327 lines
10 KiB
C
327 lines
10 KiB
C
|
/*
|
||
|
* Copyright (c) 1991-2015 Apple Computer, Inc. All rights reserved.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
||
|
*
|
||
|
* This file contains Original Code and/or Modifications of Original Code
|
||
|
* as defined in and that are subject to the Apple Public Source License
|
||
|
* Version 2.0 (the 'License'). You may not use this file except in
|
||
|
* compliance with the License. The rights granted to you under the License
|
||
|
* may not be used to create, or enable the creation or redistribution of,
|
||
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
||
|
* circumvent, violate, or enable the circumvention or violation of, any
|
||
|
* terms of an Apple operating system software license agreement.
|
||
|
*
|
||
|
* Please obtain a copy of the License at
|
||
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
||
|
*
|
||
|
* The Original Code and all software distributed under the License are
|
||
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
||
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
||
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
||
|
* Please see the License for the specific language governing rights and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
||
|
*/
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/types.h>
|
||
|
#include <sys/uio.h>
|
||
|
#include <sys/vnode.h>
|
||
|
#include <vm/vm_kern.h>
|
||
|
#include <mach/kern_return.h>
|
||
|
#include <mach/vm_param.h>
|
||
|
#include <kern/cpu_number.h>
|
||
|
#include <mach-o/fat.h>
|
||
|
#include <kern/mach_loader.h>
|
||
|
#include <kern/mach_fat.h>
|
||
|
#include <libkern/OSByteOrder.h>
|
||
|
#include <machine/exec.h>
|
||
|
|
||
|
/**********************************************************************
|
||
|
* Routine: fatfile_getarch()
|
||
|
*
|
||
|
* Function: Locate the architecture-dependant contents of a fat
|
||
|
* file that match this CPU.
|
||
|
*
|
||
|
* Args: header: A pointer to the fat file header.
|
||
|
* size: How large the fat file header is (including fat_arch array)
|
||
|
* req_cpu_type: The required cpu type.
|
||
|
* mask_bits: Bits to mask from the sub-image type when
|
||
|
* grading it vs. the req_cpu_type
|
||
|
* imgp: Image params
|
||
|
* archret (out): Pointer to fat_arch structure to hold
|
||
|
* the results.
|
||
|
*
|
||
|
* Returns: KERN_SUCCESS: Valid architecture found.
|
||
|
* KERN_FAILURE: No valid architecture found.
|
||
|
**********************************************************************/
|
||
|
static load_return_t
|
||
|
fatfile_getarch(
|
||
|
vm_offset_t data_ptr,
|
||
|
vm_size_t data_size,
|
||
|
cpu_type_t req_cpu_type,
|
||
|
cpu_type_t mask_bits,
|
||
|
cpu_subtype_t req_subcpu_type,
|
||
|
struct image_params *imgp,
|
||
|
struct fat_arch *archret)
|
||
|
{
|
||
|
load_return_t lret;
|
||
|
struct fat_arch *arch;
|
||
|
struct fat_arch *best_arch;
|
||
|
int grade;
|
||
|
int best_grade;
|
||
|
size_t nfat_arch, max_nfat_arch;
|
||
|
cpu_type_t testtype;
|
||
|
cpu_subtype_t testsubtype;
|
||
|
cpu_subtype_t testfeatures;
|
||
|
struct fat_header *header;
|
||
|
|
||
|
if (sizeof(struct fat_header) > data_size) {
|
||
|
return LOAD_FAILURE;
|
||
|
}
|
||
|
|
||
|
header = (struct fat_header *)data_ptr;
|
||
|
nfat_arch = OSSwapBigToHostInt32(header->nfat_arch);
|
||
|
|
||
|
max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch);
|
||
|
if (nfat_arch > max_nfat_arch) {
|
||
|
/* nfat_arch would cause us to read off end of buffer */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Scan the fat_arch's looking for the best one. */
|
||
|
best_arch = NULL;
|
||
|
best_grade = 0;
|
||
|
arch = (struct fat_arch *) (data_ptr + sizeof(struct fat_header));
|
||
|
for (; nfat_arch-- > 0; arch++) {
|
||
|
testtype = OSSwapBigToHostInt32(arch->cputype);
|
||
|
testsubtype = OSSwapBigToHostInt32(arch->cpusubtype) & ~CPU_SUBTYPE_MASK;
|
||
|
testfeatures = OSSwapBigToHostInt32(arch->cpusubtype) & CPU_SUBTYPE_MASK;
|
||
|
|
||
|
/*
|
||
|
* Check to see if right cpu/subcpu type.
|
||
|
*/
|
||
|
if (!binary_match(mask_bits, req_cpu_type, req_subcpu_type, testtype, testsubtype)) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get the grade of the cpu subtype
|
||
|
*/
|
||
|
grade = grade_binary(testtype, testsubtype, testfeatures, TRUE);
|
||
|
|
||
|
/*
|
||
|
* Remember it if it's the best we've seen.
|
||
|
*/
|
||
|
if (grade > best_grade) {
|
||
|
best_grade = grade;
|
||
|
best_arch = arch;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* On X86_64, allow 32 bit exec only for simulator binaries.
|
||
|
* Failing here without re-running the grading algorithm is safe because i386
|
||
|
* has the lowest possible grade value (so there can't be a lower best grade
|
||
|
* that would be allowed if this check denied the i386 slice). */
|
||
|
if (best_arch != NULL &&
|
||
|
validate_potential_simulator_binary(OSSwapBigToHostInt32(best_arch->cputype),
|
||
|
imgp, OSSwapBigToHostInt32(best_arch->offset),
|
||
|
OSSwapBigToHostInt32(best_arch->size)) != LOAD_SUCCESS) {
|
||
|
best_arch = NULL;
|
||
|
best_grade = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return our results.
|
||
|
*/
|
||
|
if (best_arch == NULL) {
|
||
|
lret = LOAD_BADARCH;
|
||
|
} else {
|
||
|
archret->cputype =
|
||
|
OSSwapBigToHostInt32(best_arch->cputype);
|
||
|
archret->cpusubtype =
|
||
|
OSSwapBigToHostInt32(best_arch->cpusubtype);
|
||
|
archret->offset =
|
||
|
OSSwapBigToHostInt32(best_arch->offset);
|
||
|
archret->size =
|
||
|
OSSwapBigToHostInt32(best_arch->size);
|
||
|
archret->align =
|
||
|
OSSwapBigToHostInt32(best_arch->align);
|
||
|
|
||
|
lret = LOAD_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free the memory we allocated and return.
|
||
|
*/
|
||
|
return lret;
|
||
|
}
|
||
|
|
||
|
load_return_t
|
||
|
fatfile_getbestarch(
|
||
|
vm_offset_t data_ptr,
|
||
|
vm_size_t data_size,
|
||
|
struct image_params *imgp,
|
||
|
struct fat_arch *archret,
|
||
|
__unused bool affinity)
|
||
|
{
|
||
|
int primary_type = cpu_type();
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Ignore all architectural bits when determining if an image
|
||
|
* in a fat file should be skipped or graded.
|
||
|
*/
|
||
|
load_return_t ret = fatfile_getarch(data_ptr, data_size, primary_type, CPU_ARCH_MASK, CPU_SUBTYPE_ANY, imgp, archret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
load_return_t
|
||
|
fatfile_getbestarch_for_cputype(
|
||
|
cpu_type_t cputype,
|
||
|
cpu_subtype_t cpusubtype,
|
||
|
vm_offset_t data_ptr,
|
||
|
vm_size_t data_size,
|
||
|
struct image_params *imgp,
|
||
|
struct fat_arch *archret)
|
||
|
{
|
||
|
/*
|
||
|
* Scan the fat_arch array for exact matches for this cpu_type_t only
|
||
|
*/
|
||
|
return fatfile_getarch(data_ptr, data_size, cputype, 0, cpusubtype, imgp, archret);
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
* Routine: fatfile_getarch_with_bits()
|
||
|
*
|
||
|
* Function: Locate the architecture-dependant contents of a fat
|
||
|
* file that match this CPU.
|
||
|
*
|
||
|
* Args: vp: The vnode for the fat file.
|
||
|
* archbits: Architecture specific feature bits
|
||
|
* header: A pointer to the fat file header.
|
||
|
* archret (out): Pointer to fat_arch structure to hold
|
||
|
* the results.
|
||
|
*
|
||
|
* Returns: KERN_SUCCESS: Valid architecture found.
|
||
|
* KERN_FAILURE: No valid architecture found.
|
||
|
**********************************************************************/
|
||
|
load_return_t
|
||
|
fatfile_getarch_with_bits(
|
||
|
integer_t archbits,
|
||
|
vm_offset_t data_ptr,
|
||
|
vm_size_t data_size,
|
||
|
struct fat_arch *archret)
|
||
|
{
|
||
|
/*
|
||
|
* Scan the fat_arch array for matches with the requested
|
||
|
* architectural bits set, and for the current hardware cpu CPU.
|
||
|
*/
|
||
|
return fatfile_getarch(data_ptr, data_size, (archbits & CPU_ARCH_MASK) | (cpu_type() & ~CPU_ARCH_MASK), 0, CPU_SUBTYPE_ANY, NULL, archret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Validate the fat_header and fat_arch array in memory. We check that:
|
||
|
*
|
||
|
* 1) arch count would not exceed the data buffer
|
||
|
* 2) arch list does not contain duplicate cputype/cpusubtype tuples
|
||
|
* 3) arch list does not have two overlapping slices. The area
|
||
|
* at the front of the file containing the fat headers is implicitly
|
||
|
* a range that a slice should also not try to cover
|
||
|
*/
|
||
|
load_return_t
|
||
|
fatfile_validate_fatarches(vm_offset_t data_ptr, vm_size_t data_size, off_t file_size)
|
||
|
{
|
||
|
uint32_t magic;
|
||
|
size_t nfat_arch, max_nfat_arch, i, j;
|
||
|
size_t fat_header_size;
|
||
|
|
||
|
struct fat_arch *arches;
|
||
|
struct fat_header *header;
|
||
|
|
||
|
if (sizeof(struct fat_header) > data_size) {
|
||
|
return LOAD_FAILURE;
|
||
|
}
|
||
|
|
||
|
header = (struct fat_header *)data_ptr;
|
||
|
magic = OSSwapBigToHostInt32(header->magic);
|
||
|
nfat_arch = OSSwapBigToHostInt32(header->nfat_arch);
|
||
|
|
||
|
if (magic != FAT_MAGIC) {
|
||
|
/* must be FAT_MAGIC big endian */
|
||
|
return LOAD_FAILURE;
|
||
|
}
|
||
|
|
||
|
max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch);
|
||
|
if (nfat_arch > max_nfat_arch) {
|
||
|
/* nfat_arch would cause us to read off end of buffer */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
|
||
|
/* now that we know the fat_arch list fits in the buffer, how much does it use? */
|
||
|
fat_header_size = sizeof(struct fat_header) + nfat_arch * sizeof(struct fat_arch);
|
||
|
arches = (struct fat_arch *)(data_ptr + sizeof(struct fat_header));
|
||
|
|
||
|
for (i = 0; i < nfat_arch; i++) {
|
||
|
uint32_t i_begin = OSSwapBigToHostInt32(arches[i].offset);
|
||
|
uint32_t i_size = OSSwapBigToHostInt32(arches[i].size);
|
||
|
uint32_t i_cputype = OSSwapBigToHostInt32(arches[i].cputype);
|
||
|
uint32_t i_cpusubtype = OSSwapBigToHostInt32(arches[i].cpusubtype);
|
||
|
|
||
|
if (i_begin < fat_header_size) {
|
||
|
/* slice is trying to claim part of the file used by fat headers themselves */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
|
||
|
if ((UINT32_MAX - i_size) < i_begin) {
|
||
|
/* start + size would overflow */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
uint32_t i_end = i_begin + i_size;
|
||
|
|
||
|
if ((off_t)i_end > file_size) {
|
||
|
/* start + size would exceed file size */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
|
||
|
for (j = i + 1; j < nfat_arch; j++) {
|
||
|
uint32_t j_begin = OSSwapBigToHostInt32(arches[j].offset);
|
||
|
uint32_t j_size = OSSwapBigToHostInt32(arches[j].size);
|
||
|
uint32_t j_cputype = OSSwapBigToHostInt32(arches[j].cputype);
|
||
|
uint32_t j_cpusubtype = OSSwapBigToHostInt32(arches[j].cpusubtype);
|
||
|
|
||
|
if ((i_cputype == j_cputype) && (i_cpusubtype == j_cpusubtype)) {
|
||
|
/* duplicate cputype/cpusubtype, results in ambiguous references */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
|
||
|
if ((UINT32_MAX - j_size) < j_begin) {
|
||
|
/* start + size would overflow */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
uint32_t j_end = j_begin + j_size;
|
||
|
|
||
|
if (i_begin <= j_begin) {
|
||
|
if (i_end <= j_begin) {
|
||
|
/* I completely precedes J */
|
||
|
} else {
|
||
|
/* I started before J, but ends somewhere in or after J */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
} else {
|
||
|
if (i_begin >= j_end) {
|
||
|
/* I started after J started but also after J ended */
|
||
|
} else {
|
||
|
/* I started after J started but before it ended, so there is overlap */
|
||
|
return LOAD_BADMACHO;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return LOAD_SUCCESS;
|
||
|
}
|