747 lines
25 KiB
C
747 lines
25 KiB
C
|
/*
|
||
|
* Copyright (c) 2006-2021 Apple Inc. All rights reserved.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
||
|
*
|
||
|
* This file contains Original Code and/or Modifications of Original Code
|
||
|
* as defined in and that are subject to the Apple Public Source License
|
||
|
* Version 2.0 (the 'License'). You may not use this file except in
|
||
|
* compliance with the License. The rights granted to you under the License
|
||
|
* may not be used to create, or enable the creation or redistribution of,
|
||
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
||
|
* circumvent, violate, or enable the circumvention or violation of, any
|
||
|
* terms of an Apple operating system software license agreement.
|
||
|
*
|
||
|
* Please obtain a copy of the License at
|
||
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
||
|
*
|
||
|
* The Original Code and all software distributed under the License are
|
||
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
||
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
||
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
||
|
* Please see the License for the specific language governing rights and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <kern/task.h>
|
||
|
#include <libkern/libkern.h>
|
||
|
#include <machine/atomic.h>
|
||
|
#include <mach/coalition.h>
|
||
|
#include <os/log.h>
|
||
|
#include <sys/coalition.h>
|
||
|
#include <sys/proc.h>
|
||
|
#include <sys/proc_internal.h>
|
||
|
#include <sys/kdebug.h>
|
||
|
#include <sys/kern_memorystatus.h>
|
||
|
#include <vm/vm_protos.h>
|
||
|
|
||
|
#include <kern/kern_memorystatus_internal.h>
|
||
|
|
||
|
/*
|
||
|
* All memory pressure policy decisions should live here, and there should be
|
||
|
* as little mechanism as possible. This file prioritizes readability.
|
||
|
*/
|
||
|
|
||
|
#pragma mark Policy Function Declarations
|
||
|
|
||
|
#if CONFIG_JETSAM
|
||
|
static bool memorystatus_check_aggressive_jetsam_needed(int *jld_idle_kills);
|
||
|
#endif /* CONFIG_JETSAM */
|
||
|
|
||
|
#pragma mark Memorystatus Health Check
|
||
|
|
||
|
/*
|
||
|
* Each subsystem that relies on the memorystatus thread
|
||
|
* for resource exhaustion should put a health check in this section.
|
||
|
* The memorystatus thread runs all of the health checks
|
||
|
* to determine if the system is healthy. If the system is unhealthy
|
||
|
* it picks an action based on the system health status. See the
|
||
|
* Memorystatus Thread Actions section below.
|
||
|
*/
|
||
|
|
||
|
extern bool vm_compressor_needs_to_swap(bool wake_memorystatus_thread);
|
||
|
extern boolean_t vm_compressor_low_on_space(void);
|
||
|
extern bool vm_compressor_compressed_pages_nearing_limit(void);
|
||
|
extern bool vm_compressor_is_thrashing(void);
|
||
|
extern bool vm_compressor_swapout_is_ripe(void);
|
||
|
|
||
|
#if XNU_TARGET_OS_WATCH
|
||
|
#define FREEZE_PREVENT_REFREEZE_OF_LAST_THAWED true
|
||
|
#define FREEZE_PREVENT_REFREEZE_OF_LAST_THAWED_TIMEOUT_SECONDS (60 * 15)
|
||
|
#else
|
||
|
#define FREEZE_PREVENT_REFREEZE_OF_LAST_THAWED false
|
||
|
#endif
|
||
|
extern pid_t memorystatus_freeze_last_pid_thawed;
|
||
|
extern uint64_t memorystatus_freeze_last_pid_thawed_ts;
|
||
|
|
||
|
static void
|
||
|
memorystatus_health_check(memorystatus_system_health_t *status)
|
||
|
{
|
||
|
memset(status, 0, sizeof(memorystatus_system_health_t));
|
||
|
#if CONFIG_JETSAM
|
||
|
status->msh_available_pages_below_pressure = memorystatus_avail_pages_below_pressure();
|
||
|
status->msh_available_pages_below_critical = memorystatus_avail_pages_below_critical();
|
||
|
status->msh_compressor_is_low_on_space = (vm_compressor_low_on_space() == TRUE);
|
||
|
status->msh_compressed_pages_nearing_limit = vm_compressor_compressed_pages_nearing_limit();
|
||
|
status->msh_compressor_is_thrashing = !memorystatus_swap_all_apps && vm_compressor_is_thrashing();
|
||
|
#if CONFIG_PHANTOM_CACHE
|
||
|
status->msh_phantom_cache_pressure = os_atomic_load(&memorystatus_phantom_cache_pressure, acquire);
|
||
|
#else
|
||
|
status->msh_phantom_cache_pressure = false;
|
||
|
#endif /* CONFIG_PHANTOM_CACHE */
|
||
|
if (!memorystatus_swap_all_apps &&
|
||
|
status->msh_phantom_cache_pressure &&
|
||
|
!(status->msh_compressor_is_thrashing && status->msh_compressor_is_low_on_space)) {
|
||
|
status->msh_filecache_is_thrashing = true;
|
||
|
}
|
||
|
status->msh_compressor_is_low_on_space = os_atomic_load(&memorystatus_compressor_space_shortage, acquire);
|
||
|
status->msh_pageout_starved = os_atomic_load(&memorystatus_pageout_starved, acquire);
|
||
|
status->msh_swappable_compressor_segments_over_limit = memorystatus_swap_over_trigger(100);
|
||
|
status->msh_swapin_queue_over_limit = memorystatus_swapin_over_trigger();
|
||
|
status->msh_swap_low_on_space = vm_swap_low_on_space();
|
||
|
status->msh_swap_out_of_space = vm_swap_out_of_space();
|
||
|
#endif /* CONFIG_JETSAM */
|
||
|
status->msh_zone_map_is_exhausted = os_atomic_load(&memorystatus_zone_map_is_exhausted, relaxed);
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
memorystatus_is_system_healthy(const memorystatus_system_health_t *status)
|
||
|
{
|
||
|
#if CONFIG_JETSAM
|
||
|
return !(status->msh_available_pages_below_critical ||
|
||
|
status->msh_compressor_is_low_on_space ||
|
||
|
status->msh_compressor_is_thrashing ||
|
||
|
status->msh_filecache_is_thrashing ||
|
||
|
status->msh_zone_map_is_exhausted ||
|
||
|
status->msh_pageout_starved);
|
||
|
#else /* CONFIG_JETSAM */
|
||
|
return !status->msh_zone_map_is_exhausted;
|
||
|
#endif /* CONFIG_JETSAM */
|
||
|
}
|
||
|
|
||
|
|
||
|
#pragma mark Memorystatus Thread Actions
|
||
|
|
||
|
/*
|
||
|
* This section picks the appropriate memorystatus_action & deploys it.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Inspects the state of various resources in the system to see if
|
||
|
* the system is healthy. If the system is not healthy, picks a
|
||
|
* memorystatus_action_t to recover the system.
|
||
|
*
|
||
|
* Every time the memorystatus thread wakes up it calls into here
|
||
|
* to pick an action. It will continue performing memorystatus actions until this
|
||
|
* function returns MEMORYSTATUS_KILL_NONE. At that point the thread will block.
|
||
|
*/
|
||
|
memorystatus_action_t
|
||
|
memorystatus_pick_action(struct jetsam_thread_state *jetsam_thread,
|
||
|
uint32_t *kill_cause,
|
||
|
bool highwater_remaining,
|
||
|
bool suspended_swappable_apps_remaining,
|
||
|
bool swappable_apps_remaining,
|
||
|
int *jld_idle_kills)
|
||
|
{
|
||
|
memorystatus_system_health_t status;
|
||
|
memorystatus_health_check(&status);
|
||
|
memorystatus_log_system_health(&status);
|
||
|
bool is_system_healthy = memorystatus_is_system_healthy(&status);
|
||
|
|
||
|
#if CONFIG_JETSAM
|
||
|
if (status.msh_available_pages_below_pressure || !is_system_healthy) {
|
||
|
/*
|
||
|
* If swap is enabled, first check if we're running low or are out of swap space.
|
||
|
*/
|
||
|
if (memorystatus_swap_all_apps && jetsam_kill_on_low_swap) {
|
||
|
if (swappable_apps_remaining && status.msh_swap_out_of_space) {
|
||
|
*kill_cause = kMemorystatusKilledLowSwap;
|
||
|
return MEMORYSTATUS_KILL_SWAPPABLE;
|
||
|
} else if (suspended_swappable_apps_remaining && status.msh_swap_low_on_space) {
|
||
|
*kill_cause = kMemorystatusKilledLowSwap;
|
||
|
return MEMORYSTATUS_KILL_SUSPENDED_SWAPPABLE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We're below the pressure level or the system is unhealthy,
|
||
|
* regardless of the system health let's check if we should be swapping
|
||
|
* and if there are high watermark kills left to do.
|
||
|
*/
|
||
|
if (memorystatus_swap_all_apps) {
|
||
|
if (status.msh_swappable_compressor_segments_over_limit && !vm_swapout_thread_running && !os_atomic_load(&vm_swapout_wake_pending, relaxed)) {
|
||
|
/*
|
||
|
* TODO: The swapper will keep running until it has drained the entire early swapout queue.
|
||
|
* That might be overly aggressive & we should look into tuning it.
|
||
|
* See rdar://84102304.
|
||
|
*/
|
||
|
return MEMORYSTATUS_WAKE_SWAPPER;
|
||
|
} else if (status.msh_swapin_queue_over_limit) {
|
||
|
return MEMORYSTATUS_PROCESS_SWAPIN_QUEUE;
|
||
|
} else if (status.msh_swappable_compressor_segments_over_limit) {
|
||
|
memorystatus_log_info(
|
||
|
"memorystatus: Skipping swap wakeup because the swap thread is already running. vm_swapout_thread_running=%d, vm_swapout_wake_pending=%d\n",
|
||
|
vm_swapout_thread_running, os_atomic_load(&vm_swapout_wake_pending, relaxed));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (highwater_remaining) {
|
||
|
*kill_cause = kMemorystatusKilledHiwat;
|
||
|
memorystatus_log("memorystatus: Looking for highwatermark kills.\n");
|
||
|
return MEMORYSTATUS_KILL_HIWATER;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (is_system_healthy) {
|
||
|
*kill_cause = 0;
|
||
|
return MEMORYSTATUS_KILL_NONE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point the system is unhealthy and there are no
|
||
|
* more highwatermark processes to kill.
|
||
|
*/
|
||
|
|
||
|
if (!jetsam_thread->limit_to_low_bands) {
|
||
|
if (memorystatus_check_aggressive_jetsam_needed(jld_idle_kills)) {
|
||
|
memorystatus_log("memorystatus: Starting aggressive jetsam.\n");
|
||
|
*kill_cause = kMemorystatusKilledProcThrashing;
|
||
|
return MEMORYSTATUS_KILL_AGGRESSIVE;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* The system is unhealthy and we either don't need aggressive jetsam
|
||
|
* or are not allowed to deploy it.
|
||
|
* Kill in priority order. We'll use LRU within every band except the
|
||
|
* FG (which will be sorted by coalition role).
|
||
|
*/
|
||
|
*kill_cause = memorystatus_pick_kill_cause(&status);
|
||
|
return MEMORYSTATUS_KILL_TOP_PROCESS;
|
||
|
#else /* CONFIG_JETSAM */
|
||
|
(void) jetsam_thread;
|
||
|
(void) jld_idle_kills;
|
||
|
(void) suspended_swappable_apps_remaining;
|
||
|
(void) swappable_apps_remaining;
|
||
|
/*
|
||
|
* Without CONFIG_JETSAM, we only kill if the system is unhealthy.
|
||
|
* There is no aggressive jetsam and no
|
||
|
* early highwatermark killing.
|
||
|
*/
|
||
|
if (is_system_healthy) {
|
||
|
*kill_cause = 0;
|
||
|
return MEMORYSTATUS_KILL_NONE;
|
||
|
}
|
||
|
if (highwater_remaining) {
|
||
|
*kill_cause = kMemorystatusKilledHiwat;
|
||
|
return MEMORYSTATUS_KILL_HIWATER;
|
||
|
} else {
|
||
|
*kill_cause = memorystatus_pick_kill_cause(&status);
|
||
|
return MEMORYSTATUS_KILL_TOP_PROCESS;
|
||
|
}
|
||
|
#endif /* CONFIG_JETSAM */
|
||
|
}
|
||
|
|
||
|
#pragma mark Aggressive Jetsam
|
||
|
/*
|
||
|
* This section defines when we deploy aggressive jetsam.
|
||
|
* Aggressive jetsam kills everything up to the jld_priority_band_max band.
|
||
|
*/
|
||
|
|
||
|
#if CONFIG_JETSAM
|
||
|
|
||
|
static bool
|
||
|
memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused int jld_eval_aggressive_count, __unused int *jld_idle_kills, __unused int jld_idle_kill_candidates, int *total_candidates);
|
||
|
|
||
|
/*
|
||
|
* kJetsamHighRelaunchCandidatesThreshold defines the percentage of candidates
|
||
|
* in the idle & deferred bands that need to be bad candidates in order to trigger
|
||
|
* aggressive jetsam.
|
||
|
*/
|
||
|
#define kJetsamHighRelaunchCandidatesThreshold (100)
|
||
|
|
||
|
/* kJetsamMinCandidatesThreshold defines the minimum number of candidates in the
|
||
|
* idle/deferred bands to trigger aggressive jetsam. This value basically decides
|
||
|
* how much memory the system is ready to hold in the lower bands without triggering
|
||
|
* aggressive jetsam. This number should ideally be tuned based on the memory config
|
||
|
* of the device.
|
||
|
*/
|
||
|
#define kJetsamMinCandidatesThreshold (5)
|
||
|
|
||
|
static bool
|
||
|
memorystatus_check_aggressive_jetsam_needed(int *jld_idle_kills)
|
||
|
{
|
||
|
bool aggressive_jetsam_needed = false;
|
||
|
int total_candidates = 0;
|
||
|
/*
|
||
|
* The aggressive jetsam logic looks at the number of times it has been in the
|
||
|
* aggressive loop to determine the max priority band it should kill upto. The
|
||
|
* static variables below are used to track that property.
|
||
|
*
|
||
|
* To reset those values, the implementation checks if it has been
|
||
|
* memorystatus_jld_eval_period_msecs since the parameters were reset.
|
||
|
*/
|
||
|
|
||
|
if (memorystatus_jld_enabled == FALSE) {
|
||
|
/* If aggressive jetsam is disabled, nothing to do here */
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/* Get current timestamp (msecs only) */
|
||
|
struct timeval jld_now_tstamp = {0, 0};
|
||
|
uint64_t jld_now_msecs = 0;
|
||
|
microuptime(&jld_now_tstamp);
|
||
|
jld_now_msecs = (jld_now_tstamp.tv_sec * 1000);
|
||
|
|
||
|
/*
|
||
|
* Look at the number of candidates in the idle and deferred band and
|
||
|
* how many out of them are marked as high relaunch probability.
|
||
|
*/
|
||
|
aggressive_jetsam_needed = memorystatus_aggressive_jetsam_needed_sysproc_aging(jld_eval_aggressive_count,
|
||
|
jld_idle_kills, jld_idle_kill_candidates, &total_candidates);
|
||
|
|
||
|
/*
|
||
|
* Check if its been really long since the aggressive jetsam evaluation
|
||
|
* parameters have been refreshed. This logic also resets the jld_eval_aggressive_count
|
||
|
* counter to make sure we reset the aggressive jetsam severity.
|
||
|
*/
|
||
|
boolean_t param_reval = false;
|
||
|
|
||
|
if ((total_candidates == 0) ||
|
||
|
(jld_now_msecs > (jld_timestamp_msecs + memorystatus_jld_eval_period_msecs))) {
|
||
|
jld_timestamp_msecs = jld_now_msecs;
|
||
|
jld_idle_kill_candidates = total_candidates;
|
||
|
*jld_idle_kills = 0;
|
||
|
jld_eval_aggressive_count = 0;
|
||
|
jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT;
|
||
|
param_reval = true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* It is also possible that the system is down to a very small number of processes in the candidate
|
||
|
* bands. In that case, the decisions made by the memorystatus_aggressive_jetsam_needed_* routines
|
||
|
* would not be useful. In that case, do not trigger aggressive jetsam.
|
||
|
*/
|
||
|
if (total_candidates < kJetsamMinCandidatesThreshold) {
|
||
|
#if DEVELOPMENT || DEBUG
|
||
|
memorystatus_log_info(
|
||
|
"memorystatus: aggressive: [FAILED] Low Candidate Count (current: %d, threshold: %d)\n", total_candidates, kJetsamMinCandidatesThreshold);
|
||
|
#endif /* DEVELOPMENT || DEBUG */
|
||
|
aggressive_jetsam_needed = false;
|
||
|
}
|
||
|
return aggressive_jetsam_needed;
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused int eval_aggressive_count, __unused int *idle_kills, __unused int idle_kill_candidates, int *total_candidates)
|
||
|
{
|
||
|
bool aggressive_jetsam_needed = false;
|
||
|
|
||
|
/*
|
||
|
* For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, we maintain the jetsam
|
||
|
* relaunch behavior for all daemons. Also, daemons and apps are aged in deferred bands on
|
||
|
* every dirty->clean transition. For this aging policy, the best way to determine if
|
||
|
* aggressive jetsam is needed, is to see if the kill candidates are mostly bad candidates.
|
||
|
* If yes, then we need to go to higher bands to reclaim memory.
|
||
|
*/
|
||
|
proc_list_lock();
|
||
|
/* Get total candidate counts for idle and idle deferred bands */
|
||
|
*total_candidates = memstat_bucket[JETSAM_PRIORITY_IDLE].count + memstat_bucket[system_procs_aging_band].count;
|
||
|
/* Get counts of bad kill candidates in idle and idle deferred bands */
|
||
|
int bad_candidates = memstat_bucket[JETSAM_PRIORITY_IDLE].relaunch_high_count + memstat_bucket[system_procs_aging_band].relaunch_high_count;
|
||
|
|
||
|
proc_list_unlock();
|
||
|
|
||
|
/* Check if the number of bad candidates is greater than kJetsamHighRelaunchCandidatesThreshold % */
|
||
|
aggressive_jetsam_needed = (((bad_candidates * 100) / *total_candidates) >= kJetsamHighRelaunchCandidatesThreshold);
|
||
|
|
||
|
/*
|
||
|
* Since the new aging policy bases the aggressive jetsam trigger on percentage of
|
||
|
* bad candidates, it is prone to being overly aggressive. In order to mitigate that,
|
||
|
* make sure the system is really under memory pressure before triggering aggressive
|
||
|
* jetsam.
|
||
|
*/
|
||
|
if (memorystatus_available_pages > memorystatus_sysproc_aging_aggr_pages) {
|
||
|
aggressive_jetsam_needed = false;
|
||
|
}
|
||
|
|
||
|
#if DEVELOPMENT || DEBUG
|
||
|
memorystatus_log_info(
|
||
|
"memorystatus: aggressive%d: [%s] Bad Candidate Threshold Check (total: %d, bad: %d, threshold: %d %%); Memory Pressure Check (available_pgs: %llu, threshold_pgs: %llu)\n",
|
||
|
eval_aggressive_count, aggressive_jetsam_needed ? "PASSED" : "FAILED", *total_candidates, bad_candidates,
|
||
|
kJetsamHighRelaunchCandidatesThreshold, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES, (uint64_t)memorystatus_sysproc_aging_aggr_pages);
|
||
|
#endif /* DEVELOPMENT || DEBUG */
|
||
|
return aggressive_jetsam_needed;
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_JETSAM */
|
||
|
|
||
|
#pragma mark Freezer
|
||
|
#if CONFIG_FREEZE
|
||
|
/*
|
||
|
* Freezer policies
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* These functions determine what is eligible for the freezer
|
||
|
* and the order that we consider freezing them
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Checks if the given process is eligible for the freezer.
|
||
|
* Processes can only be frozen if this returns true.
|
||
|
*/
|
||
|
bool
|
||
|
memorystatus_is_process_eligible_for_freeze(proc_t p)
|
||
|
{
|
||
|
/*
|
||
|
* Called with proc_list_lock held.
|
||
|
*/
|
||
|
|
||
|
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
|
||
|
|
||
|
bool should_freeze = false;
|
||
|
uint32_t state = 0, pages = 0;
|
||
|
bool first_consideration = true;
|
||
|
task_t task;
|
||
|
|
||
|
state = p->p_memstat_state;
|
||
|
|
||
|
if (state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED | P_MEMSTAT_FREEZE_IGNORE)) {
|
||
|
if (state & P_MEMSTAT_FREEZE_DISABLED) {
|
||
|
p->p_memstat_freeze_skip_reason = kMemorystatusFreezeSkipReasonDisabled;
|
||
|
}
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
task = proc_task(p);
|
||
|
|
||
|
if (isSysProc(p)) {
|
||
|
/*
|
||
|
* Daemon:- We consider freezing it if:
|
||
|
* - it belongs to a coalition and the leader is frozen, and,
|
||
|
* - its role in the coalition is XPC service.
|
||
|
*
|
||
|
* We skip memory size requirements in this case.
|
||
|
*/
|
||
|
int task_role_in_coalition = 0;
|
||
|
proc_t leader_proc = memorystatus_get_coalition_leader_and_role(p, &task_role_in_coalition);
|
||
|
if (leader_proc == PROC_NULL || leader_proc == p) {
|
||
|
/*
|
||
|
* Jetsam coalition is leaderless or the leader is not an app.
|
||
|
* Either way, don't freeze this proc.
|
||
|
*/
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Leader must be frozen */
|
||
|
if (!(leader_proc->p_memstat_state & P_MEMSTAT_FROZEN)) {
|
||
|
goto out;
|
||
|
}
|
||
|
/* Only freeze XPC services */
|
||
|
if (task_role_in_coalition == COALITION_TASKROLE_XPC) {
|
||
|
should_freeze = true;
|
||
|
}
|
||
|
|
||
|
goto out;
|
||
|
} else {
|
||
|
/*
|
||
|
* Application. Only freeze if it's suspended.
|
||
|
*/
|
||
|
if (!(state & P_MEMSTAT_SUSPENDED)) {
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We're interested in tracking what percentage of
|
||
|
* eligible apps actually get frozen.
|
||
|
* To avoid skewing the metrics towards processes which
|
||
|
* are considered more frequently, we only track failures once
|
||
|
* per process.
|
||
|
*/
|
||
|
first_consideration = !(state & P_MEMSTAT_FREEZE_CONSIDERED);
|
||
|
|
||
|
if (first_consideration) {
|
||
|
memorystatus_freezer_stats.mfs_process_considered_count++;
|
||
|
p->p_memstat_state |= P_MEMSTAT_FREEZE_CONSIDERED;
|
||
|
}
|
||
|
|
||
|
/* Only freeze applications meeting our minimum resident page criteria */
|
||
|
memorystatus_get_task_page_counts(proc_task(p), &pages, NULL, NULL);
|
||
|
if (pages < memorystatus_freeze_pages_min) {
|
||
|
if (first_consideration) {
|
||
|
memorystatus_freezer_stats.mfs_error_below_min_pages_count++;
|
||
|
}
|
||
|
p->p_memstat_freeze_skip_reason = kMemorystatusFreezeSkipReasonBelowMinPages;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Don't freeze processes that are already exiting on core. It may have started exiting
|
||
|
* after we chose it for freeze, but before we obtained the proc_list_lock.
|
||
|
* NB: This is only possible if we're coming in from memorystatus_freeze_process_sync.
|
||
|
* memorystatus_freeze_top_process holds the proc_list_lock while it traverses the bands.
|
||
|
*/
|
||
|
if (proc_list_exited(p)) {
|
||
|
if (first_consideration) {
|
||
|
memorystatus_freezer_stats.mfs_error_other_count++;
|
||
|
}
|
||
|
p->p_memstat_freeze_skip_reason = kMemorystatusFreezeSkipReasonOther;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (!memorystatus_freezer_use_ordered_list) {
|
||
|
/*
|
||
|
* We're not using the ordered list so we need to check
|
||
|
* that dasd recommended the process. Note that the ordered list
|
||
|
* algorithm only considers processes on the list in the first place
|
||
|
* so there's no need to double check here.
|
||
|
*/
|
||
|
if (!memorystatus_freeze_process_is_recommended(p)) {
|
||
|
if (first_consideration) {
|
||
|
memorystatus_freezer_stats.mfs_error_low_probability_of_use_count++;
|
||
|
}
|
||
|
p->p_memstat_freeze_skip_reason = kMemorystatusFreezeSkipReasonLowProbOfUse;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!(state & P_MEMSTAT_FROZEN) && p->p_memstat_effectivepriority > memorystatus_freeze_max_candidate_band) {
|
||
|
/*
|
||
|
* Proc has been elevated by something else.
|
||
|
* Don't freeze it.
|
||
|
*/
|
||
|
if (first_consideration) {
|
||
|
memorystatus_freezer_stats.mfs_error_elevated_count++;
|
||
|
}
|
||
|
p->p_memstat_freeze_skip_reason = kMemorystatusFreezeSkipReasonElevated;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
should_freeze = true;
|
||
|
out:
|
||
|
if (should_freeze && !(state & P_MEMSTAT_FROZEN)) {
|
||
|
/*
|
||
|
* Reset the skip reason. If it's killed before we manage to actually freeze it
|
||
|
* we failed to consider it early enough.
|
||
|
*/
|
||
|
p->p_memstat_freeze_skip_reason = kMemorystatusFreezeSkipReasonNone;
|
||
|
if (!first_consideration) {
|
||
|
/*
|
||
|
* We're freezing this for the first time and we previously considered it ineligible.
|
||
|
* Bump the considered count so that we track this as 1 failure
|
||
|
* and 1 success.
|
||
|
*/
|
||
|
memorystatus_freezer_stats.mfs_process_considered_count++;
|
||
|
}
|
||
|
}
|
||
|
return should_freeze;
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
memorystatus_freeze_proc_is_refreeze_eligible(proc_t p)
|
||
|
{
|
||
|
return (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) != 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
static proc_t
|
||
|
memorystatus_freeze_pick_refreeze_process(proc_t last_p)
|
||
|
{
|
||
|
proc_t p = PROC_NULL, next_p = PROC_NULL;
|
||
|
unsigned int band = (unsigned int) memorystatus_freeze_jetsam_band;
|
||
|
if (last_p == PROC_NULL) {
|
||
|
next_p = memorystatus_get_first_proc_locked(&band, FALSE);
|
||
|
} else {
|
||
|
next_p = memorystatus_get_next_proc_locked(&band, last_p, FALSE);
|
||
|
}
|
||
|
while (next_p) {
|
||
|
p = next_p;
|
||
|
next_p = memorystatus_get_next_proc_locked(&band, p, FALSE);
|
||
|
if ((p->p_memstat_state & P_MEMSTAT_FROZEN) && !memorystatus_freeze_proc_is_refreeze_eligible(p)) {
|
||
|
/* Process is already frozen & hasn't been thawed. */
|
||
|
continue;
|
||
|
}
|
||
|
/*
|
||
|
* Has to have been frozen once before.
|
||
|
*/
|
||
|
if (!(p->p_memstat_state & P_MEMSTAT_FROZEN)) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Not currently being looked at for something.
|
||
|
*/
|
||
|
if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
#if FREEZE_PREVENT_REFREEZE_OF_LAST_THAWED
|
||
|
/*
|
||
|
* Don't refreeze the last process we just thawed if still within the timeout window
|
||
|
*/
|
||
|
if (p->p_pid == memorystatus_freeze_last_pid_thawed) {
|
||
|
uint64_t timeout_delta_abs;
|
||
|
nanoseconds_to_absolutetime(FREEZE_PREVENT_REFREEZE_OF_LAST_THAWED_TIMEOUT_SECONDS * NSEC_PER_SEC, &timeout_delta_abs);
|
||
|
if (mach_absolute_time() < (memorystatus_freeze_last_pid_thawed_ts + timeout_delta_abs)) {
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Found it
|
||
|
*/
|
||
|
return p;
|
||
|
}
|
||
|
return PROC_NULL;
|
||
|
}
|
||
|
|
||
|
proc_t
|
||
|
memorystatus_freeze_pick_process(struct memorystatus_freeze_list_iterator *iterator)
|
||
|
{
|
||
|
proc_t p = PROC_NULL, next_p = PROC_NULL;
|
||
|
unsigned int band = JETSAM_PRIORITY_IDLE;
|
||
|
|
||
|
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
|
||
|
/*
|
||
|
* If the freezer is full, only consider refreezes.
|
||
|
*/
|
||
|
if (iterator->refreeze_only || memorystatus_frozen_count >= memorystatus_frozen_processes_max) {
|
||
|
if (!iterator->refreeze_only) {
|
||
|
/*
|
||
|
* The first time the iterator starts to return refreeze
|
||
|
* candidates, we need to reset the last pointer b/c it's pointing into the wrong band.
|
||
|
*/
|
||
|
iterator->last_p = PROC_NULL;
|
||
|
iterator->refreeze_only = true;
|
||
|
}
|
||
|
iterator->last_p = memorystatus_freeze_pick_refreeze_process(iterator->last_p);
|
||
|
return iterator->last_p;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Search for the next freezer candidate.
|
||
|
*/
|
||
|
if (memorystatus_freezer_use_ordered_list) {
|
||
|
while (iterator->global_freeze_list_index < memorystatus_global_freeze_list.mfcl_length) {
|
||
|
p = memorystatus_freezer_candidate_list_get_proc(
|
||
|
&memorystatus_global_freeze_list,
|
||
|
(iterator->global_freeze_list_index)++,
|
||
|
&memorystatus_freezer_stats.mfs_freeze_pid_mismatches);
|
||
|
|
||
|
if (p != PROC_NULL && memorystatus_is_process_eligible_for_freeze(p)) {
|
||
|
iterator->last_p = p;
|
||
|
return iterator->last_p;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (iterator->last_p == PROC_NULL) {
|
||
|
next_p = memorystatus_get_first_proc_locked(&band, FALSE);
|
||
|
} else {
|
||
|
next_p = memorystatus_get_next_proc_locked(&band, iterator->last_p, FALSE);
|
||
|
}
|
||
|
while (next_p) {
|
||
|
p = next_p;
|
||
|
if (memorystatus_is_process_eligible_for_freeze(p)) {
|
||
|
iterator->last_p = p;
|
||
|
return iterator->last_p;
|
||
|
} else {
|
||
|
next_p = memorystatus_get_next_proc_locked(&band, p, FALSE);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Failed to find a new freezer candidate.
|
||
|
* Try to re-freeze.
|
||
|
*/
|
||
|
if (memorystatus_refreeze_eligible_count >= memorystatus_min_thaw_refreeze_threshold) {
|
||
|
assert(!iterator->refreeze_only);
|
||
|
iterator->refreeze_only = true;
|
||
|
iterator->last_p = memorystatus_freeze_pick_refreeze_process(PROC_NULL);
|
||
|
return iterator->last_p;
|
||
|
}
|
||
|
return PROC_NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* memorystatus_pages_update calls this function whenever the number
|
||
|
* of available pages changes. It wakes the freezer thread iff the function returns
|
||
|
* true. The freezer thread will try to freeze (or refreeze) up to 1 process
|
||
|
* before blocking again.
|
||
|
*
|
||
|
* Note the freezer thread is also woken up by memorystatus_on_inactivity.
|
||
|
*/
|
||
|
|
||
|
bool
|
||
|
memorystatus_freeze_thread_should_run()
|
||
|
{
|
||
|
/*
|
||
|
* No freezer_mutex held here...see why near call-site
|
||
|
* within memorystatus_pages_update().
|
||
|
*/
|
||
|
|
||
|
if (memorystatus_freeze_enabled == false) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (memorystatus_available_pages > memorystatus_freeze_threshold) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
memorystatus_freezer_stats.mfs_below_threshold_count++;
|
||
|
|
||
|
if ((memorystatus_frozen_count >= memorystatus_frozen_processes_max)) {
|
||
|
/*
|
||
|
* Consider this as a skip even if we wake up to refreeze because
|
||
|
* we won't freeze any new procs.
|
||
|
*/
|
||
|
memorystatus_freezer_stats.mfs_skipped_full_count++;
|
||
|
if (memorystatus_refreeze_eligible_count < memorystatus_min_thaw_refreeze_threshold) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (memorystatus_frozen_shared_mb_max && (memorystatus_frozen_shared_mb >= memorystatus_frozen_shared_mb_max)) {
|
||
|
memorystatus_freezer_stats.mfs_skipped_shared_mb_high_count++;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
uint64_t curr_time = mach_absolute_time();
|
||
|
|
||
|
if (curr_time < memorystatus_freezer_thread_next_run_ts) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
size_t
|
||
|
memorystatus_pick_freeze_count_for_wakeup()
|
||
|
{
|
||
|
size_t num_to_freeze = 0;
|
||
|
if (!memorystatus_swap_all_apps) {
|
||
|
num_to_freeze = 1;
|
||
|
} else {
|
||
|
/*
|
||
|
* When app swap is enabled, we want the freezer thread to aggressively freeze
|
||
|
* all candidates so we clear out space for the fg working set.
|
||
|
* But we still cap it to the current size of the candidate bands to avoid
|
||
|
* consuming excessive CPU if there's a lot of churn in the candidate band.
|
||
|
*/
|
||
|
proc_list_lock();
|
||
|
for (unsigned int band = JETSAM_PRIORITY_IDLE; band <= memorystatus_freeze_max_candidate_band; band++) {
|
||
|
num_to_freeze += memstat_bucket[band].count;
|
||
|
}
|
||
|
proc_list_unlock();
|
||
|
}
|
||
|
|
||
|
return num_to_freeze;
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_FREEZE */
|