gems-kernel/source/THIRDPARTY/xnu/bsd/kern/socket_flows.c

1529 lines
49 KiB
C
Raw Normal View History

2024-06-03 11:29:39 -05:00
/*
* Copyright (c) 2021 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/*
* LOCKING STRATEGY
*
* The struct socket's so_flow_db field (struct soflow_db and its hash entries
* struct soflow_hash_entry) is protected by the socket lock. This covers all the
* socket paths that calls soflow_get_flow() as well as the garbage collection.
* For the socket detach path, soflow_detach() cannot assume the socket lock is
* held. Thus, reference counts are added to both struct soflow_db and struct
* soflow_hash_entry to avoid access after freed issues.
*
* The global list, soflow_entry_head, keeps track of all struct soflow_hash_entry
* entries which is used by garbage collection when detecting idle entries. This list
* is protected by the global lock soflow_lck_rw.
*
*/
#include <sys/types.h>
#include <sys/kern_control.h>
#include <sys/queue.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <kern/sched_prim.h>
#include <kern/locks.h>
#include <kern/zalloc.h>
#include <kern/debug.h>
#include <net/ntstat.h>
#include <netinet6/in6_var.h>
#define _IP_VHL
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <string.h>
#include <libkern/libkern.h>
#include <kern/socket_flows.h>
extern struct inpcbinfo ripcbinfo;
/*
* Per-Socket Flow Management
*/
static int soflow_log_level = LOG_ERR;
static int soflow_log_port = 0;
static int soflow_log_pid = 0;
static int soflow_log_proto = 0;
static int soflow_nstat_disable = 0;
static int soflow_disable = 0;
static long soflow_attached_count = 0;
static long soflow_attached_high_water_mark = 0;
static os_log_t soflow_log_handle = NULL;
/*
* Sysctls for debug logs control
*/
SYSCTL_NODE(_net, OID_AUTO, soflow, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "soflow");
SYSCTL_INT(_net_soflow, OID_AUTO, log_level, CTLFLAG_RW | CTLFLAG_LOCKED,
&soflow_log_level, 0, "");
SYSCTL_INT(_net_soflow, OID_AUTO, log_port, CTLFLAG_RW | CTLFLAG_LOCKED,
&soflow_log_port, 0, "");
SYSCTL_INT(_net_soflow, OID_AUTO, log_pid, CTLFLAG_RW | CTLFLAG_LOCKED,
&soflow_log_pid, 0, "");
SYSCTL_INT(_net_soflow, OID_AUTO, log_proto, CTLFLAG_RW | CTLFLAG_LOCKED,
&soflow_log_proto, 0, "");
SYSCTL_INT(_net_soflow, OID_AUTO, nstat_disable, CTLFLAG_RW | CTLFLAG_LOCKED,
&soflow_nstat_disable, 0, "");
SYSCTL_INT(_net_soflow, OID_AUTO, disable, CTLFLAG_RW | CTLFLAG_LOCKED,
&soflow_disable, 0, "");
SYSCTL_LONG(_net_soflow, OID_AUTO, count, CTLFLAG_LOCKED | CTLFLAG_RD, &soflow_attached_count, "");
SYSCTL_LONG(_net_soflow, OID_AUTO, high_water_mark, CTLFLAG_LOCKED | CTLFLAG_RD, &soflow_attached_high_water_mark, "");
#define SOFLOW_LOG(level, so, debug, fmt, ...) \
do { \
if (soflow_log_level >= level && debug && soflow_log_handle) { \
if (level == LOG_ERR) { \
os_log_error(soflow_log_handle, "SOFLOW - %s:%d <pid %d so %llx> " fmt "\n", __FUNCTION__, __LINE__, \
so ? SOFLOW_SOCKET_PID(so) : 0, so ? (uint64_t)VM_KERNEL_ADDRPERM(so) : 0, ##__VA_ARGS__); \
} else { \
os_log(soflow_log_handle, "SOFLOW - %s:%d <pid %d so %llx> " fmt "\n", __FUNCTION__, __LINE__, \
so ? SOFLOW_SOCKET_PID(so) : 0, so ? (uint64_t)VM_KERNEL_ADDRPERM(so) : 0, ##__VA_ARGS__); \
} \
} \
} while (0)
#define SOFLOW_ENTRY_LOG(level, so, entry, debug, msg) \
do { \
if (soflow_log_level >= level && entry && debug) { \
soflow_entry_log(level, so, entry, msg); \
} \
} while (0)
#define SOFLOW_HASH_SIZE 16
#define SOFLOW_HASH(laddr, faddr, lport, fport) ((faddr) ^ ((laddr) >> 16) ^ (fport) ^ (lport))
#define SOFLOW_IS_UDP(so) (so && SOCK_CHECK_TYPE(so, SOCK_DGRAM) && SOCK_CHECK_PROTO(so, IPPROTO_UDP))
#define SOFLOW_GET_SO_PROTO(so) (so ? SOCK_PROTO(so) : IPPROTO_MAX)
#define SOFLOW_SOCKET_PID(so) ((so->so_flags & SOF_DELEGATED) ? so->e_pid : so->last_pid)
#define SOFLOW_ENABLE_DEBUG(so, entry) \
((soflow_log_port == 0 || !entry || soflow_log_port == ntohs(entry->soflow_lport) || soflow_log_port == ntohs(entry->soflow_fport)) && \
(soflow_log_pid == 0 || !so || soflow_log_pid == SOFLOW_SOCKET_PID(so)) && \
(soflow_log_proto == 0 || !so || soflow_log_proto == SOFLOW_GET_SO_PROTO(so)))
os_refgrp_decl(static, soflow_refgrp, "soflow_ref_group", NULL);
#define SOFLOW_ENTRY_FREE(entry) \
if (entry && (os_ref_release(&entry->soflow_ref_count) == 0)) { \
soflow_entry_free(entry); \
}
#define SOFLOW_DB_FREE(db) \
if (db && (os_ref_release(&db->soflow_db_ref_count) == 0)) { \
soflow_db_free(db); \
}
LIST_HEAD(soflow_hash_head, soflow_hash_entry);
static int soflow_initialized = 0;
TAILQ_HEAD(soflow_entry_head, soflow_hash_entry) soflow_entry_head;
static LCK_GRP_DECLARE(soflow_lck_grp, "Socket Flow");
static LCK_RW_DECLARE(soflow_lck_rw, &soflow_lck_grp);
#define SOFLOW_LOCK_EXCLUSIVE lck_rw_lock_exclusive(&soflow_lck_rw)
#define SOFLOW_UNLOCK_EXCLUSIVE lck_rw_unlock_exclusive(&soflow_lck_rw)
#define SOFLOW_LOCK_SHARED lck_rw_lock_shared(&soflow_lck_rw)
#define SOFLOW_UNLOCK_SHARED lck_rw_unlock_shared(&soflow_lck_rw)
/*
* Flow Garbage Collection:
*/
static struct thread *soflow_gc_thread;
static soflow_feat_gc_needed_func soflow_feat_gc_needed_func_ptr = NULL;
static soflow_feat_gc_perform_func soflow_feat_gc_perform_func_ptr = NULL;
#define SOFLOW_GC_IDLE_TO 30 // Flow Idle Timeout in seconds
#define SOFLOW_GC_MAX_COUNT 100 // Max sockets to be handled per run
#define SOFLOW_GC_RUN_INTERVAL_NSEC (10 * NSEC_PER_SEC) // GC wakes up every 10 seconds
/*
* Feature Context Handling:
*/
static soflow_feat_detach_entry_func soflow_feat_detach_entry_func_ptr = NULL;
static soflow_feat_detach_db_func soflow_feat_detach_db_func_ptr = NULL;
static void soflow_gc_thread_func(void *v, wait_result_t w);
static void soflow_gc_expire(void *v, wait_result_t w);
static boolean_t soflow_entry_local_address_needs_update(struct soflow_hash_entry *);
static boolean_t soflow_entry_local_port_needs_update(struct socket *, struct soflow_hash_entry *);
static void
soflow_init(void)
{
if (soflow_initialized) {
return;
}
soflow_initialized = 1;
if (soflow_log_handle == NULL) {
soflow_log_handle = os_log_create("com.apple.xnu.net.soflow", "soflow");
}
TAILQ_INIT(&soflow_entry_head);
// Spawn thread for gargage collection
if (kernel_thread_start(soflow_gc_thread_func, NULL,
&soflow_gc_thread) != KERN_SUCCESS) {
panic_plain("%s: Can't create SOFLOW GC thread", __func__);
/* NOTREACHED */
}
/* this must not fail */
VERIFY(soflow_gc_thread != NULL);
}
static void
soflow_entry_log(int level, struct socket *so, struct soflow_hash_entry *entry, const char* msg)
{
#pragma unused(level, msg)
char local[MAX_IPv6_STR_LEN + 6] = { 0 };
char remote[MAX_IPv6_STR_LEN + 6] = { 0 };
const void *addr;
// No sock or not UDP, no-op
if (entry == NULL) {
return;
}
switch (entry->soflow_family) {
case AF_INET6:
addr = &entry->soflow_laddr.addr6;
inet_ntop(AF_INET6, addr, local, sizeof(local));
addr = &entry->soflow_faddr.addr6;
inet_ntop(AF_INET6, addr, remote, sizeof(local));
break;
case AF_INET:
addr = &entry->soflow_laddr.addr46.ia46_addr4.s_addr;
inet_ntop(AF_INET, addr, local, sizeof(local));
addr = &entry->soflow_faddr.addr46.ia46_addr4.s_addr;
inet_ntop(AF_INET, addr, remote, sizeof(local));
break;
default:
return;
}
SOFLOW_LOG(level, so, entry->soflow_debug, "<%s>: %s <%s(%d) entry %p, featureID %llu> outifp %d lport %d fport %d laddr %s faddr %s hash %X "
"<rx p %llu b %llu, tx p %llu b %llu>",
msg, entry->soflow_outgoing ? "OUT" : "IN ",
SOFLOW_IS_UDP(so) ? "UDP" : "proto", SOFLOW_GET_SO_PROTO(so),
entry, entry->soflow_feat_ctxt_id,
entry->soflow_outifindex,
ntohs(entry->soflow_lport), ntohs(entry->soflow_fport), local, remote,
entry->soflow_flowhash,
entry->soflow_rxpackets, entry->soflow_rxbytes, entry->soflow_txpackets, entry->soflow_txbytes);
}
bool
soflow_fill_hash_entry_from_address(struct soflow_hash_entry *entry, bool isLocal, struct sockaddr *addr, bool islocalUpdate)
{
struct sockaddr_in *sin = NULL;
struct sockaddr_in6 *sin6 = NULL;
if (entry == NULL || addr == NULL) {
return FALSE;
}
switch (addr->sa_family) {
case AF_INET:
sin = satosin(addr);
if (sin->sin_len < sizeof(*sin)) {
return FALSE;
}
if (isLocal == TRUE) {
if (sin->sin_port != 0) {
entry->soflow_lport = sin->sin_port;
if (islocalUpdate) {
entry->soflow_lport_updated = TRUE;
}
}
if (sin->sin_addr.s_addr != INADDR_ANY) {
entry->soflow_laddr.addr46.ia46_addr4.s_addr = sin->sin_addr.s_addr;
if (islocalUpdate) {
entry->soflow_laddr_updated = TRUE;
}
}
} else {
if (sin->sin_port != 0) {
entry->soflow_fport = sin->sin_port;
}
if (sin->sin_addr.s_addr != INADDR_ANY) {
entry->soflow_faddr.addr46.ia46_addr4.s_addr = sin->sin_addr.s_addr;
}
}
entry->soflow_family = AF_INET;
return TRUE;
case AF_INET6:
sin6 = satosin6(addr);
if (sin6->sin6_len < sizeof(*sin6)) {
return FALSE;
}
if (isLocal == TRUE) {
if (sin6->sin6_port != 0) {
entry->soflow_lport = sin6->sin6_port;
if (islocalUpdate) {
entry->soflow_lport_updated = TRUE;
}
}
if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
entry->soflow_laddr.addr6 = sin6->sin6_addr;
entry->soflow_laddr6_ifscope = sin6->sin6_scope_id;
in6_verify_ifscope(&sin6->sin6_addr, sin6->sin6_scope_id);
if (islocalUpdate) {
entry->soflow_laddr_updated = TRUE;
}
}
} else {
if (sin6->sin6_port != 0) {
entry->soflow_fport = sin6->sin6_port;
}
if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
entry->soflow_faddr.addr6 = sin6->sin6_addr;
entry->soflow_faddr6_ifscope = sin6->sin6_scope_id;
in6_verify_ifscope(&sin6->sin6_addr, sin6->sin6_scope_id);
}
}
entry->soflow_family = AF_INET6;
return TRUE;
default:
return FALSE;
}
}
bool
soflow_fill_hash_entry_from_inp(struct soflow_hash_entry *entry, bool isLocal, struct inpcb *inp, bool islocalUpdate)
{
if (entry == NULL || inp == NULL) {
return FALSE;
}
if (inp->inp_vflag & INP_IPV6) {
if (isLocal == TRUE) {
if (inp->inp_lport) {
entry->soflow_lport = inp->inp_lport;
if (islocalUpdate) {
entry->soflow_lport_updated = TRUE;
}
}
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
entry->soflow_laddr.addr6 = inp->in6p_laddr;
entry->soflow_laddr6_ifscope = inp->inp_lifscope;
in6_verify_ifscope(&entry->soflow_laddr.addr6, inp->inp_lifscope);
if (islocalUpdate) {
entry->soflow_laddr_updated = TRUE;
}
}
} else {
if (inp->inp_fport) {
entry->soflow_fport = inp->inp_fport;
}
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
entry->soflow_faddr.addr6 = inp->in6p_faddr;
entry->soflow_faddr6_ifscope = inp->inp_fifscope;
in6_verify_ifscope(&entry->soflow_faddr.addr6, inp->inp_fifscope);
}
}
entry->soflow_family = AF_INET6;
return TRUE;
} else if (inp->inp_vflag & INP_IPV4) {
if (isLocal == TRUE) {
if (inp->inp_lport) {
entry->soflow_lport = inp->inp_lport;
if (islocalUpdate) {
entry->soflow_lport_updated = TRUE;
}
}
if (inp->inp_laddr.s_addr) {
entry->soflow_laddr.addr46.ia46_addr4.s_addr = inp->inp_laddr.s_addr;
if (islocalUpdate) {
entry->soflow_laddr_updated = TRUE;
}
}
} else {
if (inp->inp_fport) {
entry->soflow_fport = inp->inp_fport;
}
if (inp->inp_faddr.s_addr) {
entry->soflow_faddr.addr46.ia46_addr4.s_addr = inp->inp_faddr.s_addr;
}
}
entry->soflow_family = AF_INET;
return TRUE;
}
return FALSE;
}
static errno_t
soflow_db_init(struct socket *so)
{
errno_t error = 0;
struct soflow_db *db = NULL;
struct soflow_hash_entry *hash_entry = NULL;
db = kalloc_type(struct soflow_db, Z_WAITOK | Z_ZERO | Z_NOFAIL);
db->soflow_db_so = so;
db->soflow_db_hashbase = hashinit(SOFLOW_HASH_SIZE, M_CFIL, &db->soflow_db_hashmask);
if (db->soflow_db_hashbase == NULL) {
kfree_type(struct soflow_db, db);
error = ENOMEM;
goto done;
}
db->soflow_db_debug = SOFLOW_ENABLE_DEBUG(so, hash_entry);
os_ref_init(&db->soflow_db_ref_count, &soflow_refgrp);
so->so_flow_db = db;
done:
return error;
}
static void
soflow_entry_free(struct soflow_hash_entry *hash_entry)
{
struct socket *so = (hash_entry && hash_entry->soflow_db) ? hash_entry->soflow_db->soflow_db_so : NULL;
if (hash_entry == NULL) {
return;
}
SOFLOW_ENTRY_LOG(LOG_INFO, so, hash_entry, hash_entry->soflow_debug, "Free entry");
kfree_type(struct soflow_hash_entry, hash_entry);
}
static void
soflow_db_remove_entry(struct soflow_db *db, struct soflow_hash_entry *hash_entry)
{
if (hash_entry == NULL) {
return;
}
if (db == NULL || db->soflow_db_count == 0) {
return;
}
#if defined(NSTAT_EXTENSION_FILTER_DOMAIN_INFO)
if (hash_entry->soflow_nstat_context != NULL) {
SOFLOW_LOG(LOG_INFO, db->soflow_db_so, hash_entry->soflow_debug, "<Close nstat> - context %lX", (unsigned long)hash_entry->soflow_nstat_context);
nstat_provider_stats_close(hash_entry->soflow_nstat_context);
hash_entry->soflow_nstat_context = NULL;
SOFLOW_ENTRY_FREE(hash_entry);
}
#endif
db->soflow_db_count--;
if (db->soflow_db_only_entry == hash_entry) {
db->soflow_db_only_entry = NULL;
}
LIST_REMOVE(hash_entry, soflow_entry_link);
// Feature context present, give feature a chance to detach and clean up
if (hash_entry->soflow_feat_ctxt != NULL && soflow_feat_detach_entry_func_ptr != NULL) {
soflow_feat_detach_entry_func_ptr(db->soflow_db_so, hash_entry);
hash_entry->soflow_feat_ctxt = NULL;
hash_entry->soflow_feat_ctxt_id = 0;
}
hash_entry->soflow_db = NULL;
SOFLOW_LOCK_EXCLUSIVE;
if (soflow_initialized) {
TAILQ_REMOVE(&soflow_entry_head, hash_entry, soflow_entry_list_link);
soflow_attached_count--;
}
SOFLOW_UNLOCK_EXCLUSIVE;
SOFLOW_ENTRY_FREE(hash_entry);
}
static void
soflow_db_free(struct soflow_db *db)
{
struct soflow_hash_entry *entry = NULL;
struct soflow_hash_entry *temp_entry = NULL;
struct soflow_hash_head *flowhash = NULL;
if (db == NULL) {
return;
}
SOFLOW_LOG(LOG_INFO, db->soflow_db_so, db->soflow_db_debug, "<db %p> freeing db (count == %d)", db, db->soflow_db_count);
for (int i = 0; i < SOFLOW_HASH_SIZE; i++) {
flowhash = &db->soflow_db_hashbase[i];
LIST_FOREACH_SAFE(entry, flowhash, soflow_entry_link, temp_entry) {
SOFLOW_ENTRY_LOG(LOG_INFO, db->soflow_db_so, entry, entry->soflow_debug, "Remove entry");
soflow_db_remove_entry(db, entry);
}
}
if (soflow_feat_detach_db_func_ptr != NULL) {
soflow_feat_detach_db_func_ptr(db->soflow_db_so, db);
}
// Make sure all entries are cleaned up!
VERIFY(db->soflow_db_count == 0);
hashdestroy(db->soflow_db_hashbase, M_CFIL, db->soflow_db_hashmask);
kfree_type(struct soflow_db, db);
}
void
soflow_detach(struct socket *so)
{
if (so == NULL || so->so_flow_db == NULL) {
return;
}
SOFLOW_DB_FREE(so->so_flow_db);
so->so_flow_db = NULL;
}
static boolean_t
soflow_match_entries_v4(struct soflow_hash_entry *entry1, struct soflow_hash_entry *entry2, boolean_t remoteOnly)
{
if (entry1 == NULL || entry2 == NULL) {
return false;
}
// Ignore local match if remoteOnly or if local has been updated since entry added
boolean_t lport_matched = (remoteOnly || entry1->soflow_lport_updated || entry1->soflow_lport == entry2->soflow_lport);
boolean_t laddr_matched = (remoteOnly || entry1->soflow_laddr_updated ||
entry1->soflow_laddr.addr46.ia46_addr4.s_addr == entry2->soflow_laddr.addr46.ia46_addr4.s_addr);
// Entries match if local and remote ports and addresses all matched
return lport_matched && entry1->soflow_fport == entry2->soflow_fport &&
laddr_matched && entry1->soflow_faddr.addr46.ia46_addr4.s_addr == entry2->soflow_faddr.addr46.ia46_addr4.s_addr;
}
static boolean_t
soflow_match_entries_v6(struct soflow_hash_entry *entry1, struct soflow_hash_entry *entry2, boolean_t remoteOnly)
{
if (entry1 == NULL || entry2 == NULL) {
return false;
}
// Ignore local match if remoteOnly or if local has been updated since entry added
boolean_t lport_matched = (remoteOnly || entry1->soflow_lport_updated || entry1->soflow_lport == entry2->soflow_lport);
boolean_t laddr_matched = (remoteOnly || entry1->soflow_laddr_updated ||
in6_are_addr_equal_scoped(&entry1->soflow_laddr.addr6, &entry2->soflow_laddr.addr6, entry1->soflow_laddr6_ifscope, entry2->soflow_laddr6_ifscope));
// Entries match if local and remote ports and addresses all matched
return lport_matched && entry1->soflow_fport == entry2->soflow_fport &&
laddr_matched && in6_are_addr_equal_scoped(&entry1->soflow_faddr.addr6, &entry2->soflow_faddr.addr6, entry1->soflow_faddr6_ifscope, entry2->soflow_faddr6_ifscope);
}
static struct soflow_hash_entry *
soflow_db_lookup_entry_internal(struct soflow_db *db, struct sockaddr *local, struct sockaddr *remote, boolean_t remoteOnly, boolean_t withLocalPort)
{
struct soflow_hash_entry matchentry = { };
struct soflow_hash_entry *nextentry = NULL;
struct inpcb *inp = sotoinpcb(db->soflow_db_so);
u_int32_t hashkey_faddr = 0, hashkey_laddr = 0;
u_int16_t hashkey_fport = 0, hashkey_lport = 0;
int inp_hash_element = 0;
struct soflow_hash_head *flowhash = NULL;
if (inp == NULL || db == NULL) {
return NULL;
}
if (local != NULL) {
soflow_fill_hash_entry_from_address(&matchentry, TRUE, local, FALSE);
} else {
soflow_fill_hash_entry_from_inp(&matchentry, TRUE, inp, FALSE);
}
if (remote != NULL) {
soflow_fill_hash_entry_from_address(&matchentry, FALSE, remote, FALSE);
} else {
soflow_fill_hash_entry_from_inp(&matchentry, FALSE, inp, FALSE);
}
matchentry.soflow_debug = SOFLOW_ENABLE_DEBUG(db->soflow_db_so, (&matchentry));
SOFLOW_ENTRY_LOG(LOG_DEBUG, db->soflow_db_so, &matchentry, true, "Looking for entry");
if (inp->inp_vflag & INP_IPV6) {
hashkey_faddr = matchentry.soflow_faddr.addr6.s6_addr32[3];
hashkey_laddr = (remoteOnly == false) ? matchentry.soflow_laddr.addr6.s6_addr32[3] : 0;
} else {
hashkey_faddr = matchentry.soflow_faddr.addr46.ia46_addr4.s_addr;
hashkey_laddr = (remoteOnly == false) ? matchentry.soflow_laddr.addr46.ia46_addr4.s_addr : 0;
}
hashkey_fport = matchentry.soflow_fport;
hashkey_lport = (remoteOnly == false || withLocalPort == true) ? matchentry.soflow_lport : 0;
inp_hash_element = SOFLOW_HASH(hashkey_laddr, hashkey_faddr, hashkey_lport, hashkey_fport);
inp_hash_element &= db->soflow_db_hashmask;
flowhash = &db->soflow_db_hashbase[inp_hash_element];
LIST_FOREACH(nextentry, flowhash, soflow_entry_link) {
if (inp->inp_vflag & INP_IPV6) {
if (soflow_match_entries_v6(nextentry, &matchentry, remoteOnly)) {
SOFLOW_ENTRY_LOG(LOG_DEBUG, db->soflow_db_so, nextentry, nextentry->soflow_debug, "Found entry v6");
break;
}
} else if (inp->inp_vflag & INP_IPV4) {
if (soflow_match_entries_v4(nextentry, &matchentry, remoteOnly)) {
SOFLOW_ENTRY_LOG(LOG_DEBUG, db->soflow_db_so, nextentry, nextentry->soflow_debug, "Found entry v4");
break;
}
}
}
if (nextentry == NULL) {
SOFLOW_ENTRY_LOG(LOG_DEBUG, db->soflow_db_so, &matchentry, matchentry.soflow_debug, "Entry not found");
}
return nextentry;
}
static struct soflow_hash_entry *
soflow_db_lookup_entry(struct soflow_db *db, struct sockaddr *local, struct sockaddr *remote, boolean_t remoteOnly)
{
struct soflow_hash_entry *entry = soflow_db_lookup_entry_internal(db, local, remote, remoteOnly, false);
if (entry == NULL && remoteOnly == true) {
entry = soflow_db_lookup_entry_internal(db, local, remote, remoteOnly, true);
}
return entry;
}
static struct soflow_hash_entry *
soflow_db_lookup_by_feature_context_id(struct soflow_db *db, u_int64_t feature_context_id)
{
struct soflow_hash_head *flowhash = NULL;
u_int32_t inp_hash_element = (u_int32_t)(feature_context_id & 0x0ffffffff);
struct soflow_hash_entry *nextentry;
inp_hash_element &= db->soflow_db_hashmask;
flowhash = &db->soflow_db_hashbase[inp_hash_element];
LIST_FOREACH(nextentry, flowhash, soflow_entry_link) {
SOFLOW_ENTRY_LOG(LOG_DEBUG, db->soflow_db_so, nextentry, nextentry->soflow_debug, "Looking at entry");
if (nextentry->soflow_feat_ctxt != NULL &&
nextentry->soflow_feat_ctxt_id == feature_context_id) {
SOFLOW_ENTRY_LOG(LOG_DEBUG, db->soflow_db_so, nextentry, nextentry->soflow_debug, "Found entry by feature context id");
break;
}
}
if (nextentry == NULL) {
SOFLOW_LOG(LOG_DEBUG, db->soflow_db_so, db->soflow_db_debug, "No entry found for featureID %llu <count %d hash %X %X>",
feature_context_id, db->soflow_db_count, inp_hash_element, (u_int32_t)(feature_context_id & 0x0ffffffff));
}
return nextentry;
}
void *
soflow_db_get_feature_context(struct soflow_db *db, u_int64_t feature_context_id)
{
struct soflow_hash_entry *hash_entry = NULL;
void *context = NULL;
if (db == NULL || db->soflow_db_so == NULL || feature_context_id == 0) {
return NULL;
}
socket_lock_assert_owned(db->soflow_db_so);
// Take refcount of db before use.
// Abort if db is already being freed.
if (os_ref_retain_try(&db->soflow_db_ref_count) == false) {
return NULL;
}
// This is an optimization for datagram sockets with only one single flow.
if (db->soflow_db_count == 1) {
if (db->soflow_db_only_entry != NULL &&
db->soflow_db_only_entry->soflow_feat_ctxt != NULL && db->soflow_db_only_entry->soflow_feat_ctxt_id == feature_context_id) {
SOFLOW_ENTRY_LOG(LOG_DEBUG, db->soflow_db_so, db->soflow_db_only_entry, db->soflow_db_only_entry->soflow_debug, "MATCHED only entry for featureID");
context = db->soflow_db_only_entry->soflow_feat_ctxt;
} else {
SOFLOW_LOG(LOG_DEBUG, db->soflow_db_so, db->soflow_db_debug, "MISMATCHED only entry for featureID %llu (entry %p - cfil %p id %llu)",
feature_context_id,
db->soflow_db_only_entry,
db->soflow_db_only_entry ? db->soflow_db_only_entry->soflow_feat_ctxt : NULL,
db->soflow_db_only_entry ? db->soflow_db_only_entry->soflow_feat_ctxt_id : 0);
}
} else {
hash_entry = soflow_db_lookup_by_feature_context_id(db, feature_context_id);
context = hash_entry != NULL ? hash_entry->soflow_feat_ctxt : NULL;
}
SOFLOW_DB_FREE(db);
return context;
}
u_int64_t
soflow_db_get_feature_context_id(struct soflow_db *db, struct sockaddr *local, struct sockaddr *remote)
{
struct soflow_hash_entry *hash_entry = NULL;
uint64_t context_id = 0;
if (db == NULL || db->soflow_db_so == NULL) {
return 0;
}
socket_lock_assert_owned(db->soflow_db_so);
// Take refcount of db before use.
// Abort if db is already being freed.
if (os_ref_retain_try(&db->soflow_db_ref_count) == false) {
return 0;
}
hash_entry = soflow_db_lookup_entry(db, local, remote, false);
if (hash_entry == NULL) {
// No match with both local and remote, try match with remote only
hash_entry = soflow_db_lookup_entry(db, local, remote, true);
}
if (hash_entry != NULL && hash_entry->soflow_feat_ctxt != NULL) {
context_id = hash_entry->soflow_feat_ctxt_id;
}
SOFLOW_DB_FREE(db);
return context_id;
}
static struct soflow_hash_entry *
soflow_db_add_entry(struct soflow_db *db, struct sockaddr *local, struct sockaddr *remote)
{
struct soflow_hash_entry *entry = NULL;
struct inpcb *inp = db ? sotoinpcb(db->soflow_db_so) : NULL;
u_int32_t hashkey_faddr = 0, hashkey_laddr = 0;
int inp_hash_element = 0;
struct soflow_hash_head *flowhash = NULL;
if (db == NULL || inp == NULL) {
goto done;
}
entry = kalloc_type(struct soflow_hash_entry, Z_WAITOK | Z_ZERO | Z_NOFAIL);
os_ref_init(&entry->soflow_ref_count, &soflow_refgrp);
if (local != NULL) {
soflow_fill_hash_entry_from_address(entry, TRUE, local, FALSE);
} else {
soflow_fill_hash_entry_from_inp(entry, TRUE, inp, FALSE);
}
if (remote != NULL) {
soflow_fill_hash_entry_from_address(entry, FALSE, remote, FALSE);
} else {
soflow_fill_hash_entry_from_inp(entry, FALSE, inp, FALSE);
}
entry->soflow_lastused = net_uptime();
entry->soflow_db = db;
entry->soflow_debug = SOFLOW_ENABLE_DEBUG(db->soflow_db_so, entry);
if (inp->inp_vflag & INP_IPV6) {
hashkey_faddr = entry->soflow_faddr.addr6.s6_addr32[3];
hashkey_laddr = entry->soflow_laddr.addr6.s6_addr32[3];
} else {
hashkey_faddr = entry->soflow_faddr.addr46.ia46_addr4.s_addr;
hashkey_laddr = entry->soflow_laddr.addr46.ia46_addr4.s_addr;
}
entry->soflow_flowhash = SOFLOW_HASH(hashkey_laddr, hashkey_faddr,
entry->soflow_lport, entry->soflow_fport);
inp_hash_element = entry->soflow_flowhash & db->soflow_db_hashmask;
socket_lock_assert_owned(db->soflow_db_so);
// Take refcount of db before use.
// Abort if db is already being freed.
if (os_ref_retain_try(&db->soflow_db_ref_count) == false) {
return NULL;
}
flowhash = &db->soflow_db_hashbase[inp_hash_element];
LIST_INSERT_HEAD(flowhash, entry, soflow_entry_link);
db->soflow_db_count++;
db->soflow_db_only_entry = entry;
SOFLOW_LOG(LOG_INFO, db->soflow_db_so, db->soflow_db_debug, "total count %d", db->soflow_db_count);
SOFLOW_DB_FREE(db);
done:
return entry;
}
static int
soflow_udp_get_address_from_control(sa_family_t family, struct mbuf *control, uint8_t **address_ptr)
{
struct cmsghdr *cm;
struct in6_pktinfo *pi6;
struct socket *so = NULL;
if (control == NULL || address_ptr == NULL) {
return 0;
}
for (; control != NULL; control = control->m_next) {
if (control->m_type != MT_CONTROL) {
continue;
}
for (cm = M_FIRST_CMSGHDR(control);
is_cmsg_valid(control, cm);
cm = M_NXT_CMSGHDR(control, cm)) {
SOFLOW_LOG(LOG_DEBUG, so, true, "Check control type %d", cm->cmsg_type);
switch (cm->cmsg_type) {
case IP_RECVDSTADDR:
if (family == AF_INET &&
cm->cmsg_level == IPPROTO_IP &&
cm->cmsg_len == CMSG_LEN(sizeof(struct in_addr))) {
*address_ptr = CMSG_DATA(cm);
return sizeof(struct in_addr);
}
break;
case IPV6_PKTINFO:
case IPV6_2292PKTINFO:
if (family == AF_INET6 &&
cm->cmsg_level == IPPROTO_IPV6 &&
cm->cmsg_len == CMSG_LEN(sizeof(struct in6_pktinfo))) {
pi6 = (struct in6_pktinfo *)(void *)CMSG_DATA(cm);
*address_ptr = (uint8_t *)&pi6->ipi6_addr;
return sizeof(struct in6_addr);
}
break;
default:
break;
}
}
}
return 0;
}
static boolean_t
soflow_entry_local_address_needs_update(struct soflow_hash_entry *entry)
{
if (entry->soflow_family == AF_INET6) {
return IN6_IS_ADDR_UNSPECIFIED(&entry->soflow_laddr.addr6);
} else if (entry->soflow_family == AF_INET) {
return entry->soflow_laddr.addr46.ia46_addr4.s_addr == INADDR_ANY;
}
return false;
}
static boolean_t
soflow_entry_local_port_needs_update(struct socket *so, struct soflow_hash_entry *entry)
{
if (SOFLOW_IS_UDP(so)) {
return entry->soflow_lport == 0;
}
return false;
}
static void
soflow_entry_update_local(struct soflow_db *db, struct soflow_hash_entry *entry, struct sockaddr *local, struct mbuf *control, u_short rcv_ifindex)
{
struct inpcb *inp = sotoinpcb(db->soflow_db_so);
union sockaddr_in_4_6 address_buf = { };
if (inp == NULL || entry == NULL) {
return;
}
if (entry->soflow_outifindex == 0 && (inp->inp_last_outifp != NULL || rcv_ifindex != 0)) {
entry->soflow_outifindex = inp->inp_last_outifp ? inp->inp_last_outifp->if_index : rcv_ifindex;
SOFLOW_ENTRY_LOG(LOG_INFO, db->soflow_db_so, entry, entry->soflow_debug, "Updated outifp");
}
if (soflow_entry_local_address_needs_update(entry)) {
// Flow does not have a local address yet. Retrieve local address
// from control mbufs if present.
if (local == NULL && control != NULL) {
uint8_t *addr_ptr = NULL;
int size = soflow_udp_get_address_from_control(entry->soflow_family, control, &addr_ptr);
if (size && addr_ptr) {
switch (entry->soflow_family) {
case AF_INET:
if (size == sizeof(struct in_addr)) {
address_buf.sin.sin_port = 0;
address_buf.sin.sin_family = AF_INET;
address_buf.sin.sin_len = sizeof(struct sockaddr_in);
(void) memcpy(&address_buf.sin.sin_addr, addr_ptr, sizeof(struct in_addr));
local = sintosa(&address_buf.sin);
}
break;
case AF_INET6:
if (size == sizeof(struct in6_addr)) {
address_buf.sin6.sin6_port = 0;
address_buf.sin6.sin6_family = AF_INET6;
address_buf.sin6.sin6_len = sizeof(struct sockaddr_in6);
(void) memcpy(&address_buf.sin6.sin6_addr, addr_ptr, sizeof(struct in6_addr));
local = sin6tosa(&address_buf.sin6);
}
break;
default:
break;
}
}
}
if (local != NULL) {
soflow_fill_hash_entry_from_address(entry, TRUE, local, TRUE);
} else {
soflow_fill_hash_entry_from_inp(entry, TRUE, inp, TRUE);
}
if (entry->soflow_laddr_updated) {
SOFLOW_ENTRY_LOG(LOG_INFO, db->soflow_db_so, entry, entry->soflow_debug, "Updated address");
}
}
if (soflow_entry_local_port_needs_update(db->soflow_db_so, entry)) {
soflow_fill_hash_entry_from_inp(entry, TRUE, inp, TRUE);
if (entry->soflow_lport_updated) {
SOFLOW_ENTRY_LOG(LOG_INFO, db->soflow_db_so, entry, entry->soflow_debug, "Updated port");
}
}
return;
}
#if defined(NSTAT_EXTENSION_FILTER_DOMAIN_INFO)
static u_int32_t
ifnet_to_flags(struct ifnet *ifp, struct socket *so)
{
u_int32_t flags = 0;
if (ifp != NULL) {
flags = nstat_ifnet_to_flags(ifp);
if ((flags & NSTAT_IFNET_IS_WIFI) && ((flags & (NSTAT_IFNET_IS_AWDL | NSTAT_IFNET_IS_LLW)) == 0)) {
flags |= NSTAT_IFNET_IS_WIFI_INFRA;
}
} else {
flags = NSTAT_IFNET_IS_UNKNOWN_TYPE;
}
if (so != NULL && (so->so_flags1 & SOF1_CELLFALLBACK)) {
flags |= NSTAT_IFNET_VIA_CELLFALLBACK;
}
return flags;
}
static bool
soflow_nstat_provider_request_vals(nstat_provider_context ctx,
u_int32_t *ifflagsp,
nstat_counts *countsp,
void *metadatap)
{
struct soflow_hash_entry *hash_entry = (struct soflow_hash_entry *) ctx;
struct socket *so = (hash_entry && hash_entry->soflow_db) ? hash_entry->soflow_db->soflow_db_so : NULL;
struct inpcb *inp = so ? sotoinpcb(so) : NULL;
char local[MAX_IPv6_STR_LEN + 6] = { 0 };
char remote[MAX_IPv6_STR_LEN + 6] = { 0 };
const void *addr = NULL;
if (hash_entry == NULL || so == NULL || inp == NULL) {
return false;
}
if (ifflagsp) {
if (hash_entry->soflow_outifindex) {
struct ifnet *ifp = ifindex2ifnet[hash_entry->soflow_outifindex];
*ifflagsp = ifnet_to_flags(ifp, so);
}
if ((countsp == NULL) && (metadatap == NULL)) {
SOFLOW_LOG(LOG_DEBUG, so, hash_entry->soflow_debug, "ifflagsp set to 0x%X", *ifflagsp);
goto done;
}
}
if (countsp) {
bzero(countsp, sizeof(*countsp));
countsp->nstat_rxpackets = hash_entry->soflow_rxpackets;
countsp->nstat_rxbytes = hash_entry->soflow_rxbytes;
countsp->nstat_txpackets = hash_entry->soflow_txpackets;
countsp->nstat_txbytes = hash_entry->soflow_txbytes;
SOFLOW_LOG(LOG_DEBUG, so, hash_entry->soflow_debug,
"Collected NSTAT counts: rxpackets %llu rxbytes %llu txpackets %llu txbytes %llu",
countsp->nstat_rxpackets, countsp->nstat_rxbytes, countsp->nstat_txpackets, countsp->nstat_txbytes);
}
if (metadatap) {
nstat_udp_descriptor *desc = (nstat_udp_descriptor *)metadatap;
bzero(desc, sizeof(*desc));
if (so->so_flags & SOF_DELEGATED) {
desc->eupid = so->e_upid;
desc->epid = so->e_pid;
uuid_copy(desc->euuid, so->e_uuid);
} else {
desc->eupid = so->last_upid;
desc->epid = so->last_pid;
uuid_copy(desc->euuid, so->last_uuid);
}
uuid_copy(desc->vuuid, so->so_vuuid);
uuid_copy(desc->fuuid, hash_entry->soflow_uuid);
if (hash_entry->soflow_family == AF_INET6) {
in6_ip6_to_sockaddr(&hash_entry->soflow_laddr.addr6, hash_entry->soflow_lport, hash_entry->soflow_laddr6_ifscope,
&desc->local.v6, sizeof(desc->local.v6));
in6_ip6_to_sockaddr(&hash_entry->soflow_faddr.addr6, hash_entry->soflow_fport, hash_entry->soflow_faddr6_ifscope,
&desc->remote.v6, sizeof(desc->remote.v6));
} else if (hash_entry->soflow_family == AF_INET) {
desc->local.v4.sin_family = AF_INET;
desc->local.v4.sin_len = sizeof(struct sockaddr_in);
desc->local.v4.sin_port = hash_entry->soflow_lport;
desc->local.v4.sin_addr = hash_entry->soflow_laddr.addr46.ia46_addr4;
desc->remote.v4.sin_family = AF_INET;
desc->remote.v4.sin_len = sizeof(struct sockaddr_in);
desc->remote.v4.sin_port = hash_entry->soflow_fport;
desc->remote.v4.sin_addr = hash_entry->soflow_faddr.addr46.ia46_addr4;
}
desc->ifindex = hash_entry->soflow_outifindex;
if (hash_entry->soflow_outifindex) {
struct ifnet *ifp = ifindex2ifnet[hash_entry->soflow_outifindex];
desc->ifnet_properties = (uint16_t)ifnet_to_flags(ifp, so);
}
desc->rcvbufsize = so->so_rcv.sb_hiwat;
desc->rcvbufused = so->so_rcv.sb_cc;
desc->traffic_class = so->so_traffic_class;
inp_get_activity_bitmap(inp, &desc->activity_bitmap);
if (hash_entry->soflow_debug) {
switch (hash_entry->soflow_family) {
case AF_INET6:
addr = &desc->local.v6;
inet_ntop(AF_INET6, addr, local, sizeof(local));
addr = &desc->remote.v6;
inet_ntop(AF_INET6, addr, remote, sizeof(local));
break;
case AF_INET:
addr = &desc->local.v4.sin_addr;
inet_ntop(AF_INET, addr, local, sizeof(local));
addr = &desc->remote.v4.sin_addr;
inet_ntop(AF_INET, addr, remote, sizeof(local));
break;
default:
break;
}
uint8_t *ptr = (uint8_t *)&desc->euuid;
SOFLOW_LOG(LOG_DEBUG, so, hash_entry->soflow_debug,
"Collected NSTAT metadata: eupid %llu epid %d euuid %x%x%x%x-%x%x%x%x-%x%x%x%x-%x%x%x%x "
"outifp %d properties 0x%X lport %d fport %d laddr %s faddr %s "
"rcvbufsize %u rcvbufused %u traffic_class %u",
desc->eupid, desc->epid,
ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5], ptr[6], ptr[7],
ptr[8], ptr[9], ptr[10], ptr[11], ptr[12], ptr[13], ptr[14], ptr[15],
desc->ifindex, desc->ifnet_properties,
ntohs(desc->local.v4.sin_port), ntohs(desc->remote.v4.sin_port), local, remote,
desc->rcvbufsize, desc->rcvbufused, desc->traffic_class);
}
}
done:
return true;
}
static size_t
soflow_nstat_provider_request_extensions(nstat_provider_context ctx,
int requested_extension,
void *buf,
size_t buf_size)
{
struct soflow_hash_entry *hash_entry = (struct soflow_hash_entry *) ctx;
struct socket *so = (hash_entry && hash_entry->soflow_db) ? hash_entry->soflow_db->soflow_db_so : NULL;
struct inpcb *inp = so ? sotoinpcb(so) : NULL;
struct nstat_domain_info *domain_info = NULL;
size_t size = 0;
if (hash_entry == NULL || so == NULL || inp == NULL) {
return 0;
}
if (buf == NULL) {
switch (requested_extension) {
case NSTAT_EXTENDED_UPDATE_TYPE_DOMAIN:
return sizeof(nstat_domain_info);
default:
return 0;
}
}
if (buf_size < sizeof(nstat_domain_info)) {
return 0;
}
switch (requested_extension) {
case NSTAT_EXTENDED_UPDATE_TYPE_DOMAIN:
domain_info = (struct nstat_domain_info *)buf;
necp_copy_inp_domain_info(inp, so, domain_info);
if (hash_entry->soflow_debug) {
SOFLOW_LOG(LOG_DEBUG, so, hash_entry->soflow_debug, "Collected NSTAT domain_info:pid %d domain <%s> owner <%s> "
"ctxt <%s> bundle id <%s> is_tracker %d is_non_app_initiated %d is_silent %d",
so->so_flags & SOF_DELEGATED ? so->e_pid : so->last_pid,
domain_info->domain_name,
domain_info->domain_owner,
domain_info->domain_tracker_ctxt,
domain_info->domain_attributed_bundle_id,
domain_info->is_tracker,
domain_info->is_non_app_initiated,
domain_info->is_silent);
}
size = sizeof(nstat_domain_info);
default:
break;
}
return size;
}
#endif
static void
soflow_update_flow_stats(struct soflow_hash_entry *hash_entry, size_t data_size, bool outgoing)
{
struct socket *so = (hash_entry && hash_entry->soflow_db) ? hash_entry->soflow_db->soflow_db_so : NULL;
if (hash_entry != NULL) {
if (outgoing) {
hash_entry->soflow_txbytes += data_size;
hash_entry->soflow_txpackets++;
SOFLOW_ENTRY_LOG(LOG_DEBUG, so, hash_entry, hash_entry->soflow_debug, "Stats update - Outgoing");
} else {
hash_entry->soflow_rxbytes += data_size;
hash_entry->soflow_rxpackets++;
SOFLOW_ENTRY_LOG(LOG_DEBUG, so, hash_entry, hash_entry->soflow_debug, "Stats update - Incoming");
}
}
}
struct soflow_hash_entry *
soflow_get_flow(struct socket *so, struct sockaddr *local, struct sockaddr *remote, struct mbuf *control,
size_t data_size, bool outgoing, uint16_t rcv_ifindex)
{
struct soflow_hash_entry *hash_entry = NULL;
struct inpcb *inp = sotoinpcb(so);
// Check if feature is disabled
if (soflow_disable) {
return NULL;
}
socket_lock_assert_owned(so);
if (so->so_flow_db != NULL) {
// Take refcount of db before use.
// Abort if db is already being freed.
if (os_ref_retain_try(&so->so_flow_db->soflow_db_ref_count) == false) {
return NULL;
}
// DB already exists, check if this is existing flow
hash_entry = soflow_db_lookup_entry(so->so_flow_db, local, remote, false);
if (hash_entry == NULL) {
// No match with both local and remote, try match with remote only
hash_entry = soflow_db_lookup_entry(so->so_flow_db, local, remote, true);
}
if (hash_entry != NULL) {
// Take refcount of entry before use.
// Abort if entry is already being freed.
if (os_ref_retain_try(&hash_entry->soflow_ref_count) == false) {
SOFLOW_DB_FREE(so->so_flow_db);
return NULL;
}
// Try to update flow info from socket and/or control mbufs if necessary
if (hash_entry->soflow_outifindex == 0 ||
soflow_entry_local_address_needs_update(hash_entry) || soflow_entry_local_port_needs_update(so, hash_entry)) {
soflow_entry_update_local(so->so_flow_db, hash_entry, local, control, rcv_ifindex);
}
hash_entry->soflow_lastused = net_uptime();
soflow_update_flow_stats(hash_entry, data_size, outgoing);
SOFLOW_DB_FREE(so->so_flow_db);
return hash_entry;
}
SOFLOW_DB_FREE(so->so_flow_db);
} else {
// If new socket, allocate cfil db
if (soflow_db_init(so) != 0) {
return NULL;
}
}
hash_entry = soflow_db_add_entry(so->so_flow_db, local, remote);
if (hash_entry == NULL) {
SOFLOW_LOG(LOG_ERR, so, true, "Failed to add entry");
return NULL;
}
// Take refcount of entry before use.
// Abort if entry is already being freed.
if (os_ref_retain_try(&hash_entry->soflow_ref_count) == false) {
return NULL;
}
if (inp && (inp->inp_last_outifp != NULL || rcv_ifindex != 0)) {
hash_entry->soflow_outifindex = inp->inp_last_outifp ? inp->inp_last_outifp->if_index : rcv_ifindex;
}
// Check if we can update the new flow's local address from control mbufs
if (control != NULL) {
soflow_entry_update_local(so->so_flow_db, hash_entry, local, control, rcv_ifindex);
}
hash_entry->soflow_outgoing = outgoing;
soflow_update_flow_stats(hash_entry, data_size, outgoing);
// Only report flow to NSTAT if unconnected UDP
if (!soflow_nstat_disable && SOFLOW_IS_UDP(so) && !(so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING))) {
#if defined(NSTAT_EXTENSION_FILTER_DOMAIN_INFO)
// Take refcount of entry before handing it to nstat. Abort if fail.
if (os_ref_retain_try(&hash_entry->soflow_ref_count) == false) {
return NULL;
}
uuid_generate_random(hash_entry->soflow_uuid);
hash_entry->soflow_nstat_context = nstat_provider_stats_open((nstat_provider_context) hash_entry,
NSTAT_PROVIDER_UDP_SUBFLOW, 0,
soflow_nstat_provider_request_vals,
soflow_nstat_provider_request_extensions);
SOFLOW_LOG(LOG_INFO, so, hash_entry->soflow_debug, "<Open nstat> - context %lX", (unsigned long)hash_entry->soflow_nstat_context);
#endif
}
SOFLOW_LOCK_EXCLUSIVE;
if (soflow_initialized == 0) {
soflow_init();
}
TAILQ_INSERT_TAIL(&soflow_entry_head, hash_entry, soflow_entry_list_link);
if (soflow_attached_count == 0) {
thread_wakeup((caddr_t)&soflow_attached_count);
}
soflow_attached_count++;
if (soflow_attached_high_water_mark < soflow_attached_count) {
soflow_attached_high_water_mark = soflow_attached_count;
}
SOFLOW_UNLOCK_EXCLUSIVE;
SOFLOW_ENTRY_LOG(LOG_INFO, so, hash_entry, hash_entry->soflow_debug, "Added entry");
return hash_entry;
}
void
soflow_free_flow(struct soflow_hash_entry *entry)
{
SOFLOW_ENTRY_FREE(entry);
}
static bool
soflow_socket_safe_lock(struct inpcb *inp, struct inpcbinfo *pcbinfo)
{
struct socket *so = NULL;
VERIFY(pcbinfo != NULL);
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
// Safeguarded the inp state, unlock pcbinfo before locking socket.
lck_rw_done(&pcbinfo->ipi_lock);
so = inp->inp_socket;
socket_lock(so, 1);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) != WNT_STOPUSING) {
return true;
}
} else {
// Failed to safeguarded the inp state, unlock pcbinfo and abort.
lck_rw_done(&pcbinfo->ipi_lock);
}
if (so) {
socket_unlock(so, 1);
}
return false;
}
static struct socket *
soflow_validate_dgram_socket(struct socket *so)
{
struct inpcb *inp = NULL;
struct inpcbinfo *pcbinfo = NULL;
struct socket *locked = NULL;
pcbinfo = &udbinfo;
lck_rw_lock_shared(&pcbinfo->ipi_lock);
LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
if (inp->inp_state != INPCB_STATE_DEAD && inp->inp_socket == so) {
if (soflow_socket_safe_lock(inp, pcbinfo)) {
locked = inp->inp_socket;
}
/* pcbinfo is already unlocked, we are done. */
goto done;
}
}
lck_rw_done(&pcbinfo->ipi_lock);
if (locked != NULL) {
goto done;
}
pcbinfo = &ripcbinfo;
lck_rw_lock_shared(&pcbinfo->ipi_lock);
LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
if (inp->inp_state != INPCB_STATE_DEAD && inp->inp_socket == so) {
if (soflow_socket_safe_lock(inp, pcbinfo)) {
locked = inp->inp_socket;
}
/* pcbinfo is already unlocked, we are done. */
goto done;
}
}
lck_rw_done(&pcbinfo->ipi_lock);
done:
return locked;
}
static void
soflow_gc_thread_sleep(bool forever)
{
if (forever) {
(void) assert_wait((event_t) &soflow_attached_count,
THREAD_INTERRUPTIBLE);
} else {
uint64_t deadline = 0;
nanoseconds_to_absolutetime(SOFLOW_GC_RUN_INTERVAL_NSEC, &deadline);
clock_absolutetime_interval_to_deadline(deadline, &deadline);
(void) assert_wait_deadline(&soflow_attached_count,
THREAD_INTERRUPTIBLE, deadline);
}
}
static void
soflow_gc_thread_func(void *v, wait_result_t w)
{
#pragma unused(v, w)
ASSERT(soflow_gc_thread == current_thread());
thread_set_thread_name(current_thread(), "SOFLOW_GC");
// Kick off gc shortly
soflow_gc_thread_sleep(false);
thread_block_parameter((thread_continue_t) soflow_gc_expire, NULL);
/* NOTREACHED */
}
static bool
soflow_gc_idle_timed_out(struct soflow_hash_entry *hash_entry, int timeout, u_int64_t current_time)
{
struct socket *so = (hash_entry && hash_entry->soflow_db) ? hash_entry->soflow_db->soflow_db_so : NULL;
if (hash_entry && (current_time - hash_entry->soflow_lastused >= (u_int64_t)timeout)) {
SOFLOW_ENTRY_LOG(LOG_INFO, so, hash_entry, hash_entry->soflow_debug, "GC Idle Timeout detected");
return true;
}
return false;
}
static int
soflow_gc_cleanup(struct socket *so)
{
struct soflow_hash_entry *entry = NULL;
struct soflow_hash_entry *temp_entry = NULL;
struct soflow_hash_head *flowhash = NULL;
struct soflow_db *db = NULL;
int cleaned = 0;
if (so == NULL || so->so_flow_db == NULL) {
return 0;
}
db = so->so_flow_db;
socket_lock_assert_owned(so);
// Take refcount of db before use.
// Abort if db is already being freed.
if (os_ref_retain_try(&db->soflow_db_ref_count) == false) {
return 0;
}
for (int i = 0; i < SOFLOW_HASH_SIZE; i++) {
flowhash = &db->soflow_db_hashbase[i];
LIST_FOREACH_SAFE(entry, flowhash, soflow_entry_link, temp_entry) {
if (entry->soflow_gc || entry->soflow_feat_gc) {
if (entry->soflow_feat_ctxt != NULL && soflow_feat_gc_perform_func_ptr != NULL) {
soflow_feat_gc_perform_func_ptr(so, entry);
entry->soflow_feat_ctxt = NULL;
entry->soflow_feat_ctxt_id = 0;
}
entry->soflow_feat_gc = 0;
if (entry->soflow_gc) {
SOFLOW_ENTRY_LOG(LOG_INFO, so, entry, entry->soflow_debug, "GC cleanup entry");
entry->soflow_gc = 0;
soflow_db_remove_entry(db, entry);
cleaned++;
}
}
}
}
SOFLOW_DB_FREE(db);
return cleaned;
}
static void
soflow_gc_expire(void *v, wait_result_t w)
{
#pragma unused(v, w)
static struct socket *socket_array[SOFLOW_GC_MAX_COUNT];
struct soflow_hash_entry *hash_entry = NULL;
struct socket *so = NULL;
u_int64_t current_time = net_uptime();
uint32_t socket_count = 0;
uint32_t cleaned_count = 0;
bool recorded = false;
// Collect a list of socket with expired flows
SOFLOW_LOCK_SHARED;
if (soflow_attached_count == 0) {
SOFLOW_UNLOCK_SHARED;
goto go_sleep;
}
// Go thorough all flows in the flow list and record any socket with expired flows.
TAILQ_FOREACH(hash_entry, &soflow_entry_head, soflow_entry_list_link) {
if (socket_count >= SOFLOW_GC_MAX_COUNT) {
break;
}
so = hash_entry->soflow_db ? hash_entry->soflow_db->soflow_db_so : NULL;
// Check if we need to perform cleanup due to idle time or feature specified rules
hash_entry->soflow_gc = soflow_gc_idle_timed_out(hash_entry, SOFLOW_GC_IDLE_TO, current_time);
hash_entry->soflow_feat_gc = (soflow_feat_gc_needed_func_ptr != NULL && soflow_feat_gc_needed_func_ptr(so, hash_entry, current_time));
if (hash_entry->soflow_gc || hash_entry->soflow_feat_gc) {
if (so != NULL) {
recorded = false;
for (int i = 0; i < socket_count; i++) {
if (socket_array[socket_count] == so) {
recorded = true;
break;
}
}
if (recorded == false) {
socket_array[socket_count] = so;
socket_count++;
}
}
}
}
SOFLOW_UNLOCK_SHARED;
if (socket_count == 0) {
goto go_sleep;
}
for (uint32_t i = 0; i < socket_count; i++) {
// Validate socket and lock it
so = soflow_validate_dgram_socket(socket_array[i]);
if (so == NULL) {
continue;
}
cleaned_count += soflow_gc_cleanup(so);
socket_unlock(so, 1);
}
so = NULL;
SOFLOW_LOG(LOG_INFO, so, true, "<GC cleaned %d flows>", cleaned_count);
go_sleep:
// Sleep forever (until waken up) if no more UDP flow to clean
SOFLOW_LOCK_SHARED;
soflow_gc_thread_sleep(soflow_attached_count == 0 ? true : false);
SOFLOW_UNLOCK_SHARED;
thread_block_parameter((thread_continue_t)soflow_gc_expire, NULL);
/* NOTREACHED */
}
void
soflow_feat_set_functions(soflow_feat_gc_needed_func gc_needed_fn,
soflow_feat_gc_perform_func gc_perform_fn,
soflow_feat_detach_entry_func feat_detach_entry_fn,
soflow_feat_detach_db_func feat_detach_db_fn)
{
soflow_feat_gc_needed_func_ptr = gc_needed_fn;
soflow_feat_gc_perform_func_ptr = gc_perform_fn;
soflow_feat_detach_entry_func_ptr = feat_detach_entry_fn;
soflow_feat_detach_db_func_ptr = feat_detach_db_fn;
}
bool
soflow_db_apply(struct soflow_db *db, soflow_entry_apply_func entry_apply_fn, void *context)
{
struct soflow_hash_entry *entry = NULL;
struct soflow_hash_entry *temp_entry = NULL;
struct soflow_hash_head *flowhash = NULL;
if (db == NULL || db->soflow_db_so == NULL || entry_apply_fn == NULL) {
return false;
}
socket_lock_assert_owned(db->soflow_db_so);
// Take refcount of db before use.
// Abort if db is already being freed.
if (os_ref_retain_try(&db->soflow_db_ref_count) == false) {
return false;
}
for (int i = 0; i < SOFLOW_HASH_SIZE; i++) {
flowhash = &db->soflow_db_hashbase[i];
LIST_FOREACH_SAFE(entry, flowhash, soflow_entry_link, temp_entry) {
if (entry_apply_fn(db->soflow_db_so, entry, context) == false) {
goto done;
}
}
}
done:
SOFLOW_DB_FREE(db);
return true;
}