gems-kernel/source/THIRDPARTY/xnu/bsd/kern/sys_generic.c

3199 lines
77 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2000-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2006 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/filedesc.h>
#include <sys/ioctl.h>
#include <sys/file_internal.h>
#include <sys/proc_internal.h>
#include <sys/socketvar.h>
#include <sys/uio_internal.h>
#include <sys/kernel.h>
#include <sys/guarded.h>
#include <sys/stat.h>
#include <sys/malloc.h>
#include <sys/sysproto.h>
#include <sys/mount_internal.h>
#include <sys/protosw.h>
#include <sys/ev.h>
#include <sys/user.h>
#include <sys/kdebug.h>
#include <sys/poll.h>
#include <sys/event.h>
#include <sys/eventvar.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <machine/smp.h>
#include <mach/mach_types.h>
#include <kern/kern_types.h>
#include <kern/assert.h>
#include <kern/kalloc.h>
#include <kern/thread.h>
#include <kern/clock.h>
#include <kern/ledger.h>
#include <kern/monotonic.h>
#include <kern/task.h>
#include <kern/telemetry.h>
#include <kern/waitq.h>
#include <kern/sched_hygiene.h>
#include <kern/sched_prim.h>
#include <kern/mpsc_queue.h>
#include <kern/debug.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/syscall.h>
#include <sys/pipe.h>
#include <security/audit/audit.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#include <netinet/tcp_debug.h>
/* for wait queue based select */
#include <kern/waitq.h>
#include <sys/vnode_internal.h>
/* for remote time api*/
#include <kern/remote_time.h>
#include <os/log.h>
#include <sys/log_data.h>
#include <machine/monotonic.h>
#if CONFIG_MACF
#include <security/mac_framework.h>
#endif
#ifdef CONFIG_KDP_INTERACTIVE_DEBUGGING
#include <mach_debug/mach_debug_types.h>
#endif
/* for entitlement check */
#include <IOKit/IOBSD.h>
/* XXX should be in a header file somewhere */
extern kern_return_t IOBSDGetPlatformUUID(__darwin_uuid_t uuid, mach_timespec_t timeoutp);
int do_uiowrite(struct proc *p, struct fileproc *fp, uio_t uio, int flags, user_ssize_t *retval);
__private_extern__ int dofileread(vfs_context_t ctx, struct fileproc *fp,
user_addr_t bufp, user_size_t nbyte,
off_t offset, int flags, user_ssize_t *retval);
__private_extern__ int dofilewrite(vfs_context_t ctx, struct fileproc *fp,
user_addr_t bufp, user_size_t nbyte,
off_t offset, int flags, user_ssize_t *retval);
static int preparefileread(struct proc *p, struct fileproc **fp_ret, int fd, int check_for_vnode);
/* needed by guarded_writev, etc. */
int write_internal(struct proc *p, int fd, user_addr_t buf, user_size_t nbyte,
off_t offset, int flags, guardid_t *puguard, user_ssize_t *retval);
int writev_uio(struct proc *p, int fd, user_addr_t user_iovp, int iovcnt, off_t offset, int flags,
guardid_t *puguard, user_ssize_t *retval);
#define f_flag fp_glob->fg_flag
#define f_type fp_glob->fg_ops->fo_type
#define f_cred fp_glob->fg_cred
#define f_ops fp_glob->fg_ops
/*
* Validate if the file can be used for random access (pread, pwrite, etc).
*
* Conditions:
* proc_fdlock is held
*
* Returns: 0 Success
* ESPIPE
* ENXIO
*/
static int
valid_for_random_access(struct fileproc *fp)
{
if (__improbable(fp->f_type != DTYPE_VNODE)) {
return ESPIPE;
}
vnode_t vp = (struct vnode *)fp_get_data(fp);
if (__improbable(vnode_isfifo(vp))) {
return ESPIPE;
}
if (__improbable(vp->v_flag & VISTTY)) {
return ENXIO;
}
return 0;
}
/*
* Returns: 0 Success
* EBADF
* ESPIPE
* ENXIO
* fp_lookup:EBADF
* valid_for_random_access:ESPIPE
* valid_for_random_access:ENXIO
*/
static int
preparefileread(struct proc *p, struct fileproc **fp_ret, int fd, int check_for_pread)
{
int error;
struct fileproc *fp;
AUDIT_ARG(fd, fd);
proc_fdlock_spin(p);
error = fp_lookup(p, fd, &fp, 1);
if (error) {
proc_fdunlock(p);
return error;
}
if ((fp->f_flag & FREAD) == 0) {
error = EBADF;
goto out;
}
if (check_for_pread) {
if ((error = valid_for_random_access(fp))) {
goto out;
}
}
*fp_ret = fp;
proc_fdunlock(p);
return 0;
out:
fp_drop(p, fd, fp, 1);
proc_fdunlock(p);
return error;
}
static int
fp_readv(vfs_context_t ctx, struct fileproc *fp, uio_t uio, int flags,
user_ssize_t *retval)
{
int error;
user_ssize_t count;
if ((error = uio_calculateresid_user(uio))) {
*retval = 0;
return error;
}
count = uio_resid(uio);
error = fo_read(fp, uio, flags, ctx);
switch (error) {
case ERESTART:
case EINTR:
case EWOULDBLOCK:
if (uio_resid(uio) != count) {
error = 0;
}
break;
default:
break;
}
*retval = count - uio_resid(uio);
return error;
}
/*
* Returns: 0 Success
* EINVAL
* fo_read:???
*/
__private_extern__ int
dofileread(vfs_context_t ctx, struct fileproc *fp,
user_addr_t bufp, user_size_t nbyte, off_t offset, int flags,
user_ssize_t *retval)
{
UIO_STACKBUF(uio_buf, 1);
uio_t uio;
int spacetype;
if (nbyte > INT_MAX) {
*retval = 0;
return EINVAL;
}
spacetype = vfs_context_is64bit(ctx) ? UIO_USERSPACE64 : UIO_USERSPACE32;
uio = uio_createwithbuffer(1, offset, spacetype, UIO_READ, &uio_buf[0],
sizeof(uio_buf));
if (uio_addiov(uio, bufp, nbyte) != 0) {
*retval = 0;
return EINVAL;
}
return fp_readv(ctx, fp, uio, flags, retval);
}
static int
readv_internal(struct proc *p, int fd, uio_t uio, int flags,
user_ssize_t *retval)
{
struct fileproc *fp = NULL;
struct vfs_context context;
int error;
if ((error = preparefileread(p, &fp, fd, flags & FOF_OFFSET))) {
*retval = 0;
return error;
}
context = *(vfs_context_current());
context.vc_ucred = fp->fp_glob->fg_cred;
error = fp_readv(&context, fp, uio, flags, retval);
fp_drop(p, fd, fp, 0);
return error;
}
static int
read_internal(struct proc *p, int fd, user_addr_t buf, user_size_t nbyte,
off_t offset, int flags, user_ssize_t *retval)
{
UIO_STACKBUF(uio_buf, 1);
uio_t uio;
int spacetype = IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32;
if (nbyte > INT_MAX) {
*retval = 0;
return EINVAL;
}
uio = uio_createwithbuffer(1, offset, spacetype, UIO_READ,
&uio_buf[0], sizeof(uio_buf));
if (uio_addiov(uio, buf, nbyte) != 0) {
*retval = 0;
return EINVAL;
}
return readv_internal(p, fd, uio, flags, retval);
}
int
read_nocancel(struct proc *p, struct read_nocancel_args *uap, user_ssize_t *retval)
{
return read_internal(p, uap->fd, uap->cbuf, uap->nbyte, (off_t)-1, 0,
retval);
}
/*
* Read system call.
*
* Returns: 0 Success
* preparefileread:EBADF
* preparefileread:ESPIPE
* preparefileread:ENXIO
* preparefileread:EBADF
* dofileread:???
*/
int
read(struct proc *p, struct read_args *uap, user_ssize_t *retval)
{
__pthread_testcancel(1);
return read_nocancel(p, (struct read_nocancel_args *)uap, retval);
}
int
pread_nocancel(struct proc *p, struct pread_nocancel_args *uap, user_ssize_t *retval)
{
KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO, SYS_pread) | DBG_FUNC_NONE),
uap->fd, uap->nbyte, (unsigned int)((uap->offset >> 32)), (unsigned int)(uap->offset), 0);
return read_internal(p, uap->fd, uap->buf, uap->nbyte, uap->offset,
FOF_OFFSET, retval);
}
/*
* Pread system call
*
* Returns: 0 Success
* preparefileread:EBADF
* preparefileread:ESPIPE
* preparefileread:ENXIO
* preparefileread:EBADF
* dofileread:???
*/
int
pread(struct proc *p, struct pread_args *uap, user_ssize_t *retval)
{
__pthread_testcancel(1);
return pread_nocancel(p, (struct pread_nocancel_args *)uap, retval);
}
/*
* Vector read.
*
* Returns: 0 Success
* EINVAL
* ENOMEM
* preparefileread:EBADF
* preparefileread:ESPIPE
* preparefileread:ENXIO
* preparefileread:EBADF
* copyin:EFAULT
* rd_uio:???
*/
static int
readv_uio(struct proc *p, int fd,
user_addr_t user_iovp, int iovcnt, off_t offset, int flags,
user_ssize_t *retval)
{
uio_t uio = NULL;
int error;
struct user_iovec *iovp;
if (iovcnt <= 0 || iovcnt > UIO_MAXIOV) {
error = EINVAL;
goto out;
}
uio = uio_create(iovcnt, offset,
(IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_READ);
iovp = uio_iovsaddr_user(uio);
if (iovp == NULL) {
error = ENOMEM;
goto out;
}
error = copyin_user_iovec_array(user_iovp,
IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32,
iovcnt, iovp);
if (error) {
goto out;
}
error = readv_internal(p, fd, uio, flags, retval);
out:
if (uio != NULL) {
uio_free(uio);
}
return error;
}
int
readv_nocancel(struct proc *p, struct readv_nocancel_args *uap, user_ssize_t *retval)
{
return readv_uio(p, uap->fd, uap->iovp, uap->iovcnt, 0, 0, retval);
}
/*
* Scatter read system call.
*/
int
readv(struct proc *p, struct readv_args *uap, user_ssize_t *retval)
{
__pthread_testcancel(1);
return readv_nocancel(p, (struct readv_nocancel_args *)uap, retval);
}
int
sys_preadv_nocancel(struct proc *p, struct preadv_nocancel_args *uap, user_ssize_t *retval)
{
return readv_uio(p, uap->fd, uap->iovp, uap->iovcnt, uap->offset,
FOF_OFFSET, retval);
}
/*
* Preadv system call
*/
int
sys_preadv(struct proc *p, struct preadv_args *uap, user_ssize_t *retval)
{
__pthread_testcancel(1);
return sys_preadv_nocancel(p, (struct preadv_nocancel_args *)uap, retval);
}
/*
* Returns: 0 Success
* EBADF
* ESPIPE
* ENXIO
* fp_lookup:EBADF
* fp_guard_exception:???
* valid_for_random_access:ESPIPE
* valid_for_random_access:ENXIO
*/
static int
preparefilewrite(struct proc *p, struct fileproc **fp_ret, int fd, int check_for_pwrite,
guardid_t *puguard)
{
int error;
struct fileproc *fp;
AUDIT_ARG(fd, fd);
proc_fdlock_spin(p);
if (puguard) {
error = fp_lookup_guarded(p, fd, *puguard, &fp, 1);
if (error) {
proc_fdunlock(p);
return error;
}
if ((fp->f_flag & FWRITE) == 0) {
error = EBADF;
goto out;
}
} else {
error = fp_lookup(p, fd, &fp, 1);
if (error) {
proc_fdunlock(p);
return error;
}
/* Allow EBADF first. */
if ((fp->f_flag & FWRITE) == 0) {
error = EBADF;
goto out;
}
if (fp_isguarded(fp, GUARD_WRITE)) {
error = fp_guard_exception(p, fd, fp, kGUARD_EXC_WRITE);
goto out;
}
}
if (check_for_pwrite) {
if ((error = valid_for_random_access(fp))) {
goto out;
}
}
*fp_ret = fp;
proc_fdunlock(p);
return 0;
out:
fp_drop(p, fd, fp, 1);
proc_fdunlock(p);
return error;
}
static int
fp_writev(vfs_context_t ctx, struct fileproc *fp, uio_t uio, int flags,
user_ssize_t *retval)
{
int error;
user_ssize_t count;
if ((error = uio_calculateresid_user(uio))) {
*retval = 0;
return error;
}
count = uio_resid(uio);
error = fo_write(fp, uio, flags, ctx);
switch (error) {
case ERESTART:
case EINTR:
case EWOULDBLOCK:
if (uio_resid(uio) != count) {
error = 0;
}
break;
case EPIPE:
if (fp->f_type != DTYPE_SOCKET &&
(fp->fp_glob->fg_lflags & FG_NOSIGPIPE) == 0) {
/* XXX Raise the signal on the thread? */
psignal(vfs_context_proc(ctx), SIGPIPE);
}
break;
default:
break;
}
if ((*retval = count - uio_resid(uio))) {
os_atomic_or(&fp->fp_glob->fg_flag, FWASWRITTEN, relaxed);
}
return error;
}
/*
* Returns: 0 Success
* EINVAL
* <fo_write>:EPIPE
* <fo_write>:??? [indirect through struct fileops]
*/
__private_extern__ int
dofilewrite(vfs_context_t ctx, struct fileproc *fp,
user_addr_t bufp, user_size_t nbyte, off_t offset, int flags,
user_ssize_t *retval)
{
UIO_STACKBUF(uio_buf, 1);
uio_t uio;
int spacetype;
if (nbyte > INT_MAX) {
*retval = 0;
return EINVAL;
}
spacetype = vfs_context_is64bit(ctx) ? UIO_USERSPACE64 : UIO_USERSPACE32;
uio = uio_createwithbuffer(1, offset, spacetype, UIO_WRITE, &uio_buf[0],
sizeof(uio_buf));
if (uio_addiov(uio, bufp, nbyte) != 0) {
*retval = 0;
return EINVAL;
}
return fp_writev(ctx, fp, uio, flags, retval);
}
static int
writev_internal(struct proc *p, int fd, uio_t uio, int flags,
guardid_t *puguard, user_ssize_t *retval)
{
struct fileproc *fp = NULL;
struct vfs_context context;
int error;
if ((error = preparefilewrite(p, &fp, fd, flags & FOF_OFFSET, puguard))) {
*retval = 0;
return error;
}
context = *(vfs_context_current());
context.vc_ucred = fp->fp_glob->fg_cred;
error = fp_writev(&context, fp, uio, flags, retval);
fp_drop(p, fd, fp, 0);
return error;
}
int
write_internal(struct proc *p, int fd, user_addr_t buf, user_size_t nbyte,
off_t offset, int flags, guardid_t *puguard, user_ssize_t *retval)
{
UIO_STACKBUF(uio_buf, 1);
uio_t uio;
int spacetype = IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32;
if (nbyte > INT_MAX) {
*retval = 0;
return EINVAL;
}
uio = uio_createwithbuffer(1, offset, spacetype, UIO_WRITE,
&uio_buf[0], sizeof(uio_buf));
if (uio_addiov(uio, buf, nbyte) != 0) {
*retval = 0;
return EINVAL;
}
return writev_internal(p, fd, uio, flags, puguard, retval);
}
int
write_nocancel(struct proc *p, struct write_nocancel_args *uap, user_ssize_t *retval)
{
return write_internal(p, uap->fd, uap->cbuf, uap->nbyte, (off_t)-1, 0,
NULL, retval);
}
/*
* Write system call
*
* Returns: 0 Success
* EBADF
* fp_lookup:EBADF
* dofilewrite:???
*/
int
write(struct proc *p, struct write_args *uap, user_ssize_t *retval)
{
__pthread_testcancel(1);
return write_nocancel(p, (struct write_nocancel_args *)uap, retval);
}
int
pwrite_nocancel(struct proc *p, struct pwrite_nocancel_args *uap, user_ssize_t *retval)
{
KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO, SYS_pwrite) | DBG_FUNC_NONE),
uap->fd, uap->nbyte, (unsigned int)((uap->offset >> 32)), (unsigned int)(uap->offset), 0);
/* XXX: Should be < 0 instead? (See man page + pwritev) */
if (uap->offset == (off_t)-1) {
return EINVAL;
}
return write_internal(p, uap->fd, uap->buf, uap->nbyte, uap->offset,
FOF_OFFSET, NULL, retval);
}
/*
* pwrite system call
*
* Returns: 0 Success
* EBADF
* ESPIPE
* ENXIO
* EINVAL
* fp_lookup:EBADF
* dofilewrite:???
*/
int
pwrite(struct proc *p, struct pwrite_args *uap, user_ssize_t *retval)
{
__pthread_testcancel(1);
return pwrite_nocancel(p, (struct pwrite_nocancel_args *)uap, retval);
}
int
writev_uio(struct proc *p, int fd,
user_addr_t user_iovp, int iovcnt, off_t offset, int flags,
guardid_t *puguard, user_ssize_t *retval)
{
uio_t uio = NULL;
int error;
struct user_iovec *iovp;
if (iovcnt <= 0 || iovcnt > UIO_MAXIOV || offset < 0) {
error = EINVAL;
goto out;
}
uio = uio_create(iovcnt, offset,
(IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
UIO_WRITE);
iovp = uio_iovsaddr_user(uio);
if (iovp == NULL) {
error = ENOMEM;
goto out;
}
error = copyin_user_iovec_array(user_iovp,
IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32,
iovcnt, iovp);
if (error) {
goto out;
}
error = writev_internal(p, fd, uio, flags, puguard, retval);
out:
if (uio != NULL) {
uio_free(uio);
}
return error;
}
int
writev_nocancel(struct proc *p, struct writev_nocancel_args *uap, user_ssize_t *retval)
{
return writev_uio(p, uap->fd, uap->iovp, uap->iovcnt, 0, 0, NULL, retval);
}
/*
* Gather write system call
*/
int
writev(struct proc *p, struct writev_args *uap, user_ssize_t *retval)
{
__pthread_testcancel(1);
return writev_nocancel(p, (struct writev_nocancel_args *)uap, retval);
}
int
sys_pwritev_nocancel(struct proc *p, struct pwritev_nocancel_args *uap, user_ssize_t *retval)
{
return writev_uio(p, uap->fd, uap->iovp, uap->iovcnt, uap->offset,
FOF_OFFSET, NULL, retval);
}
/*
* Pwritev system call
*/
int
sys_pwritev(struct proc *p, struct pwritev_args *uap, user_ssize_t *retval)
{
__pthread_testcancel(1);
return sys_pwritev_nocancel(p, (struct pwritev_nocancel_args *)uap, retval);
}
/*
* Ioctl system call
*
* Returns: 0 Success
* EBADF
* ENOTTY
* ENOMEM
* ESRCH
* copyin:EFAULT
* copyoutEFAULT
* fp_lookup:EBADF Bad file descriptor
* fo_ioctl:???
*/
int
ioctl(struct proc *p, struct ioctl_args *uap, __unused int32_t *retval)
{
struct fileproc *fp = NULL;
int error = 0;
u_int size = 0;
caddr_t datap = NULL, memp = NULL;
boolean_t is64bit = FALSE;
int tmp = 0;
#define STK_PARAMS 128
char stkbuf[STK_PARAMS] = {};
int fd = uap->fd;
u_long com = uap->com;
struct vfs_context context = *vfs_context_current();
AUDIT_ARG(fd, uap->fd);
AUDIT_ARG(addr, uap->data);
is64bit = proc_is64bit(p);
#if CONFIG_AUDIT
if (is64bit) {
AUDIT_ARG(value64, com);
} else {
AUDIT_ARG(cmd, CAST_DOWN_EXPLICIT(int, com));
}
#endif /* CONFIG_AUDIT */
/*
* Interpret high order word to find amount of data to be
* copied to/from the user's address space.
*/
size = IOCPARM_LEN(com);
if (size > IOCPARM_MAX) {
return ENOTTY;
}
if (size > sizeof(stkbuf)) {
memp = (caddr_t)kalloc_data(size, Z_WAITOK);
if (memp == 0) {
return ENOMEM;
}
datap = memp;
} else {
datap = &stkbuf[0];
}
if (com & IOC_IN) {
if (size) {
error = copyin(uap->data, datap, size);
if (error) {
goto out_nofp;
}
} else {
/* XXX - IOC_IN and no size? we should proably return an error here!! */
if (is64bit) {
*(user_addr_t *)datap = uap->data;
} else {
*(uint32_t *)datap = (uint32_t)uap->data;
}
}
} else if ((com & IOC_OUT) && size) {
/*
* Zero the buffer so the user always
* gets back something deterministic.
*/
bzero(datap, size);
} else if (com & IOC_VOID) {
/* XXX - this is odd since IOC_VOID means no parameters */
if (is64bit) {
*(user_addr_t *)datap = uap->data;
} else {
*(uint32_t *)datap = (uint32_t)uap->data;
}
}
proc_fdlock(p);
error = fp_lookup(p, fd, &fp, 1);
if (error) {
proc_fdunlock(p);
goto out_nofp;
}
AUDIT_ARG(file, p, fp);
if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
error = EBADF;
goto out;
}
context.vc_ucred = fp->fp_glob->fg_cred;
#if CONFIG_MACF
error = mac_file_check_ioctl(context.vc_ucred, fp->fp_glob, com);
if (error) {
goto out;
}
#endif
switch (com) {
case FIONCLEX:
fp->fp_flags &= ~FP_CLOEXEC;
break;
case FIOCLEX:
fp->fp_flags |= FP_CLOEXEC;
break;
case FIONBIO:
// FIXME (rdar://54898652)
//
// this code is broken if fnctl(F_SETFL), ioctl() are
// called concurrently for the same fileglob.
if ((tmp = *(int *)datap)) {
os_atomic_or(&fp->f_flag, FNONBLOCK, relaxed);
} else {
os_atomic_andnot(&fp->f_flag, FNONBLOCK, relaxed);
}
error = fo_ioctl(fp, FIONBIO, (caddr_t)&tmp, &context);
break;
case FIOASYNC:
// FIXME (rdar://54898652)
//
// this code is broken if fnctl(F_SETFL), ioctl() are
// called concurrently for the same fileglob.
if ((tmp = *(int *)datap)) {
os_atomic_or(&fp->f_flag, FASYNC, relaxed);
} else {
os_atomic_andnot(&fp->f_flag, FASYNC, relaxed);
}
error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, &context);
break;
case FIOSETOWN:
tmp = *(int *)datap;
if (fp->f_type == DTYPE_SOCKET) {
((struct socket *)fp_get_data(fp))->so_pgid = tmp;
break;
}
if (fp->f_type == DTYPE_PIPE) {
error = fo_ioctl(fp, TIOCSPGRP, (caddr_t)&tmp, &context);
break;
}
if (tmp <= 0) {
tmp = -tmp;
} else {
struct proc *p1 = proc_find(tmp);
if (p1 == 0) {
error = ESRCH;
break;
}
tmp = p1->p_pgrpid;
proc_rele(p1);
}
error = fo_ioctl(fp, TIOCSPGRP, (caddr_t)&tmp, &context);
break;
case FIOGETOWN:
if (fp->f_type == DTYPE_SOCKET) {
*(int *)datap = ((struct socket *)fp_get_data(fp))->so_pgid;
break;
}
error = fo_ioctl(fp, TIOCGPGRP, datap, &context);
*(int *)datap = -*(int *)datap;
break;
default:
error = fo_ioctl(fp, com, datap, &context);
/*
* Copy any data to user, size was
* already set and checked above.
*/
if (error == 0 && (com & IOC_OUT) && size) {
error = copyout(datap, uap->data, (u_int)size);
}
break;
}
out:
fp_drop(p, fd, fp, 1);
proc_fdunlock(p);
out_nofp:
if (memp) {
kfree_data(memp, size);
}
return error;
}
int selwait;
#define SEL_FIRSTPASS 1
#define SEL_SECONDPASS 2
static int selprocess(struct proc *p, int error, int sel_pass);
static int selscan(struct proc *p, struct _select * sel, struct _select_data * seldata,
int nfd, int32_t *retval, int sel_pass, struct select_set *selset);
static int selcount(struct proc *p, u_int32_t *ibits, int nfd, int *count);
static int seldrop_locked(struct proc *p, u_int32_t *ibits, int nfd, int lim, int *need_wakeup);
static int seldrop(struct proc *p, u_int32_t *ibits, int nfd, int lim);
static int select_internal(struct proc *p, struct select_nocancel_args *uap, uint64_t timeout, int32_t *retval);
/*
* This is used for the special device nodes that do not implement
* a proper kevent filter (see filt_specattach).
*
* In order to enable kevents on those, the spec_filtops will pretend
* to call select, and try to sniff the selrecord(), if it observes one,
* the knote is attached, which pairs with selwakeup() or selthreadclear().
*
* The last issue remaining, is that we need to serialize filt_specdetach()
* with this, but it really can't know the "selinfo" or any locking domain.
* To make up for this, We protect knote list operations with a global lock,
* which give us a safe shared locking domain.
*
* Note: It is a little distasteful, but we really have very few of those.
* The big problem here is that sharing a lock domain without
* any kind of shared knowledge is a little complicated.
*
* 1. filters can really implement their own kqueue integration
* to side step this,
*
* 2. There's an opportunity to pick a private lock in selspec_attach()
* because both the selinfo and the knote are locked at that time.
* The cleanup story is however a little complicated.
*/
static LCK_GRP_DECLARE(selspec_grp, "spec_filtops");
static LCK_SPIN_DECLARE(selspec_lock, &selspec_grp);
/*
* The "primitive" lock is held.
* The knote lock is held.
*/
void
selspec_attach(struct knote *kn, struct selinfo *si)
{
struct selinfo *cur = knote_kn_hook_get_raw(kn);
if (cur == NULL) {
si->si_flags |= SI_SELSPEC;
lck_spin_lock(&selspec_lock);
knote_kn_hook_set_raw(kn, (void *) si);
KNOTE_ATTACH(&si->si_note, kn);
lck_spin_unlock(&selspec_lock);
} else {
/*
* selspec_attach() can be called from e.g. filt_spectouch()
* which might be called before any event was dequeued.
*
* It is hence not impossible for the knote already be hooked.
*
* Note that selwakeup_internal() could possibly
* already have cleared this pointer. This is a race
* that filt_specprocess will debounce.
*/
assert(si->si_flags & SI_SELSPEC);
assert(cur == si);
}
}
/*
* The "primitive" lock is _not_ held.
*
* knote "lock" is held
*/
void
selspec_detach(struct knote *kn)
{
lck_spin_lock(&selspec_lock);
if (!KNOTE_IS_AUTODETACHED(kn)) {
struct selinfo *sip = knote_kn_hook_get_raw(kn);
if (sip) {
KNOTE_DETACH(&sip->si_note, kn);
}
}
knote_kn_hook_set_raw(kn, NULL);
lck_spin_unlock(&selspec_lock);
}
/*
* Select system call.
*
* Returns: 0 Success
* EINVAL Invalid argument
* EAGAIN Nonconformant error if allocation fails
*/
int
select(struct proc *p, struct select_args *uap, int32_t *retval)
{
__pthread_testcancel(1);
return select_nocancel(p, (struct select_nocancel_args *)uap, retval);
}
int
select_nocancel(struct proc *p, struct select_nocancel_args *uap, int32_t *retval)
{
uint64_t timeout = 0;
if (uap->tv) {
int err;
struct timeval atv;
if (IS_64BIT_PROCESS(p)) {
struct user64_timeval atv64;
err = copyin(uap->tv, (caddr_t)&atv64, sizeof(atv64));
/* Loses resolution - assume timeout < 68 years */
atv.tv_sec = (__darwin_time_t)atv64.tv_sec;
atv.tv_usec = atv64.tv_usec;
} else {
struct user32_timeval atv32;
err = copyin(uap->tv, (caddr_t)&atv32, sizeof(atv32));
atv.tv_sec = atv32.tv_sec;
atv.tv_usec = atv32.tv_usec;
}
if (err) {
return err;
}
if (itimerfix(&atv)) {
err = EINVAL;
return err;
}
clock_absolutetime_interval_to_deadline(tvtoabstime(&atv), &timeout);
}
return select_internal(p, uap, timeout, retval);
}
int
pselect(struct proc *p, struct pselect_args *uap, int32_t *retval)
{
__pthread_testcancel(1);
return pselect_nocancel(p, (struct pselect_nocancel_args *)uap, retval);
}
int
pselect_nocancel(struct proc *p, struct pselect_nocancel_args *uap, int32_t *retval)
{
int err;
struct uthread *ut;
uint64_t timeout = 0;
if (uap->ts) {
struct timespec ts;
if (IS_64BIT_PROCESS(p)) {
struct user64_timespec ts64;
err = copyin(uap->ts, (caddr_t)&ts64, sizeof(ts64));
ts.tv_sec = (__darwin_time_t)ts64.tv_sec;
ts.tv_nsec = (long)ts64.tv_nsec;
} else {
struct user32_timespec ts32;
err = copyin(uap->ts, (caddr_t)&ts32, sizeof(ts32));
ts.tv_sec = ts32.tv_sec;
ts.tv_nsec = ts32.tv_nsec;
}
if (err) {
return err;
}
if (!timespec_is_valid(&ts)) {
return EINVAL;
}
clock_absolutetime_interval_to_deadline(tstoabstime(&ts), &timeout);
}
ut = current_uthread();
if (uap->mask != USER_ADDR_NULL) {
/* save current mask, then copyin and set new mask */
sigset_t newset;
err = copyin(uap->mask, &newset, sizeof(sigset_t));
if (err) {
return err;
}
ut->uu_oldmask = ut->uu_sigmask;
ut->uu_flag |= UT_SAS_OLDMASK;
ut->uu_sigmask = (newset & ~sigcantmask);
}
err = select_internal(p, (struct select_nocancel_args *)uap, timeout, retval);
if (err != EINTR && ut->uu_flag & UT_SAS_OLDMASK) {
/*
* Restore old mask (direct return case). NOTE: EINTR can also be returned
* if the thread is cancelled. In that case, we don't reset the signal
* mask to its original value (which usually happens in the signal
* delivery path). This behavior is permitted by POSIX.
*/
ut->uu_sigmask = ut->uu_oldmask;
ut->uu_oldmask = 0;
ut->uu_flag &= ~UT_SAS_OLDMASK;
}
return err;
}
void
select_cleanup_uthread(struct _select *sel)
{
kfree_data(sel->ibits, 2 * sel->nbytes);
sel->ibits = sel->obits = NULL;
sel->nbytes = 0;
}
static int
select_grow_uthread_cache(struct _select *sel, uint32_t nbytes)
{
uint32_t *buf;
buf = kalloc_data(2 * nbytes, Z_WAITOK | Z_ZERO);
if (buf) {
select_cleanup_uthread(sel);
sel->ibits = buf;
sel->obits = buf + nbytes / sizeof(uint32_t);
sel->nbytes = nbytes;
return true;
}
return false;
}
static void
select_bzero_uthread_cache(struct _select *sel)
{
bzero(sel->ibits, sel->nbytes * 2);
}
/*
* Generic implementation of {,p}select. Care: we type-pun uap across the two
* syscalls, which differ slightly. The first 4 arguments (nfds and the fd sets)
* are identical. The 5th (timeout) argument points to different types, so we
* unpack in the syscall-specific code, but the generic code still does a null
* check on this argument to determine if a timeout was specified.
*/
static int
select_internal(struct proc *p, struct select_nocancel_args *uap, uint64_t timeout, int32_t *retval)
{
struct uthread *uth = current_uthread();
struct _select *sel = &uth->uu_select;
struct _select_data *seldata = &uth->uu_save.uus_select_data;
int error = 0;
u_int ni, nw;
*retval = 0;
seldata->abstime = timeout;
seldata->args = uap;
seldata->retval = retval;
seldata->count = 0;
if (uap->nd < 0) {
return EINVAL;
}
if (uap->nd > p->p_fd.fd_nfiles) {
uap->nd = p->p_fd.fd_nfiles; /* forgiving; slightly wrong */
}
nw = howmany(uap->nd, NFDBITS);
ni = nw * sizeof(fd_mask);
/*
* if the previously allocated space for the bits is smaller than
* what is requested or no space has yet been allocated for this
* thread, allocate enough space now.
*
* Note: If this process fails, select() will return EAGAIN; this
* is the same thing pool() returns in a no-memory situation, but
* it is not a POSIX compliant error code for select().
*/
if (sel->nbytes >= (3 * ni)) {
select_bzero_uthread_cache(sel);
} else if (!select_grow_uthread_cache(sel, 3 * ni)) {
return EAGAIN;
}
/*
* get the bits from the user address space
*/
#define getbits(name, x) \
(uap->name ? copyin(uap->name, &sel->ibits[(x) * nw], ni) : 0)
if ((error = getbits(in, 0))) {
return error;
}
if ((error = getbits(ou, 1))) {
return error;
}
if ((error = getbits(ex, 2))) {
return error;
}
#undef getbits
if ((error = selcount(p, sel->ibits, uap->nd, &seldata->count))) {
return error;
}
if (uth->uu_selset == NULL) {
uth->uu_selset = select_set_alloc();
}
return selprocess(p, 0, SEL_FIRSTPASS);
}
static int
selcontinue(int error)
{
return selprocess(current_proc(), error, SEL_SECONDPASS);
}
/*
* selprocess
*
* Parameters: error The error code from our caller
* sel_pass The pass we are on
*/
int
selprocess(struct proc *p, int error, int sel_pass)
{
struct uthread *uth = current_uthread();
struct _select *sel = &uth->uu_select;
struct _select_data *seldata = &uth->uu_save.uus_select_data;
struct select_nocancel_args *uap = seldata->args;
int *retval = seldata->retval;
int unwind = 1;
int prepost = 0;
int somewakeup = 0;
int doretry = 0;
wait_result_t wait_result;
if ((error != 0) && (sel_pass == SEL_FIRSTPASS)) {
unwind = 0;
}
if (seldata->count == 0) {
unwind = 0;
}
retry:
if (error != 0) {
goto done;
}
OSBitOrAtomic(P_SELECT, &p->p_flag);
/* skip scans if the select is just for timeouts */
if (seldata->count) {
error = selscan(p, sel, seldata, uap->nd, retval, sel_pass,
uth->uu_selset);
if (error || *retval) {
goto done;
}
if (prepost || somewakeup) {
/*
* if the select of log, then we can wakeup and
* discover some one else already read the data;
* go to select again if time permits
*/
prepost = 0;
somewakeup = 0;
doretry = 1;
}
}
if (uap->tv) {
uint64_t now;
clock_get_uptime(&now);
if (now >= seldata->abstime) {
goto done;
}
}
if (doretry) {
/* cleanup obits and try again */
doretry = 0;
sel_pass = SEL_FIRSTPASS;
goto retry;
}
/*
* To effect a poll, the timeout argument should be
* non-nil, pointing to a zero-valued timeval structure.
*/
if (uap->tv && seldata->abstime == 0) {
goto done;
}
/* No spurious wakeups due to colls,no need to check for them */
if ((sel_pass == SEL_SECONDPASS) || ((p->p_flag & P_SELECT) == 0)) {
sel_pass = SEL_FIRSTPASS;
goto retry;
}
OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
/* if the select is just for timeout skip check */
if (seldata->count && (sel_pass == SEL_SECONDPASS)) {
panic("selprocess: 2nd pass assertwaiting");
}
wait_result = waitq_assert_wait64_leeway(uth->uu_selset,
NO_EVENT64, THREAD_ABORTSAFE,
TIMEOUT_URGENCY_USER_NORMAL,
seldata->abstime,
TIMEOUT_NO_LEEWAY);
if (wait_result != THREAD_AWAKENED) {
/* there are no preposted events */
error = tsleep1(NULL, PSOCK | PCATCH,
"select", 0, selcontinue);
} else {
prepost = 1;
error = 0;
}
if (error == 0) {
sel_pass = SEL_SECONDPASS;
if (!prepost) {
somewakeup = 1;
}
goto retry;
}
done:
if (unwind) {
seldrop(p, sel->ibits, uap->nd, seldata->count);
select_set_reset(uth->uu_selset);
}
OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
/* select is not restarted after signals... */
if (error == ERESTART) {
error = EINTR;
}
if (error == EWOULDBLOCK) {
error = 0;
}
if (error == 0) {
uint32_t nw = howmany(uap->nd, NFDBITS);
uint32_t ni = nw * sizeof(fd_mask);
#define putbits(name, x) \
(uap->name ? copyout(&sel->obits[(x) * nw], uap->name, ni) : 0)
int e0 = putbits(in, 0);
int e1 = putbits(ou, 1);
int e2 = putbits(ex, 2);
error = e0 ?: e1 ?: e2;
#undef putbits
}
if (error != EINTR && sel_pass == SEL_SECONDPASS && uth->uu_flag & UT_SAS_OLDMASK) {
/* restore signal mask - continuation case */
uth->uu_sigmask = uth->uu_oldmask;
uth->uu_oldmask = 0;
uth->uu_flag &= ~UT_SAS_OLDMASK;
}
return error;
}
/**
* remove the fileproc's underlying waitq from the supplied waitq set;
* clear FP_INSELECT when appropriate
*
* Parameters:
* fp File proc that is potentially currently in select
* selset Waitq set to which the fileproc may belong
* (usually this is the thread's private waitq set)
* Conditions:
* proc_fdlock is held
*/
static void
selunlinkfp(struct fileproc *fp, struct select_set *selset)
{
if (fp->fp_flags & FP_INSELECT) {
if (fp->fp_guard_attrs) {
if (fp->fp_guard->fpg_wset == selset) {
fp->fp_guard->fpg_wset = NULL;
fp->fp_flags &= ~FP_INSELECT;
}
} else {
if (fp->fp_wset == selset) {
fp->fp_wset = NULL;
fp->fp_flags &= ~FP_INSELECT;
}
}
}
}
/**
* connect a fileproc to the given selset, potentially bridging to a waitq
* pointed to indirectly by wq_data
*
* Parameters:
* fp File proc potentially currently in select
* selset Waitq set to which the fileproc should now belong
* (usually this is the thread's private waitq set)
*
* Conditions:
* proc_fdlock is held
*/
static void
sellinkfp(struct fileproc *fp, struct select_set *selset, waitq_link_t *linkp)
{
if ((fp->fp_flags & FP_INSELECT) == 0) {
if (fp->fp_guard_attrs) {
fp->fp_guard->fpg_wset = selset;
} else {
fp->fp_wset = selset;
}
fp->fp_flags |= FP_INSELECT;
} else {
fp->fp_flags |= FP_SELCONFLICT;
if (linkp->wqlh == NULL) {
*linkp = waitq_link_alloc(WQT_SELECT_SET);
}
select_set_link(&select_conflict_queue, selset, linkp);
}
}
/*
* selscan
*
* Parameters: p Process performing the select
* sel The per-thread select context structure
* nfd The number of file descriptors to scan
* retval The per thread system call return area
* sel_pass Which pass this is; allowed values are
* SEL_FIRSTPASS and SEL_SECONDPASS
* selset The per thread wait queue set
*
* Returns: 0 Success
* EIO Invalid p->p_fd field XXX Obsolete?
* EBADF One of the files in the bit vector is
* invalid.
*/
static int
selscan(struct proc *p, struct _select *sel, struct _select_data * seldata,
int nfd, int32_t *retval, int sel_pass, struct select_set *selset)
{
int msk, i, j, fd;
u_int32_t bits;
struct fileproc *fp;
int n = 0; /* count of bits */
int nc = 0; /* bit vector offset (nc'th bit) */
static int flag[3] = { FREAD, FWRITE, 0 };
u_int32_t *iptr, *optr;
u_int nw;
u_int32_t *ibits, *obits;
int count;
struct vfs_context context = {
.vc_thread = current_thread(),
};
waitq_link_t link = WQL_NULL;
void *s_data;
ibits = sel->ibits;
obits = sel->obits;
nw = howmany(nfd, NFDBITS);
count = seldata->count;
nc = 0;
if (!count) {
*retval = 0;
return 0;
}
if (sel_pass == SEL_FIRSTPASS) {
/*
* Make sure the waitq-set is all clean:
*
* select loops until it finds at least one event, however it
* doesn't mean that the event that woke up select is still
* fired by the time the second pass runs, and then
* select_internal will loop back to a first pass.
*/
select_set_reset(selset);
s_data = &link;
} else {
s_data = NULL;
}
proc_fdlock(p);
for (msk = 0; msk < 3; msk++) {
iptr = (u_int32_t *)&ibits[msk * nw];
optr = (u_int32_t *)&obits[msk * nw];
for (i = 0; i < nfd; i += NFDBITS) {
bits = iptr[i / NFDBITS];
while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
bits &= ~(1U << j);
fp = fp_get_noref_locked(p, fd);
if (fp == NULL) {
/*
* If we abort because of a bad
* fd, let the caller unwind...
*/
proc_fdunlock(p);
return EBADF;
}
if (sel_pass == SEL_SECONDPASS) {
selunlinkfp(fp, selset);
} else if (link.wqlh == NULL) {
link = waitq_link_alloc(WQT_SELECT_SET);
}
context.vc_ucred = fp->f_cred;
/* The select; set the bit, if true */
if (fo_select(fp, flag[msk], s_data, &context)) {
optr[fd / NFDBITS] |= (1U << (fd % NFDBITS));
n++;
}
if (sel_pass == SEL_FIRSTPASS) {
/*
* Hook up the thread's waitq set either to
* the fileproc structure, or to the global
* conflict queue: but only on the first
* select pass.
*/
sellinkfp(fp, selset, &link);
}
nc++;
}
}
}
proc_fdunlock(p);
if (link.wqlh) {
waitq_link_free(WQT_SELECT_SET, link);
}
*retval = n;
return 0;
}
static int poll_callback(struct kevent_qos_s *, kevent_ctx_t);
int
poll(struct proc *p, struct poll_args *uap, int32_t *retval)
{
__pthread_testcancel(1);
return poll_nocancel(p, (struct poll_nocancel_args *)uap, retval);
}
int
poll_nocancel(struct proc *p, struct poll_nocancel_args *uap, int32_t *retval)
{
struct pollfd *fds = NULL;
struct kqueue *kq = NULL;
int error = 0;
u_int nfds = uap->nfds;
u_int rfds = 0;
rlim_t nofile = proc_limitgetcur(p, RLIMIT_NOFILE);
size_t ni = nfds * sizeof(struct pollfd);
/*
* This is kinda bogus. We have fd limits, but that is not
* really related to the size of the pollfd array. Make sure
* we let the process use at least FD_SETSIZE entries and at
* least enough for the current limits. We want to be reasonably
* safe, but not overly restrictive.
*/
if (nfds > OPEN_MAX ||
(nfds > nofile && (proc_suser(p) || nfds > FD_SETSIZE))) {
return EINVAL;
}
kq = kqueue_alloc(p);
if (kq == NULL) {
return EAGAIN;
}
if (nfds) {
fds = (struct pollfd *)kalloc_data(ni, Z_WAITOK);
if (NULL == fds) {
error = EAGAIN;
goto out;
}
error = copyin(uap->fds, fds, nfds * sizeof(struct pollfd));
if (error) {
goto out;
}
}
/* JMM - all this P_SELECT stuff is bogus */
OSBitOrAtomic(P_SELECT, &p->p_flag);
for (u_int i = 0; i < nfds; i++) {
short events = fds[i].events;
__assert_only int rc;
/* per spec, ignore fd values below zero */
if (fds[i].fd < 0) {
fds[i].revents = 0;
continue;
}
/* convert the poll event into a kqueue kevent */
struct kevent_qos_s kev = {
.ident = fds[i].fd,
.flags = EV_ADD | EV_ONESHOT | EV_POLL,
.udata = i, /* Index into pollfd array */
};
/* Handle input events */
if (events & (POLLIN | POLLRDNORM | POLLPRI | POLLRDBAND | POLLHUP)) {
kev.filter = EVFILT_READ;
if (events & (POLLPRI | POLLRDBAND)) {
kev.flags |= EV_OOBAND;
}
rc = kevent_register(kq, &kev, NULL);
assert((rc & FILTER_REGISTER_WAIT) == 0);
}
/* Handle output events */
if ((kev.flags & EV_ERROR) == 0 &&
(events & (POLLOUT | POLLWRNORM | POLLWRBAND))) {
kev.filter = EVFILT_WRITE;
rc = kevent_register(kq, &kev, NULL);
assert((rc & FILTER_REGISTER_WAIT) == 0);
}
/* Handle BSD extension vnode events */
if ((kev.flags & EV_ERROR) == 0 &&
(events & (POLLEXTEND | POLLATTRIB | POLLNLINK | POLLWRITE))) {
kev.filter = EVFILT_VNODE;
kev.fflags = 0;
if (events & POLLEXTEND) {
kev.fflags |= NOTE_EXTEND;
}
if (events & POLLATTRIB) {
kev.fflags |= NOTE_ATTRIB;
}
if (events & POLLNLINK) {
kev.fflags |= NOTE_LINK;
}
if (events & POLLWRITE) {
kev.fflags |= NOTE_WRITE;
}
rc = kevent_register(kq, &kev, NULL);
assert((rc & FILTER_REGISTER_WAIT) == 0);
}
if (kev.flags & EV_ERROR) {
fds[i].revents = POLLNVAL;
rfds++;
} else {
fds[i].revents = 0;
}
}
/*
* Did we have any trouble registering?
* If user space passed 0 FDs, then respect any timeout value passed.
* This is an extremely inefficient sleep. If user space passed one or
* more FDs, and we had trouble registering _all_ of them, then bail
* out. If a subset of the provided FDs failed to register, then we
* will still call the kqueue_scan function.
*/
if (nfds && (rfds == nfds)) {
goto done;
}
/* scan for, and possibly wait for, the kevents to trigger */
kevent_ctx_t kectx = kevent_get_context(current_thread());
*kectx = (struct kevent_ctx_s){
.kec_process_noutputs = rfds,
.kec_process_flags = KEVENT_FLAG_POLL,
.kec_deadline = 0, /* wait forever */
.kec_poll_fds = fds,
};
/*
* If any events have trouble registering, an event has fired and we
* shouldn't wait for events in kqueue_scan.
*/
if (rfds) {
kectx->kec_process_flags |= KEVENT_FLAG_IMMEDIATE;
} else if (uap->timeout != -1) {
clock_interval_to_deadline(uap->timeout, NSEC_PER_MSEC,
&kectx->kec_deadline);
}
error = kqueue_scan(kq, kectx->kec_process_flags, kectx, poll_callback);
rfds = kectx->kec_process_noutputs;
done:
OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
/* poll is not restarted after signals... */
if (error == ERESTART) {
error = EINTR;
}
if (error == 0) {
error = copyout(fds, uap->fds, nfds * sizeof(struct pollfd));
*retval = rfds;
}
out:
kfree_data(fds, ni);
kqueue_dealloc(kq);
return error;
}
static int
poll_callback(struct kevent_qos_s *kevp, kevent_ctx_t kectx)
{
assert(kectx->kec_process_flags & KEVENT_FLAG_POLL);
struct pollfd *fds = &kectx->kec_poll_fds[kevp->udata];
short prev_revents = fds->revents;
short mask = 0;
/* convert the results back into revents */
if (kevp->flags & EV_EOF) {
fds->revents |= POLLHUP;
}
if (kevp->flags & EV_ERROR) {
fds->revents |= POLLERR;
}
switch (kevp->filter) {
case EVFILT_READ:
if (fds->revents & POLLHUP) {
mask = (POLLIN | POLLRDNORM | POLLPRI | POLLRDBAND);
} else {
mask = (POLLIN | POLLRDNORM);
if (kevp->flags & EV_OOBAND) {
mask |= (POLLPRI | POLLRDBAND);
}
}
fds->revents |= (fds->events & mask);
break;
case EVFILT_WRITE:
if (!(fds->revents & POLLHUP)) {
fds->revents |= (fds->events & (POLLOUT | POLLWRNORM | POLLWRBAND));
}
break;
case EVFILT_VNODE:
if (kevp->fflags & NOTE_EXTEND) {
fds->revents |= (fds->events & POLLEXTEND);
}
if (kevp->fflags & NOTE_ATTRIB) {
fds->revents |= (fds->events & POLLATTRIB);
}
if (kevp->fflags & NOTE_LINK) {
fds->revents |= (fds->events & POLLNLINK);
}
if (kevp->fflags & NOTE_WRITE) {
fds->revents |= (fds->events & POLLWRITE);
}
break;
}
if (fds->revents != 0 && prev_revents == 0) {
kectx->kec_process_noutputs++;
}
return 0;
}
int
seltrue(__unused dev_t dev, __unused int flag, __unused struct proc *p)
{
return 1;
}
/*
* selcount
*
* Count the number of bits set in the input bit vector, and establish an
* outstanding fp->fp_iocount for each of the descriptors which will be in
* use in the select operation.
*
* Parameters: p The process doing the select
* ibits The input bit vector
* nfd The number of fd's in the vector
* countp Pointer to where to store the bit count
*
* Returns: 0 Success
* EIO Bad per process open file table
* EBADF One of the bits in the input bit vector
* references an invalid fd
*
* Implicit: *countp (modified) Count of fd's
*
* Notes: This function is the first pass under the proc_fdlock() that
* permits us to recognize invalid descriptors in the bit vector;
* the may, however, not remain valid through the drop and
* later reacquisition of the proc_fdlock().
*/
static int
selcount(struct proc *p, u_int32_t *ibits, int nfd, int *countp)
{
int msk, i, j, fd;
u_int32_t bits;
struct fileproc *fp;
int n = 0;
u_int32_t *iptr;
u_int nw;
int error = 0;
int need_wakeup = 0;
nw = howmany(nfd, NFDBITS);
proc_fdlock(p);
for (msk = 0; msk < 3; msk++) {
iptr = (u_int32_t *)&ibits[msk * nw];
for (i = 0; i < nfd; i += NFDBITS) {
bits = iptr[i / NFDBITS];
while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
bits &= ~(1U << j);
fp = fp_get_noref_locked(p, fd);
if (fp == NULL) {
*countp = 0;
error = EBADF;
goto bad;
}
os_ref_retain_locked(&fp->fp_iocount);
n++;
}
}
}
proc_fdunlock(p);
*countp = n;
return 0;
bad:
if (n == 0) {
goto out;
}
/* Ignore error return; it's already EBADF */
(void)seldrop_locked(p, ibits, nfd, n, &need_wakeup);
out:
proc_fdunlock(p);
if (need_wakeup) {
wakeup(&p->p_fd.fd_fpdrainwait);
}
return error;
}
/*
* seldrop_locked
*
* Drop outstanding wait queue references set up during selscan(); drop the
* outstanding per fileproc fp_iocount picked up during the selcount().
*
* Parameters: p Process performing the select
* ibits Input bit bector of fd's
* nfd Number of fd's
* lim Limit to number of vector entries to
* consider, or -1 for "all"
* inselect True if
* need_wakeup Pointer to flag to set to do a wakeup
* if f_iocont on any descriptor goes to 0
*
* Returns: 0 Success
* EBADF One or more fds in the bit vector
* were invalid, but the rest
* were successfully dropped
*
* Notes: An fd make become bad while the proc_fdlock() is not held,
* if a multithreaded application closes the fd out from under
* the in progress select. In this case, we still have to
* clean up after the set up on the remaining fds.
*/
static int
seldrop_locked(struct proc *p, u_int32_t *ibits, int nfd, int lim, int *need_wakeup)
{
int msk, i, j, nc, fd;
u_int32_t bits;
struct fileproc *fp;
u_int32_t *iptr;
u_int nw;
int error = 0;
uthread_t uth = current_uthread();
struct _select_data *seldata;
*need_wakeup = 0;
nw = howmany(nfd, NFDBITS);
seldata = &uth->uu_save.uus_select_data;
nc = 0;
for (msk = 0; msk < 3; msk++) {
iptr = (u_int32_t *)&ibits[msk * nw];
for (i = 0; i < nfd; i += NFDBITS) {
bits = iptr[i / NFDBITS];
while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
bits &= ~(1U << j);
/*
* If we've already dropped as many as were
* counted/scanned, then we are done.
*/
if (nc >= lim) {
goto done;
}
/*
* We took an I/O reference in selcount,
* so the fp can't possibly be NULL.
*/
fp = fp_get_noref_locked_with_iocount(p, fd);
selunlinkfp(fp, uth->uu_selset);
nc++;
const os_ref_count_t refc = os_ref_release_locked(&fp->fp_iocount);
if (0 == refc) {
panic("fp_iocount overdecrement!");
}
if (1 == refc) {
/*
* The last iocount is responsible for clearing
* selconfict flag - even if we didn't set it -
* and is also responsible for waking up anyone
* waiting on iocounts to drain.
*/
if (fp->fp_flags & FP_SELCONFLICT) {
fp->fp_flags &= ~FP_SELCONFLICT;
}
if (p->p_fd.fd_fpdrainwait) {
p->p_fd.fd_fpdrainwait = 0;
*need_wakeup = 1;
}
}
}
}
}
done:
return error;
}
static int
seldrop(struct proc *p, u_int32_t *ibits, int nfd, int lim)
{
int error;
int need_wakeup = 0;
proc_fdlock(p);
error = seldrop_locked(p, ibits, nfd, lim, &need_wakeup);
proc_fdunlock(p);
if (need_wakeup) {
wakeup(&p->p_fd.fd_fpdrainwait);
}
return error;
}
/*
* Record a select request.
*/
void
selrecord(__unused struct proc *selector, struct selinfo *sip, void *s_data)
{
struct select_set *selset = current_uthread()->uu_selset;
/* do not record if this is second pass of select */
if (!s_data) {
return;
}
if (selset == SELSPEC_RECORD_MARKER) {
/*
* The kevent subsystem is trying to sniff
* the selinfo::si_note to attach to.
*/
((selspec_record_hook_t)s_data)(sip);
} else {
waitq_link_t *linkp = s_data;
if (!waitq_is_valid(&sip->si_waitq)) {
waitq_init(&sip->si_waitq, WQT_SELECT, SYNC_POLICY_FIFO);
}
/* note: this checks for pre-existing linkage */
select_set_link(&sip->si_waitq, selset, linkp);
}
}
static void
selwakeup_internal(struct selinfo *sip, long hint, wait_result_t wr)
{
if (sip->si_flags & SI_SELSPEC) {
/*
* The "primitive" lock is held.
* The knote lock is not held.
*
* All knotes will transition their kn_hook to NULL and we will
* reeinitialize the primitive's klist
*/
lck_spin_lock(&selspec_lock);
knote(&sip->si_note, hint, /*autodetach=*/ true);
lck_spin_unlock(&selspec_lock);
sip->si_flags &= ~SI_SELSPEC;
}
/*
* After selrecord() has been called, selinfo owners must call
* at least one of selwakeup() or selthreadclear().
*
* Use this opportunity to deinit the waitq
* so that all linkages are garbage collected
* in a combined wakeup-all + unlink + deinit call.
*/
select_waitq_wakeup_and_deinit(&sip->si_waitq, NO_EVENT64, wr);
}
void
selwakeup(struct selinfo *sip)
{
selwakeup_internal(sip, 0, THREAD_AWAKENED);
}
void
selthreadclear(struct selinfo *sip)
{
selwakeup_internal(sip, NOTE_REVOKE, THREAD_RESTART);
}
/*
* gethostuuid
*
* Description: Get the host UUID from IOKit and return it to user space.
*
* Parameters: uuid_buf Pointer to buffer to receive UUID
* timeout Timespec for timout
*
* Returns: 0 Success
* EWOULDBLOCK Timeout is too short
* copyout:EFAULT Bad user buffer
* mac_system_check_info:EPERM Client not allowed to perform this operation
*
* Notes: A timeout seems redundant, since if it's tolerable to not
* have a system UUID in hand, then why ask for one?
*/
int
gethostuuid(struct proc *p, struct gethostuuid_args *uap, __unused int32_t *retval)
{
kern_return_t kret;
int error;
mach_timespec_t mach_ts; /* for IOKit call */
__darwin_uuid_t uuid_kern = {}; /* for IOKit call */
/* Check entitlement */
if (!IOCurrentTaskHasEntitlement("com.apple.private.getprivatesysid")) {
#if !defined(XNU_TARGET_OS_OSX)
#if CONFIG_MACF
if ((error = mac_system_check_info(kauth_cred_get(), "hw.uuid")) != 0) {
/* EPERM invokes userspace upcall if present */
return error;
}
#endif
#endif
}
/* Convert the 32/64 bit timespec into a mach_timespec_t */
if (proc_is64bit(p)) {
struct user64_timespec ts;
error = copyin(uap->timeoutp, &ts, sizeof(ts));
if (error) {
return error;
}
mach_ts.tv_sec = (unsigned int)ts.tv_sec;
mach_ts.tv_nsec = (clock_res_t)ts.tv_nsec;
} else {
struct user32_timespec ts;
error = copyin(uap->timeoutp, &ts, sizeof(ts));
if (error) {
return error;
}
mach_ts.tv_sec = ts.tv_sec;
mach_ts.tv_nsec = ts.tv_nsec;
}
/* Call IOKit with the stack buffer to get the UUID */
kret = IOBSDGetPlatformUUID(uuid_kern, mach_ts);
/*
* If we get it, copy out the data to the user buffer; note that a
* uuid_t is an array of characters, so this is size invariant for
* 32 vs. 64 bit.
*/
if (kret == KERN_SUCCESS) {
error = copyout(uuid_kern, uap->uuid_buf, sizeof(uuid_kern));
} else {
error = EWOULDBLOCK;
}
return error;
}
/*
* ledger
*
* Description: Omnibus system call for ledger operations
*/
int
ledger(struct proc *p, struct ledger_args *args, __unused int32_t *retval)
{
#if !CONFIG_MACF
#pragma unused(p)
#endif
int rval, pid, len, error;
#ifdef LEDGER_DEBUG
struct ledger_limit_args lla;
#endif
task_t task;
proc_t proc;
/* Finish copying in the necessary args before taking the proc lock */
error = 0;
len = 0;
if (args->cmd == LEDGER_ENTRY_INFO) {
error = copyin(args->arg3, (char *)&len, sizeof(len));
} else if (args->cmd == LEDGER_TEMPLATE_INFO) {
error = copyin(args->arg2, (char *)&len, sizeof(len));
} else if (args->cmd == LEDGER_LIMIT)
#ifdef LEDGER_DEBUG
{ error = copyin(args->arg2, (char *)&lla, sizeof(lla));}
#else
{ return EINVAL; }
#endif
else if ((args->cmd < 0) || (args->cmd > LEDGER_MAX_CMD)) {
return EINVAL;
}
if (error) {
return error;
}
if (len < 0) {
return EINVAL;
}
rval = 0;
if (args->cmd != LEDGER_TEMPLATE_INFO) {
pid = (int)args->arg1;
proc = proc_find(pid);
if (proc == NULL) {
return ESRCH;
}
#if CONFIG_MACF
error = mac_proc_check_ledger(p, proc, args->cmd);
if (error) {
proc_rele(proc);
return error;
}
#endif
task = proc_task(proc);
}
switch (args->cmd) {
#ifdef LEDGER_DEBUG
case LEDGER_LIMIT: {
if (!kauth_cred_issuser(kauth_cred_get())) {
rval = EPERM;
}
rval = ledger_limit(task, &lla);
proc_rele(proc);
break;
}
#endif
case LEDGER_INFO: {
struct ledger_info info = {};
rval = ledger_info(task, &info);
proc_rele(proc);
if (rval == 0) {
rval = copyout(&info, args->arg2,
sizeof(info));
}
break;
}
case LEDGER_ENTRY_INFO: {
void *buf;
int sz;
#if CONFIG_MEMORYSTATUS
task_ledger_settle_dirty_time(task);
#endif /* CONFIG_MEMORYSTATUS */
rval = ledger_get_task_entry_info_multiple(task, &buf, &len);
proc_rele(proc);
if ((rval == 0) && (len >= 0)) {
sz = len * sizeof(struct ledger_entry_info);
rval = copyout(buf, args->arg2, sz);
kfree_data(buf, sz);
}
if (rval == 0) {
rval = copyout(&len, args->arg3, sizeof(len));
}
break;
}
case LEDGER_TEMPLATE_INFO: {
void *buf;
int sz;
rval = ledger_template_info(&buf, &len);
if ((rval == 0) && (len >= 0)) {
sz = len * sizeof(struct ledger_template_info);
rval = copyout(buf, args->arg1, sz);
kfree_data(buf, sz);
}
if (rval == 0) {
rval = copyout(&len, args->arg2, sizeof(len));
}
break;
}
default:
panic("ledger syscall logic error -- command type %d", args->cmd);
proc_rele(proc);
rval = EINVAL;
}
return rval;
}
int
telemetry(__unused struct proc *p, struct telemetry_args *args, __unused int32_t *retval)
{
int error = 0;
switch (args->cmd) {
#if CONFIG_TELEMETRY
case TELEMETRY_CMD_TIMER_EVENT:
error = telemetry_timer_event(args->deadline, args->interval, args->leeway);
break;
case TELEMETRY_CMD_PMI_SETUP:
error = telemetry_pmi_setup((enum telemetry_pmi)args->deadline, args->interval);
break;
#endif /* CONFIG_TELEMETRY */
case TELEMETRY_CMD_VOUCHER_NAME:
if (thread_set_voucher_name((mach_port_name_t)args->deadline)) {
error = EINVAL;
}
break;
default:
error = EINVAL;
break;
}
return error;
}
/*
* Logging
*
* Description: syscall to access kernel logging from userspace
*
* Args:
* tag - used for syncing with userspace on the version.
* flags - flags used by the syscall.
* buffer - userspace address of string to copy.
* size - size of buffer.
*/
int
log_data(__unused struct proc *p, struct log_data_args *args, int *retval)
{
unsigned int tag = args->tag;
unsigned int flags = args->flags;
user_addr_t buffer = args->buffer;
unsigned int size = args->size;
int ret = 0;
*retval = 0;
/* Only DEXTs are suppose to use this syscall. */
if (!task_is_driver(current_task())) {
return EPERM;
}
/*
* Tag synchronize the syscall version with userspace.
* Tag == 0 => flags == OS_LOG_TYPE
*/
if (tag != 0) {
return EINVAL;
}
/*
* OS_LOG_TYPE are defined in libkern/os/log.h
* In userspace they are defined in libtrace/os/log.h
*/
if (flags != OS_LOG_TYPE_DEFAULT &&
flags != OS_LOG_TYPE_INFO &&
flags != OS_LOG_TYPE_DEBUG &&
flags != OS_LOG_TYPE_ERROR &&
flags != OS_LOG_TYPE_FAULT) {
return EINVAL;
}
if (size == 0) {
return EINVAL;
}
/* truncate to OS_LOG_DATA_MAX_SIZE */
if (size > OS_LOG_DATA_MAX_SIZE) {
size = OS_LOG_DATA_MAX_SIZE;
}
char *log_msg = (char *)kalloc_data(size, Z_WAITOK);
if (!log_msg) {
return ENOMEM;
}
if (copyin(buffer, log_msg, size) != 0) {
ret = EFAULT;
goto out;
}
log_msg[size - 1] = '\0';
/*
* This will log to dmesg and logd.
* The call will fail if the current
* process is not a driverKit process.
*/
os_log_driverKit(&ret, OS_LOG_DEFAULT, (os_log_type_t)flags, "%s", log_msg);
out:
if (log_msg != NULL) {
kfree_data(log_msg, size);
}
return ret;
}
#if DEVELOPMENT || DEBUG
static int
sysctl_mpsc_test_pingpong SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
uint64_t value = 0;
int error;
error = SYSCTL_IN(req, &value, sizeof(value));
if (error) {
return error;
}
if (error == 0 && req->newptr) {
error = mpsc_test_pingpong(value, &value);
if (error == 0) {
error = SYSCTL_OUT(req, &value, sizeof(value));
}
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, mpsc_test_pingpong, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_mpsc_test_pingpong, "Q", "MPSC tests: pingpong");
#endif /* DEVELOPMENT || DEBUG */
/* Telemetry, microstackshots */
SYSCTL_NODE(_kern, OID_AUTO, microstackshot, CTLFLAG_RD | CTLFLAG_LOCKED, 0,
"microstackshot info");
extern uint32_t telemetry_sample_rate;
SYSCTL_UINT(_kern_microstackshot, OID_AUTO, interrupt_sample_rate,
CTLFLAG_RD | CTLFLAG_LOCKED, &telemetry_sample_rate, 0,
"interrupt-based sampling rate in Hz");
#if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES)
extern uint64_t mt_microstackshot_period;
SYSCTL_QUAD(_kern_microstackshot, OID_AUTO, pmi_sample_period,
CTLFLAG_RD | CTLFLAG_LOCKED, &mt_microstackshot_period,
"PMI sampling rate");
extern unsigned int mt_microstackshot_ctr;
SYSCTL_UINT(_kern_microstackshot, OID_AUTO, pmi_sample_counter,
CTLFLAG_RD | CTLFLAG_LOCKED, &mt_microstackshot_ctr, 0,
"PMI counter");
#endif /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */
/*Remote Time api*/
SYSCTL_NODE(_machdep, OID_AUTO, remotetime, CTLFLAG_RD | CTLFLAG_LOCKED, 0, "Remote time api");
#if DEVELOPMENT || DEBUG
#if CONFIG_MACH_BRIDGE_SEND_TIME
extern _Atomic uint32_t bt_init_flag;
extern uint32_t mach_bridge_timer_enable(uint32_t, int);
SYSCTL_INT(_machdep_remotetime, OID_AUTO, bridge_timer_init_flag,
CTLFLAG_RD | CTLFLAG_LOCKED, &bt_init_flag, 0, "");
static int sysctl_mach_bridge_timer_enable SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
uint32_t value = 0;
int error = 0;
/* User is querying buffer size */
if (req->oldptr == USER_ADDR_NULL && req->newptr == USER_ADDR_NULL) {
req->oldidx = sizeof(value);
return 0;
}
if (os_atomic_load(&bt_init_flag, acquire)) {
if (req->newptr) {
int new_value = 0;
error = SYSCTL_IN(req, &new_value, sizeof(new_value));
if (error) {
return error;
}
if (new_value == 0 || new_value == 1) {
value = mach_bridge_timer_enable(new_value, 1);
} else {
return EPERM;
}
} else {
value = mach_bridge_timer_enable(0, 0);
}
}
error = SYSCTL_OUT(req, &value, sizeof(value));
return error;
}
SYSCTL_PROC(_machdep_remotetime, OID_AUTO, bridge_timer_enable,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_mach_bridge_timer_enable, "I", "");
#endif /* CONFIG_MACH_BRIDGE_SEND_TIME */
static int sysctl_mach_bridge_remote_time SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
uint64_t ltime = 0, rtime = 0;
if (req->oldptr == USER_ADDR_NULL) {
req->oldidx = sizeof(rtime);
return 0;
}
if (req->newptr) {
int error = SYSCTL_IN(req, &ltime, sizeof(ltime));
if (error) {
return error;
}
}
rtime = mach_bridge_remote_time(ltime);
return SYSCTL_OUT(req, &rtime, sizeof(rtime));
}
SYSCTL_PROC(_machdep_remotetime, OID_AUTO, mach_bridge_remote_time,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_mach_bridge_remote_time, "Q", "");
#endif /* DEVELOPMENT || DEBUG */
#if CONFIG_MACH_BRIDGE_RECV_TIME
extern struct bt_params bt_params_get_latest(void);
static int sysctl_mach_bridge_conversion_params SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
struct bt_params params = {};
if (req->oldptr == USER_ADDR_NULL) {
req->oldidx = sizeof(struct bt_params);
return 0;
}
if (req->newptr) {
return EPERM;
}
params = bt_params_get_latest();
return SYSCTL_OUT(req, &params, MIN(sizeof(params), req->oldlen));
}
SYSCTL_PROC(_machdep_remotetime, OID_AUTO, conversion_params,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0,
0, sysctl_mach_bridge_conversion_params, "S,bt_params", "");
#endif /* CONFIG_MACH_BRIDGE_RECV_TIME */
#if DEVELOPMENT || DEBUG
#include <pexpert/pexpert.h>
extern int32_t sysctl_get_bound_cpuid(void);
extern kern_return_t sysctl_thread_bind_cpuid(int32_t cpuid);
static int
sysctl_kern_sched_thread_bind_cpu SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
/*
* DO NOT remove this bootarg guard or make this non-development.
* This kind of binding should only be used for tests and
* experiments in a custom configuration, never shipping code.
*/
if (!PE_parse_boot_argn("enable_skstb", NULL, 0)) {
return ENOENT;
}
int32_t cpuid = sysctl_get_bound_cpuid();
int32_t new_value;
int changed;
int error = sysctl_io_number(req, cpuid, sizeof(cpuid), &new_value, &changed);
if (error) {
return error;
}
if (changed) {
kern_return_t kr = sysctl_thread_bind_cpuid(new_value);
if (kr == KERN_NOT_SUPPORTED) {
return ENOTSUP;
}
if (kr == KERN_INVALID_VALUE) {
return ERANGE;
}
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, sched_thread_bind_cpu, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_sched_thread_bind_cpu, "I", "");
#if __AMP__
extern char sysctl_get_bound_cluster_type(void);
extern void sysctl_thread_bind_cluster_type(char cluster_type);
static int
sysctl_kern_sched_thread_bind_cluster_type SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
char buff[4];
if (!PE_parse_boot_argn("enable_skstb", NULL, 0)) {
return ENOENT;
}
int error = SYSCTL_IN(req, buff, 1);
if (error) {
return error;
}
char cluster_type = buff[0];
if (!req->newptr) {
goto out;
}
if (cluster_type != 'E' &&
cluster_type != 'e' &&
cluster_type != 'P' &&
cluster_type != 'p') {
return EINVAL;
}
sysctl_thread_bind_cluster_type(cluster_type);
out:
cluster_type = sysctl_get_bound_cluster_type();
buff[0] = cluster_type;
return SYSCTL_OUT(req, buff, 1);
}
SYSCTL_PROC(_kern, OID_AUTO, sched_thread_bind_cluster_type, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_sched_thread_bind_cluster_type, "A", "");
extern char sysctl_get_task_cluster_type(void);
extern void sysctl_task_set_cluster_type(char cluster_type);
static int
sysctl_kern_sched_task_set_cluster_type SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
char buff[4];
if (!PE_parse_boot_argn("enable_skstsct", NULL, 0)) {
return ENOENT;
}
int error = SYSCTL_IN(req, buff, 1);
if (error) {
return error;
}
char cluster_type = buff[0];
if (!req->newptr) {
goto out;
}
if (cluster_type != 'E' &&
cluster_type != 'e' &&
cluster_type != 'P' &&
cluster_type != 'p') {
return EINVAL;
}
sysctl_task_set_cluster_type(cluster_type);
out:
cluster_type = sysctl_get_task_cluster_type();
buff[0] = cluster_type;
return SYSCTL_OUT(req, buff, 1);
}
SYSCTL_PROC(_kern, OID_AUTO, sched_task_set_cluster_type, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_sched_task_set_cluster_type, "A", "");
extern kern_return_t thread_bind_cluster_id(thread_t thread, uint32_t cluster_id, thread_bind_option_t options);
extern uint32_t thread_bound_cluster_id(thread_t);
static int
sysctl_kern_sched_thread_bind_cluster_id SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
if (!PE_parse_boot_argn("enable_skstb", NULL, 0)) {
return ENOENT;
}
thread_t self = current_thread();
int32_t cluster_id = thread_bound_cluster_id(self);
int32_t new_value;
int changed;
int error = sysctl_io_number(req, cluster_id, sizeof(cluster_id), &new_value, &changed);
if (error) {
return error;
}
if (changed) {
/*
* This sysctl binds the thread to the cluster without any flags, which
* means it will be hard bound and not check eligibility.
*/
kern_return_t kr = thread_bind_cluster_id(self, new_value, 0);
if (kr == KERN_INVALID_VALUE) {
return ERANGE;
}
if (kr != KERN_SUCCESS) {
return EINVAL;
}
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, sched_thread_bind_cluster_id, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_sched_thread_bind_cluster_id, "I", "");
#if CONFIG_SCHED_EDGE
extern int sched_edge_restrict_ut;
SYSCTL_INT(_kern, OID_AUTO, sched_edge_restrict_ut, CTLFLAG_RW | CTLFLAG_LOCKED, &sched_edge_restrict_ut, 0, "Edge Scheduler Restrict UT Threads");
extern int sched_edge_restrict_bg;
SYSCTL_INT(_kern, OID_AUTO, sched_edge_restrict_bg, CTLFLAG_RW | CTLFLAG_LOCKED, &sched_edge_restrict_ut, 0, "Edge Scheduler Restrict BG Threads");
extern int sched_edge_migrate_ipi_immediate;
SYSCTL_INT(_kern, OID_AUTO, sched_edge_migrate_ipi_immediate, CTLFLAG_RW | CTLFLAG_LOCKED, &sched_edge_migrate_ipi_immediate, 0, "Edge Scheduler uses immediate IPIs for migration event based on execution latency");
#endif /* CONFIG_SCHED_EDGE */
#endif /* __AMP__ */
#if SCHED_HYGIENE_DEBUG
SYSCTL_QUAD(_kern, OID_AUTO, interrupt_masked_threshold_mt, CTLFLAG_RW | CTLFLAG_LOCKED,
&interrupt_masked_timeout,
"Interrupt masked duration after which a tracepoint is emitted or the device panics (in mach timebase units)");
SYSCTL_INT(_kern, OID_AUTO, interrupt_masked_debug_mode, CTLFLAG_RW | CTLFLAG_LOCKED,
&interrupt_masked_debug_mode, 0,
"Enable interrupt masked tracing or panic (0: off, 1: trace, 2: panic)");
SYSCTL_QUAD(_kern, OID_AUTO, sched_preemption_disable_threshold_mt, CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_preemption_disable_threshold_mt,
"Preemption disablement duration after which a tracepoint is emitted or the device panics (in mach timebase units)");
SYSCTL_INT(_kern, OID_AUTO, sched_preemption_disable_debug_mode, CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_preemption_disable_debug_mode, 0,
"Enable preemption disablement tracing or panic (0: off, 1: trace, 2: panic)");
static int
sysctl_sched_preemption_disable_stats(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
extern unsigned int preemption_disable_get_max_durations(uint64_t *durations, size_t count);
extern void preemption_disable_reset_max_durations(void);
uint64_t stats[MAX_CPUS]; // maximum per CPU
unsigned int ncpus = preemption_disable_get_max_durations(stats, MAX_CPUS);
if (req->newlen > 0) {
/* Reset when attempting to write to the sysctl. */
preemption_disable_reset_max_durations();
}
return sysctl_io_opaque(req, stats, ncpus * sizeof(uint64_t), NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, sched_preemption_disable_stats,
CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_sched_preemption_disable_stats, "I", "Preemption disablement statistics");
#endif /* SCHED_HYGIENE_DEBUG */
/* used for testing by exception_tests */
extern uint32_t ipc_control_port_options;
SYSCTL_INT(_kern, OID_AUTO, ipc_control_port_options,
CTLFLAG_RD | CTLFLAG_LOCKED, &ipc_control_port_options, 0, "");
#endif /* DEVELOPMENT || DEBUG */
extern uint32_t task_exc_guard_default;
SYSCTL_INT(_kern, OID_AUTO, task_exc_guard_default,
CTLFLAG_RD | CTLFLAG_LOCKED, &task_exc_guard_default, 0, "");
static int
sysctl_kern_tcsm_available SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
uint32_t value = machine_csv(CPUVN_CI) ? 1 : 0;
if (req->newptr) {
return EINVAL;
}
return SYSCTL_OUT(req, &value, sizeof(value));
}
SYSCTL_PROC(_kern, OID_AUTO, tcsm_available,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED | CTLFLAG_ANYBODY,
0, 0, sysctl_kern_tcsm_available, "I", "");
static int
sysctl_kern_tcsm_enable SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
uint32_t soflags = 0;
uint32_t old_value = thread_get_no_smt() ? 1 : 0;
int error = SYSCTL_IN(req, &soflags, sizeof(soflags));
if (error) {
return error;
}
if (soflags && machine_csv(CPUVN_CI)) {
thread_set_no_smt(true);
machine_tecs(current_thread());
}
return SYSCTL_OUT(req, &old_value, sizeof(old_value));
}
SYSCTL_PROC(_kern, OID_AUTO, tcsm_enable,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED | CTLFLAG_ANYBODY,
0, 0, sysctl_kern_tcsm_enable, "I", "");
static int
sysctl_kern_debug_get_preoslog SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
static bool oneshot_executed = false;
size_t preoslog_size = 0;
const char *preoslog = NULL;
int ret = 0;
// DumpPanic passes a non-zero write value when it needs oneshot behaviour
if (req->newptr != USER_ADDR_NULL) {
uint8_t oneshot = 0;
int error = SYSCTL_IN(req, &oneshot, sizeof(oneshot));
if (error) {
return error;
}
if (oneshot) {
if (!os_atomic_cmpxchg(&oneshot_executed, false, true, acq_rel)) {
return EPERM;
}
}
}
preoslog = sysctl_debug_get_preoslog(&preoslog_size);
if (preoslog != NULL && preoslog_size == 0) {
sysctl_debug_free_preoslog();
return 0;
}
if (preoslog == NULL || preoslog_size == 0) {
return 0;
}
if (req->oldptr == USER_ADDR_NULL) {
req->oldidx = preoslog_size;
return 0;
}
ret = SYSCTL_OUT(req, preoslog, preoslog_size);
sysctl_debug_free_preoslog();
return ret;
}
SYSCTL_PROC(_kern, OID_AUTO, preoslog, CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_debug_get_preoslog, "-", "");
#if DEVELOPMENT || DEBUG
extern void sysctl_task_set_no_smt(char no_smt);
extern char sysctl_task_get_no_smt(void);
static int
sysctl_kern_sched_task_set_no_smt SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
char buff[4];
int error = SYSCTL_IN(req, buff, 1);
if (error) {
return error;
}
char no_smt = buff[0];
if (!req->newptr) {
goto out;
}
sysctl_task_set_no_smt(no_smt);
out:
no_smt = sysctl_task_get_no_smt();
buff[0] = no_smt;
return SYSCTL_OUT(req, buff, 1);
}
SYSCTL_PROC(_kern, OID_AUTO, sched_task_set_no_smt, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY,
0, 0, sysctl_kern_sched_task_set_no_smt, "A", "");
static int
sysctl_kern_sched_thread_set_no_smt(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int old_value = thread_get_no_smt() ? 1 : 0;
int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if (changed) {
thread_set_no_smt(!!new_value);
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, sched_thread_set_no_smt,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY,
0, 0, sysctl_kern_sched_thread_set_no_smt, "I", "");
#if CONFIG_SCHED_RT_ALLOW
#if DEVELOPMENT || DEBUG
#define RT_ALLOW_CTLFLAGS CTLFLAG_RW
#else
#define RT_ALLOW_CTLFLAGS CTLFLAG_RD
#endif /* DEVELOPMENT || DEBUG */
static int
sysctl_kern_rt_allow_limit_percent(__unused struct sysctl_oid *oidp,
__unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
extern uint8_t rt_allow_limit_percent;
int new_value = 0;
int old_value = rt_allow_limit_percent;
int changed = 0;
int error = sysctl_io_number(req, old_value, sizeof(old_value),
&new_value, &changed);
if (error != 0) {
return error;
}
/* Only accept a percentage between 1 and 99 inclusive. */
if (changed) {
if (new_value >= 100 || new_value <= 0) {
return EINVAL;
}
rt_allow_limit_percent = (uint8_t)new_value;
}
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, rt_allow_limit_percent,
RT_ALLOW_CTLFLAGS | CTLTYPE_INT | CTLFLAG_LOCKED,
0, 0, sysctl_kern_rt_allow_limit_percent, "I", "");
static int
sysctl_kern_rt_allow_limit_interval_ms(__unused struct sysctl_oid *oidp,
__unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
extern uint16_t rt_allow_limit_interval_ms;
uint64_t new_value = 0;
uint64_t old_value = rt_allow_limit_interval_ms;
int changed = 0;
int error = sysctl_io_number(req, old_value, sizeof(old_value),
&new_value, &changed);
if (error != 0) {
return error;
}
/* Value is in ns. Must be at least 1ms. */
if (changed) {
if (new_value < 1 || new_value > UINT16_MAX) {
return EINVAL;
}
rt_allow_limit_interval_ms = (uint16_t)new_value;
}
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, rt_allow_limit_interval_ms,
RT_ALLOW_CTLFLAGS | CTLTYPE_QUAD | CTLFLAG_LOCKED,
0, 0, sysctl_kern_rt_allow_limit_interval_ms, "Q", "");
#endif /* CONFIG_SCHED_RT_ALLOW */
static int
sysctl_kern_task_set_filter_msg_flag SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int new_value, changed;
int old_value = task_get_filter_msg_flag(current_task()) ? 1 : 0;
int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if (changed) {
task_set_filter_msg_flag(current_task(), !!new_value);
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, task_set_filter_msg_flag, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_task_set_filter_msg_flag, "I", "");
#if CONFIG_PROC_RESOURCE_LIMITS
extern mach_port_name_t current_task_get_fatal_port_name(void);
static int
sysctl_kern_task_get_fatal_port SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int port = 0;
int flag = 0;
if (req->oldptr == USER_ADDR_NULL) {
req->oldidx = sizeof(mach_port_t);
return 0;
}
int error = SYSCTL_IN(req, &flag, sizeof(flag));
if (error) {
return error;
}
if (flag == 1) {
port = (int)current_task_get_fatal_port_name();
}
return SYSCTL_OUT(req, &port, sizeof(port));
}
SYSCTL_PROC(_machdep, OID_AUTO, task_get_fatal_port, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_task_get_fatal_port, "I", "");
#endif /* CONFIG_PROC_RESOURCE_LIMITS */
extern unsigned int ipc_entry_table_count_max(void);
static int
sysctl_mach_max_port_table_size SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int old_value = ipc_entry_table_count_max();
int error = sysctl_io_number(req, old_value, sizeof(int), NULL, NULL);
return error;
}
SYSCTL_PROC(_machdep, OID_AUTO, max_port_table_size, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_mach_max_port_table_size, "I", "");
#endif /* DEVELOPMENT || DEBUG */
#if defined(CONFIG_KDP_INTERACTIVE_DEBUGGING) && defined(CONFIG_KDP_COREDUMP_ENCRYPTION)
#define COREDUMP_ENCRYPTION_KEY_ENTITLEMENT "com.apple.private.coredump-encryption-key"
static int
sysctl_coredump_encryption_key_update SYSCTL_HANDLER_ARGS
{
kern_return_t ret = KERN_SUCCESS;
int error = 0;
struct kdp_core_encryption_key_descriptor key_descriptor = {
.kcekd_format = MACH_CORE_FILEHEADER_V2_FLAG_NEXT_COREFILE_KEY_FORMAT_NIST_P256,
};
/* Need to be root and have entitlement */
if (!kauth_cred_issuser(kauth_cred_get()) && !IOCurrentTaskHasEntitlement(COREDUMP_ENCRYPTION_KEY_ENTITLEMENT)) {
return EPERM;
}
// Sanity-check the given key length
if (req->newlen > UINT16_MAX) {
return EINVAL;
}
// It is allowed for the caller to pass in a NULL buffer.
// This indicates that they want us to forget about any public key we might have.
if (req->newptr) {
key_descriptor.kcekd_size = (uint16_t) req->newlen;
key_descriptor.kcekd_key = kalloc_data(key_descriptor.kcekd_size, Z_WAITOK);
if (key_descriptor.kcekd_key == NULL) {
return ENOMEM;
}
error = SYSCTL_IN(req, key_descriptor.kcekd_key, key_descriptor.kcekd_size);
if (error) {
goto out;
}
}
ret = IOProvideCoreFileAccess(kdp_core_handle_new_encryption_key, (void *)&key_descriptor);
if (KERN_SUCCESS != ret) {
printf("Failed to handle the new encryption key. Error 0x%x", ret);
error = EFAULT;
}
out:
kfree_data(key_descriptor.kcekd_key, key_descriptor.kcekd_size);
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, coredump_encryption_key, CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED,
0, 0, &sysctl_coredump_encryption_key_update, "-", "Set a new encryption key for coredumps");
#endif /* CONFIG_KDP_INTERACTIVE_DEBUGGING && CONFIG_KDP_COREDUMP_ENCRYPTION*/