gems-kernel/source/THIRDPARTY/xnu/bsd/kern/kern_subr.c

1433 lines
36 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_subr.c 8.3 (Berkeley) 1/21/94
*/
#include <machine/atomic.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc_internal.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <vm/pmap.h>
#include <sys/uio_internal.h>
#include <kern/kalloc.h>
#include <kdebug.h>
#include <sys/kdebug.h>
#define DBG_UIO_COPYOUT 16
#define DBG_UIO_COPYIN 17
#if DEBUG
#include <kern/simple_lock.h>
static uint32_t uio_t_count = 0;
#endif /* DEBUG */
#define IS_VALID_UIO_SEGFLG(segflg) \
( (1 << segflg) & (UIOF_USERSPACE | \
UIOF_SYSSPACE | \
UIOF_USERSPACE32 | \
UIOF_USERSPACE64 | \
UIOF_SYSSPACE32 | \
UIOF_USERISPACE | \
UIOF_PHYS_USERSPACE | \
UIOF_PHYS_SYSSPACE | \
UIOF_USERISPACE32 | \
UIOF_PHYS_USERSPACE32 | \
UIOF_USERISPACE64 | \
UIOF_PHYS_USERSPACE64))
#define IS_SYS_OR_PHYS_SPACE_SEGFLG(segflg) \
( (1 << segflg) & (UIOF_SYSSPACE | \
UIOF_PHYS_SYSSPACE | \
UIOF_SYSSPACE32 | \
UIOF_PHYS_USERSPACE | \
UIOF_PHYS_SYSSPACE | \
UIOF_PHYS_USERSPACE64 | \
UIOF_PHYS_USERSPACE32))
#define IS_PURE_USER_SPACE_SEGFLG(segflg) \
( (1 << segflg) & (UIOF_USERSPACE | \
UIOF_USERSPACE32 | \
UIOF_USERSPACE64 | \
UIOF_USERISPACE | \
UIOF_USERISPACE32 | \
UIOF_USERISPACE64))
#define IS_SYS_SPACE_SEGFLG(segflg) \
( (1 << segflg) & (UIOF_SYSSPACE | \
UIOF_SYSSPACE32))
#define IS_PHYS_USER_SPACE_SEGFLG(segflg) \
( (1 << segflg) & (UIOF_PHYS_USERSPACE | \
UIOF_PHYS_USERSPACE64 | \
UIOF_PHYS_USERSPACE32))
#define IS_PHYS_SYS_SPACE_SEGFLG(segflg) \
( (1 << segflg) & (UIOF_PHYS_SYSSPACE))
static void uio_update_user(uio_t __attribute__((nonnull)) a_uio, user_size_t a_count);
static void uio_update_sys(uio_t __attribute__((nonnull)) a_uio, user_size_t a_count);
static user_size_t uio_curriovlen_user(const uio_t __attribute__((nonnull)) a_uio);
static user_size_t uio_curriovlen_sys(const uio_t __attribute__((nonnull)) a_uio);
#if __has_feature(ptrauth_calls)
__attribute__((always_inline))
static u_int64_t
blend_iov_components(const struct kern_iovec *kiovp)
{
return ptrauth_blend_discriminator(
(void *)((u_int64_t)&kiovp->iov_base ^ kiovp->iov_len),
ptrauth_string_discriminator("kiovp"));
}
#endif
__attribute__((always_inline))
static u_int64_t
kiovp_get_base(const struct kern_iovec *kiovp)
{
#if __has_feature(ptrauth_calls)
if (kiovp->iov_base == 0) {
return 0;
} else {
return (u_int64_t)ptrauth_auth_data((void *)kiovp->iov_base,
ptrauth_key_process_independent_data,
blend_iov_components(kiovp));
}
#else
return kiovp->iov_base;
#endif
}
__attribute__((always_inline))
static void
kiovp_set_base(struct kern_iovec *kiovp, u_int64_t addr)
{
#if __has_feature(ptrauth_calls)
if (addr == 0) {
kiovp->iov_base = 0;
} else {
kiovp->iov_base = (u_int64_t)ptrauth_sign_unauthenticated(
(void *)addr, ptrauth_key_process_independent_data,
blend_iov_components(kiovp));
}
#else
kiovp->iov_base = addr;
#endif
}
static struct kern_iovec *
uio_kiovp(uio_t uio)
{
#if DEBUG
if (__improbable(!UIO_IS_SYS_SPACE(uio))) {
panic("%s: uio is not sys space", __func__);
}
#endif
return (struct kern_iovec *)uio->uio_iovs;
}
static struct user_iovec *
uio_uiovp(uio_t uio)
{
return (struct user_iovec *)uio->uio_iovs;
}
static void *
uio_advance_user(uio_t uio)
{
uio->uio_iovs = (void *)((uintptr_t)uio->uio_iovs + sizeof(struct user_iovec));
return uio->uio_iovs;
}
static void *
uio_advance_sys(uio_t uio)
{
uio->uio_iovs = (void *)((uintptr_t)uio->uio_iovs + sizeof(struct kern_iovec));
return uio->uio_iovs;
}
/*
* Returns: 0 Success
* uiomove64:EFAULT
*
* Notes: The first argument should be a caddr_t, but const poisoning
* for typedef'ed types doesn't work in gcc.
*/
int
uiomove(const char * cp, int n, uio_t uio)
{
return uiomove64((const addr64_t)(uintptr_t)cp, n, uio);
}
/*
* Returns: 0 Success
* EFAULT
* copyout:EFAULT
* copyin:EFAULT
* copywithin:EFAULT
* copypv:EFAULT
*/
int
uiomove64(const addr64_t c_cp, int n, struct uio *uio)
{
if (IS_PURE_USER_SPACE_SEGFLG(uio->uio_segflg)) {
if (uio->uio_rw == UIO_READ) {
return uio_copyout_user((const char *)c_cp, n, uio);
} else {
return uio_copyin_user((const char *)c_cp, n, uio);
}
} else if (IS_SYS_SPACE_SEGFLG(uio->uio_segflg)) {
if (uio->uio_rw == UIO_READ) {
return uio_copyout_sys((const char *)c_cp, n, uio);
} else {
return uio_copyin_sys((const char *)c_cp, n, uio);
}
} else if (IS_PHYS_USER_SPACE_SEGFLG(uio->uio_segflg)) {
if (uio->uio_rw == UIO_READ) {
return uio_copyout_phys_user((const char *)c_cp, n, uio);
} else {
return uio_copyin_phys_user((const char *)c_cp, n, uio);
}
} else if (IS_PHYS_SYS_SPACE_SEGFLG(uio->uio_segflg)) {
if (uio->uio_rw == UIO_READ) {
return uio_copyout_phys_sys((const char *)c_cp, n, uio);
} else {
return uio_copyin_phys_sys((const char *)c_cp, n, uio);
}
} else {
return EINVAL;
}
}
int
uio_copyout_user(const char *c_cp, int n, uio_t uio)
{
addr64_t cp = (const addr64_t)(uintptr_t)c_cp;
while (n > 0 && uio->uio_iovcnt > 0 && uio_resid(uio)) {
struct user_iovec *uiovp;
uint64_t acnt;
int error;
uio_update_user(uio, 0);
acnt = uio_curriovlen_user(uio);
if (acnt == 0) {
continue;
}
if (n > 0 && acnt > (uint64_t)n) {
acnt = n;
}
uiovp = uio_uiovp(uio);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_START,
(int)cp, (uintptr_t)uiovp->iov_base, acnt, 0, 0);
error = copyout(CAST_DOWN(caddr_t, cp), uiovp->iov_base, (size_t)acnt);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_END,
(int)cp, (uintptr_t)uiovp->iov_base, acnt, 0, 0);
if (error) {
return error;
}
uio_update_user(uio, (user_size_t)acnt);
cp += acnt;
n -= acnt;
}
return 0;
}
int
uio_copyin_user(const char *c_cp, int n, uio_t uio)
{
addr64_t cp = (const addr64_t)(uintptr_t)c_cp;
while (n > 0 && uio->uio_iovcnt > 0 && uio_resid(uio)) {
struct user_iovec *uiovp;
uint64_t acnt;
int error;
uio_update_user(uio, 0);
acnt = uio_curriovlen_user(uio);
if (acnt == 0) {
continue;
}
if (n > 0 && acnt > (uint64_t)n) {
acnt = n;
}
uiovp = uio_uiovp(uio);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_START,
(uintptr_t)uiovp->iov_base, (int)cp, acnt, 0, 0);
error = copyin(uiovp->iov_base, CAST_DOWN(caddr_t, cp), (size_t)acnt);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_END,
(uintptr_t)uiovp->iov_base, (int)cp, acnt, 0, 0);
if (error) {
return error;
}
uio_update_user(uio, (user_size_t)acnt);
cp += acnt;
n -= acnt;
}
return 0;
}
int
uio_copyout_sys(const char *c_cp, int n, uio_t uio)
{
addr64_t cp = (const addr64_t)(uintptr_t)c_cp;
while (n > 0 && uio->uio_iovcnt > 0 && uio_resid(uio)) {
struct kern_iovec *kiovp;
uint64_t acnt;
uio_update_sys(uio, 0);
acnt = uio_curriovlen_sys(uio);
if (acnt == 0) {
continue;
}
if (n > 0 && acnt > (uint64_t)n) {
acnt = n;
}
kiovp = uio_kiovp(uio);
copywithin(CAST_DOWN(caddr_t, cp), CAST_DOWN(caddr_t, kiovp_get_base(kiovp)),
(size_t)acnt);
uio_update_sys(uio, (user_size_t)acnt);
cp += acnt;
n -= acnt;
}
return 0;
}
int
uio_copyin_sys(const char *c_cp, int n, uio_t uio)
{
addr64_t cp = (const addr64_t)(uintptr_t)c_cp;
while (n > 0 && uio->uio_iovcnt > 0 && uio_resid(uio)) {
struct kern_iovec *kiovp;
uint64_t acnt;
uio_update_sys(uio, 0);
acnt = uio_curriovlen_sys(uio);
if (acnt == 0) {
continue;
}
if (n > 0 && acnt > (uint64_t)n) {
acnt = n;
}
kiovp = uio_kiovp(uio);
copywithin(CAST_DOWN(caddr_t, kiovp_get_base(kiovp)), CAST_DOWN(caddr_t, cp),
(size_t)acnt);
uio_update_sys(uio, (user_size_t)acnt);
cp += acnt;
n -= acnt;
}
return 0;
}
int
uio_copyout_phys_user(const char *c_cp, int n, uio_t uio)
{
addr64_t cp = (const addr64_t)(uintptr_t)c_cp;
while (n > 0 && uio->uio_iovcnt > 0 && uio_resid(uio)) {
struct user_iovec *uiovp;
uint64_t acnt;
int error;
uio_update_user(uio, 0);
acnt = uio_curriovlen_user(uio);
if (acnt == 0) {
continue;
}
if (n > 0 && acnt > (uint64_t)n) {
acnt = n;
}
acnt = MIN(acnt, UINT_MAX);
uiovp = uio_uiovp(uio);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_START,
(int)cp, (uintptr_t)uiovp->iov_base, acnt, 1, 0);
error = copypv((addr64_t)cp, uiovp->iov_base, (unsigned int)acnt, cppvPsrc | cppvNoRefSrc);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_END,
(int)cp, (uintptr_t)uiovp->iov_base, acnt, 1, 0);
if (error) { /* Copy virtual to physical */
return EFAULT;
}
uio_update_user(uio, (user_size_t)acnt);
cp += acnt;
n -= acnt;
}
return 0;
}
int
uio_copyin_phys_user(const char *c_cp, int n, uio_t uio)
{
addr64_t cp = (const addr64_t)(uintptr_t)c_cp;
while (n > 0 && uio->uio_iovcnt > 0 && uio_resid(uio)) {
struct user_iovec *uiovp;
uint64_t acnt;
int error;
uio_update_user(uio, 0);
acnt = uio_curriovlen_user(uio);
if (acnt == 0) {
continue;
}
if (n > 0 && acnt > (uint64_t)n) {
acnt = n;
}
acnt = MIN(acnt, UINT_MAX);
uiovp = uio_uiovp(uio);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_START,
(uintptr_t)uiovp->iov_base, (int)cp, acnt, 1, 0);
error = copypv(uiovp->iov_base, (addr64_t)cp, (unsigned int)acnt, cppvPsnk | cppvNoRefSrc | cppvNoModSnk);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_END,
(uintptr_t)uiovp->iov_base, (int)cp, acnt, 1, 0);
if (error) { /* Copy virtual to physical */
return EFAULT;
}
uio_update_user(uio, (user_size_t)acnt);
cp += acnt;
n -= acnt;
}
return 0;
}
int
uio_copyout_phys_sys(const char *c_cp, int n, uio_t uio)
{
addr64_t cp = (const addr64_t)(uintptr_t)c_cp;
while (n > 0 && uio->uio_iovcnt > 0 && uio_resid(uio)) {
struct kern_iovec *kiovp;
uint64_t acnt;
int error;
uio_update_sys(uio, 0);
acnt = uio_curriovlen_sys(uio);
if (acnt == 0) {
continue;
}
if (n > 0 && acnt > (uint64_t)n) {
acnt = n;
}
acnt = MIN(acnt, UINT_MAX);
kiovp = uio_kiovp(uio);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_START,
(int)cp, (uintptr_t)kiovp_get_base(kiovp), acnt, 2, 0);
error = copypv((addr64_t)cp, (addr64_t)kiovp_get_base(kiovp), (unsigned int)acnt, cppvKmap | cppvPsrc | cppvNoRefSrc);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYOUT)) | DBG_FUNC_END,
(int)cp, (uintptr_t)kiovp_get_base(kiovp), acnt, 2, 0);
if (error) { /* Copy virtual to physical */
return EFAULT;
}
uio_update_sys(uio, (user_size_t)acnt);
cp += acnt;
n -= acnt;
}
return 0;
}
int
uio_copyin_phys_sys(const char *c_cp, int n, uio_t uio)
{
addr64_t cp = (const addr64_t)(uintptr_t)c_cp;
while (n > 0 && uio->uio_iovcnt > 0 && uio_resid(uio)) {
struct kern_iovec *kiovp;
uint64_t acnt;
int error;
uio_update_sys(uio, 0);
acnt = uio_curriovlen_sys(uio);
if (acnt == 0) {
continue;
}
if (n > 0 && acnt > (uint64_t)n) {
acnt = n;
}
acnt = MIN(acnt, UINT_MAX);
kiovp = uio_kiovp(uio);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_START,
(uintptr_t)kiovp_get_base(kiovp), (int)cp, acnt, 2, 0);
error = copypv((addr64_t)kiovp_get_base(kiovp), (addr64_t)cp, (unsigned int)acnt, cppvKmap | cppvPsnk | cppvNoRefSrc | cppvNoModSnk);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, DBG_UIO_COPYIN)) | DBG_FUNC_END,
(uintptr_t)kiovp_get_base(kiovp), (int)cp, acnt, 2, 0);
if (error) { /* Copy virtual to physical */
return EFAULT;
}
uio_update_sys(uio, (user_size_t)acnt);
cp += acnt;
n -= acnt;
}
return 0;
}
/*
* Give next character to user as result of read.
*/
int
ureadc(int c, struct uio *uio)
{
struct kern_iovec *kiovp;
struct user_iovec *uiovp;
if (__improbable(uio_resid(uio) <= 0)) {
panic("ureadc: non-positive resid");
}
if (IS_PURE_USER_SPACE_SEGFLG(uio->uio_segflg)) {
uio_update_user(uio, 0);
uiovp = uio_uiovp(uio);
if (subyte((user_addr_t)uiovp->iov_base, c) < 0) {
return EFAULT;
}
uio_update_user(uio, 1);
} else if (IS_SYS_SPACE_SEGFLG(uio->uio_segflg)) {
uio_update_sys(uio, 0);
kiovp = uio_kiovp(uio);
*(CAST_DOWN(caddr_t, kiovp_get_base(kiovp))) = (char)c;
uio_update_sys(uio, 1);
}
return 0;
}
LIST_HEAD(generic_hash_head, generic);
/*
* General routine to allocate a hash table.
*/
void *
hashinit(int elements, int type __unused, u_long *hashmask)
{
struct generic_hash_head *hashtbl;
vm_size_t hashsize;
if (__improbable(elements <= 0)) {
panic("hashinit: bad cnt");
}
hashsize = 1UL << (fls(elements) - 1);
hashtbl = kalloc_type(struct generic_hash_head, hashsize, Z_WAITOK | Z_ZERO);
if (hashtbl != NULL) {
*hashmask = hashsize - 1;
}
return hashtbl;
}
void
hashdestroy(void *hash, int type __unused, u_long hashmask)
{
assert(powerof2(hashmask + 1));
kfree_type(struct generic_hash_head, hashmask + 1, hash);
}
/*
* uio_resid - return the residual IO value for the given uio_t
*/
user_ssize_t
uio_resid( uio_t a_uio )
{
#if DEBUG
if (a_uio == NULL) {
printf("%s :%d - invalid uio_t\n", __FILE__, __LINE__);
}
#endif /* DEBUG */
/* return 0 if there are no active iovecs */
if (a_uio == NULL) {
return 0;
}
return a_uio->uio_resid_64;
}
/*
* uio_setresid - set the residual IO value for the given uio_t
*/
void
uio_setresid( uio_t a_uio, user_ssize_t a_value )
{
#if DEBUG
if (__improbable(a_uio == NULL)) {
panic("invalid uio_t");
}
#endif /* DEBUG */
if (a_uio == NULL) {
return;
}
a_uio->uio_resid_64 = a_value;
return;
}
/*
* uio_curriovbase - return the base address of the current iovec associated
* with the given uio_t. May return 0.
*/
user_addr_t
uio_curriovbase( uio_t a_uio )
{
struct kern_iovec *kiovp;
struct user_iovec *uiovp;
if (a_uio == NULL || a_uio->uio_iovcnt < 1) {
return 0;
}
if (UIO_IS_USER_SPACE(a_uio)) {
uiovp = uio_uiovp(a_uio);
return uiovp->iov_base;
}
kiovp = uio_kiovp(a_uio);
return (user_addr_t)kiovp_get_base(kiovp);
}
/*
* uio_curriovlen_user - return the length value of the current iovec associated
* with the given uio_t.
*/
static user_size_t
uio_curriovlen_user(const uio_t __attribute__((nonnull)) a_uio)
{
return uio_uiovp(a_uio)->iov_len;
}
/*
* uio_curriovlen_sys - return the length value of the current iovec associated
* with the given uio_t.
*/
static user_size_t
uio_curriovlen_sys(const uio_t __attribute__((nonnull)) a_uio )
{
return (user_size_t)uio_kiovp(a_uio)->iov_len;
}
/*
* uio_curriovlen - return the length value of the current iovec associated
* with the given uio_t.
*/
user_size_t
uio_curriovlen( uio_t a_uio )
{
if (a_uio == NULL || a_uio->uio_iovcnt < 1) {
return 0;
}
if (UIO_IS_USER_SPACE(a_uio)) {
return uio_curriovlen_user(a_uio);
}
return uio_curriovlen_sys(a_uio);
}
/*
* uio_iovcnt - return count of active iovecs for the given uio_t
*/
int
uio_iovcnt( uio_t a_uio )
{
if (a_uio == NULL) {
return 0;
}
return a_uio->uio_iovcnt;
}
/*
* uio_offset - return the current offset value for the given uio_t
*/
off_t
uio_offset( uio_t a_uio )
{
if (a_uio == NULL) {
return 0;
}
return a_uio->uio_offset;
}
/*
* uio_setoffset - set the current offset value for the given uio_t
*/
void
uio_setoffset( uio_t a_uio, off_t a_offset )
{
if (a_uio == NULL) {
return;
}
a_uio->uio_offset = a_offset;
return;
}
/*
* uio_rw - return the read / write flag for the given uio_t
*/
int
uio_rw( uio_t a_uio )
{
if (a_uio == NULL) {
return -1;
}
return a_uio->uio_rw;
}
/*
* uio_setrw - set the read / write flag for the given uio_t
*/
void
uio_setrw( uio_t a_uio, int a_value )
{
if (a_uio == NULL) {
return;
}
if (a_value == UIO_READ || a_value == UIO_WRITE) {
a_uio->uio_rw = a_value;
}
return;
}
/*
* uio_isuserspace - return non zero value if the address space
* flag is for a user address space (could be 32 or 64 bit).
*/
int
uio_isuserspace( uio_t a_uio )
{
if (a_uio == NULL) {
return 0;
}
if (UIO_SEG_IS_USER_SPACE(a_uio->uio_segflg)) {
return 1;
}
return 0;
}
static void
uio_init(uio_t uio,
int a_iovcount, /* number of iovecs */
off_t a_offset, /* current offset */
int a_spacetype, /* type of address space */
int a_iodirection, /* read or write flag */
void *iovecs) /* pointer to iovec array */
{
assert(a_iovcount >= 0 && a_iovcount <= UIO_MAXIOV);
assert(IS_VALID_UIO_SEGFLG(a_spacetype));
assert(a_iodirection == UIO_READ || a_iodirection == UIO_WRITE);
/*
* we use uio_segflg to indicate if the uio_t is the new format or
* old (pre LP64 support) legacy format
* This if-statement should canonicalize incoming space type
* to one of UIO_USERSPACE32/64, UIO_PHYS_USERSPACE32/64, or
* UIO_SYSSPACE/UIO_PHYS_SYSSPACE
*/
if (__improbable((1 << a_spacetype) & (UIOF_USERSPACE | UIOF_SYSSPACE32 | UIOF_PHYS_USERSPACE))) {
if (a_spacetype == UIO_USERSPACE) {
uio->uio_segflg = UIO_USERSPACE32;
} else if (a_spacetype == UIO_SYSSPACE32) {
uio->uio_segflg = UIO_SYSSPACE;
} else if (a_spacetype == UIO_PHYS_USERSPACE) {
uio->uio_segflg = UIO_PHYS_USERSPACE32;
}
} else {
uio->uio_segflg = a_spacetype;
}
uio->uio_iovbase = iovecs;
uio->uio_iovs = iovecs;
uio->uio_max_iovs = a_iovcount;
uio->uio_offset = a_offset;
uio->uio_rw = a_iodirection;
uio->uio_flags = UIO_FLAGS_INITED;
}
static void *
uio_alloc_iov_array(int a_spacetype, size_t a_iovcount)
{
if (IS_SYS_OR_PHYS_SPACE_SEGFLG(a_spacetype)) {
return kalloc_type(struct kern_iovec, a_iovcount, Z_WAITOK | Z_ZERO);
}
size_t bytes = UIO_SIZEOF_IOVS(a_iovcount);
return kalloc_data(bytes, Z_WAITOK | Z_ZERO);
}
static void
uio_free_iov_array(int a_spacetype, void *iovs, size_t a_iovcount)
{
if (IS_SYS_OR_PHYS_SPACE_SEGFLG(a_spacetype)) {
kfree_type(struct kern_iovec, a_iovcount, iovs);
} else {
size_t bytes = UIO_SIZEOF_IOVS(a_iovcount);
kfree_data(iovs, bytes);
}
}
/*
* uio_create - create an uio_t.
* Space is allocated to hold up to a_iovcount number of iovecs. The uio_t
* is not fully initialized until all iovecs are added using uio_addiov calls.
* a_iovcount is the maximum number of iovecs you may add.
*/
uio_t
uio_create( int a_iovcount, /* number of iovecs */
off_t a_offset, /* current offset */
int a_spacetype, /* type of address space */
int a_iodirection ) /* read or write flag */
{
uio_t uio;
void *iovecs;
if (a_iovcount < 0 || a_iovcount > UIO_MAXIOV) {
return NULL;
}
uio = kalloc_type(struct uio, Z_WAITOK | Z_ZERO | Z_NOFAIL);
iovecs = uio_alloc_iov_array(a_spacetype, (size_t)a_iovcount);
uio_init(uio, a_iovcount, a_offset, a_spacetype, a_iodirection, iovecs);
/* leave a note that we allocated this uio_t */
uio->uio_flags |= UIO_FLAGS_WE_ALLOCED;
#if DEBUG
os_atomic_inc(&uio_t_count, relaxed);
#endif
return uio;
}
/*
* uio_createwithbuffer - create an uio_t.
* Create a uio_t using the given buffer. The uio_t
* is not fully initialized until all iovecs are added using uio_addiov calls.
* a_iovcount is the maximum number of iovecs you may add.
* This call may fail if the given buffer is not large enough.
*/
__private_extern__ uio_t
uio_createwithbuffer( int a_iovcount, /* number of iovecs */
off_t a_offset, /* current offset */
int a_spacetype, /* type of address space */
int a_iodirection, /* read or write flag */
void *a_buf_p, /* pointer to a uio_t buffer */
size_t a_buffer_size ) /* size of uio_t buffer */
{
uio_t uio = (uio_t) a_buf_p;
void *iovecs = NULL;
if (a_iovcount < 0 || a_iovcount > UIO_MAXIOV) {
return NULL;
}
if (a_buffer_size < UIO_SIZEOF(a_iovcount)) {
return NULL;
}
if (a_iovcount > 0) {
iovecs = (uint8_t *)uio + sizeof(struct uio);
}
bzero(a_buf_p, a_buffer_size);
uio_init(uio, a_iovcount, a_offset, a_spacetype, a_iodirection, iovecs);
return uio;
}
/*
* uio_iovsaddr_user - get the address of the iovec array for the given uio_t.
* This returns the location of the iovecs within the uio.
* NOTE - for compatibility mode we just return the current value in uio_iovs
* which will increase as the IO is completed and is NOT embedded within the
* uio, it is a seperate array of one or more iovecs.
*/
__private_extern__ struct user_iovec *
uio_iovsaddr_user( uio_t a_uio )
{
if (a_uio == NULL) {
return NULL;
}
return uio_uiovp(a_uio);
}
static void
_uio_reset(uio_t a_uio,
off_t a_offset, /* current offset */
int a_iodirection) /* read or write flag */
{
void *my_iovs = a_uio->uio_iovbase;
int my_max_iovs = a_uio->uio_max_iovs;
if (my_iovs != NULL) {
bzero(my_iovs, UIO_SIZEOF_IOVS(my_max_iovs));
}
a_uio->uio_iovs = my_iovs;
a_uio->uio_iovcnt = 0;
a_uio->uio_offset = a_offset;
a_uio->uio_segflg = 0;
a_uio->uio_rw = a_iodirection;
a_uio->uio_resid_64 = 0;
}
void
uio_reset_fast( uio_t a_uio,
off_t a_offset, /* current offset */
int a_spacetype, /* type of address space */
int a_iodirection ) /* read or write flag */
{
_uio_reset(a_uio, a_offset, a_iodirection);
a_uio->uio_segflg = a_spacetype;
}
/*
* uio_reset - reset an uio_t.
* Reset the given uio_t to initial values. The uio_t is not fully initialized
* until all iovecs are added using uio_addiov calls.
* The a_iovcount value passed in the uio_create is the maximum number of
* iovecs you may add.
*/
void
uio_reset( uio_t a_uio,
off_t a_offset, /* current offset */
int a_spacetype, /* type of address space */
int a_iodirection ) /* read or write flag */
{
if (a_uio == NULL) {
return;
}
_uio_reset(a_uio, a_offset, a_iodirection);
/*
* we use uio_segflg to indicate if the uio_t is the new format or
* old (pre LP64 support) legacy format
* This switch statement should canonicalize incoming space type
* to one of UIO_USERSPACE32/64, UIO_PHYS_USERSPACE32/64, or
* UIO_SYSSPACE/UIO_PHYS_SYSSPACE
*/
switch (a_spacetype) {
case UIO_USERSPACE:
a_uio->uio_segflg = UIO_USERSPACE32;
break;
case UIO_SYSSPACE32:
a_uio->uio_segflg = UIO_SYSSPACE;
break;
case UIO_PHYS_USERSPACE:
a_uio->uio_segflg = UIO_PHYS_USERSPACE32;
break;
default:
a_uio->uio_segflg = a_spacetype;
break;
}
}
/*
* uio_free - free a uio_t allocated via uio_init. this also frees all
* associated iovecs.
*/
void
uio_free( uio_t a_uio )
{
#if DEBUG
if (__improbable(a_uio == NULL)) {
panic("passing NULL uio_t");
}
#endif
if (a_uio != NULL && (a_uio->uio_flags & UIO_FLAGS_WE_ALLOCED) != 0) {
#if DEBUG
if (__improbable(os_atomic_dec_orig(&uio_t_count, relaxed) == 0)) {
panic("uio_t_count underflow");
}
#endif
if (__improbable(a_uio->uio_max_iovs < 0 || a_uio->uio_max_iovs > UIO_MAXIOV)) {
panic("%s: bad uio_max_iovs", __func__);
}
uio_free_iov_array(a_uio->uio_segflg, a_uio->uio_iovbase,
(size_t)a_uio->uio_max_iovs);
kfree_type(struct uio, a_uio);
}
}
/*
* uio_addiov - add an iovec to the given uio_t. You may call this up to
* the a_iovcount number that was passed to uio_create. This call will
* increment the residual IO count as iovecs are added to the uio_t.
* returns 0 if add was successful else non zero.
*/
int
uio_addiov( uio_t a_uio, user_addr_t a_baseaddr, user_size_t a_length )
{
int i;
user_size_t resid;
struct kern_iovec *kiovp;
struct user_iovec *uiovp;
if (__improbable(a_uio == NULL)) {
#if DEBUG
panic("invalid uio_t");
#endif
return -1;
}
if (__improbable(os_add_overflow(a_length, a_uio->uio_resid_64, &resid))) {
#if DEBUG
panic("invalid length %lu", (unsigned long)a_length);
#endif
return -1;
}
if (UIO_IS_USER_SPACE(a_uio)) {
uiovp = uio_uiovp(a_uio);
for (i = 0; i < a_uio->uio_max_iovs; i++) {
if (uiovp[i].iov_len == 0 &&
uiovp[i].iov_base == 0) {
uiovp[i].iov_len = a_length;
uiovp[i].iov_base = a_baseaddr;
a_uio->uio_iovcnt++;
a_uio->uio_resid_64 = resid;
return 0;
}
}
} else {
kiovp = uio_kiovp(a_uio);
for (i = 0; i < a_uio->uio_max_iovs; i++) {
if (kiovp[i].iov_len == 0 &&
kiovp_get_base(&kiovp[i]) == 0) {
kiovp[i].iov_len = (u_int64_t)a_length;
kiovp_set_base(&kiovp[i], (u_int64_t)a_baseaddr);
a_uio->uio_iovcnt++;
a_uio->uio_resid_64 = resid;
return 0;
}
}
}
return -1;
}
/*
* uio_getiov - get iovec data associated with the given uio_t. Use
* a_index to iterate over each iovec (0 to (uio_iovcnt(uio_t) - 1)).
* a_baseaddr_p and a_length_p may be NULL.
* returns -1 when a_index is >= uio_t.uio_iovcnt or invalid uio_t.
* returns 0 when data is returned.
*/
int
uio_getiov( uio_t a_uio,
int a_index,
user_addr_t * a_baseaddr_p,
user_size_t * a_length_p )
{
struct kern_iovec *kiovp;
struct user_iovec *uiovp;
if (a_uio == NULL) {
#if DEBUG
panic("invalid uio_t");
#endif /* DEBUG */
return -1;
}
if (a_index < 0 || a_index >= a_uio->uio_iovcnt) {
return -1;
}
if (UIO_IS_USER_SPACE(a_uio)) {
uiovp = uio_uiovp(a_uio);
if (a_baseaddr_p != NULL) {
*a_baseaddr_p = uiovp[a_index].iov_base;
}
if (a_length_p != NULL) {
*a_length_p = uiovp[a_index].iov_len;
}
} else {
kiovp = uio_kiovp(a_uio);
if (a_baseaddr_p != NULL) {
*a_baseaddr_p = (user_addr_t)kiovp_get_base(&kiovp[a_index]);
}
if (a_length_p != NULL) {
*a_length_p = (user_size_t)kiovp[a_index].iov_len;
}
}
return 0;
}
/*
* uio_calculateresid_user - runs through all iovecs associated with this
* uio_t and calculates (and sets) the residual IO count.
*/
__private_extern__ int
uio_calculateresid_user(uio_t __attribute((nonnull))a_uio)
{
int i;
u_int64_t resid = 0;
struct user_iovec *uiovp;
a_uio->uio_iovcnt = a_uio->uio_max_iovs;
uiovp = uio_uiovp(a_uio);
a_uio->uio_resid_64 = 0;
for (i = 0; i < a_uio->uio_max_iovs; i++) {
if (uiovp[i].iov_len != 0) {
if (uiovp[i].iov_len > LONG_MAX) {
return EINVAL;
}
resid += uiovp[i].iov_len;
if (resid > LONG_MAX) {
return EINVAL;
}
}
}
a_uio->uio_resid_64 = (user_size_t)resid;
/* position to first non zero length iovec (4235922) */
while (a_uio->uio_iovcnt > 0 && uiovp->iov_len == 0) {
a_uio->uio_iovcnt--;
if (a_uio->uio_iovcnt > 0) {
uiovp = uio_advance_user(a_uio);
}
}
return 0;
}
/*
* uio_update_user - update the given uio_t for a_count of completed IO.
* This call decrements the current iovec length and residual IO value
* and increments the current iovec base address and offset value.
* If the current iovec length is 0 then advance to the next
* iovec (if any).
* If the a_count passed in is 0, than only do the advancement
* over any 0 length iovec's.
*/
static void
uio_update_user(uio_t __attribute__((nonnull)) a_uio, user_size_t a_count)
{
struct user_iovec *uiovp;
uiovp = uio_uiovp(a_uio);
/*
* if a_count == 0, then we are asking to skip over
* any empty iovs
*/
if (a_count) {
if (a_count > uiovp->iov_len) {
uiovp->iov_base += uiovp->iov_len;
uiovp->iov_len = 0;
} else {
uiovp->iov_base += a_count;
uiovp->iov_len -= a_count;
}
if (a_count > (user_size_t)a_uio->uio_resid_64) {
a_uio->uio_offset += a_uio->uio_resid_64;
a_uio->uio_resid_64 = 0;
} else {
a_uio->uio_offset += a_count;
a_uio->uio_resid_64 -= a_count;
}
}
/*
* advance to next iovec if current one is totally consumed
*/
while (a_uio->uio_iovcnt > 0 && uiovp->iov_len == 0) {
a_uio->uio_iovcnt--;
if (a_uio->uio_iovcnt > 0) {
uiovp = uio_advance_user(a_uio);
}
}
}
/*
* uio_update_sys - update the given uio_t for a_count of completed IO.
* This call decrements the current iovec length and residual IO value
* and increments the current iovec base address and offset value.
* If the current iovec length is 0 then advance to the next
* iovec (if any).
* If the a_count passed in is 0, than only do the advancement
* over any 0 length iovec's.
*/
static void
uio_update_sys(uio_t __attribute__((nonnull)) a_uio, user_size_t a_count)
{
struct kern_iovec *kiovp;
kiovp = uio_kiovp(a_uio);
/*
* if a_count == 0, then we are asking to skip over
* any empty iovs
*/
if (a_count) {
u_int64_t prev_base = kiovp_get_base(kiovp);
if (a_count > kiovp->iov_len) {
u_int64_t len = kiovp->iov_len;
kiovp->iov_len = 0;
kiovp_set_base(kiovp, prev_base + len);
} else {
kiovp->iov_len -= a_count;
kiovp_set_base(kiovp, prev_base + a_count);
}
if (a_count > (user_size_t)a_uio->uio_resid_64) {
a_uio->uio_offset += a_uio->uio_resid_64;
a_uio->uio_resid_64 = 0;
} else {
a_uio->uio_offset += a_count;
a_uio->uio_resid_64 -= a_count;
}
}
/*
* advance to next iovec if current one is totally consumed
*/
while (a_uio->uio_iovcnt > 0 && kiovp->iov_len == 0) {
a_uio->uio_iovcnt--;
if (a_uio->uio_iovcnt > 0) {
kiovp = uio_advance_sys(a_uio);
}
}
}
/*
* uio_update - update the given uio_t for a_count of completed IO.
* This call decrements the current iovec length and residual IO value
* and increments the current iovec base address and offset value.
* If the current iovec length is 0 then advance to the next
* iovec (if any).
* If the a_count passed in is 0, than only do the advancement
* over any 0 length iovec's.
*/
void
uio_update(uio_t a_uio, user_size_t a_count)
{
if (a_uio == NULL || a_uio->uio_iovcnt < 1) {
return;
}
if (UIO_IS_USER_SPACE(a_uio)) {
uio_update_user(a_uio, a_count);
} else {
uio_update_sys(a_uio, a_count);
}
}
/*
* uio_duplicate - allocate a new uio and make a copy of the given uio_t.
* may return NULL.
*/
uio_t
uio_duplicate(uio_t uio)
{
uio_t new_uio;
size_t n;
struct kern_iovec *kiovp;
struct user_iovec *uiovp;
if (uio->uio_max_iovs < 0 || uio->uio_max_iovs > UIO_MAXIOV) {
return NULL;
}
new_uio = kalloc_type(struct uio, Z_WAITOK | Z_ZERO | Z_NOFAIL);
*new_uio = *uio;
if (new_uio->uio_max_iovs > 0) {
new_uio->uio_iovbase = uio_alloc_iov_array(new_uio->uio_segflg,
(size_t)new_uio->uio_max_iovs);
new_uio->uio_iovs = new_uio->uio_iovbase;
n = UIO_SIZEOF_IOVS(new_uio->uio_iovcnt);
bcopy((const void *)uio->uio_iovs, (void *)new_uio->uio_iovs, n);
if (UIO_IS_SYS_SPACE(new_uio)) {
struct kern_iovec *kiovp_old = uio_kiovp(uio);
kiovp = uio_kiovp(new_uio);
for (n = 0; n < new_uio->uio_max_iovs; ++n) {
kiovp_set_base(&kiovp[n],
kiovp_get_base(&kiovp_old[n]));
}
} else {
uiovp = uio_uiovp(new_uio);
}
/* advance to first nonzero iovec */
for (n = 0; n < new_uio->uio_max_iovs; ++n) {
if (UIO_IS_USER_SPACE(new_uio)) {
if (uiovp->iov_len != 0) {
break;
}
uiovp = uio_advance_user(new_uio);
} else {
if (kiovp->iov_len != 0) {
break;
}
kiovp = uio_advance_sys(new_uio);
}
}
} else {
new_uio->uio_iovs = NULL;
}
new_uio->uio_flags = UIO_FLAGS_WE_ALLOCED | UIO_FLAGS_INITED;
#if DEBUG
os_atomic_inc(&uio_t_count, relaxed);
#endif
return new_uio;
}
int
copyin_user_iovec_array(user_addr_t uaddr, int spacetype, int count, struct user_iovec *dst)
{
size_t size_of_iovec = (spacetype == UIO_USERSPACE64 ? sizeof(struct user64_iovec) : sizeof(struct user32_iovec));
int error;
int i;
// copyin to the front of "dst", without regard for putting records in the right places
error = copyin(uaddr, dst, count * size_of_iovec);
if (error) {
return error;
}
// now, unpack the entries in reverse order, so we don't overwrite anything
for (i = count - 1; i >= 0; i--) {
if (spacetype == UIO_USERSPACE64) {
struct user64_iovec iovec = ((struct user64_iovec *)dst)[i];
dst[i].iov_base = (user_addr_t)iovec.iov_base;
dst[i].iov_len = (user_size_t)iovec.iov_len;
} else {
struct user32_iovec iovec = ((struct user32_iovec *)dst)[i];
dst[i].iov_base = iovec.iov_base;
dst[i].iov_len = iovec.iov_len;
}
}
return 0;
}