 reasons to be here:
*
* kMemorystatusKilledZoneMapExhaustion
* AND
* kMemorystatusKilledVMCompressorSpaceShortage
*
* If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
* any and all processes as eligible kill candidates since we need to avoid a panic.
*
* Since this function can be called async. it is harder to toggle the max_kill_priority
* value before and after a call. And so we use this local variable to set the upper band
* on the eligible kill bands.
*/
if (cause == kMemorystatusKilledZoneMapExhaustion) {
local_max_kill_prio = JETSAM_PRIORITY_MAX;
} else {
local_max_kill_prio = max_kill_priority;
}
/*
* And, because we are here under extreme circumstances, we force a snapshot even for
* IDLE kills.
*/
force_new_snapshot = true;
#endif /* CONFIG_JETSAM */
if (cause != kMemorystatusKilledZoneMapExhaustion &&
jetsam_current_thread() != NULL &&
jetsam_current_thread()->limit_to_low_bands &&
local_max_kill_prio > JETSAM_PRIORITY_MAIL) {
local_max_kill_prio = JETSAM_PRIORITY_MAIL;
}
proc_list_lock();
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
while (next_p && (next_p->p_memstat_effectivepriority <= local_max_kill_prio)) {
p = next_p;
next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
aPid = proc_getpid(p);
aPid_ep = p->p_memstat_effectivepriority;
if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED | P_MEMSTAT_SKIP)) {
continue; /* with lock held */
}
if (cause == kMemorystatusKilledVnodes) {
/*
* If the system runs out of vnodes, we systematically jetsam
* processes in hopes of stumbling onto a vnode gain that helps
* the system recover. The process that happens to trigger
* this path has no known relationship to the vnode shortage.
* Deadlock avoidance: attempt to safeguard the caller.
*/
if (p == current_proc()) {
/* do not jetsam the current process */
continue;
}
}
if (only_swappable && !task_donates_own_pages(proc_task(p))) {
continue;
}
#if CONFIG_FREEZE
boolean_t skip;
boolean_t reclaim_proc = !(p->p_memstat_state & P_MEMSTAT_LOCKED);
if (any || reclaim_proc) {
skip = FALSE;
} else {
skip = TRUE;
}
if (skip) {
continue;
} else
#endif
{
if (proc_ref(p, true) == p) {
/*
* Mark as terminated so that if exit1() indicates success, but the process (for example)
* is blocked in task_exception_notify(), it'll be skipped if encountered again - see
* <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
* acquisition of the proc lock.
*/
p->p_memstat_state |= P_MEMSTAT_TERMINATED;
} else {
/*
* We need to restart the search again because
* proc_ref _can_ drop the proc_list lock
* and we could have lost our stored next_p via
* an exit() on another core.
*/
i = 0;
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
continue;
}
/*
* Capture a snapshot if none exists and:
* - we are forcing a new snapshot creation, either because:
* - on a particular platform we need these snapshots every time, OR
* - a boot-arg/embedded device tree property has been set.
* - priority was not requested (this is something other than an ambient kill)
* - the priority was requested *and* the targeted process is not at idle priority
*/
if ((memorystatus_jetsam_snapshot_count == 0) &&
(force_new_snapshot || memorystatus_idle_snapshot || ((!priority) || (priority && (aPid_ep != JETSAM_PRIORITY_IDLE))))) {
memorystatus_init_jetsam_snapshot_locked(NULL, 0);
new_snapshot = true;
}
proc_list_unlock();
freed_mem = memorystatus_kill_proc(p, cause, jetsam_reason, &killed, &footprint_of_killed_proc); /* purged and/or killed 'p' */
/* Success? */
if (freed_mem) {
*memory_reclaimed = footprint_of_killed_proc;
if (killed) {
if (priority) {
*priority = aPid_ep;
}
} else {
/* purged */
proc_list_lock();
p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
proc_list_unlock();
}
proc_rele(p);
goto exit;
}
/*
* Failure - first unwind the state,
* then fall through to restart the search.
*/
proc_list_lock();
proc_rele(p);
p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
p->p_memstat_state |= P_MEMSTAT_ERROR;
*errors += 1;
i = 0;
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
}
}
proc_list_unlock();
exit:
os_reason_free(jetsam_reason);
if (!killed) {
/* Clear snapshot if freshly captured and no target was found */
if (new_snapshot) {
proc_list_lock();
memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
proc_list_unlock();
}
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
MEMORYSTATUS_LOG_AVAILABLE_PAGES, killed ? aPid : 0, killed, *memory_reclaimed);
return killed;
}
/*
* Jetsam aggressively
*/
static boolean_t
memorystatus_kill_processes_aggressive(uint32_t cause, int aggr_count,
int32_t priority_max, int max_kills, uint32_t *errors, uint64_t *memory_reclaimed)
{
pid_t aPid;
proc_t p = PROC_NULL, next_p = PROC_NULL;
boolean_t new_snapshot = FALSE, killed = FALSE;
int kill_count = 0;
unsigned int i = 0;
int32_t aPid_ep = 0;
unsigned int memorystatus_level_snapshot = 0;
uint64_t killtime = 0;
clock_sec_t tv_sec;
clock_usec_t tv_usec;
uint32_t tv_msec;
os_reason_t jetsam_reason = OS_REASON_NULL;
uint64_t footprint_of_killed_proc = 0;
*memory_reclaimed = 0;
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
MEMORYSTATUS_LOG_AVAILABLE_PAGES, priority_max);
if (priority_max >= JETSAM_PRIORITY_FOREGROUND) {
/*
* Check if aggressive jetsam has been asked to kill upto or beyond the
* JETSAM_PRIORITY_FOREGROUND bucket. If yes, sort the FG band based on
* coalition footprint.
*/
memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT);
}
jetsam_reason = os_reason_create(OS_REASON_JETSAM, cause);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("memorystatus_kill_processes_aggressive: failed to allocate exit reason\n");
}
memorystatus_log("memorystatus: aggressively killing up to %d processes below band %d.\n", max_kills, priority_max + 1);
proc_list_lock();
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
while (next_p) {
if (proc_list_exited(next_p) ||
((unsigned int)(next_p->p_memstat_effectivepriority) != i)) {
/*
* We have raced with next_p running on another core.
* It may be exiting or it may have moved to a different
* jetsam priority band. This means we have lost our
* place in line while traversing the jetsam list. We
* attempt to recover by rewinding to the beginning of the band
* we were already traversing. By doing this, we do not guarantee
* that no process escapes this aggressive march, but we can make
* skipping an entire range of processes less likely. (PR-21069019)
*/
memorystatus_log_debug(
"memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
aggr_count, i, (*next_p->p_name ? next_p->p_name : "unknown"), proc_getpid(next_p));
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
continue;
}
p = next_p;
next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
if (p->p_memstat_effectivepriority > priority_max) {
/*
* Bail out of this killing spree if we have
* reached beyond the priority_max jetsam band.
* That is, we kill up to and through the
* priority_max jetsam band.
*/
proc_list_unlock();
goto exit;
}
aPid = proc_getpid(p);
aPid_ep = p->p_memstat_effectivepriority;
if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED | P_MEMSTAT_SKIP)) {
continue;
}
/*
* Capture a snapshot if none exists.
*/
if (memorystatus_jetsam_snapshot_count == 0) {
memorystatus_init_jetsam_snapshot_locked(NULL, 0);
new_snapshot = TRUE;
}
/*
* Mark as terminated so that if exit1() indicates success, but the process (for example)
* is blocked in task_exception_notify(), it'll be skipped if encountered again - see
* <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
* acquisition of the proc lock.
*/
p->p_memstat_state |= P_MEMSTAT_TERMINATED;
killtime = mach_absolute_time();
absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
tv_msec = tv_usec / 1000;
/* Shift queue, update stats */
memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
/*
* In order to kill the target process, we will drop the proc_list_lock.
* To guaranteee that p and next_p don't disappear out from under the lock,
* we must take a ref on both.
* If we cannot get a reference, then it's likely we've raced with
* that process exiting on another core.
*/
if (proc_ref(p, true) == p) {
if (next_p) {
while (next_p && (proc_ref(next_p, true) != next_p)) {
proc_t temp_p;
/*
* We must have raced with next_p exiting on another core.
* Recover by getting the next eligible process in the band.
*/
memorystatus_log_debug(
"memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
aggr_count, proc_getpid(next_p), (*next_p->p_name ? next_p->p_name : "(unknown)"));
temp_p = next_p;
next_p = memorystatus_get_next_proc_locked(&i, temp_p, TRUE);
}
}
proc_list_unlock();
memorystatus_log(
"%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
(unsigned long)tv_sec, tv_msec,
((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
aggr_count, aPid, (*p->p_name ? p->p_name : "unknown"),
memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
memorystatus_level_snapshot = memorystatus_level;
/*
* memorystatus_do_kill() drops a reference, so take another one so we can
* continue to use this exit reason even after memorystatus_do_kill()
* returns.
*/
os_reason_ref(jetsam_reason);
killed = memorystatus_do_kill(p, cause, jetsam_reason, &footprint_of_killed_proc);
/* Success? */
if (killed) {
*memory_reclaimed += footprint_of_killed_proc;
proc_rele(p);
kill_count++;
p = NULL;
killed = FALSE;
/*
* Continue the killing spree.
*/
proc_list_lock();
if (next_p) {
proc_rele(next_p);
}
if (kill_count == max_kills) {
memorystatus_log_info(
"memorystatus: giving up aggressive kill after killing %d processes below band %d.\n", max_kills, priority_max + 1);
break;
}
if (aPid_ep == JETSAM_PRIORITY_FOREGROUND && memorystatus_aggressive_jetsam_lenient == TRUE) {
if (memorystatus_level > memorystatus_level_snapshot && ((memorystatus_level - memorystatus_level_snapshot) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD)) {
#if DEVELOPMENT || DEBUG
memorystatus_log_info("Disabling Lenient mode after one-time deployment.\n");
#endif /* DEVELOPMENT || DEBUG */
memorystatus_aggressive_jetsam_lenient = FALSE;
break;
}
}
continue;
}
/*
* Failure - first unwind the state,
* then fall through to restart the search.
*/
proc_list_lock();
proc_rele(p);
if (next_p) {
proc_rele(next_p);
}
p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
p->p_memstat_state |= P_MEMSTAT_ERROR;
*errors += 1;
p = NULL;
}
/*
* Failure - restart the search at the beginning of
* the band we were already traversing.
*
* We might have raced with "p" exiting on another core, resulting in no
* ref on "p". Or, we may have failed to kill "p".
*
* Either way, we fall thru to here, leaving the proc in the
* P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
*
* And, we hold the the proc_list_lock at this point.
*/
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
}
proc_list_unlock();
exit:
os_reason_free(jetsam_reason);
/* Clear snapshot if freshly captured and no target was found */
if (new_snapshot && (kill_count == 0)) {
proc_list_lock();
memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
proc_list_unlock();
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
MEMORYSTATUS_LOG_AVAILABLE_PAGES, 0, kill_count, *memory_reclaimed);
if (kill_count > 0) {
return TRUE;
} else {
return FALSE;
}
}
static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged, uint64_t *memory_reclaimed)
{
pid_t aPid = 0;
proc_t p = PROC_NULL, next_p = PROC_NULL;
bool new_snapshot = false, killed = false, freed_mem = false;
unsigned int i = 0;
uint32_t aPid_ep;
os_reason_t jetsam_reason = OS_REASON_NULL;
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_START,
MEMORYSTATUS_LOG_AVAILABLE_PAGES);
jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_HIGHWATER);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
}
proc_list_lock();
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
while (next_p) {
uint64_t footprint_in_bytes = 0;
uint64_t memlimit_in_bytes = 0;
boolean_t skip = 0;
p = next_p;
next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
aPid = proc_getpid(p);
aPid_ep = p->p_memstat_effectivepriority;
if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED | P_MEMSTAT_SKIP)) {
continue;
}
/* skip if no limit set */
if (p->p_memstat_memlimit <= 0) {
continue;
}
footprint_in_bytes = get_task_phys_footprint(proc_task(p));
memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */
skip = (footprint_in_bytes <= memlimit_in_bytes);
#if CONFIG_FREEZE
if (!skip) {
if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
skip = TRUE;
} else {
skip = FALSE;
}
}
#endif
if (skip) {
continue;
} else {
if (memorystatus_jetsam_snapshot_count == 0) {
memorystatus_init_jetsam_snapshot_locked(NULL, 0);
new_snapshot = true;
}
if (proc_ref(p, true) == p) {
/*
* Mark as terminated so that if exit1() indicates success, but the process (for example)
* is blocked in task_exception_notify(), it'll be skipped if encountered again - see
* <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
* acquisition of the proc lock.
*/
p->p_memstat_state |= P_MEMSTAT_TERMINATED;
proc_list_unlock();
} else {
/*
* We need to restart the search again because
* proc_ref _can_ drop the proc_list lock
* and we could have lost our stored next_p via
* an exit() on another core.
*/
i = 0;
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
continue;
}
footprint_in_bytes = 0;
freed_mem = memorystatus_kill_proc(p, kMemorystatusKilledHiwat, jetsam_reason, &killed, &footprint_in_bytes); /* purged and/or killed 'p' */
/* Success? */
if (freed_mem) {
if (!killed) {
/* purged 'p'..don't reset HWM candidate count */
*purged = TRUE;
proc_list_lock();
p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
proc_list_unlock();
} else {
*memory_reclaimed = footprint_in_bytes;
}
proc_rele(p);
goto exit;
}
/*
* Failure - first unwind the state,
* then fall through to restart the search.
*/
proc_list_lock();
proc_rele(p);
p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
p->p_memstat_state |= P_MEMSTAT_ERROR;
*errors += 1;
i = 0;
next_p = memorystatus_get_first_proc_locked(&i, TRUE);
}
}
proc_list_unlock();
exit:
os_reason_free(jetsam_reason);
if (!killed) {
*memory_reclaimed = 0;
/* Clear snapshot if freshly captured and no target was found */
if (new_snapshot) {
proc_list_lock();
memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
proc_list_unlock();
}
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_END,
MEMORYSTATUS_LOG_AVAILABLE_PAGES, killed ? aPid : 0, killed, *memory_reclaimed, 0);
return killed;
}
/*
* Jetsam a process pinned in the elevated band.
*
* Return: true -- a pinned process was jetsammed
* false -- no pinned process was jetsammed
*/
boolean_t
memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count, uint32_t *errors, uint64_t *memory_reclaimed)
{
pid_t aPid = 0;
proc_t p = PROC_NULL, next_p = PROC_NULL;
boolean_t new_snapshot = FALSE, killed = FALSE;
int kill_count = 0;
uint32_t aPid_ep;
uint64_t killtime = 0;
clock_sec_t tv_sec;
clock_usec_t tv_usec;
uint32_t tv_msec;
uint64_t footprint_of_killed_proc = 0;
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
MEMORYSTATUS_LOG_AVAILABLE_PAGES);
#if CONFIG_FREEZE
boolean_t consider_frozen_only = FALSE;
if (band == (unsigned int) memorystatus_freeze_jetsam_band) {
consider_frozen_only = TRUE;
}
#endif /* CONFIG_FREEZE */
proc_list_lock();
next_p = memorystatus_get_first_proc_locked(&band, FALSE);
while (next_p) {
p = next_p;
next_p = memorystatus_get_next_proc_locked(&band, p, FALSE);
aPid = proc_getpid(p);
aPid_ep = p->p_memstat_effectivepriority;
/*
* Only pick a process pinned in this elevated band
*/
if (!(p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) {
continue;
}
if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED | P_MEMSTAT_SKIP)) {
continue;
}
#if CONFIG_FREEZE
if (consider_frozen_only && !(p->p_memstat_state & P_MEMSTAT_FROZEN)) {
continue;
}
if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
continue;
}
#endif /* CONFIG_FREEZE */
#if DEVELOPMENT || DEBUG
memorystatus_log_info(
"jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
aggr_count, aPid, (*p->p_name ? p->p_name : "unknown"), MEMORYSTATUS_LOG_AVAILABLE_PAGES);
#endif /* DEVELOPMENT || DEBUG */
if (memorystatus_jetsam_snapshot_count == 0) {
memorystatus_init_jetsam_snapshot_locked(NULL, 0);
new_snapshot = TRUE;
}
p->p_memstat_state |= P_MEMSTAT_TERMINATED;
killtime = mach_absolute_time();
absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
tv_msec = tv_usec / 1000;
memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
if (proc_ref(p, true) == p) {
proc_list_unlock();
/*
* memorystatus_do_kill drops a reference, so take another one so we can
* continue to use this exit reason even after memorystatus_do_kill()
* returns
*/
os_reason_ref(jetsam_reason);
killed = memorystatus_do_kill(p, cause, jetsam_reason, &footprint_of_killed_proc);
memorystatus_log("%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
(unsigned long)tv_sec, tv_msec,
aggr_count,
aPid, ((p && *p->p_name) ? p->p_name : "unknown"),
memorystatus_kill_cause_name[cause], aPid_ep,
footprint_of_killed_proc >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
/* Success? */
if (killed) {
*memory_reclaimed = footprint_of_killed_proc;
proc_rele(p);
kill_count++;
goto exit;
}
/*
* Failure - first unwind the state,
* then fall through to restart the search.
*/
proc_list_lock();
proc_rele(p);
p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
p->p_memstat_state |= P_MEMSTAT_ERROR;
*errors += 1;
}
/*
* Failure - restart the search.
*
* We might have raced with "p" exiting on another core, resulting in no
* ref on "p". Or, we may have failed to kill "p".
*
* Either way, we fall thru to here, leaving the proc in the
* P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
*
* And, we hold the the proc_list_lock at this point.
*/
next_p = memorystatus_get_first_proc_locked(&band, FALSE);
}
proc_list_unlock();
exit:
os_reason_free(jetsam_reason);
if (kill_count == 0) {
*memory_reclaimed = 0;
/* Clear snapshot if freshly captured and no target was found */
if (new_snapshot) {
proc_list_lock();
memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
proc_list_unlock();
}
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
MEMORYSTATUS_LOG_AVAILABLE_PAGES, killed ? aPid : 0, kill_count, *memory_reclaimed);
return killed;
}
boolean_t
memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async)
{
if (async) {
os_atomic_store(&memorystatus_compressor_space_shortage, true, release);
memorystatus_thread_wake();
return true;
} else {
os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n");
}
return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage, jetsam_reason);
}
}
#if CONFIG_JETSAM
void
memorystatus_kill_on_vps_starvation(void)
{
os_atomic_store(&memorystatus_pageout_starved, true, release);
memorystatus_thread_wake();
}
boolean_t
memorystatus_kill_on_vnode_limit(void)
{
os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_VNODE);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
}
return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes, jetsam_reason);
}
boolean_t
memorystatus_kill_on_sustained_pressure()
{
os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_SUSTAINED_PRESSURE);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
}
return memorystatus_kill_process_sync(-1, kMemorystatusKilledSustainedPressure, jetsam_reason);
}
boolean_t
memorystatus_kill_with_jetsam_reason_sync(pid_t pid, os_reason_t jetsam_reason)
{
uint32_t kill_cause = jetsam_reason->osr_code <= JETSAM_REASON_MEMORYSTATUS_MAX ?
(uint32_t) jetsam_reason->osr_code : JETSAM_REASON_INVALID;
return memorystatus_kill_process_sync(pid, kill_cause, jetsam_reason);
}
#endif /* CONFIG_JETSAM */
boolean_t
memorystatus_kill_on_zone_map_exhaustion(pid_t pid)
{
boolean_t res = FALSE;
if (pid == -1) {
os_atomic_store(&memorystatus_zone_map_is_exhausted, true, release);
memorystatus_thread_wake();
return true;
} else {
os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_ZONE_MAP_EXHAUSTION);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
}
res = memorystatus_kill_process_sync(pid, kMemorystatusKilledZoneMapExhaustion, jetsam_reason);
}
return res;
}
void
memorystatus_on_pageout_scan_end(void)
{
/* No-op */
}
/* Return both allocated and actual size, since there's a race between allocation and list compilation */
static int
memorystatus_get_priority_list(memorystatus_priority_entry_t **list_ptr, size_t *buffer_size, size_t *list_size, boolean_t size_only)
{
uint32_t list_count, i = 0;
memorystatus_priority_entry_t *list_entry;
proc_t p;
list_count = memorystatus_list_count;
*list_size = sizeof(memorystatus_priority_entry_t) * list_count;
/* Just a size check? */
if (size_only) {
return 0;
}
/* Otherwise, validate the size of the buffer */
if (*buffer_size < *list_size) {
return EINVAL;
}
*list_ptr = kalloc_data(*list_size, Z_WAITOK | Z_ZERO);
if (!*list_ptr) {
return ENOMEM;
}
*buffer_size = *list_size;
*list_size = 0;
list_entry = *list_ptr;
proc_list_lock();
p = memorystatus_get_first_proc_locked(&i, TRUE);
while (p && (*list_size < *buffer_size)) {
list_entry->pid = proc_getpid(p);
list_entry->priority = p->p_memstat_effectivepriority;
list_entry->user_data = p->p_memstat_userdata;
if (p->p_memstat_memlimit <= 0) {
task_get_phys_footprint_limit(proc_task(p), &list_entry->limit);
} else {
list_entry->limit = p->p_memstat_memlimit;
}
list_entry->state = memorystatus_build_state(p);
list_entry++;
*list_size += sizeof(memorystatus_priority_entry_t);
p = memorystatus_get_next_proc_locked(&i, p, TRUE);
}
proc_list_unlock();
memorystatus_log_debug("memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size);
return 0;
}
static int
memorystatus_get_priority_pid(pid_t pid, user_addr_t buffer, size_t buffer_size)
{
int error = 0;
memorystatus_priority_entry_t mp_entry;
kern_return_t ret;
/* Validate inputs */
if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_entry_t))) {
return EINVAL;
}
proc_t p = proc_find(pid);
if (!p) {
return ESRCH;
}
memset(&mp_entry, 0, sizeof(memorystatus_priority_entry_t));
mp_entry.pid = proc_getpid(p);
mp_entry.priority = p->p_memstat_effectivepriority;
mp_entry.user_data = p->p_memstat_userdata;
if (p->p_memstat_memlimit <= 0) {
ret = task_get_phys_footprint_limit(proc_task(p), &mp_entry.limit);
if (ret != KERN_SUCCESS) {
proc_rele(p);
return EINVAL;
}
} else {
mp_entry.limit = p->p_memstat_memlimit;
}
mp_entry.state = memorystatus_build_state(p);
proc_rele(p);
error = copyout(&mp_entry, buffer, buffer_size);
return error;
}
static int
memorystatus_cmd_get_priority_list(pid_t pid, user_addr_t buffer, size_t buffer_size, int32_t *retval)
{
int error = 0;
boolean_t size_only;
size_t list_size;
/*
* When a non-zero pid is provided, the 'list' has only one entry.
*/
size_only = ((buffer == USER_ADDR_NULL) ? TRUE: FALSE);
if (pid != 0) {
list_size = sizeof(memorystatus_priority_entry_t) * 1;
if (!size_only) {
error = memorystatus_get_priority_pid(pid, buffer, buffer_size);
}
} else {
memorystatus_priority_entry_t *list = NULL;
error = memorystatus_get_priority_list(&list, &buffer_size, &list_size, size_only);
if (error == 0) {
if (!size_only) {
error = copyout(list, buffer, list_size);
}
kfree_data(list, buffer_size);
}
}
if (error == 0) {
assert(list_size <= INT32_MAX);
*retval = (int32_t) list_size;
}
return error;
}
static void
memorystatus_clear_errors(void)
{
proc_t p;
unsigned int i = 0;
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_START);
proc_list_lock();
p = memorystatus_get_first_proc_locked(&i, TRUE);
while (p) {
if (p->p_memstat_state & P_MEMSTAT_ERROR) {
p->p_memstat_state &= ~P_MEMSTAT_ERROR;
}
p = memorystatus_get_next_proc_locked(&i, p, TRUE);
}
proc_list_unlock();
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_END);
}
#if CONFIG_JETSAM
static void
memorystatus_update_levels_locked(void)
{
/*
* If there's an entry in the first bucket, we have idle processes.
*/
memstat_bucket_t *first_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
if (first_bucket->count) {
memorystatus_available_pages_critical = memorystatus_available_pages_critical_idle;
} else {
memorystatus_available_pages_critical = memorystatus_available_pages_critical_base;
}
if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure) {
/*
* The critical threshold must never exceed the pressure threshold
*/
memorystatus_available_pages_critical = memorystatus_available_pages_pressure;
}
if (memorystatus_jetsam_policy & kPolicyMoreFree) {
memorystatus_available_pages_critical += memorystatus_policy_more_free_offset_pages;
}
}
void
memorystatus_fast_jetsam_override(boolean_t enable_override)
{
/* If fast jetsam is not enabled, simply return */
if (!fast_jetsam_enabled) {
return;
}
if (enable_override) {
if ((memorystatus_jetsam_policy & kPolicyMoreFree) == kPolicyMoreFree) {
return;
}
proc_list_lock();
memorystatus_jetsam_policy |= kPolicyMoreFree;
memorystatus_thread_pool_max();
memorystatus_update_levels_locked();
proc_list_unlock();
} else {
if ((memorystatus_jetsam_policy & kPolicyMoreFree) == 0) {
return;
}
proc_list_lock();
memorystatus_jetsam_policy &= ~kPolicyMoreFree;
memorystatus_thread_pool_default();
memorystatus_update_levels_locked();
proc_list_unlock();
}
}
static int
sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
int error = 0, more_free = 0;
/*
* TODO: Enable this privilege check?
*
* error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
* if (error)
* return (error);
*/
error = sysctl_handle_int(oidp, &more_free, 0, req);
if (error || !req->newptr) {
return error;
}
if (more_free) {
memorystatus_fast_jetsam_override(true);
} else {
memorystatus_fast_jetsam_override(false);
}
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, memorystatus_policy_more_free, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED,
0, 0, &sysctl_kern_memorystatus_policy_more_free, "I", "");
#endif /* CONFIG_JETSAM */
/*
* Get the at_boot snapshot
*/
static int
memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
{
size_t input_size = *snapshot_size;
/*
* The at_boot snapshot has no entry list.
*/
*snapshot_size = sizeof(memorystatus_jetsam_snapshot_t);
if (size_only) {
return 0;
}
/*
* Validate the size of the snapshot buffer
*/
if (input_size < *snapshot_size) {
return EINVAL;
}
/*
* Update the notification_time only
*/
memorystatus_at_boot_snapshot.notification_time = mach_absolute_time();
*snapshot = &memorystatus_at_boot_snapshot;
memorystatus_log_debug(
"memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
(long)input_size, (long)*snapshot_size, 0);
return 0;
}
#if CONFIG_FREEZE
static int
memorystatus_get_jetsam_snapshot_freezer(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
{
size_t input_size = *snapshot_size;
if (memorystatus_jetsam_snapshot_freezer->entry_count > 0) {
*snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_freezer->entry_count));
} else {
*snapshot_size = 0;
}
assert(*snapshot_size <= memorystatus_jetsam_snapshot_freezer_size);
if (size_only) {
return 0;
}
if (input_size < *snapshot_size) {
return EINVAL;
}
*snapshot = memorystatus_jetsam_snapshot_freezer;
memorystatus_log_debug(
"memorystatus_get_jetsam_snapshot_freezer: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
(long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_freezer->entry_count);
return 0;
}
#endif /* CONFIG_FREEZE */
static int
memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
{
size_t input_size = *snapshot_size;
uint32_t ods_list_count = memorystatus_list_count;
memorystatus_jetsam_snapshot_t *ods = NULL; /* The on_demand snapshot buffer */
*snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (ods_list_count));
if (size_only) {
return 0;
}
/*
* Validate the size of the snapshot buffer.
* This is inherently racey. May want to revisit
* this error condition and trim the output when
* it doesn't fit.
*/
if (input_size < *snapshot_size) {
return EINVAL;
}
/*
* Allocate and initialize a snapshot buffer.
*/
ods = kalloc_data(*snapshot_size, Z_WAITOK | Z_ZERO);
if (!ods) {
return ENOMEM;
}
proc_list_lock();
memorystatus_init_jetsam_snapshot_locked(ods, ods_list_count);
proc_list_unlock();
/*
* Return the kernel allocated, on_demand buffer.
* The caller of this routine will copy the data out
* to user space and then free the kernel allocated
* buffer.
*/
*snapshot = ods;
memorystatus_log_debug(
"memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
(long)input_size, (long)*snapshot_size, (long)ods_list_count);
return 0;
}
static int
memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
{
size_t input_size = *snapshot_size;
if (memorystatus_jetsam_snapshot_count > 0) {
*snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count));
} else {
*snapshot_size = 0;
}
if (size_only) {
return 0;
}
if (input_size < *snapshot_size) {
return EINVAL;
}
*snapshot = memorystatus_jetsam_snapshot;
memorystatus_log_debug(
"memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
(long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_count);
return 0;
}
static int
memorystatus_cmd_get_jetsam_snapshot(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval)
{
int error = EINVAL;
boolean_t size_only;
boolean_t is_default_snapshot = FALSE;
boolean_t is_on_demand_snapshot = FALSE;
boolean_t is_at_boot_snapshot = FALSE;
#if CONFIG_FREEZE
bool is_freezer_snapshot = false;
#endif /* CONFIG_FREEZE */
memorystatus_jetsam_snapshot_t *snapshot;
size_only = ((buffer == USER_ADDR_NULL) ? TRUE : FALSE);
if (flags == 0) {
/* Default */
is_default_snapshot = TRUE;
error = memorystatus_get_jetsam_snapshot(&snapshot, &buffer_size, size_only);
} else {
if (flags & ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT | MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER)) {
/*
* Unsupported bit set in flag.
*/
return EINVAL;
}
if (flags & (flags - 0x1)) {
/*
* Can't have multiple flags set at the same time.
*/
return EINVAL;
}
if (flags & MEMORYSTATUS_SNAPSHOT_ON_DEMAND) {
is_on_demand_snapshot = TRUE;
/*
* When not requesting the size only, the following call will allocate
* an on_demand snapshot buffer, which is freed below.
*/
error = memorystatus_get_on_demand_snapshot(&snapshot, &buffer_size, size_only);
} else if (flags & MEMORYSTATUS_SNAPSHOT_AT_BOOT) {
is_at_boot_snapshot = TRUE;
error = memorystatus_get_at_boot_snapshot(&snapshot, &buffer_size, size_only);
#if CONFIG_FREEZE
} else if (flags & MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER) {
is_freezer_snapshot = true;
error = memorystatus_get_jetsam_snapshot_freezer(&snapshot, &buffer_size, size_only);
#endif /* CONFIG_FREEZE */
} else {
/*
* Invalid flag setting.
*/
return EINVAL;
}
}
if (error) {
goto out;
}
/*
* Copy the data out to user space and clear the snapshot buffer.
* If working with the jetsam snapshot,
* clearing the buffer means, reset the count.
* If working with an on_demand snapshot
* clearing the buffer means, free it.
* If working with the at_boot snapshot
* there is nothing to clear or update.
* If working with a copy of the snapshot
* there is nothing to clear or update.
* If working with the freezer snapshot
* clearing the buffer means, reset the count.
*/
if (!size_only) {
if ((error = copyout(snapshot, buffer, buffer_size)) == 0) {
#if CONFIG_FREEZE
if (is_default_snapshot || is_freezer_snapshot) {
#else
if (is_default_snapshot) {
#endif /* CONFIG_FREEZE */
/*
* The jetsam snapshot is never freed, its count is simply reset.
* However, we make a copy for any parties that might be interested
* in the previous fully populated snapshot.
*/
proc_list_lock();
#if DEVELOPMENT || DEBUG
if (memorystatus_testing_pid != 0 && memorystatus_testing_pid != proc_getpid(current_proc())) {
/* Snapshot is currently owned by someone else. Don't consume it. */
proc_list_unlock();
goto out;
}
#endif /* (DEVELOPMENT || DEBUG)*/
if (is_default_snapshot) {
snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
memorystatus_jetsam_snapshot_last_timestamp = 0;
}
#if CONFIG_FREEZE
else if (is_freezer_snapshot) {
memorystatus_jetsam_snapshot_freezer->entry_count = 0;
}
#endif /* CONFIG_FREEZE */
proc_list_unlock();
}
}
if (is_on_demand_snapshot) {
/*
* The on_demand snapshot is always freed,
* even if the copyout failed.
*/
kfree_data(snapshot, buffer_size);
}
}
out:
if (error == 0) {
assert(buffer_size <= INT32_MAX);
*retval = (int32_t) buffer_size;
}
return error;
}
#if DEVELOPMENT || DEBUG
static int
memorystatus_cmd_set_testing_pid(int32_t flags)
{
int error = EINVAL;
proc_t caller = current_proc();
assert(caller != kernproc);
proc_list_lock();
if (flags & MEMORYSTATUS_FLAGS_SET_TESTING_PID) {
if (memorystatus_testing_pid == 0) {
memorystatus_testing_pid = proc_getpid(caller);
error = 0;
} else if (memorystatus_testing_pid == proc_getpid(caller)) {
error = 0;
} else {
/* We don't allow ownership to be taken from another proc. */
error = EBUSY;
}
} else if (flags & MEMORYSTATUS_FLAGS_UNSET_TESTING_PID) {
if (memorystatus_testing_pid == proc_getpid(caller)) {
memorystatus_testing_pid = 0;
error = 0;
} else if (memorystatus_testing_pid != 0) {
/* We don't allow ownership to be taken from another proc. */
error = EPERM;
}
}
proc_list_unlock();
return error;
}
#endif /* DEVELOPMENT || DEBUG */
/*
* Routine: memorystatus_cmd_grp_set_priorities
* Purpose: Update priorities for a group of processes.
*
* [priority]
* Move each process out of its effective priority
* band and into a new priority band.
* Maintains relative order from lowest to highest priority.
* In single band, maintains relative order from head to tail.
*
* eg: before [effectivepriority | pid]
* [18 | p101 ]
* [17 | p55, p67, p19 ]
* [12 | p103 p10 ]
* [ 7 | p25 ]
* [ 0 | p71, p82, ]
*
* after [ new band | pid]
* [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
*
* Returns: 0 on success, else non-zero.
*
* Caveat: We know there is a race window regarding recycled pids.
* A process could be killed before the kernel can act on it here.
* If a pid cannot be found in any of the jetsam priority bands,
* then we simply ignore it. No harm.
* But, if the pid has been recycled then it could be an issue.
* In that scenario, we might move an unsuspecting process to the new
* priority band. It's not clear how the kernel can safeguard
* against this, but it would be an extremely rare case anyway.
* The caller of this api might avoid such race conditions by
* ensuring that the processes passed in the pid list are suspended.
*/
static int
memorystatus_cmd_grp_set_priorities(user_addr_t buffer, size_t buffer_size)
{
/*
* We only handle setting priority
* per process
*/
int error = 0;
memorystatus_properties_entry_v1_t *entries = NULL;
size_t entry_count = 0;
/* This will be the ordered proc list */
typedef struct memorystatus_internal_properties {
proc_t proc;
int32_t priority;
} memorystatus_internal_properties_t;
memorystatus_internal_properties_t *table = NULL;
uint32_t table_count = 0;
size_t i = 0;
uint32_t bucket_index = 0;
boolean_t head_insert;
int32_t new_priority;
proc_t p;
/* Verify inputs */
if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) {
error = EINVAL;
goto out;
}
entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t));
if (entry_count == 0) {
/* buffer size was not large enough for a single entry */
error = EINVAL;
goto out;
}
if ((entries = kalloc_data(buffer_size, Z_WAITOK)) == NULL) {
error = ENOMEM;
goto out;
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count);
if ((error = copyin(buffer, entries, buffer_size)) != 0) {
goto out;
}
/* Verify sanity of input priorities */
if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) {
if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) {
error = EINVAL;
goto out;
}
} else {
error = EINVAL;
goto out;
}
for (i = 0; i < entry_count; i++) {
if (entries[i].priority == -1) {
/* Use as shorthand for default priority */
entries[i].priority = JETSAM_PRIORITY_DEFAULT;
} else if (entries[i].priority > JETSAM_PRIORITY_IDLE && entries[i].priority <= applications_aging_band) {
/*
* Everything between idle and the aging bands are reserved for internal use.
* if requested, adjust to JETSAM_PRIORITY_IDLE.
* Entitled processes (just munch) can use a subset of this range for testing.
*/
if (entries[i].priority > JETSAM_PRIORITY_ENTITLED_MAX ||
!current_task_can_use_entitled_range()) {
entries[i].priority = JETSAM_PRIORITY_IDLE;
}
} else if (entries[i].priority == JETSAM_PRIORITY_IDLE_HEAD) {
/* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
* queue */
/* Deal with this later */
} else if ((entries[i].priority < 0) || (entries[i].priority >= MEMSTAT_BUCKET_COUNT)) {
/* Sanity check */
error = EINVAL;
goto out;
}
}
table = kalloc_type(memorystatus_internal_properties_t, entry_count,
Z_WAITOK | Z_ZERO);
if (table == NULL) {
error = ENOMEM;
goto out;
}
/*
* For each jetsam bucket entry, spin through the input property list.
* When a matching pid is found, populate an adjacent table with the
* appropriate proc pointer and new property values.
* This traversal automatically preserves order from lowest
* to highest priority.
*/
bucket_index = 0;
proc_list_lock();
/* Create the ordered table */
p = memorystatus_get_first_proc_locked(&bucket_index, TRUE);
while (p && (table_count < entry_count)) {
for (i = 0; i < entry_count; i++) {
if (proc_getpid(p) == entries[i].pid) {
/* Build the table data */
table[table_count].proc = p;
table[table_count].priority = entries[i].priority;
table_count++;
break;
}
}
p = memorystatus_get_next_proc_locked(&bucket_index, p, TRUE);
}
/* We now have ordered list of procs ready to move */
for (i = 0; i < table_count; i++) {
p = table[i].proc;
assert(p != NULL);
/* Allow head inserts -- but relative order is now */
if (table[i].priority == JETSAM_PRIORITY_IDLE_HEAD) {
new_priority = JETSAM_PRIORITY_IDLE;
head_insert = true;
} else {
new_priority = table[i].priority;
head_insert = false;
}
/* Not allowed */
if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
continue;
}
/*
* Take appropriate steps if moving proc out of
* either of the aging bands.
*/
if ((p->p_memstat_effectivepriority == system_procs_aging_band) || (p->p_memstat_effectivepriority == applications_aging_band)) {
memorystatus_invalidate_idle_demotion_locked(p, TRUE);
}
memorystatus_update_priority_locked(p, new_priority, head_insert, false);
}
proc_list_unlock();
/*
* if (table_count != entry_count)
* then some pids were not found in a jetsam band.
* harmless but interesting...
*/
out:
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, table_count);
kfree_data(entries, buffer_size);
kfree_type(memorystatus_internal_properties_t, entry_count, table);
return error;
}
memorystatus_internal_probabilities_t *memorystatus_global_probabilities_table = NULL;
size_t memorystatus_global_probabilities_size = 0;
static int
memorystatus_cmd_grp_set_probabilities(user_addr_t buffer, size_t buffer_size)
{
int error = 0;
memorystatus_properties_entry_v1_t *entries = NULL;
size_t entry_count = 0, i = 0;
memorystatus_internal_probabilities_t *tmp_table_new = NULL, *tmp_table_old = NULL;
size_t tmp_table_new_size = 0, tmp_table_old_size = 0;
#if DEVELOPMENT || DEBUG
if (memorystatus_testing_pid != 0 && memorystatus_testing_pid != proc_getpid(current_proc())) {
/* probabilites are currently owned by someone else. Don't change them. */
error = EPERM;
goto out;
}
#endif /* (DEVELOPMENT || DEBUG)*/
/* Verify inputs */
if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) {
error = EINVAL;
goto out;
}
entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t));
if (entry_count == 0) {
error = EINVAL;
goto out;
}
if ((entries = kalloc_data(buffer_size, Z_WAITOK)) == NULL) {
error = ENOMEM;
goto out;
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count);
if ((error = copyin(buffer, entries, buffer_size)) != 0) {
goto out;
}
if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) {
if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) {
error = EINVAL;
goto out;
}
} else {
error = EINVAL;
goto out;
}
/* Verify sanity of input priorities */
for (i = 0; i < entry_count; i++) {
/*
* 0 - low probability of use.
* 1 - high probability of use.
*
* Keeping this field an int (& not a bool) to allow
* us to experiment with different values/approaches
* later on.
*/
if (entries[i].use_probability > 1) {
error = EINVAL;
goto out;
}
}
tmp_table_new_size = sizeof(memorystatus_internal_probabilities_t) * entry_count;
if ((tmp_table_new = kalloc_data(tmp_table_new_size, Z_WAITOK | Z_ZERO)) == NULL) {
error = ENOMEM;
goto out;
}
proc_list_lock();
if (memorystatus_global_probabilities_table) {
tmp_table_old = memorystatus_global_probabilities_table;
tmp_table_old_size = memorystatus_global_probabilities_size;
}
memorystatus_global_probabilities_table = tmp_table_new;
memorystatus_global_probabilities_size = tmp_table_new_size;
tmp_table_new = NULL;
for (i = 0; i < entry_count; i++) {
/* Build the table data */
strlcpy(memorystatus_global_probabilities_table[i].proc_name, entries[i].proc_name, MAXCOMLEN + 1);
memorystatus_global_probabilities_table[i].use_probability = entries[i].use_probability;
}
proc_list_unlock();
out:
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, tmp_table_new_size);
kfree_data(entries, buffer_size);
kfree_data(tmp_table_old, tmp_table_old_size);
return error;
}
static int
memorystatus_cmd_grp_set_properties(int32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
{
int error = 0;
if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) {
error = memorystatus_cmd_grp_set_priorities(buffer, buffer_size);
} else if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) {
error = memorystatus_cmd_grp_set_probabilities(buffer, buffer_size);
#if CONFIG_FREEZE
} else if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_FREEZE_PRIORITY) == MEMORYSTATUS_FLAGS_GRP_SET_FREEZE_PRIORITY) {
error = memorystatus_cmd_grp_set_freeze_list(buffer, buffer_size);
} else if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_DEMOTE_PRIORITY) == MEMORYSTATUS_FLAGS_GRP_SET_DEMOTE_PRIORITY) {
error = memorystatus_cmd_grp_set_demote_list(buffer, buffer_size);
#endif /* CONFIG_FREEZE */
} else {
error = EINVAL;
}
return error;
}
/*
* This routine is used to update a process's jetsam priority position and stored user_data.
* It is not used for the setting of memory limits, which is why the last 6 args to the
* memorystatus_update() call are 0 or FALSE.
*
* Flags passed into this call are used to distinguish the motivation behind a jetsam priority
* transition. By default, the kernel updates the process's original requested priority when
* no flag is passed. But when the MEMORYSTATUS_SET_PRIORITY_ASSERTION flag is used, the kernel
* updates the process's assertion driven priority.
*
* The assertion flag was introduced for use by the device's assertion mediator (eg: runningboardd).
* When an assertion is controlling a process's jetsam priority, it may conflict with that process's
* dirty/clean (active/inactive) jetsam state. The kernel attempts to resolve a priority transition
* conflict by reviewing the process state and then choosing the maximum jetsam band at play,
* eg: requested priority versus assertion priority.
*/
static int
memorystatus_cmd_set_priority_properties(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
{
int error = 0;
boolean_t is_assertion = FALSE; /* priority is driven by an assertion */
memorystatus_priority_properties_t mpp_entry;
/* Validate inputs */
if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_properties_t))) {
return EINVAL;
}
/* Validate flags */
if (flags == 0) {
/*
* Default. This path updates requestedpriority.
*/
} else {
if (flags & ~(MEMORYSTATUS_SET_PRIORITY_ASSERTION)) {
/*
* Unsupported bit set in flag.
*/
return EINVAL;
} else if (flags & MEMORYSTATUS_SET_PRIORITY_ASSERTION) {
is_assertion = TRUE;
}
}
error = copyin(buffer, &mpp_entry, buffer_size);
if (error == 0) {
proc_t p;
p = proc_find(pid);
if (!p) {
return ESRCH;
}
if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
proc_rele(p);
return EPERM;
}
if (is_assertion) {
memorystatus_log_debug("memorystatus: set assertion priority(%d) target %s:%d\n",
mpp_entry.priority, (*p->p_name ? p->p_name : "unknown"), proc_getpid(p));
}
error = memorystatus_update(p, mpp_entry.priority, mpp_entry.user_data, is_assertion, FALSE, FALSE, 0, 0, FALSE, FALSE);
proc_rele(p);
}
return error;
}
static int
memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
{
int error = 0;
memorystatus_memlimit_properties_t mmp_entry;
/* Validate inputs */
if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) {
return EINVAL;
}
error = copyin(buffer, &mmp_entry, buffer_size);
if (error == 0) {
error = memorystatus_set_memlimit_properties(pid, &mmp_entry);
}
return error;
}
#if DEBUG || DEVELOPMENT
static int
memorystatus_cmd_set_diag_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
{
int error = 0;
memorystatus_diag_memlimit_properties_t mmp_entry;
proc_t p = proc_find(pid);
if (!p) {
return ESRCH;
}
/* Validate inputs */
if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_diag_memlimit_properties_t))) {
proc_rele(p);
return EINVAL;
}
error = copyin(buffer, &mmp_entry, buffer_size);
if (error == 0) {
proc_list_lock();
error = memorystatus_set_diag_memlimit_properties_internal(p, &mmp_entry);
proc_list_unlock();
}
proc_rele(p);
return error;
}
static int
memorystatus_cmd_get_diag_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
{
int error = 0;
memorystatus_diag_memlimit_properties_t mmp_entry;
proc_t p = proc_find(pid);
if (!p) {
return ESRCH;
}
/* Validate inputs */
if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_diag_memlimit_properties_t))) {
proc_rele(p);
return EINVAL;
}
proc_list_lock();
error = memorystatus_get_diag_memlimit_properties_internal(p, &mmp_entry);
proc_list_unlock();
proc_rele(p);
if (error == 0) {
error = copyout(&mmp_entry, buffer, buffer_size);
}
return error;
}
#endif //DEBUG || DEVELOPMENT
static void
memorystatus_get_memlimit_properties_internal(proc_t p, memorystatus_memlimit_properties_t* p_entry)
{
memset(p_entry, 0, sizeof(memorystatus_memlimit_properties_t));
if (p->p_memstat_memlimit_active > 0) {
p_entry->memlimit_active = p->p_memstat_memlimit_active;
} else {
task_convert_phys_footprint_limit(-1, &p_entry->memlimit_active);
}
if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) {
p_entry->memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
}
/*
* Get the inactive limit and attributes
*/
if (p->p_memstat_memlimit_inactive <= 0) {
task_convert_phys_footprint_limit(-1, &p_entry->memlimit_inactive);
} else {
p_entry->memlimit_inactive = p->p_memstat_memlimit_inactive;
}
if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) {
p_entry->memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
}
}
/*
* When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
* That gets the proc's cached memlimit and there is no guarantee that the active/inactive
* limits will be the same in the no-limit case. Instead we convert limits <= 0 using
* task_convert_phys_footprint_limit(). It computes the same limit value that would be written
* to the task's ledgers via task_set_phys_footprint_limit().
*/
static int
memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
{
memorystatus_memlimit_properties2_t mmp_entry;
/* Validate inputs */
if ((pid == 0) || (buffer == USER_ADDR_NULL) ||
((buffer_size != sizeof(memorystatus_memlimit_properties_t)) &&
(buffer_size != sizeof(memorystatus_memlimit_properties2_t)))) {
return EINVAL;
}
memset(&mmp_entry, 0, sizeof(memorystatus_memlimit_properties2_t));
proc_t p = proc_find(pid);
if (!p) {
return ESRCH;
}
/*
* Get the active limit and attributes.
* No locks taken since we hold a reference to the proc.
*/
memorystatus_get_memlimit_properties_internal(p, &mmp_entry.v1);
#if CONFIG_JETSAM
#if DEVELOPMENT || DEBUG
/*
* Get the limit increased via SPI
*/
mmp_entry.memlimit_increase = roundToNearestMB(p->p_memlimit_increase);
mmp_entry.memlimit_increase_bytes = p->p_memlimit_increase;
#endif /* DEVELOPMENT || DEBUG */
#endif /* CONFIG_JETSAM */
proc_rele(p);
int error = copyout(&mmp_entry, buffer, buffer_size);
return error;
}
/*
* SPI for kbd - pr24956468
* This is a very simple snapshot that calculates how much a
* process's phys_footprint exceeds a specific memory limit.
* Only the inactive memory limit is supported for now.
* The delta is returned as bytes in excess or zero.
*/
static int
memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
{
int error = 0;
uint64_t footprint_in_bytes = 0;
uint64_t delta_in_bytes = 0;
int32_t memlimit_mb = 0;
uint64_t memlimit_bytes = 0;
/* Validate inputs */
if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(uint64_t)) || (flags != 0)) {
return EINVAL;
}
proc_t p = proc_find(pid);
if (!p) {
return ESRCH;
}
/*
* Get the inactive limit.
* No locks taken since we hold a reference to the proc.
*/
if (p->p_memstat_memlimit_inactive <= 0) {
task_convert_phys_footprint_limit(-1, &memlimit_mb);
} else {
memlimit_mb = p->p_memstat_memlimit_inactive;
}
footprint_in_bytes = get_task_phys_footprint(proc_task(p));
proc_rele(p);
memlimit_bytes = memlimit_mb * 1024 * 1024; /* MB to bytes */
/*
* Computed delta always returns >= 0 bytes
*/
if (footprint_in_bytes > memlimit_bytes) {
delta_in_bytes = footprint_in_bytes - memlimit_bytes;
}
error = copyout(&delta_in_bytes, buffer, sizeof(delta_in_bytes));
return error;
}
static int
memorystatus_cmd_get_pressure_status(int32_t *retval)
{
int error;
/* Need privilege for check */
error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0);
if (error) {
return error;
}
/* Inherently racy, so it's not worth taking a lock here */
*retval = (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0;
return error;
}
int
memorystatus_get_pressure_status_kdp()
{
return (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0;
}
/*
* Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
*
* This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
* So, with 2-level HWM preserving previous behavior will map as follows.
* - treat the limit passed in as both an active and inactive limit.
* - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
*
* When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
* - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
* - so mapping is (active/non-fatal, inactive/non-fatal)
*
* When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
* - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
* - so mapping is (active/fatal, inactive/fatal)
*/
#if CONFIG_JETSAM
static int
memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit)
{
int error = 0;
memorystatus_memlimit_properties_t entry;
entry.memlimit_active = high_water_mark;
entry.memlimit_active_attr = 0;
entry.memlimit_inactive = high_water_mark;
entry.memlimit_inactive_attr = 0;
if (is_fatal_limit == TRUE) {
entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
}
error = memorystatus_set_memlimit_properties(pid, &entry);
return error;
}
static int
memorystatus_cmd_mark_process_coalition_swappable(pid_t pid, __unused int32_t *retval)
{
int error = 0;
proc_t p = PROC_NULL;
coalition_t coal = COALITION_NULL;
if (!memorystatus_swap_all_apps) {
/* Swap is not supported on this device. */
return ENOTSUP;
}
p = proc_find(pid);
if (!p) {
return ESRCH;
}
coal = task_get_coalition((task_t) proc_task(p), COALITION_TYPE_JETSAM);
if (coal && coalition_is_leader((task_t) proc_task(p), coal)) {
coalition_mark_swappable(coal);
} else {
/* This SPI is only supported on coalition leaders. */
error = EINVAL;
}
proc_rele(p);
return error;
}
static int
memorystatus_cmd_get_process_coalition_is_swappable(pid_t pid, int32_t *retval)
{
int error = 0;
proc_t p = PROC_NULL;
coalition_t coal = COALITION_NULL;
if (!memorystatus_swap_all_apps) {
/* Swap is not supported on this device. */
return ENOTSUP;
}
p = proc_find(pid);
if (!p) {
return ESRCH;
}
coal = task_get_coalition((task_t) proc_task(p), COALITION_TYPE_JETSAM);
if (coal) {
*retval = coalition_is_swappable(coal);
} else {
error = EINVAL;
}
proc_rele(p);
return error;
}
static int
memorystatus_cmd_convert_memlimit_mb(pid_t pid, int32_t limit, int32_t *retval)
{
int error = 0;
proc_t p;
p = proc_find(pid);
if (!p) {
return ESRCH;
}
if (limit <= 0) {
/*
* A limit of <= 0 implies that the task gets its default limit.
*/
limit = memorystatus_get_default_task_active_limit(p);
if (limit <= 0) {
/* Task uses system wide default limit */
limit = max_task_footprint_mb ? max_task_footprint_mb : INT32_MAX;
}
*retval = limit;
} else {
#if DEVELOPMENT || DEBUG
/* add the current increase to it, for roots */
limit += roundToNearestMB(p->p_memlimit_increase);
#endif /* DEVELOPMENT || DEBUG */
*retval = limit;
}
proc_rele(p);
return error;
}
#endif /* CONFIG_JETSAM */
static int
memorystatus_set_memlimit_properties_internal(proc_t p, memorystatus_memlimit_properties_t *p_entry)
{
int error = 0;
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
/*
* Store the active limit variants in the proc.
*/
SET_ACTIVE_LIMITS_LOCKED(p, p_entry->memlimit_active, p_entry->memlimit_active_attr);
/*
* Store the inactive limit variants in the proc.
*/
SET_INACTIVE_LIMITS_LOCKED(p, p_entry->memlimit_inactive, p_entry->memlimit_inactive_attr);
/*
* Enforce appropriate limit variant by updating the cached values
* and writing the ledger.
* Limit choice is based on process active/inactive state.
*/
if (memorystatus_highwater_enabled) {
boolean_t is_fatal;
boolean_t use_active;
if (proc_jetsam_state_is_active_locked(p) == TRUE) {
CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = TRUE;
} else {
CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
use_active = FALSE;
}
/* Enforce the limit by writing to the ledgers */
error = (task_set_phys_footprint_limit_internal(proc_task(p), ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal) == 0) ? 0 : EINVAL;
memorystatus_log_info(
"memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
proc_getpid(p), (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
(p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty,
(p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit, proc_t, p, int32_t, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1));
}
return error;
}
#if DEBUG || DEVELOPMENT
static int
memorystatus_set_diag_memlimit_properties_internal(proc_t p, memorystatus_diag_memlimit_properties_t *p_entry)
{
int error = 0;
uint64_t old_limit = 0;
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
/* Enforce the limit by writing to the ledgers */
error = (task_set_diag_footprint_limit_internal(proc_task(p), p_entry->memlimit, &old_limit) == KERN_SUCCESS) ? KERN_SUCCESS : EINVAL;
memorystatus_log_debug( "memorystatus_set_diag_memlimit_properties: new limit on pid %d (%lluMB old %lluMB)\n",
proc_getpid(p), (p_entry->memlimit > 0 ? p_entry->memlimit : -1), (old_limit)
);
DTRACE_MEMORYSTATUS2(memorystatus_diag_memlimit_properties_t, proc_t, p, int32_t, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1));
return error;
}
static int
memorystatus_get_diag_memlimit_properties_internal(proc_t p, memorystatus_diag_memlimit_properties_t *p_entry)
{
int error = 0;
/* Enforce the limit by writing to the ledgers */
error = (task_get_diag_footprint_limit_internal(proc_task(p), &p_entry->memlimit, &p_entry->threshold_enabled) == KERN_SUCCESS) ? KERN_SUCCESS : EINVAL;
DTRACE_MEMORYSTATUS2(memorystatus_diag_memlimit_properties_t, proc_t, p, int32_t, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1));
return error;
}
#endif // DEBUG || DEVELOPMENT
bool
memorystatus_task_has_increased_memory_limit_entitlement(task_t task)
{
static const char kIncreasedMemoryLimitEntitlement[] = "com.apple.developer.kernel.increased-memory-limit";
if (memorystatus_entitled_max_task_footprint_mb == 0) {
// Entitlement is not supported on this device.
return false;
}
return IOTaskHasEntitlement(task, kIncreasedMemoryLimitEntitlement);
}
bool
memorystatus_task_has_legacy_footprint_entitlement(task_t task)
{
return IOTaskHasEntitlement(task, "com.apple.private.memory.legacy_footprint");
}
bool
memorystatus_task_has_ios13extended_footprint_limit(task_t task)
{
if (max_mem < 1500ULL * 1024 * 1024 ||
max_mem > 2ULL * 1024 * 1024 * 1024) {
/* ios13extended_footprint is only for 2GB devices */
return false;
}
return IOTaskHasEntitlement(task, "com.apple.developer.memory.ios13extended_footprint");
}
static int32_t
memorystatus_get_default_task_active_limit(proc_t p)
{
bool entitled = memorystatus_task_has_increased_memory_limit_entitlement(proc_task(p));
int32_t limit = -1;
/*
* Check for the various entitlement footprint hacks
* and try to apply each one. Note that if multiple entitlements are present
* whichever results in the largest limit applies.
*/
if (entitled) {
limit = MAX(limit, memorystatus_entitled_max_task_footprint_mb);
}
#if __arm64__
if (legacy_footprint_entitlement_mode == LEGACY_FOOTPRINT_ENTITLEMENT_LIMIT_INCREASE &&
memorystatus_task_has_legacy_footprint_entitlement(proc_task(p))) {
limit = MAX(limit, max_task_footprint_mb + legacy_footprint_bonus_mb);
}
#endif /* __arm64__ */
if (memorystatus_task_has_ios13extended_footprint_limit(proc_task(p))) {
limit = MAX(limit, memorystatus_ios13extended_footprint_limit_mb);
}
return limit;
}
static int32_t
memorystatus_get_default_task_inactive_limit(proc_t p)
{
// Currently the default active and inactive limits are always the same.
return memorystatus_get_default_task_active_limit(p);
}
static int
memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry)
{
memorystatus_memlimit_properties_t set_entry;
proc_t p = proc_find(pid);
if (!p) {
return ESRCH;
}
/*
* Check for valid attribute flags.
*/
const uint32_t valid_attrs = MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
if ((entry->memlimit_active_attr & (~valid_attrs)) != 0) {
proc_rele(p);
return EINVAL;
}
if ((entry->memlimit_inactive_attr & (~valid_attrs)) != 0) {
proc_rele(p);
return EINVAL;
}
/*
* Setup the active memlimit properties
*/
set_entry.memlimit_active = entry->memlimit_active;
set_entry.memlimit_active_attr = entry->memlimit_active_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
/*
* Setup the inactive memlimit properties
*/
set_entry.memlimit_inactive = entry->memlimit_inactive;
set_entry.memlimit_inactive_attr = entry->memlimit_inactive_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
/*
* Setting a limit of <= 0 implies that the process has no
* high-water-mark and has no per-task-limit. That means
* the system_wide task limit is in place, which by the way,
* is always fatal.
*/
if (set_entry.memlimit_active <= 0) {
/*
* Enforce the fatal system_wide task limit while process is active.
*/
set_entry.memlimit_active = memorystatus_get_default_task_active_limit(p);
set_entry.memlimit_active_attr = MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
}
#if CONFIG_JETSAM
#if DEVELOPMENT || DEBUG
else {
/* add the current increase to it, for roots */
set_entry.memlimit_active += roundToNearestMB(p->p_memlimit_increase);
}
#endif /* DEVELOPMENT || DEBUG */
#endif /* CONFIG_JETSAM */
if (set_entry.memlimit_inactive <= 0) {
/*
* Enforce the fatal system_wide task limit while process is inactive.
*/
set_entry.memlimit_inactive = memorystatus_get_default_task_inactive_limit(p);
set_entry.memlimit_inactive_attr = MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
}
#if CONFIG_JETSAM
#if DEVELOPMENT || DEBUG
else {
/* add the current increase to it, for roots */
set_entry.memlimit_inactive += roundToNearestMB(p->p_memlimit_increase);
}
#endif /* DEVELOPMENT || DEBUG */
#endif /* CONFIG_JETSAM */
proc_list_lock();
int error = memorystatus_set_memlimit_properties_internal(p, &set_entry);
proc_list_unlock();
proc_rele(p);
return error;
}
/*
* Returns the jetsam priority (effective or requested) of the process
* associated with this task.
*/
int
proc_get_memstat_priority(proc_t p, boolean_t effective_priority)
{
if (p) {
if (effective_priority) {
return p->p_memstat_effectivepriority;
} else {
return p->p_memstat_requestedpriority;
}
}
return 0;
}
static int
memorystatus_get_process_is_managed(pid_t pid, int *is_managed)
{
proc_t p = NULL;
/* Validate inputs */
if (pid == 0) {
return EINVAL;
}
p = proc_find(pid);
if (!p) {
return ESRCH;
}
proc_list_lock();
*is_managed = ((p->p_memstat_state & P_MEMSTAT_MANAGED) ? 1 : 0);
proc_rele(p);
proc_list_unlock();
return 0;
}
static int
memorystatus_set_process_is_managed(pid_t pid, boolean_t set_managed)
{
proc_t p = NULL;
/* Validate inputs */
if (pid == 0) {
return EINVAL;
}
p = proc_find(pid);
if (!p) {
return ESRCH;
}
proc_list_lock();
if (set_managed == TRUE) {
p->p_memstat_state |= P_MEMSTAT_MANAGED;
/*
* The P_MEMSTAT_MANAGED bit is set by Runningboard for Apps.
* Also opt them in to being frozen (they might have started
* off with the P_MEMSTAT_FREEZE_DISABLED bit set.)
*/
p->p_memstat_state &= ~P_MEMSTAT_FREEZE_DISABLED;
} else {
p->p_memstat_state &= ~P_MEMSTAT_MANAGED;
}
proc_list_unlock();
proc_rele(p);
return 0;
}
int
memorystatus_control(struct proc *p, struct memorystatus_control_args *args, int *ret)
{
int error = EINVAL;
boolean_t skip_auth_check = FALSE;
os_reason_t jetsam_reason = OS_REASON_NULL;
#if !CONFIG_JETSAM
#pragma unused(ret)
#pragma unused(jetsam_reason)
#endif
/* We don't need entitlements if we're setting / querying the freeze preference or frozen status for a process. */
if (args->command == MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE ||
args->command == MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE ||
args->command == MEMORYSTATUS_CMD_GET_PROCESS_IS_FROZEN) {
skip_auth_check = TRUE;
}
/*
* On development kernel, we don't need entitlements if we're adjusting the limit.
* This required for limit adjustment by dyld when roots are detected, see rdar://99669958
*/
#if DEVELOPMENT || DEBUG
if (args->command == MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT && proc_getpid(p) == args->pid) {
skip_auth_check = TRUE;
}
#endif /* DEVELOPMENT || DEBUG */
/* Need to be root or have entitlement. */
if (!kauth_cred_issuser(kauth_cred_get()) && !IOCurrentTaskHasEntitlement(MEMORYSTATUS_ENTITLEMENT) && !skip_auth_check) {
error = EPERM;
goto out;
}
/*
* Sanity check.
* Do not enforce it for snapshots.
*/
if (args->command != MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT) {
if (args->buffersize > MEMORYSTATUS_BUFFERSIZE_MAX) {
error = EINVAL;
goto out;
}
}
#if CONFIG_MACF
error = mac_proc_check_memorystatus_control(p, args->command, args->pid);
if (error) {
goto out;
}
#endif /* MAC */
switch (args->command) {
case MEMORYSTATUS_CMD_GET_PRIORITY_LIST:
error = memorystatus_cmd_get_priority_list(args->pid, args->buffer, args->buffersize, ret);
break;
case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES:
error = memorystatus_cmd_set_priority_properties(args->pid, args->flags, args->buffer, args->buffersize, ret);
break;
case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES:
error = memorystatus_cmd_set_memlimit_properties(args->pid, args->buffer, args->buffersize, ret);
break;
case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES:
error = memorystatus_cmd_get_memlimit_properties(args->pid, args->buffer, args->buffersize, ret);
break;
case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS:
error = memorystatus_cmd_get_memlimit_excess_np(args->pid, args->flags, args->buffer, args->buffersize, ret);
break;
case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES:
error = memorystatus_cmd_grp_set_properties((int32_t)args->flags, args->buffer, args->buffersize, ret);
break;
case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT:
error = memorystatus_cmd_get_jetsam_snapshot((int32_t)args->flags, args->buffer, args->buffersize, ret);
break;
#if DEVELOPMENT || DEBUG
case MEMORYSTATUS_CMD_SET_TESTING_PID:
error = memorystatus_cmd_set_testing_pid((int32_t) args->flags);
break;
#endif
case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS:
error = memorystatus_cmd_get_pressure_status(ret);
break;
#if CONFIG_JETSAM
case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK:
/*
* This call does not distinguish between active and inactive limits.
* Default behavior in 2-level HWM world is to set both.
* Non-fatal limit is also assumed for both.
*/
error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, FALSE);
break;
case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT:
/*
* This call does not distinguish between active and inactive limits.
* Default behavior in 2-level HWM world is to set both.
* Fatal limit is also assumed for both.
*/
error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, TRUE);
break;
case MEMORYSTATUS_CMD_MARK_PROCESS_COALITION_SWAPPABLE:
error = memorystatus_cmd_mark_process_coalition_swappable(args->pid, ret);
break;
case MEMORYSTATUS_CMD_GET_PROCESS_COALITION_IS_SWAPPABLE:
error = memorystatus_cmd_get_process_coalition_is_swappable(args->pid, ret);
break;
case MEMORYSTATUS_CMD_CONVERT_MEMLIMIT_MB:
error = memorystatus_cmd_convert_memlimit_mb(args->pid, (int32_t) args->flags, ret);
break;
#endif /* CONFIG_JETSAM */
/* Test commands */
#if DEVELOPMENT || DEBUG
case MEMORYSTATUS_CMD_TEST_JETSAM:
jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_GENERIC);
if (jetsam_reason == OS_REASON_NULL) {
memorystatus_log_error("memorystatus_control: failed to allocate jetsam reason\n");
}
error = memorystatus_kill_process_sync(args->pid, kMemorystatusKilled, jetsam_reason) ? 0 : EINVAL;
break;
case MEMORYSTATUS_CMD_TEST_JETSAM_SORT:
error = memorystatus_cmd_test_jetsam_sort(args->pid, (int32_t)args->flags, args->buffer, args->buffersize);
break;
#else /* DEVELOPMENT || DEBUG */
#pragma unused(jetsam_reason)
#endif /* DEVELOPMENT || DEBUG */
case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE:
if (memorystatus_aggressive_jetsam_lenient_allowed == FALSE) {
#if DEVELOPMENT || DEBUG
memorystatus_log_info("Enabling Lenient Mode\n");
#endif /* DEVELOPMENT || DEBUG */
memorystatus_aggressive_jetsam_lenient_allowed = TRUE;
memorystatus_aggressive_jetsam_lenient = TRUE;
error = 0;
}
break;
case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE:
#if DEVELOPMENT || DEBUG
memorystatus_log_info("Disabling Lenient mode\n");
#endif /* DEVELOPMENT || DEBUG */
memorystatus_aggressive_jetsam_lenient_allowed = FALSE;
memorystatus_aggressive_jetsam_lenient = FALSE;
error = 0;
break;
case MEMORYSTATUS_CMD_GET_AGGRESSIVE_JETSAM_LENIENT_MODE:
*ret = (memorystatus_aggressive_jetsam_lenient ? 1 : 0);
error = 0;
break;
case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE:
case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE:
error = memorystatus_low_mem_privileged_listener(args->command);
break;
case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE:
case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE:
error = memorystatus_update_inactive_jetsam_priority_band(args->pid, args->command, JETSAM_PRIORITY_ELEVATED_INACTIVE, args->flags ? TRUE : FALSE);
break;
case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED:
error = memorystatus_set_process_is_managed(args->pid, args->flags);
break;
case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED:
error = memorystatus_get_process_is_managed(args->pid, ret);
break;
#if CONFIG_FREEZE
case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE:
error = memorystatus_set_process_is_freezable(args->pid, args->flags ? TRUE : FALSE);
break;
case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE:
error = memorystatus_get_process_is_freezable(args->pid, ret);
break;
case MEMORYSTATUS_CMD_GET_PROCESS_IS_FROZEN:
error = memorystatus_get_process_is_frozen(args->pid, ret);
break;
case MEMORYSTATUS_CMD_FREEZER_CONTROL:
error = memorystatus_freezer_control(args->flags, args->buffer, args->buffersize, ret);
break;
#endif /* CONFIG_FREEZE */
#if DEVELOPMENT || DEBUG
case MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT:
error = memorystatus_cmd_increase_jetsam_task_limit(args->pid, args->flags);
break;
case MEMORYSTATUS_CMD_SET_DIAG_LIMIT:
error = memorystatus_cmd_set_diag_memlimit_properties(args->pid, args->buffer, args->buffersize, ret);
break;
case MEMORYSTATUS_CMD_GET_DIAG_LIMIT:
error = memorystatus_cmd_get_diag_memlimit_properties(args->pid, args->buffer, args->buffersize, ret);
break;
#endif /* DEVELOPMENT || DEBUG */
default:
error = EINVAL;
break;
}
out:
return error;
}
/* Coalition support */
/* sorting info for a particular priority bucket */
typedef struct memstat_sort_info {
coalition_t msi_coal;
uint64_t msi_page_count;
pid_t msi_pid;
int msi_ntasks;
} memstat_sort_info_t;
/*
* qsort from smallest page count to largest page count
*
* return < 0 for a < b
* 0 for a == b
* > 0 for a > b
*/
static int
memstat_asc_cmp(const void *a, const void *b)
{
const memstat_sort_info_t *msA = (const memstat_sort_info_t *)a;
const memstat_sort_info_t *msB = (const memstat_sort_info_t *)b;
return (int)((uint64_t)msA->msi_page_count - (uint64_t)msB->msi_page_count);
}
/*
* Return the number of pids rearranged during this sort.
*/
static int
memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order)
{
#define MAX_SORT_PIDS 80
#define MAX_COAL_LEADERS 10
unsigned int b = bucket_index;
int nleaders = 0;
int ntasks = 0;
proc_t p = NULL;
coalition_t coal = COALITION_NULL;
int pids_moved = 0;
int total_pids_moved = 0;
int i;
/*
* The system is typically under memory pressure when in this
* path, hence, we want to avoid dynamic memory allocation.
*/
memstat_sort_info_t leaders[MAX_COAL_LEADERS];
pid_t pid_list[MAX_SORT_PIDS];
if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
return 0;
}
/*
* Clear the array that holds coalition leader information
*/
for (i = 0; i < MAX_COAL_LEADERS; i++) {
leaders[i].msi_coal = COALITION_NULL;
leaders[i].msi_page_count = 0; /* will hold total coalition page count */
leaders[i].msi_pid = 0; /* will hold coalition leader pid */
leaders[i].msi_ntasks = 0; /* will hold the number of tasks in a coalition */
}
p = memorystatus_get_first_proc_locked(&b, FALSE);
while (p) {
coal = task_get_coalition(proc_task(p), COALITION_TYPE_JETSAM);
if (coalition_is_leader(proc_task(p), coal)) {
if (nleaders < MAX_COAL_LEADERS) {
int coal_ntasks = 0;
uint64_t coal_page_count = coalition_get_page_count(coal, &coal_ntasks);
leaders[nleaders].msi_coal = coal;
leaders[nleaders].msi_page_count = coal_page_count;
leaders[nleaders].msi_pid = proc_getpid(p); /* the coalition leader */
leaders[nleaders].msi_ntasks = coal_ntasks;
nleaders++;
} else {
/*
* We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
* Abandoned coalitions will linger at the tail of the priority band
* when this sort session ends.
* TODO: should this be an assert?
*/
memorystatus_log_error(
"%s: WARNING: more than %d leaders in priority band [%d]\n",
__FUNCTION__, MAX_COAL_LEADERS, bucket_index);
break;
}
}
p = memorystatus_get_next_proc_locked(&b, p, FALSE);
}
if (nleaders == 0) {
/* Nothing to sort */
return 0;
}
/*
* Sort the coalition leader array, from smallest coalition page count
* to largest coalition page count. When inserted in the priority bucket,
* smallest coalition is handled first, resulting in the last to be jetsammed.
*/
if (nleaders > 1) {
qsort(leaders, nleaders, sizeof(memstat_sort_info_t), memstat_asc_cmp);
}
#if 0
for (i = 0; i < nleaders; i++) {
printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
__FUNCTION__, i, nleaders, leaders[i].msi_pid, leaders[i].msi_page_count,
leaders[i].msi_ntasks);
}
#endif
/*
* During coalition sorting, processes in a priority band are rearranged
* by being re-inserted at the head of the queue. So, when handling a
* list, the first process that gets moved to the head of the queue,
* ultimately gets pushed toward the queue tail, and hence, jetsams last.
*
* So, for example, the coalition leader is expected to jetsam last,
* after its coalition members. Therefore, the coalition leader is
* inserted at the head of the queue first.
*
* After processing a coalition, the jetsam order is as follows:
* undefs(jetsam first), extensions, xpc services, leader(jetsam last)
*/
/*
* Coalition members are rearranged in the priority bucket here,
* based on their coalition role.
*/
total_pids_moved = 0;
for (i = 0; i < nleaders; i++) {
/* a bit of bookkeeping */
pids_moved = 0;
/* Coalition leaders are jetsammed last, so move into place first */
pid_list[0] = leaders[i].msi_pid;
pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, 1);
/* xpc services should jetsam after extensions */
ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_XPC,
coal_sort_order, pid_list, MAX_SORT_PIDS);
if (ntasks > 0) {
pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
(ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
}
/* extensions should jetsam after unmarked processes */
ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_EXT,
coal_sort_order, pid_list, MAX_SORT_PIDS);
if (ntasks > 0) {
pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
(ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
}
/* undefined coalition members should be the first to jetsam */
ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_UNDEF,
coal_sort_order, pid_list, MAX_SORT_PIDS);
if (ntasks > 0) {
pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
(ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
}
#if 0
if (pids_moved == leaders[i].msi_ntasks) {
/*
* All the pids in the coalition were found in this band.
*/
printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__,
pids_moved, leaders[i].msi_ntasks);
} else if (pids_moved > leaders[i].msi_ntasks) {
/*
* Apparently new coalition members showed up during the sort?
*/
printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__,
pids_moved, leaders[i].msi_ntasks);
} else {
/*
* Apparently not all the pids in the coalition were found in this band?
*/
printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__,
pids_moved, leaders[i].msi_ntasks);
}
#endif
total_pids_moved += pids_moved;
} /* end for */
return total_pids_moved;
}
/*
* Traverse a list of pids, searching for each within the priority band provided.
* If pid is found, move it to the front of the priority band.
* Never searches outside the priority band provided.
*
* Input:
* bucket_index - jetsam priority band.
* pid_list - pointer to a list of pids.
* list_sz - number of pids in the list.
*
* Pid list ordering is important in that,
* pid_list[n] is expected to jetsam ahead of pid_list[n+1].
* The sort_order is set by the coalition default.
*
* Return:
* the number of pids found and hence moved within the priority band.
*/
static int
memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz)
{
memstat_bucket_t *current_bucket;
int i;
int found_pids = 0;
if ((pid_list == NULL) || (list_sz <= 0)) {
return 0;
}
if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
return 0;
}
current_bucket = &memstat_bucket[bucket_index];
for (i = 0; i < list_sz; i++) {
unsigned int b = bucket_index;
proc_t p = NULL;
proc_t aProc = NULL;
pid_t aPid;
int list_index;
list_index = ((list_sz - 1) - i);
aPid = pid_list[list_index];
/* never search beyond bucket_index provided */
p = memorystatus_get_first_proc_locked(&b, FALSE);
while (p) {
if (proc_getpid(p) == aPid) {
aProc = p;
break;
}
p = memorystatus_get_next_proc_locked(&b, p, FALSE);
}
if (aProc == NULL) {
/* pid not found in this band, just skip it */
continue;
} else {
TAILQ_REMOVE(&current_bucket->list, aProc, p_memstat_list);
TAILQ_INSERT_HEAD(&current_bucket->list, aProc, p_memstat_list);
found_pids++;
}
}
return found_pids;
}
int
memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index)
{
int32_t i = JETSAM_PRIORITY_IDLE;
int count = 0;
if (max_bucket_index >= MEMSTAT_BUCKET_COUNT) {
return -1;
}
while (i <= max_bucket_index) {
count += memstat_bucket[i++].count;
}
return count;
}
int
memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap)
{
#if !CONFIG_JETSAM
if (!p || (!isApp(p)) || (p->p_memstat_state & (P_MEMSTAT_INTERNAL | P_MEMSTAT_MANAGED))) {
/*
* Ineligible processes OR system processes e.g. launchd.
*
* We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e.
* they're managed by assertiond. These are iOS apps that have been ported
* to macOS. assertiond might be in the process of modifying the app's
* priority / memory limit - so it might have the proc_list lock, and then try
* to take the task lock. Meanwhile we've entered this function with the task lock
* held, and we need the proc_list lock below. So we'll deadlock with assertiond.
*
* It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list
* lock here, since assertiond only sets this bit on process launch.
*/
return -1;
}
/*
* For macOS only:
* We would like to use memorystatus_update() here to move the processes
* within the bands. Unfortunately memorystatus_update() calls
* memorystatus_update_priority_locked() which uses any band transitions
* as an indication to modify ledgers. For that it needs the task lock
* and since we came into this function with the task lock held, we'll deadlock.
*
* Unfortunately we can't completely disable ledger updates because we still
* need the ledger updates for a subset of processes i.e. daemons.
* When all processes on all platforms support memory limits, we can simply call
* memorystatus_update().
*
* It also has some logic to deal with 'aging' which, currently, is only applicable
* on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
* to do this explicit band transition.
*/
memstat_bucket_t *current_bucket, *new_bucket;
int32_t priority = 0;
proc_list_lock();
if (proc_list_exited(p) ||
(p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED | P_MEMSTAT_SKIP))) {
/*
* If the process is on its way out OR
* jetsam has alread tried and failed to kill this process,
* let's skip the whole jetsam band transition.
*/
proc_list_unlock();
return 0;
}
if (is_appnap) {
current_bucket = &memstat_bucket[p->p_memstat_effectivepriority];
new_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
priority = JETSAM_PRIORITY_IDLE;
} else {
if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) {
/*
* It is possible that someone pulled this process
* out of the IDLE band without updating its app-nap
* parameters.
*/
proc_list_unlock();
return 0;
}
current_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
new_bucket = &memstat_bucket[p->p_memstat_requestedpriority];
priority = p->p_memstat_requestedpriority;
}
TAILQ_REMOVE(&current_bucket->list, p, p_memstat_list);
current_bucket->count--;
if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
current_bucket->relaunch_high_count--;
}
TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list);
new_bucket->count++;
if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
new_bucket->relaunch_high_count++;
}
/*
* Record idle start or idle delta.
*/
if (p->p_memstat_effectivepriority == priority) {
/*
* This process is not transitioning between
* jetsam priority buckets. Do nothing.
*/
} else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
uint64_t now;
/*
* Transitioning out of the idle priority bucket.
* Record idle delta.
*/
assert(p->p_memstat_idle_start != 0);
now = mach_absolute_time();
if (now > p->p_memstat_idle_start) {
p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
}
} else if (priority == JETSAM_PRIORITY_IDLE) {
/*
* Transitioning into the idle priority bucket.
* Record idle start.
*/
p->p_memstat_idle_start = mach_absolute_time();
}
KDBG(MEMSTAT_CODE(BSD_MEMSTAT_CHANGE_PRIORITY), proc_getpid(p), priority, p->p_memstat_effectivepriority);
p->p_memstat_effectivepriority = priority;
proc_list_unlock();
return 0;
#else /* !CONFIG_JETSAM */
#pragma unused(p)
#pragma unused(is_appnap)
return -1;
#endif /* !CONFIG_JETSAM */
}
uint64_t
memorystatus_available_memory_internal(struct proc *p)
{
#ifdef XNU_TARGET_OS_OSX
if (p->p_memstat_memlimit <= 0) {
return 0;
}
#endif /* XNU_TARGET_OS_OSX */
const uint64_t footprint_in_bytes = get_task_phys_footprint(proc_task(p));
int32_t memlimit_mb;
int64_t memlimit_bytes;
int64_t rc;
if (isApp(p) == FALSE) {
return 0;
}
if (p->p_memstat_memlimit > 0) {
memlimit_mb = p->p_memstat_memlimit;
} else if (task_convert_phys_footprint_limit(-1, &memlimit_mb) != KERN_SUCCESS) {
return 0;
}
if (memlimit_mb <= 0) {
memlimit_bytes = INT_MAX & ~((1 << 20) - 1);
} else {
memlimit_bytes = ((int64_t) memlimit_mb) << 20;
}
rc = memlimit_bytes - footprint_in_bytes;
return (rc >= 0) ? rc : 0;
}
int
memorystatus_available_memory(struct proc *p, __unused struct memorystatus_available_memory_args *args, uint64_t *ret)
{
*ret = memorystatus_available_memory_internal(p);
return 0;
}
void
memorystatus_log_system_health(const memorystatus_system_health_t *status)
{
static bool healthy = true;
bool prev_healthy = healthy;
healthy = memorystatus_is_system_healthy(status);
/*
* Avoid spamming logs by only logging when the health level has changed
*/
if (prev_healthy == healthy) {
return;
}
#if CONFIG_JETSAM
if (healthy && !status->msh_available_pages_below_pressure) {
memorystatus_log("memorystatus: System is healthy. memorystatus_available_pages: %llu compressor_size:%u\n",
(uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES, vm_compressor_pool_size());
return;
}
if (healthy && status->msh_available_pages_below_pressure) {
memorystatus_log(
"memorystatus: System is below pressure level, but otherwise healthy. memorystatus_available_pages: %llu compressor_size:%u\n",
(uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES, vm_compressor_pool_size());
return;
}
memorystatus_log("memorystatus: System is unhealthy! memorystatus_available_pages: %llu compressor_size:%u\n",
(uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES, vm_compressor_pool_size());
memorystatus_log(
"memorystatus: available_pages_below_critical=%d, compressor_needs_to_swap=%d, compressor_is_low_on_space=%d compressor_is_thrashing=%d compressed_pages_nearing_limit=%d filecache_is_thrashing=%d zone_map_is_exhausted=%d phantom_cache_pressure=%d swappable_compressor_segments_over_limit=%d swapin_queue_over_limit=%d swap_low=%d swap_full=%d\n",
status->msh_available_pages_below_critical, status->msh_compressor_needs_to_swap,
status->msh_compressor_is_low_on_space, status->msh_compressor_is_thrashing,
status->msh_compressed_pages_nearing_limit, status->msh_filecache_is_thrashing,
status->msh_zone_map_is_exhausted, status->msh_phantom_cache_pressure,
status->msh_swappable_compressor_segments_over_limit, status->msh_swapin_queue_over_limit,
status->msh_swap_low_on_space, status->msh_swap_out_of_space);
#else /* CONFIG_JETSAM */
memorystatus_log("memorystatus: System is %s. memorystatus_available_pages: %llu compressor_size:%u\n",
healthy ? "healthy" : "unhealthy",
(uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES, vm_compressor_pool_size());
if (!healthy) {
memorystatus_log("memorystatus: zone_map_is_exhausted=%d\n",
status->msh_zone_map_is_exhausted);
}
#endif /* CONFIG_JETSAM */
}
uint32_t
memorystatus_pick_kill_cause(const memorystatus_system_health_t *status)
{
assert(!memorystatus_is_system_healthy(status));
#if CONFIG_JETSAM
if (status->msh_compressor_is_thrashing) {
return kMemorystatusKilledVMCompressorThrashing;
} else if (status->msh_compressor_is_low_on_space) {
return kMemorystatusKilledVMCompressorSpaceShortage;
} else if (status->msh_filecache_is_thrashing) {
return kMemorystatusKilledFCThrashing;
} else if (status->msh_zone_map_is_exhausted) {
return kMemorystatusKilledZoneMapExhaustion;
} else if (status->msh_pageout_starved) {
return kMemorystatusKilledVMPageoutStarvation;
} else {
assert(status->msh_available_pages_below_critical);
return kMemorystatusKilledVMPageShortage;
}
#else /* CONFIG_JETSAM */
assert(status->msh_zone_map_is_exhausted);
(void) status;
return kMemorystatusKilledZoneMapExhaustion;
#endif /* CONFIG_JETSAM */
}
#if DEVELOPMENT || DEBUG
static int
memorystatus_cmd_increase_jetsam_task_limit(pid_t pid, uint32_t byte_increase)
{
memorystatus_memlimit_properties_t mmp_entry;
/* Validate inputs */
if ((pid == 0) || (byte_increase == 0)) {
return EINVAL;
}
proc_t p = proc_find(pid);
if (!p) {
return ESRCH;
}
const uint32_t current_memlimit_increase = roundToNearestMB(p->p_memlimit_increase);
/* round to page */
const int32_t page_aligned_increase = (int32_t) MIN(round_page(p->p_memlimit_increase + byte_increase), INT32_MAX);
proc_list_lock();
memorystatus_get_memlimit_properties_internal(p, &mmp_entry);
if (mmp_entry.memlimit_active > 0) {
mmp_entry.memlimit_active -= current_memlimit_increase;
mmp_entry.memlimit_active += roundToNearestMB(page_aligned_increase);
}
if (mmp_entry.memlimit_inactive > 0) {
mmp_entry.memlimit_inactive -= current_memlimit_increase;
mmp_entry.memlimit_inactive += roundToNearestMB(page_aligned_increase);
}
/*
* Store the updated delta limit in the proc.
*/
p->p_memlimit_increase = page_aligned_increase;
int error = memorystatus_set_memlimit_properties_internal(p, &mmp_entry);
proc_list_unlock();
proc_rele(p);
return error;
}
#endif /* DEVELOPMENT */