gems-kernel/source/THIRDPARTY/xnu/bsd/kern/uipc_mbuf.c

10135 lines
266 KiB
C
Raw Normal View History

2024-06-03 11:29:39 -05:00
/*
* Copyright (c) 1998-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
* Copyright (c) 1982, 1986, 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <ptrauth.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/queue.h>
#include <sys/proc.h>
#include <sys/filedesc.h>
#include <sys/file_internal.h>
#include <dev/random/randomdev.h>
#include <kern/kern_types.h>
#include <kern/simple_lock.h>
#include <kern/queue.h>
#include <kern/sched_prim.h>
#include <kern/backtrace.h>
#include <kern/percpu.h>
#include <kern/zalloc.h>
#include <libkern/OSDebug.h>
#include <libkern/libkern.h>
#include <os/log.h>
#include <os/ptrtools.h>
#include <IOKit/IOMapper.h>
#include <machine/limits.h>
#include <machine/machine_routines.h>
#if CONFIG_MBUF_MCACHE
#include <sys/mcache.h>
#endif /* CONFIG_MBUF_MCACHE */
#include <net/ntstat.h>
#if INET
extern int dump_tcp_reass_qlen(char *, int);
extern int tcp_reass_qlen_space(struct socket *);
#endif /* INET */
#if MPTCP
extern int dump_mptcp_reass_qlen(char *, int);
#endif /* MPTCP */
#if NETWORKING
extern int dlil_dump_top_if_qlen(char *, int);
#endif /* NETWORKING */
#if CONFIG_MBUF_MCACHE
/*
* MBUF IMPLEMENTATION NOTES.
*
* There is a total of 5 per-CPU caches:
*
* MC_MBUF:
* This is a cache of rudimentary objects of _MSIZE in size; each
* object represents an mbuf structure. This cache preserves only
* the m_type field of the mbuf during its transactions.
*
* MC_CL:
* This is a cache of rudimentary objects of MCLBYTES in size; each
* object represents a mcluster structure. This cache does not
* preserve the contents of the objects during its transactions.
*
* MC_BIGCL:
* This is a cache of rudimentary objects of MBIGCLBYTES in size; each
* object represents a mbigcluster structure. This cache does not
* preserve the contents of the objects during its transaction.
*
* MC_MBUF_CL:
* This is a cache of mbufs each having a cluster attached to it.
* It is backed by MC_MBUF and MC_CL rudimentary caches. Several
* fields of the mbuf related to the external cluster are preserved
* during transactions.
*
* MC_MBUF_BIGCL:
* This is a cache of mbufs each having a big cluster attached to it.
* It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several
* fields of the mbuf related to the external cluster are preserved
* during transactions.
*
* OBJECT ALLOCATION:
*
* Allocation requests are handled first at the per-CPU (mcache) layer
* before falling back to the slab layer. Performance is optimal when
* the request is satisfied at the CPU layer because global data/lock
* never gets accessed. When the slab layer is entered for allocation,
* the slab freelist will be checked first for available objects before
* the VM backing store is invoked. Slab layer operations are serialized
* for all of the caches as the mbuf global lock is held most of the time.
* Allocation paths are different depending on the class of objects:
*
* a. Rudimentary object:
*
* { m_get_common(), m_clattach(), m_mclget(),
* m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(),
* composite object allocation }
* | ^
* | |
* | +-----------------------+
* v |
* mcache_alloc/mcache_alloc_ext() mbuf_slab_audit()
* | ^
* v |
* [CPU cache] -------> (found?) -------+
* | |
* v |
* mbuf_slab_alloc() |
* | |
* v |
* +---------> [freelist] -------> (found?) -------+
* | |
* | v
* | m_clalloc()
* | |
* | v
* +---<<---- kmem_mb_alloc()
*
* b. Composite object:
*
* { m_getpackets_internal(), m_allocpacket_internal() }
* | ^
* | |
* | +------ (done) ---------+
* v |
* mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit()
* | ^
* v |
* [CPU cache] -------> (found?) -------+
* | |
* v |
* mbuf_cslab_alloc() |
* | |
* v |
* [freelist] -------> (found?) -------+
* | |
* v |
* (rudimentary object) |
* mcache_alloc/mcache_alloc_ext() ------>>-----+
*
* Auditing notes: If auditing is enabled, buffers will be subjected to
* integrity checks by the audit routine. This is done by verifying their
* contents against DEADBEEF (free) pattern before returning them to caller.
* As part of this step, the routine will also record the transaction and
* pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will
* also restore any constructed data structure fields if necessary.
*
* OBJECT DEALLOCATION:
*
* Freeing an object simply involves placing it into the CPU cache; this
* pollutes the cache to benefit subsequent allocations. The slab layer
* will only be entered if the object is to be purged out of the cache.
* During normal operations, this happens only when the CPU layer resizes
* its bucket while it's adjusting to the allocation load. Deallocation
* paths are different depending on the class of objects:
*
* a. Rudimentary object:
*
* { m_free(), m_freem_list(), composite object deallocation }
* | ^
* | |
* | +------ (done) ---------+
* v |
* mcache_free/mcache_free_ext() |
* | |
* v |
* mbuf_slab_audit() |
* | |
* v |
* [CPU cache] ---> (not purging?) -----+
* | |
* v |
* mbuf_slab_free() |
* | |
* v |
* [freelist] ----------->>------------+
* (objects get purged to VM only on demand)
*
* b. Composite object:
*
* { m_free(), m_freem_list() }
* | ^
* | |
* | +------ (done) ---------+
* v |
* mcache_free/mcache_free_ext() |
* | |
* v |
* mbuf_cslab_audit() |
* | |
* v |
* [CPU cache] ---> (not purging?) -----+
* | |
* v |
* mbuf_cslab_free() |
* | |
* v |
* [freelist] ---> (not purging?) -----+
* | |
* v |
* (rudimentary object) |
* mcache_free/mcache_free_ext() ------->>------+
*
* Auditing notes: If auditing is enabled, the audit routine will save
* any constructed data structure fields (if necessary) before filling the
* contents of the buffers with DEADBEEF (free) pattern and recording the
* transaction. Buffers that are freed (whether at CPU or slab layer) are
* expected to contain the free pattern.
*
* DEBUGGING:
*
* Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this
* translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally,
* the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag,
* i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak
* detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g.
* "mbuf_debug=0x113". Note that debugging consumes more CPU and memory.
*
* Each object is associated with exactly one mcache_audit_t structure that
* contains the information related to its last buffer transaction. Given
* an address of an object, the audit structure can be retrieved by finding
* the position of the object relevant to the base address of the cluster:
*
* +------------+ +=============+
* | mbuf addr | | mclaudit[i] |
* +------------+ +=============+
* | | cl_audit[0] |
* i = MTOBG(addr) +-------------+
* | +-----> | cl_audit[1] | -----> mcache_audit_t
* b = BGTOM(i) | +-------------+
* | | | ... |
* x = MCLIDX(b, addr) | +-------------+
* | | | cl_audit[7] |
* +-----------------+ +-------------+
* (e.g. x == 1)
*
* The mclaudit[] array is allocated at initialization time, but its contents
* get populated when the corresponding cluster is created. Because a page
* can be turned into NMBPG number of mbufs, we preserve enough space for the
* mbufs so that there is a 1-to-1 mapping between them. A page that never
* gets (or has not yet) turned into mbufs will use only cl_audit[0] with the
* remaining entries unused. For 16KB cluster, only one entry from the first
* page is allocated and used for the entire object.
*/
#else
/*
* MBUF IMPLEMENTATION NOTES (using zalloc).
*
* There are a total of 4 zones and 3 zcaches.
*
* MC_MBUF:
* This is a zone of rudimentary objects of _MSIZE in size; each
* object represents an mbuf structure. This cache preserves only
* the m_type field of the mbuf during its transactions.
*
* MC_CL:
* This is a zone of rudimentary objects of MCLBYTES in size; each
* object represents a mcluster structure. This cache does not
* preserve the contents of the objects during its transactions.
*
* MC_BIGCL:
* This is a zone of rudimentary objects of MBIGCLBYTES in size; each
* object represents a mbigcluster structure. This cache does not
* preserve the contents of the objects during its transaction.
*
* MC_16KCL:
* This is a zone of rudimentary objects of M16KCLBYTES in size; each
* object represents a m16kcluster structure. This cache does not
* preserve the contents of the objects during its transaction.
*
* MC_MBUF_CL:
* This is a cache of mbufs each having a cluster attached to it.
* It is backed by MC_MBUF and MC_CL rudimentary caches. Several
* fields of the mbuf related to the external cluster are preserved
* during transactions.
*
* MC_MBUF_BIGCL:
* This is a cache of mbufs each having a big cluster attached to it.
* It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several
* fields of the mbuf related to the external cluster are preserved
* during transactions.
*
* MC_MBUF_16KCL:
* This is a cache of mbufs each having a big cluster attached to it.
* It is backed by MC_MBUF and MC_16KCL rudimentary caches. Several
* fields of the mbuf related to the external cluster are preserved
* during transactions.
*
* OBJECT ALLOCATION:
*
* Allocation requests are handled first at the zalloc per-CPU layer
* before falling back to the zalloc depot. Performance is optimal when
* the request is satisfied at the CPU layer. zalloc has an additional
* overflow layer called the depot, not pictured in the diagram below.
*
* Allocation paths are different depending on the class of objects:
*
* a. Rudimentary object:
*
* { m_get_common(), m_clattach(), m_mclget(),
* m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(),
* composite object allocation }
* | ^
* | |
* | +------- (done) --------+
* v |
* zalloc_flags/zalloc_n() KASAN
* | ^
* v |
* +----> [zalloc per-CPU cache] -----> (found?) --+
* | | |
* | v |
* | [zalloc recirculation layer] --> (found?) ---+
* | |
* | v
* +--<<-- [zone backing store]
*
* b. Composite object:
*
* { m_getpackets_internal(), m_allocpacket_internal() }
* | ^
* | |
* | +------ (done) ---------+
* v |
* mz_composite_alloc() KASAN
* | ^
* v |
* zcache_alloc_n() |
* | |
* v |
* [zalloc per-CPU cache] --> mark_valid() ---+
* | |
* v |
* [zalloc recirculation layer] -> mark_valid() -+
* | |
* v |
* mz_composite_build() |
* | |
* v |
* (rudimentary objects) |
* zalloc_id() ---------------->>-----+
*
* Auditing notes: If KASAN enabled, buffers will be subjected to
* integrity checks by the AddressSanitizer.
*
* OBJECT DEALLOCATION:
*
* Freeing an object simply involves placing it into the CPU cache; this
* pollutes the cache to benefit subsequent allocations. The depot
* will only be entered if the object is to be purged out of the cache.
* Objects may be purged based on the overall memory pressure or
* during zone garbage collection.
* To improve performance, objects are not zero-filled when freed
* as it's custom for other zalloc zones.
*
* Deallocation paths are different depending on the class of objects:
*
* a. Rudimentary object:
*
* { m_free(), m_freem_list(), composite object deallocation }
* | ^
* | |
* | +------ (done) ---------+
* v |
* zfree_nozero() |
* | |
* v |
* KASAN |
* | |
* v |
* [zalloc per-CPU cache] -> (not purging?) --+
* | |
* v |
* [zalloc recirculation layer] --->>----------+
*
*
* b. Composite object:
*
* { m_free(), m_freem_list() }
* | ^
* | |
* | +------ (done) ---------+
* v |
* mz_composite_free() |
* | |
* v |
* zcache_free_n() |
* | |
* v |
* KASAN |
* | |
* v |
* [zalloc per-CPU cache] -> mark_invalid() --+
* | |
* v |
* mz_composite_destroy() |
* | |
* v |
* (rudimentary object) |
* zfree_nozero() -------------->>------+
*
* Auditing notes: If KASAN enabled, buffers will be subjected to
* integrity checks by the AddressSanitizer.
*
* DEBUGGING:
*
* Debugging mbufs can be done by booting a KASAN enabled kernel.
*/
#endif /* CONFIG_MBUF_MCACHE */
/* TODO: should be in header file */
/* kernel translater */
extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va);
extern vm_map_t mb_map; /* special map */
#if CONFIG_MBUF_MCACHE
static uint32_t mb_kmem_contig_failed;
static uint32_t mb_kmem_failed;
static uint32_t mb_kmem_one_failed;
/* Timestamp of allocation failures. */
static uint64_t mb_kmem_contig_failed_ts;
static uint64_t mb_kmem_failed_ts;
static uint64_t mb_kmem_one_failed_ts;
static uint64_t mb_kmem_contig_failed_size;
static uint64_t mb_kmem_failed_size;
static uint32_t mb_kmem_stats[6];
#endif /* CONFIG_MBUF_MCACHE */
/* Global lock */
static LCK_GRP_DECLARE(mbuf_mlock_grp, "mbuf");
static LCK_MTX_DECLARE(mbuf_mlock_data, &mbuf_mlock_grp);
static lck_mtx_t *const mbuf_mlock = &mbuf_mlock_data;
#if CONFIG_MBUF_MCACHE
/* Back-end (common) layer */
static uint64_t mb_expand_cnt;
static uint64_t mb_expand_cl_cnt;
static uint64_t mb_expand_cl_total;
static uint64_t mb_expand_bigcl_cnt;
static uint64_t mb_expand_bigcl_total;
static uint64_t mb_expand_16kcl_cnt;
static uint64_t mb_expand_16kcl_total;
static boolean_t mbuf_worker_needs_wakeup; /* wait channel for mbuf worker */
static uint32_t mbuf_worker_run_cnt;
static uint64_t mbuf_worker_last_runtime;
static uint64_t mbuf_drain_last_runtime;
static int mbuf_worker_ready; /* worker thread is runnable */
static unsigned int ncpu; /* number of CPUs */
static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */
static ppnum_t mcl_pages; /* Size of array (# physical pages) */
static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */
static mcache_t *ref_cache; /* Cache of cluster reference & flags */
static mcache_t *mcl_audit_con_cache; /* Audit contents cache */
unsigned int mbuf_debug; /* patchable mbuf mcache flags */
#endif /* CONFIG_MBUF_DEBUG */
static unsigned int mb_normalized; /* number of packets "normalized" */
extern unsigned int mb_tag_mbuf;
#define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */
#define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */
typedef enum {
MC_MBUF = 0, /* Regular mbuf */
MC_CL, /* Cluster */
MC_BIGCL, /* Large (4KB) cluster */
MC_16KCL, /* Jumbo (16KB) cluster */
MC_MBUF_CL, /* mbuf + cluster */
MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */
MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */
} mbuf_class_t;
#define MBUF_CLASS_MIN MC_MBUF
#define MBUF_CLASS_MAX MC_MBUF_16KCL
#define MBUF_CLASS_LAST MC_16KCL
#define MBUF_CLASS_VALID(c) \
((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX)
#define MBUF_CLASS_COMPOSITE(c) \
((int)(c) > MBUF_CLASS_LAST)
/*
* mbuf specific mcache allocation request flags.
*/
#define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */
/*
* Per-cluster slab structure.
*
* A slab is a cluster control structure that contains one or more object
* chunks; the available chunks are chained in the slab's freelist (sl_head).
* Each time a chunk is taken out of the slab, the slab's reference count
* gets incremented. When all chunks have been taken out, the empty slab
* gets removed (SLF_DETACHED) from the class's slab list. A chunk that is
* returned to a slab causes the slab's reference count to be decremented;
* it also causes the slab to be reinserted back to class's slab list, if
* it's not already done.
*
* Compartmentalizing of the object chunks into slabs allows us to easily
* merge one or more slabs together when the adjacent slabs are idle, as
* well as to convert or move a slab from one class to another; e.g. the
* mbuf cluster slab can be converted to a regular cluster slab when all
* mbufs in the slab have been freed.
*
* A slab may also span across multiple clusters for chunks larger than
* a cluster's size. In this case, only the slab of the first cluster is
* used. The rest of the slabs are marked with SLF_PARTIAL to indicate
* that they are part of the larger slab.
*
* Each slab controls a page of memory.
*/
typedef struct mcl_slab {
struct mcl_slab *sl_next; /* neighboring slab */
u_int8_t sl_class; /* controlling mbuf class */
int8_t sl_refcnt; /* outstanding allocations */
int8_t sl_chunks; /* chunks (bufs) in this slab */
u_int16_t sl_flags; /* slab flags (see below) */
u_int16_t sl_len; /* slab length */
void *sl_base; /* base of allocated memory */
void *sl_head; /* first free buffer */
TAILQ_ENTRY(mcl_slab) sl_link; /* next/prev slab on freelist */
} mcl_slab_t;
#define SLF_MAPPED 0x0001 /* backed by a mapped page */
#define SLF_PARTIAL 0x0002 /* part of another slab */
#define SLF_DETACHED 0x0004 /* not in slab freelist */
/*
* The array of slabs are broken into groups of arrays per 1MB of kernel
* memory to reduce the footprint. Each group is allocated on demand
* whenever a new piece of memory mapped in from the VM crosses the 1MB
* boundary.
*/
#define NSLABSPMB ((1 << MBSHIFT) >> PAGE_SHIFT)
typedef struct mcl_slabg {
mcl_slab_t *slg_slab; /* group of slabs */
} mcl_slabg_t;
/*
* Number of slabs needed to control a 16KB cluster object.
*/
#define NSLABSP16KB (M16KCLBYTES >> PAGE_SHIFT)
#if CONFIG_MBUF_MCACHE
/*
* Per-cluster audit structure.
*/
typedef struct {
mcache_audit_t **cl_audit; /* array of audits */
} mcl_audit_t;
typedef struct {
struct thread *msa_thread; /* thread doing transaction */
struct thread *msa_pthread; /* previous transaction thread */
uint32_t msa_tstamp; /* transaction timestamp (ms) */
uint32_t msa_ptstamp; /* prev transaction timestamp (ms) */
uint16_t msa_depth; /* pc stack depth */
uint16_t msa_pdepth; /* previous transaction pc stack */
void *msa_stack[MCACHE_STACK_DEPTH];
void *msa_pstack[MCACHE_STACK_DEPTH];
} mcl_scratch_audit_t;
typedef struct {
/*
* Size of data from the beginning of an mbuf that covers m_hdr,
* pkthdr and m_ext structures. If auditing is enabled, we allocate
* a shadow mbuf structure of this size inside each audit structure,
* and the contents of the real mbuf gets copied into it when the mbuf
* is freed. This allows us to pattern-fill the mbuf for integrity
* check, and to preserve any constructed mbuf fields (e.g. mbuf +
* cluster cache case). Note that we don't save the contents of
* clusters when they are freed; we simply pattern-fill them.
*/
u_int8_t sc_mbuf[(_MSIZE - _MHLEN) + sizeof(_m_ext_t)];
mcl_scratch_audit_t sc_scratch __attribute__((aligned(8)));
} mcl_saved_contents_t;
#define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t))
#define MCA_SAVED_MBUF_PTR(_mca) \
((struct mbuf *)(void *)((mcl_saved_contents_t *) \
(_mca)->mca_contents)->sc_mbuf)
#define MCA_SAVED_MBUF_SIZE \
(sizeof (((mcl_saved_contents_t *)0)->sc_mbuf))
#define MCA_SAVED_SCRATCH_PTR(_mca) \
(&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch)
/*
* mbuf specific mcache audit flags
*/
#define MB_INUSE 0x01 /* object has not been returned to slab */
#define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */
#define MB_SCVALID 0x04 /* object has valid saved contents */
/*
* Each of the following two arrays hold up to nmbclusters elements.
*/
static mcl_audit_t *mclaudit; /* array of cluster audit information */
static unsigned int maxclaudit; /* max # of entries in audit table */
static mcl_slabg_t **slabstbl; /* cluster slabs table */
static unsigned int maxslabgrp; /* max # of entries in slabs table */
static unsigned int slabgrp; /* # of entries in slabs table */
#endif /* CONFIG_MBUF_MCACHE */
/* Globals */
int nclusters; /* # of clusters for non-jumbo (legacy) sizes */
int njcl; /* # of clusters for jumbo sizes */
int njclbytes; /* size of a jumbo cluster */
unsigned char *mbutl; /* first mapped cluster address */
unsigned char *embutl; /* ending virtual address of mclusters */
int max_linkhdr; /* largest link-level header */
int max_protohdr; /* largest protocol header */
int max_hdr; /* largest link+protocol header */
int max_datalen; /* MHLEN - max_hdr */
#if CONFIG_MBUF_MCACHE
static boolean_t mclverify; /* debug: pattern-checking */
static boolean_t mcltrace; /* debug: stack tracing */
static boolean_t mclfindleak; /* debug: leak detection */
static boolean_t mclexpleak; /* debug: expose leak info to user space */
static struct timeval mb_start; /* beginning of time */
/* mbuf leak detection variables */
static struct mleak_table mleak_table;
static mleak_stat_t *mleak_stat;
#define MLEAK_STAT_SIZE(n) \
__builtin_offsetof(mleak_stat_t, ml_trace[n])
struct mallocation {
mcache_obj_t *element; /* the alloc'ed element, NULL if unused */
u_int32_t trace_index; /* mtrace index for corresponding backtrace */
u_int32_t count; /* How many objects were requested */
u_int64_t hitcount; /* for determining hash effectiveness */
};
struct mtrace {
u_int64_t collisions;
u_int64_t hitcount;
u_int64_t allocs;
u_int64_t depth;
uintptr_t addr[MLEAK_STACK_DEPTH];
};
/* Size must be a power of two for the zhash to be able to just mask off bits */
#define MLEAK_ALLOCATION_MAP_NUM 512
#define MLEAK_TRACE_MAP_NUM 256
/*
* Sample factor for how often to record a trace. This is overwritable
* by the boot-arg mleak_sample_factor.
*/
#define MLEAK_SAMPLE_FACTOR 500
/*
* Number of top leakers recorded.
*/
#define MLEAK_NUM_TRACES 5
#define MB_LEAK_SPACING_64 " "
#define MB_LEAK_SPACING_32 " "
#define MB_LEAK_HDR_32 "\n\
trace [1] trace [2] trace [3] trace [4] trace [5] \n\
---------- ---------- ---------- ---------- ---------- \n\
"
#define MB_LEAK_HDR_64 "\n\
trace [1] trace [2] trace [3] \
trace [4] trace [5] \n\
------------------ ------------------ ------------------ \
------------------ ------------------ \n\
"
static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM;
static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM;
/* Hashmaps of allocations and their corresponding traces */
static struct mallocation *mleak_allocations;
static struct mtrace *mleak_traces;
static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES];
/* Lock to protect mleak tables from concurrent modification */
static LCK_GRP_DECLARE(mleak_lock_grp, "mleak_lock");
static LCK_MTX_DECLARE(mleak_lock_data, &mleak_lock_grp);
static lck_mtx_t *const mleak_lock = &mleak_lock_data;
/* *Failed* large allocations. */
struct mtracelarge {
uint64_t size;
uint64_t depth;
uintptr_t addr[MLEAK_STACK_DEPTH];
};
#define MTRACELARGE_NUM_TRACES 5
static struct mtracelarge mtracelarge_table[MTRACELARGE_NUM_TRACES];
static void mtracelarge_register(size_t size);
#endif /* CONFIG_MBUF_MCACHE */
/* Lock to protect the completion callback table */
static LCK_GRP_DECLARE(mbuf_tx_compl_tbl_lck_grp, "mbuf_tx_compl_tbl");
LCK_RW_DECLARE(mbuf_tx_compl_tbl_lock, &mbuf_tx_compl_tbl_lck_grp);
extern u_int32_t high_sb_max;
/* The minimum number of objects that are allocated, to start. */
#define MINCL 32
#define MINBIGCL (MINCL >> 1)
#define MIN16KCL (MINCL >> 2)
/* Low watermarks (only map in pages once free counts go below) */
#define MBIGCL_LOWAT MINBIGCL
#define M16KCL_LOWAT MIN16KCL
typedef struct {
mbuf_class_t mtbl_class; /* class type */
#if CONFIG_MBUF_MCACHE
mcache_t *mtbl_cache; /* mcache for this buffer class */
TAILQ_HEAD(mcl_slhead, mcl_slab) mtbl_slablist; /* slab list */
mcache_obj_t *mtbl_cobjlist; /* composite objects freelist */
#endif /* CONFIG_MBUF_MCACHE */
mb_class_stat_t *mtbl_stats; /* statistics fetchable via sysctl */
u_int32_t mtbl_maxsize; /* maximum buffer size */
int mtbl_minlimit; /* minimum allowed */
int mtbl_maxlimit; /* maximum allowed */
u_int32_t mtbl_wantpurge; /* purge during next reclaim */
uint32_t mtbl_avgtotal; /* average total on iOS */
u_int32_t mtbl_expand; /* worker should expand the class */
} mbuf_table_t;
#define m_class(c) mbuf_table[c].mtbl_class
#if CONFIG_MBUF_MCACHE
#define m_cache(c) mbuf_table[c].mtbl_cache
#define m_slablist(c) mbuf_table[c].mtbl_slablist
#define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist
#else
#define m_stats(c) mbuf_table[c].mtbl_stats
#endif /* CONFIG_MBUF_MCACHE */
#define m_maxsize(c) mbuf_table[c].mtbl_maxsize
#define m_minlimit(c) mbuf_table[c].mtbl_minlimit
#define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit
#define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge
#define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname
#define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size
#define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total
#define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active
#define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree
#define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt
#define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt
#define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt
#define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified
#define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt
#define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt
#define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal
#define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt
#define m_region_expand(c) mbuf_table[c].mtbl_expand
static mbuf_table_t mbuf_table[] = {
#if CONFIG_MBUF_MCACHE
/*
* The caches for mbufs, regular clusters and big clusters.
* The average total values were based on data gathered by actual
* usage patterns on iOS.
*/
{ MC_MBUF, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF)),
NULL, NULL, 0, 0, 0, 0, 3000, 0 },
{ MC_CL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL)),
NULL, NULL, 0, 0, 0, 0, 2000, 0 },
{ MC_BIGCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL)),
NULL, NULL, 0, 0, 0, 0, 1000, 0 },
{ MC_16KCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL)),
NULL, NULL, 0, 0, 0, 0, 200, 0 },
/*
* The following are special caches; they serve as intermediate
* caches backed by the above rudimentary caches. Each object
* in the cache is an mbuf with a cluster attached to it. Unlike
* the above caches, these intermediate caches do not directly
* deal with the slab structures; instead, the constructed
* cached elements are simply stored in the freelists.
*/
{ MC_MBUF_CL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 2000, 0 },
{ MC_MBUF_BIGCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000, 0 },
{ MC_MBUF_16KCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 200, 0 },
#else
{ .mtbl_class = MC_MBUF },
{ .mtbl_class = MC_CL },
{ .mtbl_class = MC_BIGCL },
{ .mtbl_class = MC_16KCL },
{ .mtbl_class = MC_MBUF_CL },
{ .mtbl_class = MC_MBUF_BIGCL },
{ .mtbl_class = MC_MBUF_16KCL },
#endif /* CONFIG_MBUF_MCACHE */
};
#define NELEM(a) (sizeof (a) / sizeof ((a)[0]))
#if SKYWALK && CONFIG_MBUF_MCACHE
#define MC_THRESHOLD_SCALE_DOWN_FACTOR 2
static unsigned int mc_threshold_scale_down_factor =
MC_THRESHOLD_SCALE_DOWN_FACTOR;
#endif /* SKYWALK */
#if CONFIG_MBUF_MCACHE
static uint32_t
m_avgtotal(mbuf_class_t c)
{
#if SKYWALK
return if_is_fsw_transport_netagent_enabled() ?
(mbuf_table[c].mtbl_avgtotal / mc_threshold_scale_down_factor) :
mbuf_table[c].mtbl_avgtotal;
#else /* !SKYWALK */
return mbuf_table[c].mtbl_avgtotal;
#endif /* SKYWALK */
}
#endif /* CONFIG_MBUF_MCACHE */
#if CONFIG_MBUF_MCACHE
static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */
static int mb_waiters; /* number of waiters */
#endif /* CONFIG_MBUF_MCACHE */
#define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */
#if CONFIG_MBUF_MCACHE
static struct timeval mb_wdtstart; /* watchdog start timestamp */
static char *mbuf_dump_buf;
#define MBUF_DUMP_BUF_SIZE 4096
/*
* mbuf watchdog is enabled by default. It is also toggeable via the
* kern.ipc.mb_watchdog sysctl.
* Garbage collection is enabled by default on embedded platforms.
* mb_drain_maxint controls the amount of time to wait (in seconds) before
* consecutive calls to mbuf_drain().
*/
static unsigned int mb_watchdog = 1;
#if !XNU_TARGET_OS_OSX
static unsigned int mb_drain_maxint = 60;
#else /* XNU_TARGET_OS_OSX */
static unsigned int mb_drain_maxint = 0;
#endif /* XNU_TARGET_OS_OSX */
#endif /* CONFIG_MBUF_MCACHE */
static unsigned int mb_memory_pressure_percentage = 80;
uintptr_t mb_obscure_extfree __attribute__((visibility("hidden")));
uintptr_t mb_obscure_extref __attribute__((visibility("hidden")));
/* Red zone */
static u_int32_t mb_redzone_cookie;
static void m_redzone_init(struct mbuf *);
static void m_redzone_verify(struct mbuf *m);
static void m_set_rfa(struct mbuf *, struct ext_ref *);
#if CONFIG_MBUF_MCACHE
/* The following are used to serialize m_clalloc() */
static boolean_t mb_clalloc_busy;
static void *mb_clalloc_waitchan = &mb_clalloc_busy;
static int mb_clalloc_waiters;
#endif /* CONFIG_MBUF_MCACHE */
static void mbuf_mtypes_sync(boolean_t);
static int mbstat_sysctl SYSCTL_HANDLER_ARGS;
static void mbuf_stat_sync(void);
static int mb_stat_sysctl SYSCTL_HANDLER_ARGS;
#if CONFIG_MBUF_MCACHE
static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS;
static int mleak_table_sysctl SYSCTL_HANDLER_ARGS;
static char *mbuf_dump(void);
#endif /* CONFIG_MBUF_MCACHE */
static void mbuf_table_init(void);
static inline void m_incref(struct mbuf *);
static inline u_int16_t m_decref(struct mbuf *);
static void mbuf_watchdog_defunct(thread_call_param_t, thread_call_param_t);
#if CONFIG_MBUF_MCACHE
static int m_clalloc(const u_int32_t, const int, const u_int32_t);
static void mbuf_worker_thread_init(void);
static mcache_obj_t *slab_alloc(mbuf_class_t, int);
static void slab_free(mbuf_class_t, mcache_obj_t *);
static unsigned int mbuf_slab_alloc(void *, mcache_obj_t ***,
unsigned int, int);
static void mbuf_slab_free(void *, mcache_obj_t *, int);
static void mbuf_slab_audit(void *, mcache_obj_t *, boolean_t);
static void mbuf_slab_notify(void *, u_int32_t);
static unsigned int cslab_alloc(mbuf_class_t, mcache_obj_t ***,
unsigned int);
static unsigned int cslab_free(mbuf_class_t, mcache_obj_t *, int);
static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t ***,
unsigned int, int);
static void mbuf_cslab_free(void *, mcache_obj_t *, int);
static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t);
static int freelist_populate(mbuf_class_t, unsigned int, int);
static void freelist_init(mbuf_class_t);
static boolean_t mbuf_cached_above(mbuf_class_t, int);
static boolean_t mbuf_steal(mbuf_class_t, unsigned int);
static void m_reclaim(mbuf_class_t, unsigned int, boolean_t);
static int m_howmany(int, size_t);
static void mbuf_worker_thread(void);
static void mbuf_watchdog(void);
static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int);
static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **,
size_t, unsigned int);
static void mcl_audit_free(void *, unsigned int);
static mcache_audit_t *mcl_audit_buf2mca(mbuf_class_t, mcache_obj_t *);
static void mcl_audit_mbuf(mcache_audit_t *, void *, boolean_t, boolean_t);
static void mcl_audit_cluster(mcache_audit_t *, void *, size_t, boolean_t,
boolean_t);
static void mcl_audit_restore_mbuf(struct mbuf *, mcache_audit_t *, boolean_t);
static void mcl_audit_save_mbuf(struct mbuf *, mcache_audit_t *);
static void mcl_audit_scratch(mcache_audit_t *);
static void mcl_audit_mcheck_panic(struct mbuf *);
static void mcl_audit_verify_nextptr(void *, mcache_audit_t *);
static void mleak_activate(void);
static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t);
static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int);
static void mleak_free(mcache_obj_t *);
static void mleak_sort_traces(void);
static void mleak_update_stats(void);
static mcl_slab_t *slab_get(void *);
static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t,
void *, void *, unsigned int, int, int);
static void slab_insert(mcl_slab_t *, mbuf_class_t);
static void slab_remove(mcl_slab_t *, mbuf_class_t);
static boolean_t slab_inrange(mcl_slab_t *, void *);
static void slab_nextptr_panic(mcl_slab_t *, void *);
static void slab_detach(mcl_slab_t *);
static boolean_t slab_is_detached(mcl_slab_t *);
#else /* !CONFIG_MBUF_MCACHE */
static void mbuf_watchdog_drain_composite(thread_call_param_t, thread_call_param_t);
static struct mbuf *mz_alloc(zalloc_flags_t);
static void mz_free(struct mbuf *);
static struct ext_ref *mz_ref_alloc(zalloc_flags_t);
static void mz_ref_free(struct ext_ref *);
static void *mz_cl_alloc(zone_id_t, zalloc_flags_t);
static void mz_cl_free(zone_id_t, void *);
static struct mbuf *mz_composite_alloc(mbuf_class_t, zalloc_flags_t);
static zstack_t mz_composite_alloc_n(mbuf_class_t, unsigned int, zalloc_flags_t);
static void mz_composite_free(mbuf_class_t, struct mbuf *);
static void mz_composite_free_n(mbuf_class_t, zstack_t);
static void *mz_composite_build(zone_id_t, zalloc_flags_t);
static void *mz_composite_mark_valid(zone_id_t, void *);
static void *mz_composite_mark_invalid(zone_id_t, void *);
static void mz_composite_destroy(zone_id_t, void *);
ZONE_DEFINE_ID(ZONE_ID_MBUF_REF, "mbuf.ref", struct ext_ref,
ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE);
ZONE_DEFINE_ID(ZONE_ID_MBUF, "mbuf", struct mbuf,
ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE);
ZONE_DEFINE_ID(ZONE_ID_CLUSTER_2K, "mbuf.cluster.2k", union mcluster,
ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE | ZC_DATA);
ZONE_DEFINE_ID(ZONE_ID_CLUSTER_4K, "mbuf.cluster.4k", union mbigcluster,
ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE | ZC_DATA);
ZONE_DEFINE_ID(ZONE_ID_CLUSTER_16K, "mbuf.cluster.16k", union m16kcluster,
ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE | ZC_DATA);
static_assert(sizeof(union mcluster) == MCLBYTES);
static_assert(sizeof(union mbigcluster) == MBIGCLBYTES);
static_assert(sizeof(union m16kcluster) == M16KCLBYTES);
static const struct zone_cache_ops mz_composite_ops = {
.zc_op_alloc = mz_composite_build,
.zc_op_mark_valid = mz_composite_mark_valid,
.zc_op_mark_invalid = mz_composite_mark_invalid,
.zc_op_free = mz_composite_destroy,
};
ZCACHE_DEFINE(ZONE_ID_MBUF_CLUSTER_2K, "mbuf.composite.2k", struct mbuf,
sizeof(struct mbuf) + sizeof(struct ext_ref) + MCLBYTES,
&mz_composite_ops);
ZCACHE_DEFINE(ZONE_ID_MBUF_CLUSTER_4K, "mbuf.composite.4k", struct mbuf,
sizeof(struct mbuf) + sizeof(struct ext_ref) + MBIGCLBYTES,
&mz_composite_ops);
ZCACHE_DEFINE(ZONE_ID_MBUF_CLUSTER_16K, "mbuf.composite.16k", struct mbuf,
sizeof(struct mbuf) + sizeof(struct ext_ref) + M16KCLBYTES,
&mz_composite_ops);
static_assert(ZONE_ID_MBUF + MC_MBUF == ZONE_ID_MBUF);
static_assert(ZONE_ID_MBUF + MC_CL == ZONE_ID_CLUSTER_2K);
static_assert(ZONE_ID_MBUF + MC_BIGCL == ZONE_ID_CLUSTER_4K);
static_assert(ZONE_ID_MBUF + MC_16KCL == ZONE_ID_CLUSTER_16K);
static_assert(ZONE_ID_MBUF + MC_MBUF_CL == ZONE_ID_MBUF_CLUSTER_2K);
static_assert(ZONE_ID_MBUF + MC_MBUF_BIGCL == ZONE_ID_MBUF_CLUSTER_4K);
static_assert(ZONE_ID_MBUF + MC_MBUF_16KCL == ZONE_ID_MBUF_CLUSTER_16K);
/* Converts a an mbuf class to a zalloc zone ID. */
__attribute__((always_inline))
static inline zone_id_t
m_class_to_zid(mbuf_class_t class)
{
return ZONE_ID_MBUF + class - MC_MBUF;
}
__attribute__((always_inline))
static inline mbuf_class_t
m_class_from_zid(zone_id_t zid)
{
return MC_MBUF + zid - ZONE_ID_MBUF;
}
static thread_call_t mbuf_defunct_tcall;
static thread_call_t mbuf_drain_tcall;
#endif /* CONFIG_MBUF_MCACHE */
static int m_copyback0(struct mbuf **, int, int, const void *, int, int);
static struct mbuf *m_split0(struct mbuf *, int, int, int);
#if CONFIG_MBUF_MCACHE && (DEBUG || DEVELOPMENT)
#define mbwdog_logger(fmt, ...) _mbwdog_logger(__func__, __LINE__, fmt, ## __VA_ARGS__)
static void _mbwdog_logger(const char *func, const int line, const char *fmt, ...);
static char *mbwdog_logging;
const unsigned mbwdog_logging_size = 4096;
static size_t mbwdog_logging_used;
#else
#define mbwdog_logger(fmt, ...) do { } while (0)
#endif /* CONFIG_MBUF_MCACHE &&DEBUG || DEVELOPMENT */
#if CONFIG_MBUF_MCACHE
static void mbuf_drain_locked(boolean_t);
#endif /* CONFIG_MBUF_MCACHE */
/* flags for m_copyback0 */
#define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */
#define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */
#define M_COPYBACK0_COW 0x0004 /* do copy-on-write */
#define M_COPYBACK0_EXTEND 0x0008 /* extend chain */
/*
* This flag is set for all mbufs that come out of and into the composite
* mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that
* are marked with such a flag have clusters attached to them, and will be
* treated differently when they are freed; instead of being placed back
* into the mbuf and cluster freelists, the composite mbuf + cluster objects
* are placed back into the appropriate composite cache's freelist, and the
* actual freeing is deferred until the composite objects are purged. At
* such a time, this flag will be cleared from the mbufs and the objects
* will be freed into their own separate freelists.
*/
#define EXTF_COMPOSITE 0x1
/*
* This flag indicates that the external cluster is read-only, i.e. it is
* or was referred to by more than one mbufs. Once set, this flag is never
* cleared.
*/
#define EXTF_READONLY 0x2
/*
* This flag indicates that the external cluster is paired with the mbuf.
* Pairing implies an external free routine defined which will be invoked
* when the reference count drops to the minimum at m_free time. This
* flag is never cleared.
*/
#define EXTF_PAIRED 0x4
#define EXTF_MASK \
(EXTF_COMPOSITE | EXTF_READONLY | EXTF_PAIRED)
#define MEXT_MINREF(m) ((m_get_rfa(m))->minref)
#define MEXT_REF(m) ((m_get_rfa(m))->refcnt)
#define MEXT_PREF(m) ((m_get_rfa(m))->prefcnt)
#define MEXT_FLAGS(m) ((m_get_rfa(m))->flags)
#define MEXT_PRIV(m) ((m_get_rfa(m))->priv)
#define MEXT_PMBUF(m) ((m_get_rfa(m))->paired)
#define MEXT_TOKEN(m) ((m_get_rfa(m))->ext_token)
#define MBUF_IS_COMPOSITE(m) \
(MEXT_REF(m) == MEXT_MINREF(m) && \
(MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE)
/*
* This macro can be used to test if the mbuf is paired to an external
* cluster. The test for MEXT_PMBUF being equal to the mbuf in subject
* is important, as EXTF_PAIRED alone is insufficient since it is immutable,
* and thus survives calls to m_free_paired.
*/
#define MBUF_IS_PAIRED(m) \
(((m)->m_flags & M_EXT) && \
(MEXT_FLAGS(m) & EXTF_MASK) == EXTF_PAIRED && \
MEXT_PMBUF(m) == (m))
/*
* Macros used to verify the integrity of the mbuf.
*/
#if CONFIG_MBUF_MCACHE
#define _MCHECK(m) { \
if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \
if (mclaudit == NULL) \
panic("MCHECK: m_type=%d m=%p", \
(u_int16_t)(m)->m_type, m); \
else \
mcl_audit_mcheck_panic(m); \
} \
}
#else
#define _MCHECK(m) \
if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \
panic("MCHECK: m_type=%d m=%p", \
(u_int16_t)(m)->m_type, m); \
}
#endif /* CONFIG_MBUF_MCACHE */
/*
* Macro version of mtod.
*/
#define MTOD(m, t) ((t)((m)->m_data))
#if CONFIG_MBUF_MCACHE
#define MBUF_IN_MAP(addr) \
((unsigned char *)(addr) >= mbutl && \
(unsigned char *)(addr) < embutl)
#define MRANGE(addr) { \
if (!MBUF_IN_MAP(addr)) \
panic("MRANGE: address out of range 0x%p", addr); \
}
/*
* Macros to obtain page index given a base cluster address
*/
#define MTOPG(x) (((unsigned char *)x - mbutl) >> PAGE_SHIFT)
#define PGTOM(x) (mbutl + (x << PAGE_SHIFT))
/*
* Macro to find the mbuf index relative to a base.
*/
#define MBPAGEIDX(c, m) \
(((unsigned char *)(m) - (unsigned char *)(c)) >> _MSIZESHIFT)
/*
* Same thing for 2KB cluster index.
*/
#define CLPAGEIDX(c, m) \
(((unsigned char *)(m) - (unsigned char *)(c)) >> MCLSHIFT)
/*
* Macro to find 4KB cluster index relative to a base
*/
#define BCLPAGEIDX(c, m) \
(((unsigned char *)(m) - (unsigned char *)(c)) >> MBIGCLSHIFT)
#endif /* CONFIG_MBUF_MCACHE */
/*
* Macros used during mbuf and cluster initialization.
*/
#define MBUF_INIT_PKTHDR(m) { \
(m)->m_pkthdr.rcvif = NULL; \
(m)->m_pkthdr.pkt_hdr = NULL; \
(m)->m_pkthdr.len = 0; \
(m)->m_pkthdr.csum_flags = 0; \
(m)->m_pkthdr.csum_data = 0; \
(m)->m_pkthdr.vlan_tag = 0; \
(m)->m_pkthdr.comp_gencnt = 0; \
(m)->m_pkthdr.pkt_crumbs = 0; \
m_classifier_init(m, 0); \
m_tag_init(m, 1); \
m_scratch_init(m); \
m_redzone_init(m); \
}
#define MBUF_INIT(m, pkthdr, type) { \
_MCHECK(m); \
(m)->m_next = (m)->m_nextpkt = NULL; \
(m)->m_len = 0; \
(m)->m_type = type; \
if ((pkthdr) == 0) { \
(m)->m_data = (uintptr_t)(m)->m_dat; \
(m)->m_flags = 0; \
} else { \
(m)->m_data = (uintptr_t)(m)->m_pktdat; \
(m)->m_flags = M_PKTHDR; \
MBUF_INIT_PKTHDR(m); \
} \
}
#define MEXT_INIT mext_init
#define MBUF_CL_INIT(m, buf, rfa, ref, flag) \
MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, 0, \
ref, 0, flag, 0, NULL)
#define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \
MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, 0, \
ref, 0, flag, 0, NULL)
#define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \
MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, 0, \
ref, 0, flag, 0, NULL)
/*
* Macro to convert BSD malloc sleep flag to mcache's
*/
#define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP)
/*
* The structure that holds all mbuf class statistics exportable via sysctl.
* Similar to mbstat structure, the mb_stat structure is protected by the
* global mbuf lock. It contains additional information about the classes
* that allows for a more accurate view of the state of the allocator.
*/
struct mb_stat *mb_stat;
struct omb_stat *omb_stat; /* For backwards compatibility */
#define MB_STAT_SIZE(n) \
__builtin_offsetof(mb_stat_t, mbs_class[n])
#define OMB_STAT_SIZE(n) \
__builtin_offsetof(struct omb_stat, mbs_class[n])
/*
* The legacy structure holding all of the mbuf allocation statistics.
* The actual statistics used by the kernel are stored in the mbuf_table
* instead, and are updated atomically while the global mbuf lock is held.
* They are mirrored in mbstat to support legacy applications (e.g. netstat).
* Unlike before, the kernel no longer relies on the contents of mbstat for
* its operations (e.g. cluster expansion) because the structure is exposed
* to outside and could possibly be modified, therefore making it unsafe.
* With the exception of the mbstat.m_mtypes array (see below), all of the
* statistics are updated as they change.
*/
struct mbstat mbstat;
#define MBSTAT_MTYPES_MAX \
(sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0]))
/*
* Allocation statistics related to mbuf types (up to MT_MAX-1) are updated
* atomically and stored in a per-CPU structure which is lock-free; this is
* done in order to avoid writing to the global mbstat data structure which
* would cause false sharing. During sysctl request for kern.ipc.mbstat,
* the statistics across all CPUs will be converged into the mbstat.m_mtypes
* array and returned to the application. Any updates for types greater or
* equal than MT_MAX would be done atomically to the mbstat; this slows down
* performance but is okay since the kernel uses only up to MT_MAX-1 while
* anything beyond that (up to type 255) is considered a corner case.
*/
typedef struct {
unsigned int cpu_mtypes[MT_MAX];
} mbuf_mtypes_t;
static mbuf_mtypes_t PERCPU_DATA(mbuf_mtypes);
#define mtype_stat_add(type, n) { \
if ((unsigned)(type) < MT_MAX) { \
mbuf_mtypes_t *mbs = PERCPU_GET(mbuf_mtypes); \
os_atomic_add(&mbs->cpu_mtypes[type], n, relaxed); \
} else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \
os_atomic_add((int16_t *)&mbstat.m_mtypes[type], n, relaxed); \
} \
}
#define mtype_stat_sub(t, n) mtype_stat_add(t, -(n))
#define mtype_stat_inc(t) mtype_stat_add(t, 1)
#define mtype_stat_dec(t) mtype_stat_sub(t, 1)
static inline void
mext_init(struct mbuf *m, void *__sized_by(size)buf, u_int size,
m_ext_free_func_t free, caddr_t free_arg, struct ext_ref *rfa,
u_int16_t min, u_int16_t ref, u_int16_t pref, u_int16_t flag,
u_int32_t priv, struct mbuf *pm)
{
m->m_ext.ext_buf = buf;
m->m_ext.ext_size = size;
m->m_data = (uintptr_t)m->m_ext.ext_buf;
m->m_len = 0;
m->m_flags |= M_EXT;
m_set_ext(m, rfa, free, free_arg);
MEXT_MINREF(m) = min;
MEXT_REF(m) = ref;
MEXT_PREF(m) = pref;
MEXT_FLAGS(m) = flag;
MEXT_PRIV(m) = priv;
MEXT_PMBUF(m) = pm;
}
static void
mbuf_mtypes_sync(boolean_t locked)
{
mbuf_mtypes_t mtc;
if (locked) {
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
}
mtc = *PERCPU_GET_MASTER(mbuf_mtypes);
percpu_foreach_secondary(mtype, mbuf_mtypes) {
for (int n = 0; n < MT_MAX; n++) {
mtc.cpu_mtypes[n] += mtype->cpu_mtypes[n];
}
}
if (!locked) {
lck_mtx_lock(mbuf_mlock);
}
for (int n = 0; n < MT_MAX; n++) {
mbstat.m_mtypes[n] = mtc.cpu_mtypes[n];
}
if (!locked) {
lck_mtx_unlock(mbuf_mlock);
}
}
static int
mbstat_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
#if CONFIG_MBUF_MCACHE
mbuf_mtypes_sync(FALSE);
#else
lck_mtx_lock(mbuf_mlock);
mbuf_stat_sync();
mbuf_mtypes_sync(TRUE);
lck_mtx_unlock(mbuf_mlock);
#endif
return SYSCTL_OUT(req, &mbstat, sizeof(mbstat));
}
static void
mbuf_stat_sync(void)
{
mb_class_stat_t *sp;
#if CONFIG_MBUF_MCACHE
mcache_cpu_t *ccp;
mcache_t *cp;
int k, m, bktsize;
#else
int k;
uint64_t drops = 0;
#endif /* CONFIG_MBUF_MCACHE */
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
#if CONFIG_MBUF_MCACHE
for (k = 0; k < NELEM(mbuf_table); k++) {
cp = m_cache(k);
ccp = &cp->mc_cpu[0];
bktsize = ccp->cc_bktsize;
sp = mbuf_table[k].mtbl_stats;
if (cp->mc_flags & MCF_NOCPUCACHE) {
sp->mbcl_mc_state = MCS_DISABLED;
} else if (cp->mc_purge_cnt > 0) {
sp->mbcl_mc_state = MCS_PURGING;
} else if (bktsize == 0) {
sp->mbcl_mc_state = MCS_OFFLINE;
} else {
sp->mbcl_mc_state = MCS_ONLINE;
}
sp->mbcl_mc_cached = 0;
for (m = 0; m < ncpu; m++) {
ccp = &cp->mc_cpu[m];
if (ccp->cc_objs > 0) {
sp->mbcl_mc_cached += ccp->cc_objs;
}
if (ccp->cc_pobjs > 0) {
sp->mbcl_mc_cached += ccp->cc_pobjs;
}
}
sp->mbcl_mc_cached += (cp->mc_full.bl_total * bktsize);
sp->mbcl_active = sp->mbcl_total - sp->mbcl_mc_cached -
sp->mbcl_infree;
sp->mbcl_mc_waiter_cnt = cp->mc_waiter_cnt;
sp->mbcl_mc_wretry_cnt = cp->mc_wretry_cnt;
sp->mbcl_mc_nwretry_cnt = cp->mc_nwretry_cnt;
/* Calculate total count specific to each class */
sp->mbcl_ctotal = sp->mbcl_total;
switch (m_class(k)) {
case MC_MBUF:
/* Deduct mbufs used in composite caches */
sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) +
m_total(MC_MBUF_BIGCL) - m_total(MC_MBUF_16KCL));
break;
case MC_CL:
/* Deduct clusters used in composite cache */
sp->mbcl_ctotal -= m_total(MC_MBUF_CL);
break;
case MC_BIGCL:
/* Deduct clusters used in composite cache */
sp->mbcl_ctotal -= m_total(MC_MBUF_BIGCL);
break;
case MC_16KCL:
/* Deduct clusters used in composite cache */
sp->mbcl_ctotal -= m_total(MC_MBUF_16KCL);
break;
default:
break;
}
}
#else
for (k = 0; k < NELEM(mbuf_table); k++) {
const zone_id_t zid = m_class_to_zid(m_class(k));
const zone_t zone = zone_by_id(zid);
struct zone_basic_stats stats = {};
sp = m_stats(k);
zone_get_stats(zone, &stats);
drops += stats.zbs_alloc_fail;
sp->mbcl_total = stats.zbs_avail;
sp->mbcl_active = stats.zbs_alloc;
/*
* infree is what mcache considers the freelist (uncached)
* free_cnt contains all the cached/uncached elements
* in a zone.
*/
sp->mbcl_infree = stats.zbs_free - stats.zbs_cached;
sp->mbcl_fail_cnt = stats.zbs_alloc_fail;
sp->mbcl_ctotal = sp->mbcl_total;
/* These stats are not available in zalloc. */
sp->mbcl_alloc_cnt = 0;
sp->mbcl_free_cnt = 0;
sp->mbcl_notified = 0;
sp->mbcl_purge_cnt = 0;
sp->mbcl_slab_cnt = 0;
sp->mbcl_release_cnt = 0;
/* zalloc caches are always on. */
sp->mbcl_mc_state = MCS_ONLINE;
sp->mbcl_mc_cached = stats.zbs_cached;
/* These stats are not collected by zalloc. */
sp->mbcl_mc_waiter_cnt = 0;
sp->mbcl_mc_wretry_cnt = 0;
sp->mbcl_mc_nwretry_cnt = 0;
}
/* Deduct clusters used in composite cache */
m_ctotal(MC_MBUF) -= (m_total(MC_MBUF_CL) +
m_total(MC_MBUF_BIGCL) -
m_total(MC_MBUF_16KCL));
m_ctotal(MC_CL) -= m_total(MC_MBUF_CL);
m_ctotal(MC_BIGCL) -= m_total(MC_MBUF_BIGCL);
m_ctotal(MC_16KCL) -= m_total(MC_MBUF_16KCL);
/* Update mbstat. */
mbstat.m_mbufs = m_total(MC_MBUF);
mbstat.m_clusters = m_total(MC_CL);
mbstat.m_clfree = m_infree(MC_CL) + m_infree(MC_MBUF_CL);
mbstat.m_drops = drops;
mbstat.m_bigclusters = m_total(MC_BIGCL);
mbstat.m_bigclfree = m_infree(MC_BIGCL) + m_infree(MC_MBUF_BIGCL);
#endif /* CONFIG_MBUF_MCACHE */
}
static int
mb_stat_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
void *statp;
int k, statsz, proc64 = proc_is64bit(req->p);
lck_mtx_lock(mbuf_mlock);
mbuf_stat_sync();
if (!proc64) {
struct omb_class_stat *oc;
struct mb_class_stat *c;
omb_stat->mbs_cnt = mb_stat->mbs_cnt;
oc = &omb_stat->mbs_class[0];
c = &mb_stat->mbs_class[0];
for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) {
(void) snprintf(oc->mbcl_cname, sizeof(oc->mbcl_cname),
"%s", c->mbcl_cname);
oc->mbcl_size = c->mbcl_size;
oc->mbcl_total = c->mbcl_total;
oc->mbcl_active = c->mbcl_active;
oc->mbcl_infree = c->mbcl_infree;
oc->mbcl_slab_cnt = c->mbcl_slab_cnt;
oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt;
oc->mbcl_free_cnt = c->mbcl_free_cnt;
oc->mbcl_notified = c->mbcl_notified;
oc->mbcl_purge_cnt = c->mbcl_purge_cnt;
oc->mbcl_fail_cnt = c->mbcl_fail_cnt;
oc->mbcl_ctotal = c->mbcl_ctotal;
oc->mbcl_release_cnt = c->mbcl_release_cnt;
oc->mbcl_mc_state = c->mbcl_mc_state;
oc->mbcl_mc_cached = c->mbcl_mc_cached;
oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt;
oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt;
oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt;
}
statp = omb_stat;
statsz = OMB_STAT_SIZE(NELEM(mbuf_table));
} else {
statp = mb_stat;
statsz = MB_STAT_SIZE(NELEM(mbuf_table));
}
lck_mtx_unlock(mbuf_mlock);
return SYSCTL_OUT(req, statp, statsz);
}
#if !CONFIG_MBUF_MCACHE
/*
* The following functions are wrappers around mbuf
* allocation for zalloc. They all have the prefix "mz"
* which was chosen to avoid conflicts with the mbuf KPIs.
*
* Z_NOPAGEWAIT is used in place of Z_NOWAIT because
* Z_NOPAGEWAIT maps closer to MCR_TRYHARD. Z_NOWAIT will
* fail immediately if it has to take a mutex and that
* may cause packets to be dropped more frequently.
* In general, the mbuf subsystem can sustain grabbing a mutex
* during "non-blocking" allocation and that's the reason
* why Z_NOPAGEWAIT was chosen.
*
* mbufs are elided (removed all pointers) before they are
* returned to the cache. The exception are composite mbufs which
* are re-initialized on allocation.
*/
__attribute__((always_inline))
static inline void
m_elide(struct mbuf *m)
{
m->m_next = m->m_nextpkt = NULL;
m->m_data = 0;
memset(&m->m_ext, 0, sizeof(m->m_ext));
m->m_pkthdr.rcvif = NULL;
m->m_pkthdr.pkt_hdr = NULL;
m->m_flags |= M_PKTHDR;
m_tag_init(m, 1);
m->m_pkthdr.pkt_flags = 0;
m_scratch_init(m);
m->m_pkthdr.redzone = 0;
m->m_flags &= ~M_PKTHDR;
}
__attribute__((always_inline))
static inline struct mbuf *
mz_alloc(zalloc_flags_t flags)
{
if (flags & Z_NOWAIT) {
flags ^= Z_NOWAIT | Z_NOPAGEWAIT;
} else if (!(flags & Z_NOPAGEWAIT)) {
flags |= Z_NOFAIL;
}
return zalloc_id(ZONE_ID_MBUF, flags | Z_NOZZC);
}
__attribute__((always_inline))
static inline zstack_t
mz_alloc_n(uint32_t count, zalloc_flags_t flags)
{
if (flags & Z_NOWAIT) {
flags ^= Z_NOWAIT | Z_NOPAGEWAIT;
} else if (!(flags & Z_NOPAGEWAIT)) {
flags |= Z_NOFAIL;
}
return zalloc_n(ZONE_ID_MBUF, count, flags | Z_NOZZC);
}
__attribute__((always_inline))
static inline void
mz_free(struct mbuf *m)
{
#if KASAN
zone_require(zone_by_id(ZONE_ID_MBUF), m);
#endif
m_elide(m);
zfree_nozero(ZONE_ID_MBUF, m);
}
__attribute__((always_inline))
static inline void
mz_free_n(zstack_t list)
{
/* Callers of this function have already elided the mbuf. */
zfree_nozero_n(ZONE_ID_MBUF, list);
}
__attribute__((always_inline))
static inline struct ext_ref *
mz_ref_alloc(zalloc_flags_t flags)
{
if (flags & Z_NOWAIT) {
flags ^= Z_NOWAIT | Z_NOPAGEWAIT;
}
return zalloc_id(ZONE_ID_MBUF_REF, flags | Z_NOZZC);
}
__attribute__((always_inline))
static inline void
mz_ref_free(struct ext_ref *rfa)
{
VERIFY(rfa->minref == rfa->refcnt);
#if KASAN
zone_require(zone_by_id(ZONE_ID_MBUF_REF), rfa);
#endif
zfree_nozero(ZONE_ID_MBUF_REF, rfa);
}
__attribute__((always_inline))
static inline void *
mz_cl_alloc(zone_id_t zid, zalloc_flags_t flags)
{
if (flags & Z_NOWAIT) {
flags ^= Z_NOWAIT | Z_NOPAGEWAIT;
} else if (!(flags & Z_NOPAGEWAIT)) {
flags |= Z_NOFAIL;
}
return (zalloc_id)(zid, flags | Z_NOZZC);
}
__attribute__((always_inline))
static inline void
mz_cl_free(zone_id_t zid, void *cl)
{
#if KASAN
zone_require(zone_by_id(zid), cl);
#endif
zfree_nozero(zid, cl);
}
__attribute__((always_inline))
static inline zstack_t
mz_composite_alloc_n(mbuf_class_t class, unsigned int n, zalloc_flags_t flags)
{
if (flags & Z_NOWAIT) {
flags ^= Z_NOWAIT | Z_NOPAGEWAIT;
}
return (zcache_alloc_n)(m_class_to_zid(class), n, flags,
&mz_composite_ops);
}
__attribute__((always_inline))
static inline struct mbuf *
mz_composite_alloc(mbuf_class_t class, zalloc_flags_t flags)
{
zstack_t list = {};
list = mz_composite_alloc_n(class, 1, flags);
if (!zstack_empty(list)) {
return zstack_pop(&list);
} else {
return NULL;
}
}
__attribute__((always_inline))
static inline void
mz_composite_free_n(mbuf_class_t class, zstack_t list)
{
(zcache_free_n)(m_class_to_zid(class), list, &mz_composite_ops);
}
__attribute__((always_inline))
static inline void
mz_composite_free(mbuf_class_t class, struct mbuf *m)
{
zstack_t list = {};
zstack_push(&list, m);
(zcache_free_n)(m_class_to_zid(class), list, &mz_composite_ops);
}
/* Converts composite zone ID to the cluster zone ID. */
__attribute__((always_inline))
static inline zone_id_t
mz_cl_zid(zone_id_t zid)
{
return ZONE_ID_CLUSTER_2K + zid - ZONE_ID_MBUF_CLUSTER_2K;
}
static void *
mz_composite_build(zone_id_t zid, zalloc_flags_t flags)
{
const zone_id_t cl_zid = mz_cl_zid(zid);
struct mbuf *m = NULL;
struct ext_ref *rfa = NULL;
void *cl = NULL;
cl = mz_cl_alloc(cl_zid, flags);
if (__improbable(cl == NULL)) {
goto out;
}
rfa = mz_ref_alloc(flags);
if (__improbable(rfa == NULL)) {
goto out_free_cl;
}
m = mz_alloc(flags);
if (__improbable(m == NULL)) {
goto out_free_rfa;
}
MBUF_INIT(m, 0, MT_FREE);
if (zid == ZONE_ID_MBUF_CLUSTER_2K) {
MBUF_CL_INIT(m, cl, rfa, 0, EXTF_COMPOSITE);
} else if (zid == ZONE_ID_MBUF_CLUSTER_4K) {
MBUF_BIGCL_INIT(m, cl, rfa, 0, EXTF_COMPOSITE);
} else {
MBUF_16KCL_INIT(m, cl, rfa, 0, EXTF_COMPOSITE);
}
VERIFY(m->m_flags == M_EXT);
VERIFY(m_get_rfa(m) != NULL && MBUF_IS_COMPOSITE(m));
return m;
out_free_rfa:
mz_ref_free(rfa);
out_free_cl:
mz_cl_free(cl_zid, cl);
out:
return NULL;
}
static void *
mz_composite_mark_valid(zone_id_t zid, void *p)
{
struct mbuf *m = p;
m = zcache_mark_valid(zone_by_id(ZONE_ID_MBUF), m);
#if KASAN
struct ext_ref *rfa = m_get_rfa(m);
const zone_id_t cl_zid = mz_cl_zid(zid);
void *cl = m->m_ext.ext_buf;
cl = zcache_mark_valid(zone_by_id(cl_zid), cl);
rfa = zcache_mark_valid(zone_by_id(ZONE_ID_MBUF_REF), rfa);
m->m_data = (uintptr_t)cl;
m->m_ext.ext_buf = cl;
m_set_rfa(m, rfa);
#else
#pragma unused(zid)
#endif
VERIFY(MBUF_IS_COMPOSITE(m));
return m;
}
static void *
mz_composite_mark_invalid(zone_id_t zid, void *p)
{
struct mbuf *m = p;
VERIFY(MBUF_IS_COMPOSITE(m));
VERIFY(MEXT_REF(m) == MEXT_MINREF(m));
#if KASAN
struct ext_ref *rfa = m_get_rfa(m);
const zone_id_t cl_zid = mz_cl_zid(zid);
void *cl = m->m_ext.ext_buf;
cl = zcache_mark_invalid(zone_by_id(cl_zid), cl);
rfa = zcache_mark_invalid(zone_by_id(ZONE_ID_MBUF_REF), rfa);
m->m_data = (uintptr_t)cl;
m->m_ext.ext_buf = cl;
m_set_rfa(m, rfa);
#else
#pragma unused(zid)
#endif
return zcache_mark_invalid(zone_by_id(ZONE_ID_MBUF), m);
}
static void
mz_composite_destroy(zone_id_t zid, void *p)
{
const zone_id_t cl_zid = mz_cl_zid(zid);
struct ext_ref *rfa = NULL;
struct mbuf *m = p;
VERIFY(MBUF_IS_COMPOSITE(m));
MEXT_MINREF(m) = 0;
MEXT_REF(m) = 0;
MEXT_PREF(m) = 0;
MEXT_FLAGS(m) = 0;
MEXT_PRIV(m) = 0;
MEXT_PMBUF(m) = NULL;
MEXT_TOKEN(m) = 0;
rfa = m_get_rfa(m);
m_set_ext(m, NULL, NULL, NULL);
m->m_type = MT_FREE;
m->m_flags = m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
mz_cl_free(cl_zid, m->m_ext.ext_buf);
m->m_ext.ext_buf = NULL;
mz_ref_free(rfa);
mz_free(m);
}
#endif /* !CONFIG_MBUF_MCACHE */
#if CONFIG_MBUF_MCACHE
static int
mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int i;
/* Ensure leak tracing turned on */
if (!mclfindleak || !mclexpleak) {
return ENXIO;
}
lck_mtx_lock(mleak_lock);
mleak_update_stats();
i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES));
lck_mtx_unlock(mleak_lock);
return i;
}
static int
mleak_table_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int i = 0;
/* Ensure leak tracing turned on */
if (!mclfindleak || !mclexpleak) {
return ENXIO;
}
lck_mtx_lock(mleak_lock);
i = SYSCTL_OUT(req, &mleak_table, sizeof(mleak_table));
lck_mtx_unlock(mleak_lock);
return i;
}
#endif /* CONFIG_MBUF_MCACHE */
static inline void
m_incref(struct mbuf *m)
{
uint16_t new = os_atomic_inc(&MEXT_REF(m), relaxed);
VERIFY(new != 0);
/*
* If cluster is shared, mark it with (sticky) EXTF_READONLY;
* we don't clear the flag when the refcount goes back to the
* minimum, to simplify code calling m_mclhasreference().
*/
if (new > (MEXT_MINREF(m) + 1) && !(MEXT_FLAGS(m) & EXTF_READONLY)) {
os_atomic_or(&MEXT_FLAGS(m), EXTF_READONLY, relaxed);
}
}
static inline uint16_t
m_decref(struct mbuf *m)
{
VERIFY(MEXT_REF(m) != 0);
return os_atomic_dec(&MEXT_REF(m), acq_rel);
}
static void
mbuf_table_init(void)
{
unsigned int b, c, s;
int m, config_mbuf_jumbo = 0;
omb_stat = zalloc_permanent(OMB_STAT_SIZE(NELEM(mbuf_table)),
ZALIGN(struct omb_stat));
mb_stat = zalloc_permanent(MB_STAT_SIZE(NELEM(mbuf_table)),
ZALIGN(mb_stat_t));
mb_stat->mbs_cnt = NELEM(mbuf_table);
for (m = 0; m < NELEM(mbuf_table); m++) {
mbuf_table[m].mtbl_stats = &mb_stat->mbs_class[m];
}
#if CONFIG_MBUF_JUMBO
config_mbuf_jumbo = 1;
#endif /* CONFIG_MBUF_JUMBO */
if (config_mbuf_jumbo == 1 || PAGE_SIZE == M16KCLBYTES) {
/*
* Set aside 1/3 of the mbuf cluster map for jumbo
* clusters; we do this only on platforms where jumbo
* cluster pool is enabled.
*/
njcl = nmbclusters / 3;
njclbytes = M16KCLBYTES;
}
/*
* nclusters holds both the 2KB and 4KB pools, so ensure it's
* a multiple of 4KB clusters.
*/
nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG);
if (njcl > 0) {
/*
* Each jumbo cluster takes 8 2KB clusters, so make
* sure that the pool size is evenly divisible by 8;
* njcl is in 2KB unit, hence treated as such.
*/
njcl = P2ROUNDDOWN(nmbclusters - nclusters, NCLPJCL);
/* Update nclusters with rounded down value of njcl */
nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG);
}
/*
* njcl is valid only on platforms with 16KB jumbo clusters or
* with 16KB pages, where it is configured to 1/3 of the pool
* size. On these platforms, the remaining is used for 2KB
* and 4KB clusters. On platforms without 16KB jumbo clusters,
* the entire pool is used for both 2KB and 4KB clusters. A 4KB
* cluster can either be splitted into 16 mbufs, or into 2 2KB
* clusters.
*
* +---+---+------------ ... -----------+------- ... -------+
* | c | b | s | njcl |
* +---+---+------------ ... -----------+------- ... -------+
*
* 1/32th of the shared region is reserved for pure 2KB and 4KB
* clusters (1/64th each.)
*/
c = P2ROUNDDOWN((nclusters >> 6), NCLPG); /* in 2KB unit */
b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), NBCLPG); /* in 4KB unit */
s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */
/*
* 1/64th (c) is reserved for 2KB clusters.
*/
m_minlimit(MC_CL) = c;
m_maxlimit(MC_CL) = s + c; /* in 2KB unit */
m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES;
snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl");
/*
* Another 1/64th (b) of the map is reserved for 4KB clusters.
* It cannot be turned into 2KB clusters or mbufs.
*/
m_minlimit(MC_BIGCL) = b;
m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */
m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES;
snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl");
/*
* The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB)
*/
m_minlimit(MC_MBUF) = 0;
m_maxlimit(MC_MBUF) = s * NMBPCL; /* in mbuf unit */
m_maxsize(MC_MBUF) = m_size(MC_MBUF) = _MSIZE;
snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf");
/*
* Set limits for the composite classes.
*/
m_minlimit(MC_MBUF_CL) = 0;
m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL);
m_maxsize(MC_MBUF_CL) = MCLBYTES;
m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL);
snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl");
m_minlimit(MC_MBUF_BIGCL) = 0;
m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL);
m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES;
m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL);
snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl");
/*
* And for jumbo classes.
*/
m_minlimit(MC_16KCL) = 0;
m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */
m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES;
snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl");
m_minlimit(MC_MBUF_16KCL) = 0;
m_maxlimit(MC_MBUF_16KCL) = m_maxlimit(MC_16KCL);
m_maxsize(MC_MBUF_16KCL) = M16KCLBYTES;
m_size(MC_MBUF_16KCL) = m_size(MC_MBUF) + m_size(MC_16KCL);
snprintf(m_cname(MC_MBUF_16KCL), MAX_MBUF_CNAME, "mbuf_16kcl");
/*
* Initialize the legacy mbstat structure.
*/
bzero(&mbstat, sizeof(mbstat));
mbstat.m_msize = m_maxsize(MC_MBUF);
mbstat.m_mclbytes = m_maxsize(MC_CL);
mbstat.m_minclsize = MINCLSIZE;
mbstat.m_mlen = MLEN;
mbstat.m_mhlen = MHLEN;
mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL);
}
static int
mbuf_get_class(struct mbuf *m)
{
if (m->m_flags & M_EXT) {
uint32_t composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
m_ext_free_func_t m_free_func = m_get_ext_free(m);
if (m_free_func == NULL) {
if (composite) {
return MC_MBUF_CL;
} else {
return MC_CL;
}
} else if (m_free_func == m_bigfree) {
if (composite) {
return MC_MBUF_BIGCL;
} else {
return MC_BIGCL;
}
} else if (m_free_func == m_16kfree) {
if (composite) {
return MC_MBUF_16KCL;
} else {
return MC_16KCL;
}
}
}
return MC_MBUF;
}
bool
mbuf_class_under_pressure(struct mbuf *m)
{
int mclass = mbuf_get_class(m);
#if CONFIG_MBUF_MCACHE
if (m_total(mclass) - m_infree(mclass) >= (m_maxlimit(mclass) * mb_memory_pressure_percentage) / 100) {
/*
* The above computation does not include the per-CPU cached objects.
* As a fast-path check this is good-enough. But now we do
* the "slower" count of the cached objects to know exactly the
* number of active mbufs in use.
*
* We do not take the mbuf_lock here to avoid lock-contention. Numbers
* might be slightly off but we don't try to be 100% accurate.
* At worst, we drop a packet that we shouldn't have dropped or
* we might go slightly above our memory-pressure threshold.
*/
mcache_t *cp = m_cache(mclass);
mcache_cpu_t *ccp = &cp->mc_cpu[0];
int bktsize = os_access_once(ccp->cc_bktsize);
uint32_t bl_total = os_access_once(cp->mc_full.bl_total);
uint32_t cached = 0;
int i;
for (i = 0; i < ncpu; i++) {
ccp = &cp->mc_cpu[i];
int cc_objs = os_access_once(ccp->cc_objs);
if (cc_objs > 0) {
cached += cc_objs;
}
int cc_pobjs = os_access_once(ccp->cc_pobjs);
if (cc_pobjs > 0) {
cached += cc_pobjs;
}
}
cached += (bl_total * bktsize);
if (m_total(mclass) - m_infree(mclass) - cached >= (m_maxlimit(mclass) * mb_memory_pressure_percentage) / 100) {
os_log(OS_LOG_DEFAULT,
"%s memory-pressure on mbuf due to class %u, total %u free %u cached %u max %u",
__func__, mclass, m_total(mclass), m_infree(mclass), cached, m_maxlimit(mclass));
return true;
}
}
#else
/*
* Grab the statistics from zalloc.
* We can't call mbuf_stat_sync() since that requires a lock.
*/
const zone_id_t zid = m_class_to_zid(m_class(mclass));
const zone_t zone = zone_by_id(zid);
struct zone_basic_stats stats = {};
zone_get_stats(zone, &stats);
if (stats.zbs_avail - stats.zbs_free >= (m_maxlimit(mclass) * mb_memory_pressure_percentage) / 100) {
os_log(OS_LOG_DEFAULT,
"%s memory-pressure on mbuf due to class %u, total %llu free %llu max %u",
__func__, mclass, stats.zbs_avail, stats.zbs_free, m_maxlimit(mclass));
return true;
}
#endif /* CONFIG_MBUF_MCACHE */
return false;
}
#if defined(__LP64__)
typedef struct ncl_tbl {
uint64_t nt_maxmem; /* memory (sane) size */
uint32_t nt_mbpool; /* mbuf pool size */
} ncl_tbl_t;
static const ncl_tbl_t ncl_table[] = {
{ (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ },
{ (1ULL << (GBSHIFT + 2)) /* 4 GB */, (96 << MBSHIFT) /* 96 MB */ },
{ (1ULL << (GBSHIFT + 3)) /* 8 GB */, (128 << MBSHIFT) /* 128 MB */ },
{ (1ULL << (GBSHIFT + 4)) /* 16 GB */, (256 << MBSHIFT) /* 256 MB */ },
{ (1ULL << (GBSHIFT + 5)) /* 32 GB */, (512 << MBSHIFT) /* 512 MB */ },
{ 0, 0 }
};
#endif /* __LP64__ */
__private_extern__ unsigned int
mbuf_default_ncl(uint64_t mem)
{
#if !defined(__LP64__)
unsigned int n;
/*
* 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM).
*/
if ((n = ((mem / 16) / MCLBYTES)) > 32768) {
n = 32768;
}
#else
unsigned int n, i;
/*
* 64-bit kernel (mbuf pool size based on table).
*/
n = ncl_table[0].nt_mbpool;
for (i = 0; ncl_table[i].nt_mbpool != 0; i++) {
if (mem < ncl_table[i].nt_maxmem) {
break;
}
n = ncl_table[i].nt_mbpool;
}
n >>= MCLSHIFT;
#endif /* !__LP64__ */
return n;
}
__private_extern__ void
mbinit(void)
{
unsigned int m;
#if CONFIG_MBUF_MCACHE
unsigned int initmcl = 0;
thread_t thread = THREAD_NULL;
#endif /* CONFIG_MBUF_MCACHE */
#if CONFIG_MBUF_MCACHE
microuptime(&mb_start);
#endif /* CONFIG_MBUF_MCACHE */
/*
* These MBUF_ values must be equal to their private counterparts.
*/
_CASSERT(MBUF_EXT == M_EXT);
_CASSERT(MBUF_PKTHDR == M_PKTHDR);
_CASSERT(MBUF_EOR == M_EOR);
_CASSERT(MBUF_LOOP == M_LOOP);
_CASSERT(MBUF_BCAST == M_BCAST);
_CASSERT(MBUF_MCAST == M_MCAST);
_CASSERT(MBUF_FRAG == M_FRAG);
_CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG);
_CASSERT(MBUF_LASTFRAG == M_LASTFRAG);
_CASSERT(MBUF_PROMISC == M_PROMISC);
_CASSERT(MBUF_HASFCS == M_HASFCS);
_CASSERT(MBUF_TYPE_FREE == MT_FREE);
_CASSERT(MBUF_TYPE_DATA == MT_DATA);
_CASSERT(MBUF_TYPE_HEADER == MT_HEADER);
_CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET);
_CASSERT(MBUF_TYPE_PCB == MT_PCB);
_CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE);
_CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE);
_CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE);
_CASSERT(MBUF_TYPE_SONAME == MT_SONAME);
_CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS);
_CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE);
_CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS);
_CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR);
_CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL);
_CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA);
_CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4);
_CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6);
_CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_PARTIAL);
_CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16);
_CASSERT(MBUF_CSUM_REQ_ZERO_INVERT == CSUM_ZERO_INVERT);
_CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP);
_CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP);
_CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP);
_CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6);
_CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6);
_CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED);
_CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID);
_CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID);
_CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR);
_CASSERT(MBUF_WAITOK == M_WAIT);
_CASSERT(MBUF_DONTWAIT == M_DONTWAIT);
_CASSERT(MBUF_COPYALL == M_COPYALL);
_CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK);
_CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK);
_CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE);
_CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE);
_CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE);
_CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI);
_CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI);
_CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI);
_CASSERT(MBUF_SC2TC(MBUF_SC_SIG) == MBUF_TC_VI);
_CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO);
_CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO);
_CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK);
_CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE);
_CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI);
_CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO);
/* Module specific scratch space (32-bit alignment requirement) */
_CASSERT(!(offsetof(struct mbuf, m_pkthdr.pkt_mpriv) %
sizeof(uint32_t)));
/* pktdata needs to start at 128-bit offset! */
_CASSERT((offsetof(struct mbuf, m_pktdat) % 16) == 0);
/* Initialize random red zone cookie value */
_CASSERT(sizeof(mb_redzone_cookie) ==
sizeof(((struct pkthdr *)0)->redzone));
read_random(&mb_redzone_cookie, sizeof(mb_redzone_cookie));
read_random(&mb_obscure_extref, sizeof(mb_obscure_extref));
read_random(&mb_obscure_extfree, sizeof(mb_obscure_extfree));
mb_obscure_extref |= 0x3;
mb_obscure_extref = 0;
mb_obscure_extfree |= 0x3;
#if CONFIG_MBUF_MCACHE
/* Make sure we don't save more than we should */
_CASSERT(MCA_SAVED_MBUF_SIZE <= sizeof(struct mbuf));
#endif /* CONFIG_MBUF_MCACHE */
if (nmbclusters == 0) {
nmbclusters = NMBCLUSTERS;
}
/* This should be a sane (at least even) value by now */
VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1));
/* Setup the mbuf table */
mbuf_table_init();
_CASSERT(sizeof(struct mbuf) == _MSIZE);
#if CONFIG_MBUF_MCACHE
/*
* Allocate cluster slabs table:
*
* maxslabgrp = (N * 2048) / (1024 * 1024)
*
* Where N is nmbclusters rounded up to the nearest 512. This yields
* mcl_slab_g_t units, each one representing a MB of memory.
*/
maxslabgrp =
(P2ROUNDUP(nmbclusters, (MBSIZE >> MCLSHIFT)) << MCLSHIFT) >> MBSHIFT;
slabstbl = zalloc_permanent(maxslabgrp * sizeof(mcl_slabg_t *),
ZALIGN(mcl_slabg_t));
/*
* Allocate audit structures, if needed:
*
* maxclaudit = (maxslabgrp * 1024 * 1024) / PAGE_SIZE
*
* This yields mcl_audit_t units, each one representing a page.
*/
PE_parse_boot_argn("mbuf_debug", &mbuf_debug, sizeof(mbuf_debug));
mbuf_debug |= mcache_getflags();
if (mbuf_debug & MCF_DEBUG) {
int l;
mcl_audit_t *mclad;
maxclaudit = ((maxslabgrp << MBSHIFT) >> PAGE_SHIFT);
mclaudit = zalloc_permanent(maxclaudit * sizeof(*mclaudit),
ZALIGN(mcl_audit_t));
for (l = 0, mclad = mclaudit; l < maxclaudit; l++) {
mclad[l].cl_audit = zalloc_permanent(NMBPG * sizeof(mcache_audit_t *),
ZALIGN_PTR);
}
mcl_audit_con_cache = mcache_create("mcl_audit_contents",
AUDIT_CONTENTS_SIZE, sizeof(u_int64_t), 0, MCR_SLEEP);
VERIFY(mcl_audit_con_cache != NULL);
}
mclverify = (mbuf_debug & MCF_VERIFY);
mcltrace = (mbuf_debug & MCF_TRACE);
mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG);
mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG);
/* Enable mbuf leak logging, with a lock to protect the tables */
mleak_activate();
/*
* Allocate structure for per-CPU statistics that's aligned
* on the CPU cache boundary; this code assumes that we never
* uninitialize this framework, since the original address
* before alignment is not saved.
*/
ncpu = ml_wait_max_cpus();
/* Calculate the number of pages assigned to the cluster pool */
mcl_pages = (nmbclusters << MCLSHIFT) / PAGE_SIZE;
mcl_paddr = zalloc_permanent(mcl_pages * sizeof(ppnum_t),
ZALIGN(ppnum_t));
/* Register with the I/O Bus mapper */
mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages);
embutl = (mbutl + (nmbclusters * MCLBYTES));
VERIFY(((embutl - mbutl) % MBIGCLBYTES) == 0);
/* Prime up the freelist */
PE_parse_boot_argn("initmcl", &initmcl, sizeof(initmcl));
if (initmcl != 0) {
initmcl >>= NCLPBGSHIFT; /* become a 4K unit */
if (initmcl > m_maxlimit(MC_BIGCL)) {
initmcl = m_maxlimit(MC_BIGCL);
}
}
if (initmcl < m_minlimit(MC_BIGCL)) {
initmcl = m_minlimit(MC_BIGCL);
}
lck_mtx_lock(mbuf_mlock);
/*
* For classes with non-zero minimum limits, populate their freelists
* so that m_total(class) is at least m_minlimit(class).
*/
VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0);
freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT);
VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL));
freelist_init(m_class(MC_CL));
#else
/*
* We have yet to create the non composite zones
* and thus we haven't asked zalloc to allocate
* anything yet, which means that at this point
* m_total() is zero. Once we create the zones and
* raise the reserve, m_total() will be calculated,
* but until then just assume that we will have
* at least the minium limit allocated.
*/
m_total(MC_BIGCL) = m_minlimit(MC_BIGCL);
m_total(MC_CL) = m_minlimit(MC_CL);
#endif /* CONFIG_MBUF_MCACHE */
for (m = 0; m < NELEM(mbuf_table); m++) {
/* Make sure we didn't miss any */
VERIFY(m_minlimit(m_class(m)) == 0 ||
m_total(m_class(m)) >= m_minlimit(m_class(m)));
}
#if CONFIG_MBUF_MCACHE
lck_mtx_unlock(mbuf_mlock);
(void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init,
NULL, &thread);
thread_deallocate(thread);
ref_cache = mcache_create("mext_ref", sizeof(struct ext_ref),
0, 0, MCR_SLEEP);
#endif /* CONFIG_MBUF_MCACHE */
/* Create the cache for each class */
for (m = 0; m < NELEM(mbuf_table); m++) {
#if CONFIG_MBUF_MCACHE
void *allocfunc, *freefunc, *auditfunc, *logfunc;
u_int32_t flags;
flags = mbuf_debug;
if (m_class(m) == MC_MBUF_CL || m_class(m) == MC_MBUF_BIGCL ||
m_class(m) == MC_MBUF_16KCL) {
allocfunc = mbuf_cslab_alloc;
freefunc = mbuf_cslab_free;
auditfunc = mbuf_cslab_audit;
logfunc = mleak_logger;
} else {
allocfunc = mbuf_slab_alloc;
freefunc = mbuf_slab_free;
auditfunc = mbuf_slab_audit;
logfunc = mleak_logger;
}
/*
* Disable per-CPU caches for jumbo classes if there
* is no jumbo cluster pool available in the system.
* The cache itself is still created (but will never
* be populated) since it simplifies the code.
*/
if ((m_class(m) == MC_MBUF_16KCL || m_class(m) == MC_16KCL) &&
njcl == 0) {
flags |= MCF_NOCPUCACHE;
}
if (!mclfindleak) {
flags |= MCF_NOLEAKLOG;
}
m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m),
allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify,
(void *)(uintptr_t)m, flags, MCR_SLEEP);
#else
if (!MBUF_CLASS_COMPOSITE(m)) {
zone_t zone = zone_by_id(m_class_to_zid(m));
zone_set_exhaustible(zone, m_maxlimit(m), false);
zone_raise_reserve(zone, m_minlimit(m));
/*
* Pretend that we have allocated m_total() items
* at this point. zalloc will eventually do that
* but it's an async operation.
*/
m_total(m) = m_minlimit(m);
}
#endif /* CONFIG_MBUF_MCACHE */
}
/*
* Set the max limit on sb_max to be 1/16 th of the size of
* memory allocated for mbuf clusters.
*/
high_sb_max = (nmbclusters << (MCLSHIFT - 4));
if (high_sb_max < sb_max) {
/* sb_max is too large for this configuration, scale it down */
if (high_sb_max > (1 << MBSHIFT)) {
/* We have atleast 16 M of mbuf pool */
sb_max = high_sb_max;
} else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) {
/*
* If we have more than 1M of mbufpool, cap the size of
* max sock buf at 1M
*/
sb_max = high_sb_max = (1 << MBSHIFT);
} else {
sb_max = high_sb_max;
}
}
#if CONFIG_MBUF_MCACHE
/* allocate space for mbuf_dump_buf */
mbuf_dump_buf = zalloc_permanent(MBUF_DUMP_BUF_SIZE, ZALIGN_NONE);
if (mbuf_debug & MCF_DEBUG) {
printf("%s: MLEN %d, MHLEN %d\n", __func__,
(int)_MLEN, (int)_MHLEN);
}
#else
mbuf_defunct_tcall =
thread_call_allocate_with_options(mbuf_watchdog_defunct,
NULL,
THREAD_CALL_PRIORITY_KERNEL,
THREAD_CALL_OPTIONS_ONCE);
mbuf_drain_tcall =
thread_call_allocate_with_options(mbuf_watchdog_drain_composite,
NULL,
THREAD_CALL_PRIORITY_KERNEL,
THREAD_CALL_OPTIONS_ONCE);
#endif /* CONFIG_MBUF_MCACHE */
printf("%s: done [%d MB total pool size, (%d/%d) split]\n", __func__,
(nmbclusters << MCLSHIFT) >> MBSHIFT,
(nclusters << MCLSHIFT) >> MBSHIFT,
(njcl << MCLSHIFT) >> MBSHIFT);
PE_parse_boot_argn("mb_tag_mbuf", &mb_tag_mbuf, sizeof(mb_tag_mbuf));
}
#if CONFIG_MBUF_MCACHE
/*
* Obtain a slab of object(s) from the class's freelist.
*/
static mcache_obj_t *
slab_alloc(mbuf_class_t class, int wait)
{
mcl_slab_t *sp;
mcache_obj_t *buf;
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
/* This should always be NULL for us */
VERIFY(m_cobjlist(class) == NULL);
/*
* Treat composite objects as having longer lifespan by using
* a slab from the reverse direction, in hoping that this could
* reduce the probability of fragmentation for slabs that hold
* more than one buffer chunks (e.g. mbuf slabs). For other
* slabs, this probably doesn't make much of a difference.
*/
if ((class == MC_MBUF || class == MC_CL || class == MC_BIGCL)
&& (wait & MCR_COMP)) {
sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead);
} else {
sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class));
}
if (sp == NULL) {
VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0);
/* The slab list for this class is empty */
return NULL;
}
VERIFY(m_infree(class) > 0);
VERIFY(!slab_is_detached(sp));
VERIFY(sp->sl_class == class &&
(sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
buf = sp->sl_head;
VERIFY(slab_inrange(sp, buf) && sp == slab_get(buf));
sp->sl_head = buf->obj_next;
/* Increment slab reference */
sp->sl_refcnt++;
VERIFY(sp->sl_head != NULL || sp->sl_refcnt == sp->sl_chunks);
if (sp->sl_head != NULL && !slab_inrange(sp, sp->sl_head)) {
slab_nextptr_panic(sp, sp->sl_head);
/* In case sl_head is in the map but not in the slab */
VERIFY(slab_inrange(sp, sp->sl_head));
/* NOTREACHED */
}
if (mclaudit != NULL) {
mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
mca->mca_uflags = 0;
/* Save contents on mbuf objects only */
if (class == MC_MBUF) {
mca->mca_uflags |= MB_SCVALID;
}
}
if (class == MC_CL) {
mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
/*
* A 2K cluster slab can have at most NCLPG references.
*/
VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPG &&
sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE);
VERIFY(sp->sl_refcnt < NCLPG || sp->sl_head == NULL);
} else if (class == MC_BIGCL) {
mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) +
m_infree(MC_MBUF_BIGCL);
/*
* A 4K cluster slab can have NBCLPG references.
*/
VERIFY(sp->sl_refcnt >= 1 && sp->sl_chunks == NBCLPG &&
sp->sl_len == PAGE_SIZE &&
(sp->sl_refcnt < NBCLPG || sp->sl_head == NULL));
} else if (class == MC_16KCL) {
mcl_slab_t *nsp;
int k;
--m_infree(MC_16KCL);
VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 &&
sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
/*
* Increment 2nd-Nth slab reference, where N is NSLABSP16KB.
* A 16KB big cluster takes NSLABSP16KB slabs, each having at
* most 1 reference.
*/
for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
nsp->sl_refcnt++;
VERIFY(!slab_is_detached(nsp));
VERIFY(nsp->sl_class == MC_16KCL &&
nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) &&
nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 &&
nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
nsp->sl_head == NULL);
}
} else {
VERIFY(class == MC_MBUF);
--m_infree(MC_MBUF);
/*
* If auditing is turned on, this check is
* deferred until later in mbuf_slab_audit().
*/
if (mclaudit == NULL) {
_MCHECK((struct mbuf *)buf);
}
/*
* Since we have incremented the reference count above,
* an mbuf slab (formerly a 4KB cluster slab that was cut
* up into mbufs) must have a reference count between 1
* and NMBPG at this point.
*/
VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPG &&
sp->sl_chunks == NMBPG &&
sp->sl_len == PAGE_SIZE);
VERIFY(sp->sl_refcnt < NMBPG || sp->sl_head == NULL);
}
/* If empty, remove this slab from the class's freelist */
if (sp->sl_head == NULL) {
VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPG);
VERIFY(class != MC_CL || sp->sl_refcnt == NCLPG);
VERIFY(class != MC_BIGCL || sp->sl_refcnt == NBCLPG);
slab_remove(sp, class);
}
return buf;
}
/*
* Place a slab of object(s) back into a class's slab list.
*/
static void
slab_free(mbuf_class_t class, mcache_obj_t *buf)
{
mcl_slab_t *sp;
boolean_t reinit_supercl = false;
mbuf_class_t super_class;
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
VERIFY(class != MC_16KCL || njcl > 0);
VERIFY(buf->obj_next == NULL);
/*
* Synchronizing with m_clalloc, as it reads m_total, while we here
* are modifying m_total.
*/
while (mb_clalloc_busy) {
mb_clalloc_waiters++;
(void) msleep(mb_clalloc_waitchan, mbuf_mlock,
(PZERO - 1), "m_clalloc", NULL);
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
}
/* We are busy now; tell everyone else to go away */
mb_clalloc_busy = TRUE;
sp = slab_get(buf);
VERIFY(sp->sl_class == class && slab_inrange(sp, buf) &&
(sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
/* Decrement slab reference */
sp->sl_refcnt--;
if (class == MC_CL) {
VERIFY(IS_P2ALIGNED(buf, MCLBYTES));
/*
* A slab that has been splitted for 2KB clusters can have
* at most 1 outstanding reference at this point.
*/
VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPG - 1) &&
sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE);
VERIFY(sp->sl_refcnt < (NCLPG - 1) ||
(slab_is_detached(sp) && sp->sl_head == NULL));
} else if (class == MC_BIGCL) {
VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES));
/* A 4KB cluster slab can have NBCLPG references at most */
VERIFY(sp->sl_refcnt >= 0 && sp->sl_chunks == NBCLPG);
VERIFY(sp->sl_refcnt < (NBCLPG - 1) ||
(slab_is_detached(sp) && sp->sl_head == NULL));
} else if (class == MC_16KCL) {
mcl_slab_t *nsp;
int k;
/*
* A 16KB cluster takes NSLABSP16KB slabs, all must
* now have 0 reference.
*/
VERIFY(IS_P2ALIGNED(buf, PAGE_SIZE));
VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 &&
sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
VERIFY(slab_is_detached(sp));
for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
nsp->sl_refcnt--;
VERIFY(slab_is_detached(nsp));
VERIFY(nsp->sl_class == MC_16KCL &&
(nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) &&
nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 &&
nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
nsp->sl_head == NULL);
}
} else {
/*
* A slab that has been splitted for mbufs has at most
* NMBPG reference counts. Since we have decremented
* one reference above, it must now be between 0 and
* NMBPG-1.
*/
VERIFY(class == MC_MBUF);
VERIFY(sp->sl_refcnt >= 0 &&
sp->sl_refcnt <= (NMBPG - 1) &&
sp->sl_chunks == NMBPG &&
sp->sl_len == PAGE_SIZE);
VERIFY(sp->sl_refcnt < (NMBPG - 1) ||
(slab_is_detached(sp) && sp->sl_head == NULL));
}
/*
* When auditing is enabled, ensure that the buffer still
* contains the free pattern. Otherwise it got corrupted
* while at the CPU cache layer.
*/
if (mclaudit != NULL) {
mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
if (mclverify) {
mcache_audit_free_verify(mca, buf, 0,
m_maxsize(class));
}
mca->mca_uflags &= ~MB_SCVALID;
}
if (class == MC_CL) {
mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
buf->obj_next = sp->sl_head;
} else if (class == MC_BIGCL) {
mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) +
m_infree(MC_MBUF_BIGCL);
buf->obj_next = sp->sl_head;
} else if (class == MC_16KCL) {
++m_infree(MC_16KCL);
} else {
++m_infree(MC_MBUF);
buf->obj_next = sp->sl_head;
}
sp->sl_head = buf;
/*
* If a slab has been split to either one which holds 2KB clusters,
* or one which holds mbufs, turn it back to one which holds a
* 4 or 16 KB cluster depending on the page size.
*/
if (m_maxsize(MC_BIGCL) == PAGE_SIZE) {
super_class = MC_BIGCL;
} else {
VERIFY(PAGE_SIZE == m_maxsize(MC_16KCL));
super_class = MC_16KCL;
}
if (class == MC_MBUF && sp->sl_refcnt == 0 &&
m_total(class) >= (m_minlimit(class) + NMBPG) &&
m_total(super_class) < m_maxlimit(super_class)) {
int i = NMBPG;
m_total(MC_MBUF) -= NMBPG;
mbstat.m_mbufs = m_total(MC_MBUF);
m_infree(MC_MBUF) -= NMBPG;
mtype_stat_add(MT_FREE, -((unsigned)NMBPG));
while (i--) {
struct mbuf *m = sp->sl_head;
VERIFY(m != NULL);
sp->sl_head = m->m_next;
m->m_next = NULL;
}
reinit_supercl = true;
} else if (class == MC_CL && sp->sl_refcnt == 0 &&
m_total(class) >= (m_minlimit(class) + NCLPG) &&
m_total(super_class) < m_maxlimit(super_class)) {
int i = NCLPG;
m_total(MC_CL) -= NCLPG;
mbstat.m_clusters = m_total(MC_CL);
m_infree(MC_CL) -= NCLPG;
while (i--) {
union mcluster *c = sp->sl_head;
VERIFY(c != NULL);
sp->sl_head = c->mcl_next;
c->mcl_next = NULL;
}
reinit_supercl = true;
} else if (class == MC_BIGCL && super_class != MC_BIGCL &&
sp->sl_refcnt == 0 &&
m_total(class) >= (m_minlimit(class) + NBCLPG) &&
m_total(super_class) < m_maxlimit(super_class)) {
int i = NBCLPG;
VERIFY(super_class == MC_16KCL);
m_total(MC_BIGCL) -= NBCLPG;
mbstat.m_bigclusters = m_total(MC_BIGCL);
m_infree(MC_BIGCL) -= NBCLPG;
while (i--) {
union mbigcluster *bc = sp->sl_head;
VERIFY(bc != NULL);
sp->sl_head = bc->mbc_next;
bc->mbc_next = NULL;
}
reinit_supercl = true;
}
if (reinit_supercl) {
VERIFY(sp->sl_head == NULL);
VERIFY(m_total(class) >= m_minlimit(class));
slab_remove(sp, class);
/* Reinitialize it as a cluster for the super class */
m_total(super_class)++;
m_infree(super_class)++;
VERIFY(sp->sl_flags == (SLF_MAPPED | SLF_DETACHED) &&
sp->sl_len == PAGE_SIZE && sp->sl_refcnt == 0);
slab_init(sp, super_class, SLF_MAPPED, sp->sl_base,
sp->sl_base, PAGE_SIZE, 0, 1);
if (mclverify) {
mcache_set_pattern(MCACHE_FREE_PATTERN,
(caddr_t)sp->sl_base, sp->sl_len);
}
((mcache_obj_t *)(sp->sl_base))->obj_next = NULL;
if (super_class == MC_BIGCL) {
mbstat.m_bigclusters = m_total(MC_BIGCL);
mbstat.m_bigclfree = m_infree(MC_BIGCL) +
m_infree(MC_MBUF_BIGCL);
}
VERIFY(slab_is_detached(sp));
VERIFY(m_total(super_class) <= m_maxlimit(super_class));
/* And finally switch class */
class = super_class;
}
/* Reinsert the slab to the class's slab list */
if (slab_is_detached(sp)) {
slab_insert(sp, class);
}
/* We're done; let others enter */
mb_clalloc_busy = FALSE;
if (mb_clalloc_waiters > 0) {
mb_clalloc_waiters = 0;
wakeup(mb_clalloc_waitchan);
}
}
/*
* Common allocator for rudimentary objects called by the CPU cache layer
* during an allocation request whenever there is no available element in the
* bucket layer. It returns one or more elements from the appropriate global
* freelist. If the freelist is empty, it will attempt to populate it and
* retry the allocation.
*/
static unsigned int
mbuf_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait)
{
mbuf_class_t class = (mbuf_class_t)arg;
unsigned int need = num;
mcache_obj_t **list = *plist;
ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
ASSERT(need > 0);
lck_mtx_lock(mbuf_mlock);
for (;;) {
if ((*list = slab_alloc(class, wait)) != NULL) {
(*list)->obj_next = NULL;
list = *plist = &(*list)->obj_next;
if (--need == 0) {
/*
* If the number of elements in freelist has
* dropped below low watermark, asynchronously
* populate the freelist now rather than doing
* it later when we run out of elements.
*/
if (!mbuf_cached_above(class, wait) &&
m_infree(class) < (m_total(class) >> 5)) {
(void) freelist_populate(class, 1,
M_DONTWAIT);
}
break;
}
} else {
VERIFY(m_infree(class) == 0 || class == MC_CL);
(void) freelist_populate(class, 1,
(wait & MCR_NOSLEEP) ? M_DONTWAIT : M_WAIT);
if (m_infree(class) > 0) {
continue;
}
/* Check if there's anything at the cache layer */
if (mbuf_cached_above(class, wait)) {
break;
}
/* watchdog checkpoint */
mbuf_watchdog();
/* We have nothing and cannot block; give up */
if (wait & MCR_NOSLEEP) {
if (!(wait & MCR_TRYHARD)) {
m_fail_cnt(class)++;
mbstat.m_drops++;
break;
}
}
/*
* If the freelist is still empty and the caller is
* willing to be blocked, sleep on the wait channel
* until an element is available. Otherwise, if
* MCR_TRYHARD is set, do our best to satisfy the
* request without having to go to sleep.
*/
if (mbuf_worker_ready &&
mbuf_sleep(class, need, wait)) {
break;
}
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
}
}
m_alloc_cnt(class) += num - need;
lck_mtx_unlock(mbuf_mlock);
return num - need;
}
/*
* Common de-allocator for rudimentary objects called by the CPU cache
* layer when one or more elements need to be returned to the appropriate
* global freelist.
*/
static void
mbuf_slab_free(void *arg, mcache_obj_t *list, __unused int purged)
{
mbuf_class_t class = (mbuf_class_t)arg;
mcache_obj_t *nlist;
unsigned int num = 0;
int w;
ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
lck_mtx_lock(mbuf_mlock);
for (;;) {
nlist = list->obj_next;
list->obj_next = NULL;
slab_free(class, list);
++num;
if ((list = nlist) == NULL) {
break;
}
}
m_free_cnt(class) += num;
if ((w = mb_waiters) > 0) {
mb_waiters = 0;
}
if (w) {
mbwdog_logger("waking up all threads");
}
lck_mtx_unlock(mbuf_mlock);
if (w != 0) {
wakeup(mb_waitchan);
}
}
/*
* Common auditor for rudimentary objects called by the CPU cache layer
* during an allocation or free request. For the former, this is called
* after the objects are obtained from either the bucket or slab layer
* and before they are returned to the caller. For the latter, this is
* called immediately during free and before placing the objects into
* the bucket or slab layer.
*/
static void
mbuf_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
{
mbuf_class_t class = (mbuf_class_t)arg;
mcache_audit_t *mca;
ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
while (list != NULL) {
lck_mtx_lock(mbuf_mlock);
mca = mcl_audit_buf2mca(class, list);
/* Do the sanity checks */
if (class == MC_MBUF) {
mcl_audit_mbuf(mca, list, FALSE, alloc);
ASSERT(mca->mca_uflags & MB_SCVALID);
} else {
mcl_audit_cluster(mca, list, m_maxsize(class),
alloc, TRUE);
ASSERT(!(mca->mca_uflags & MB_SCVALID));
}
/* Record this transaction */
if (mcltrace) {
mcache_buffer_log(mca, list, m_cache(class), &mb_start);
}
if (alloc) {
mca->mca_uflags |= MB_INUSE;
} else {
mca->mca_uflags &= ~MB_INUSE;
}
/* Unpair the object (unconditionally) */
mca->mca_uptr = NULL;
lck_mtx_unlock(mbuf_mlock);
list = list->obj_next;
}
}
/*
* Common notify routine for all caches. It is called by mcache when
* one or more objects get freed. We use this indication to trigger
* the wakeup of any sleeping threads so that they can retry their
* allocation requests.
*/
static void
mbuf_slab_notify(void *arg, u_int32_t reason)
{
mbuf_class_t class = (mbuf_class_t)arg;
int w;
ASSERT(MBUF_CLASS_VALID(class));
if (reason != MCN_RETRYALLOC) {
return;
}
lck_mtx_lock(mbuf_mlock);
if ((w = mb_waiters) > 0) {
m_notified(class)++;
mb_waiters = 0;
}
if (w) {
mbwdog_logger("waking up all threads");
}
lck_mtx_unlock(mbuf_mlock);
if (w != 0) {
wakeup(mb_waitchan);
}
}
/*
* Obtain object(s) from the composite class's freelist.
*/
static unsigned int
cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num)
{
unsigned int need = num;
mcl_slab_t *sp, *clsp, *nsp;
struct mbuf *m;
mcache_obj_t **list = *plist;
void *cl;
VERIFY(need > 0);
VERIFY(class != MC_MBUF_16KCL || njcl > 0);
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
/* Get what we can from the freelist */
while ((*list = m_cobjlist(class)) != NULL) {
MRANGE(*list);
m = (struct mbuf *)*list;
sp = slab_get(m);
cl = m->m_ext.ext_buf;
clsp = slab_get(cl);
VERIFY(m->m_flags == M_EXT && cl != NULL);
VERIFY(m_get_rfa(m) != NULL && MBUF_IS_COMPOSITE(m));
if (class == MC_MBUF_CL) {
VERIFY(clsp->sl_refcnt >= 1 &&
clsp->sl_refcnt <= NCLPG);
} else {
VERIFY(clsp->sl_refcnt >= 1 &&
clsp->sl_refcnt <= NBCLPG);
}
if (class == MC_MBUF_16KCL) {
int k;
for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
VERIFY(nsp->sl_refcnt == 1);
}
}
if ((m_cobjlist(class) = (*list)->obj_next) != NULL &&
!MBUF_IN_MAP(m_cobjlist(class))) {
slab_nextptr_panic(sp, m_cobjlist(class));
/* NOTREACHED */
}
(*list)->obj_next = NULL;
list = *plist = &(*list)->obj_next;
if (--need == 0) {
break;
}
}
m_infree(class) -= (num - need);
return num - need;
}
/*
* Place object(s) back into a composite class's freelist.
*/
static unsigned int
cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged)
{
mcache_obj_t *o, *tail;
unsigned int num = 0;
struct mbuf *m, *ms;
mcache_audit_t *mca = NULL;
mcache_obj_t *ref_list = NULL;
mcl_slab_t *clsp, *nsp;
void *cl;
mbuf_class_t cl_class;
ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
VERIFY(class != MC_MBUF_16KCL || njcl > 0);
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
if (class == MC_MBUF_CL) {
cl_class = MC_CL;
} else if (class == MC_MBUF_BIGCL) {
cl_class = MC_BIGCL;
} else {
VERIFY(class == MC_MBUF_16KCL);
cl_class = MC_16KCL;
}
o = tail = list;
while ((m = ms = (struct mbuf *)o) != NULL) {
mcache_obj_t *rfa, *nexto = o->obj_next;
/* Do the mbuf sanity checks */
if (mclaudit != NULL) {
mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
if (mclverify) {
mcache_audit_free_verify(mca, m, 0,
m_maxsize(MC_MBUF));
}
ms = MCA_SAVED_MBUF_PTR(mca);
}
/* Do the cluster sanity checks */
cl = ms->m_ext.ext_buf;
clsp = slab_get(cl);
if (mclverify) {
size_t size = m_maxsize(cl_class);
mcache_audit_free_verify(mcl_audit_buf2mca(cl_class,
(mcache_obj_t *)cl), cl, 0, size);
}
VERIFY(ms->m_type == MT_FREE);
VERIFY(ms->m_flags == M_EXT);
VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
if (cl_class == MC_CL) {
VERIFY(clsp->sl_refcnt >= 1 &&
clsp->sl_refcnt <= NCLPG);
} else {
VERIFY(clsp->sl_refcnt >= 1 &&
clsp->sl_refcnt <= NBCLPG);
}
if (cl_class == MC_16KCL) {
int k;
for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
VERIFY(nsp->sl_refcnt == 1);
}
}
/*
* If we're asked to purge, restore the actual mbuf using
* contents of the shadow structure (if auditing is enabled)
* and clear EXTF_COMPOSITE flag from the mbuf, as we are
* about to free it and the attached cluster into their caches.
*/
if (purged) {
/* Restore constructed mbuf fields */
if (mclaudit != NULL) {
mcl_audit_restore_mbuf(m, mca, TRUE);
}
MEXT_MINREF(m) = 0;
MEXT_REF(m) = 0;
MEXT_PREF(m) = 0;
MEXT_FLAGS(m) = 0;
MEXT_PRIV(m) = 0;
MEXT_PMBUF(m) = NULL;
MEXT_TOKEN(m) = 0;
rfa = (mcache_obj_t *)(void *)m_get_rfa(m);
m_set_ext(m, NULL, NULL, NULL);
rfa->obj_next = ref_list;
ref_list = rfa;
m->m_type = MT_FREE;
m->m_flags = m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
/* Save mbuf fields and make auditing happy */
if (mclaudit != NULL) {
mcl_audit_mbuf(mca, o, FALSE, FALSE);
}
VERIFY(m_total(class) > 0);
m_total(class)--;
/* Free the mbuf */
o->obj_next = NULL;
slab_free(MC_MBUF, o);
/* And free the cluster */
((mcache_obj_t *)cl)->obj_next = NULL;
if (class == MC_MBUF_CL) {
slab_free(MC_CL, cl);
} else if (class == MC_MBUF_BIGCL) {
slab_free(MC_BIGCL, cl);
} else {
slab_free(MC_16KCL, cl);
}
}
++num;
tail = o;
o = nexto;
}
if (!purged) {
tail->obj_next = m_cobjlist(class);
m_cobjlist(class) = list;
m_infree(class) += num;
} else if (ref_list != NULL) {
mcache_free_ext(ref_cache, ref_list);
}
return num;
}
/*
* Common allocator for composite objects called by the CPU cache layer
* during an allocation request whenever there is no available element in
* the bucket layer. It returns one or more composite elements from the
* appropriate global freelist. If the freelist is empty, it will attempt
* to obtain the rudimentary objects from their caches and construct them
* into composite mbuf + cluster objects.
*/
static unsigned int
mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed,
int wait)
{
mbuf_class_t class = (mbuf_class_t)arg;
mbuf_class_t cl_class = 0;
unsigned int num = 0, cnum = 0, want = needed;
mcache_obj_t *ref_list = NULL;
mcache_obj_t *mp_list = NULL;
mcache_obj_t *clp_list = NULL;
mcache_obj_t **list;
struct ext_ref *rfa;
struct mbuf *m;
void *cl;
ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
ASSERT(needed > 0);
VERIFY(class != MC_MBUF_16KCL || njcl > 0);
/* There should not be any slab for this class */
VERIFY(m_slab_cnt(class) == 0 &&
m_slablist(class).tqh_first == NULL &&
m_slablist(class).tqh_last == NULL);
lck_mtx_lock(mbuf_mlock);
/* Try using the freelist first */
num = cslab_alloc(class, plist, needed);
list = *plist;
if (num == needed) {
m_alloc_cnt(class) += num;
lck_mtx_unlock(mbuf_mlock);
return needed;
}
lck_mtx_unlock(mbuf_mlock);
/*
* We could not satisfy the request using the freelist alone;
* allocate from the appropriate rudimentary caches and use
* whatever we can get to construct the composite objects.
*/
needed -= num;
/*
* Mark these allocation requests as coming from a composite cache.
* Also, if the caller is willing to be blocked, mark the request
* with MCR_FAILOK such that we don't end up sleeping at the mbuf
* slab layer waiting for the individual object when one or more
* of the already-constructed composite objects are available.
*/
wait |= MCR_COMP;
if (!(wait & MCR_NOSLEEP)) {
wait |= MCR_FAILOK;
}
/* allocate mbufs */
needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait);
if (needed == 0) {
ASSERT(mp_list == NULL);
goto fail;
}
/* allocate clusters */
if (class == MC_MBUF_CL) {
cl_class = MC_CL;
} else if (class == MC_MBUF_BIGCL) {
cl_class = MC_BIGCL;
} else {
VERIFY(class == MC_MBUF_16KCL);
cl_class = MC_16KCL;
}
needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait);
if (needed == 0) {
ASSERT(clp_list == NULL);
goto fail;
}
needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait);
if (needed == 0) {
ASSERT(ref_list == NULL);
goto fail;
}
/*
* By this time "needed" is MIN(mbuf, cluster, ref). Any left
* overs will get freed accordingly before we return to caller.
*/
for (cnum = 0; cnum < needed; cnum++) {
struct mbuf *ms;
m = ms = (struct mbuf *)mp_list;
mp_list = mp_list->obj_next;
cl = clp_list;
clp_list = clp_list->obj_next;
((mcache_obj_t *)cl)->obj_next = NULL;
rfa = (struct ext_ref *)ref_list;
ref_list = ref_list->obj_next;
((mcache_obj_t *)(void *)rfa)->obj_next = NULL;
/*
* If auditing is enabled, construct the shadow mbuf
* in the audit structure instead of in the actual one.
* mbuf_cslab_audit() will take care of restoring the
* contents after the integrity check.
*/
if (mclaudit != NULL) {
mcache_audit_t *mca, *cl_mca;
lck_mtx_lock(mbuf_mlock);
mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
ms = MCA_SAVED_MBUF_PTR(mca);
cl_mca = mcl_audit_buf2mca(cl_class,
(mcache_obj_t *)cl);
/*
* Pair them up. Note that this is done at the time
* the mbuf+cluster objects are constructed. This
* information should be treated as "best effort"
* debugging hint since more than one mbufs can refer
* to a cluster. In that case, the cluster might not
* be freed along with the mbuf it was paired with.
*/
mca->mca_uptr = cl_mca;
cl_mca->mca_uptr = mca;
ASSERT(mca->mca_uflags & MB_SCVALID);
ASSERT(!(cl_mca->mca_uflags & MB_SCVALID));
lck_mtx_unlock(mbuf_mlock);
/* Technically, they are in the freelist */
if (mclverify) {
size_t size;
mcache_set_pattern(MCACHE_FREE_PATTERN, m,
m_maxsize(MC_MBUF));
if (class == MC_MBUF_CL) {
size = m_maxsize(MC_CL);
} else if (class == MC_MBUF_BIGCL) {
size = m_maxsize(MC_BIGCL);
} else {
size = m_maxsize(MC_16KCL);
}
mcache_set_pattern(MCACHE_FREE_PATTERN, cl,
size);
}
}
MBUF_INIT(ms, 0, MT_FREE);
if (class == MC_MBUF_16KCL) {
MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
} else if (class == MC_MBUF_BIGCL) {
MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
} else {
MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
}
VERIFY(ms->m_flags == M_EXT);
VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
*list = (mcache_obj_t *)m;
(*list)->obj_next = NULL;
list = *plist = &(*list)->obj_next;
}
fail:
/*
* Free up what's left of the above.
*/
if (mp_list != NULL) {
mcache_free_ext(m_cache(MC_MBUF), mp_list);
}
if (clp_list != NULL) {
mcache_free_ext(m_cache(cl_class), clp_list);
}
if (ref_list != NULL) {
mcache_free_ext(ref_cache, ref_list);
}
lck_mtx_lock(mbuf_mlock);
if (num > 0 || cnum > 0) {
m_total(class) += cnum;
VERIFY(m_total(class) <= m_maxlimit(class));
m_alloc_cnt(class) += num + cnum;
}
if ((num + cnum) < want) {
m_fail_cnt(class) += (want - (num + cnum));
}
lck_mtx_unlock(mbuf_mlock);
return num + cnum;
}
/*
* Common de-allocator for composite objects called by the CPU cache
* layer when one or more elements need to be returned to the appropriate
* global freelist.
*/
static void
mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged)
{
mbuf_class_t class = (mbuf_class_t)arg;
unsigned int num;
int w;
ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
lck_mtx_lock(mbuf_mlock);
num = cslab_free(class, list, purged);
m_free_cnt(class) += num;
if ((w = mb_waiters) > 0) {
mb_waiters = 0;
}
if (w) {
mbwdog_logger("waking up all threads");
}
lck_mtx_unlock(mbuf_mlock);
if (w != 0) {
wakeup(mb_waitchan);
}
}
/*
* Common auditor for composite objects called by the CPU cache layer
* during an allocation or free request. For the former, this is called
* after the objects are obtained from either the bucket or slab layer
* and before they are returned to the caller. For the latter, this is
* called immediately during free and before placing the objects into
* the bucket or slab layer.
*/
static void
mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
{
mbuf_class_t class = (mbuf_class_t)arg, cl_class;
mcache_audit_t *mca;
struct mbuf *m, *ms;
mcl_slab_t *clsp, *nsp;
size_t cl_size;
void *cl;
ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
if (class == MC_MBUF_CL) {
cl_class = MC_CL;
} else if (class == MC_MBUF_BIGCL) {
cl_class = MC_BIGCL;
} else {
cl_class = MC_16KCL;
}
cl_size = m_maxsize(cl_class);
while ((m = ms = (struct mbuf *)list) != NULL) {
lck_mtx_lock(mbuf_mlock);
/* Do the mbuf sanity checks and record its transaction */
mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
mcl_audit_mbuf(mca, m, TRUE, alloc);
if (mcltrace) {
mcache_buffer_log(mca, m, m_cache(class), &mb_start);
}
if (alloc) {
mca->mca_uflags |= MB_COMP_INUSE;
} else {
mca->mca_uflags &= ~MB_COMP_INUSE;
}
/*
* Use the shadow mbuf in the audit structure if we are
* freeing, since the contents of the actual mbuf has been
* pattern-filled by the above call to mcl_audit_mbuf().
*/
if (!alloc && mclverify) {
ms = MCA_SAVED_MBUF_PTR(mca);
}
/* Do the cluster sanity checks and record its transaction */
cl = ms->m_ext.ext_buf;
clsp = slab_get(cl);
VERIFY(ms->m_flags == M_EXT && cl != NULL);
VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
if (class == MC_MBUF_CL) {
VERIFY(clsp->sl_refcnt >= 1 &&
clsp->sl_refcnt <= NCLPG);
} else {
VERIFY(clsp->sl_refcnt >= 1 &&
clsp->sl_refcnt <= NBCLPG);
}
if (class == MC_MBUF_16KCL) {
int k;
for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
VERIFY(nsp->sl_refcnt == 1);
}
}
mca = mcl_audit_buf2mca(cl_class, cl);
mcl_audit_cluster(mca, cl, cl_size, alloc, FALSE);
if (mcltrace) {
mcache_buffer_log(mca, cl, m_cache(class), &mb_start);
}
if (alloc) {
mca->mca_uflags |= MB_COMP_INUSE;
} else {
mca->mca_uflags &= ~MB_COMP_INUSE;
}
lck_mtx_unlock(mbuf_mlock);
list = list->obj_next;
}
}
static void
m_vm_error_stats(uint32_t *cnt, uint64_t *ts, uint64_t *size,
uint64_t alloc_size, kern_return_t error)
{
*cnt = *cnt + 1;
*ts = net_uptime();
if (size) {
*size = alloc_size;
}
switch (error) {
case KERN_SUCCESS:
break;
case KERN_INVALID_ARGUMENT:
mb_kmem_stats[0]++;
break;
case KERN_INVALID_ADDRESS:
mb_kmem_stats[1]++;
break;
case KERN_RESOURCE_SHORTAGE:
mb_kmem_stats[2]++;
break;
case KERN_NO_SPACE:
mb_kmem_stats[3]++;
break;
case KERN_FAILURE:
mb_kmem_stats[4]++;
break;
default:
mb_kmem_stats[5]++;
break;
}
}
static vm_offset_t
kmem_mb_alloc(vm_map_t mbmap, int size, int physContig, kern_return_t *err)
{
vm_offset_t addr = 0;
kern_return_t kr = KERN_SUCCESS;
if (!physContig) {
kr = kmem_alloc(mbmap, &addr, size,
KMA_KOBJECT | KMA_LOMEM, VM_KERN_MEMORY_MBUF);
} else {
kr = kmem_alloc_contig(mbmap, &addr, size, PAGE_MASK, 0xfffff,
0, KMA_KOBJECT | KMA_LOMEM, VM_KERN_MEMORY_MBUF);
}
if (kr != KERN_SUCCESS) {
addr = 0;
}
if (err) {
*err = kr;
}
return addr;
}
/*
* Allocate some number of mbuf clusters and place on cluster freelist.
*/
static int
m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize)
{
int i, count = 0;
vm_size_t size = 0;
int numpages = 0, large_buffer;
vm_offset_t page = 0;
mcache_audit_t *mca_list = NULL;
mcache_obj_t *con_list = NULL;
mcl_slab_t *sp;
mbuf_class_t class;
kern_return_t error;
/* Set if a buffer allocation needs allocation of multiple pages */
large_buffer = ((bufsize == m_maxsize(MC_16KCL)) &&
PAGE_SIZE < M16KCLBYTES);
VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
bufsize == m_maxsize(MC_16KCL));
VERIFY((bufsize == PAGE_SIZE) ||
(bufsize > PAGE_SIZE && bufsize == m_maxsize(MC_16KCL)));
if (bufsize == m_size(MC_BIGCL)) {
class = MC_BIGCL;
} else {
class = MC_16KCL;
}
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
/*
* Multiple threads may attempt to populate the cluster map one
* after another. Since we drop the lock below prior to acquiring
* the physical page(s), our view of the cluster map may no longer
* be accurate, and we could end up over-committing the pages beyond
* the maximum allowed for each class. To prevent it, this entire
* operation (including the page mapping) is serialized.
*/
while (mb_clalloc_busy) {
mb_clalloc_waiters++;
(void) msleep(mb_clalloc_waitchan, mbuf_mlock,
(PZERO - 1), "m_clalloc", NULL);
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
}
/* We are busy now; tell everyone else to go away */
mb_clalloc_busy = TRUE;
/*
* Honor the caller's wish to block or not block. We have a way
* to grow the pool asynchronously using the mbuf worker thread.
*/
i = m_howmany(num, bufsize);
if (i <= 0 || (wait & M_DONTWAIT)) {
goto out;
}
lck_mtx_unlock(mbuf_mlock);
size = round_page(i * bufsize);
page = kmem_mb_alloc(mb_map, size, large_buffer, &error);
/*
* If we did ask for "n" 16KB physically contiguous chunks
* and didn't get them, then please try again without this
* restriction.
*/
net_update_uptime();
if (large_buffer && page == 0) {
m_vm_error_stats(&mb_kmem_contig_failed,
&mb_kmem_contig_failed_ts,
&mb_kmem_contig_failed_size,
size, error);
page = kmem_mb_alloc(mb_map, size, 0, &error);
}
if (page == 0) {
m_vm_error_stats(&mb_kmem_failed,
&mb_kmem_failed_ts,
&mb_kmem_failed_size,
size, error);
#if PAGE_SIZE == 4096
if (bufsize == m_maxsize(MC_BIGCL)) {
#else
if (bufsize >= m_maxsize(MC_BIGCL)) {
#endif
/* Try for 1 page if failed */
size = PAGE_SIZE;
page = kmem_mb_alloc(mb_map, size, 0, &error);
if (page == 0) {
m_vm_error_stats(&mb_kmem_one_failed,
&mb_kmem_one_failed_ts,
NULL, size, error);
}
}
if (page == 0) {
lck_mtx_lock(mbuf_mlock);
goto out;
}
}
VERIFY(IS_P2ALIGNED(page, PAGE_SIZE));
numpages = size / PAGE_SIZE;
/* If auditing is enabled, allocate the audit structures now */
if (mclaudit != NULL) {
int needed;
/*
* Yes, I realize this is a waste of memory for clusters
* that never get transformed into mbufs, as we may end
* up with NMBPG-1 unused audit structures per cluster.
* But doing so tremendously simplifies the allocation
* strategy, since at this point we are not holding the
* mbuf lock and the caller is okay to be blocked.
*/
if (bufsize == PAGE_SIZE) {
needed = numpages * NMBPG;
i = mcache_alloc_ext(mcl_audit_con_cache,
&con_list, needed, MCR_SLEEP);
VERIFY(con_list != NULL && i == needed);
} else {
/*
* if multiple 4K pages are being used for a
* 16K cluster
*/
needed = numpages / NSLABSP16KB;
}
i = mcache_alloc_ext(mcache_audit_cache,
(mcache_obj_t **)&mca_list, needed, MCR_SLEEP);
VERIFY(mca_list != NULL && i == needed);
}
lck_mtx_lock(mbuf_mlock);
for (i = 0; i < numpages; i++, page += PAGE_SIZE) {
ppnum_t offset =
((unsigned char *)page - mbutl) >> PAGE_SHIFT;
ppnum_t new_page = pmap_find_phys(kernel_pmap, page);
/*
* If there is a mapper the appropriate I/O page is
* returned; zero out the page to discard its past
* contents to prevent exposing leftover kernel memory.
*/
VERIFY(offset < mcl_pages);
if (mcl_paddr_base != 0) {
bzero((void *)(uintptr_t) page, PAGE_SIZE);
new_page = IOMapperInsertPage(mcl_paddr_base,
offset, new_page);
}
mcl_paddr[offset] = new_page;
/* Pattern-fill this fresh page */
if (mclverify) {
mcache_set_pattern(MCACHE_FREE_PATTERN,
(caddr_t)page, PAGE_SIZE);
}
if (bufsize == PAGE_SIZE) {
mcache_obj_t *buf;
/* One for the entire page */
sp = slab_get((void *)page);
if (mclaudit != NULL) {
mcl_audit_init((void *)page,
&mca_list, &con_list,
AUDIT_CONTENTS_SIZE, NMBPG);
}
VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
slab_init(sp, class, SLF_MAPPED, (void *)page,
(void *)page, PAGE_SIZE, 0, 1);
buf = (mcache_obj_t *)page;
buf->obj_next = NULL;
/* Insert this slab */
slab_insert(sp, class);
/* Update stats now since slab_get drops the lock */
++m_infree(class);
++m_total(class);
VERIFY(m_total(class) <= m_maxlimit(class));
if (class == MC_BIGCL) {
mbstat.m_bigclfree = m_infree(MC_BIGCL) +
m_infree(MC_MBUF_BIGCL);
mbstat.m_bigclusters = m_total(MC_BIGCL);
}
++count;
} else if ((bufsize > PAGE_SIZE) &&
(i % NSLABSP16KB) == 0) {
union m16kcluster *m16kcl = (union m16kcluster *)page;
mcl_slab_t *nsp;
int k;
/* One for the entire 16KB */
sp = slab_get(m16kcl);
if (mclaudit != NULL) {
mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1);
}
VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
slab_init(sp, MC_16KCL, SLF_MAPPED,
m16kcl, m16kcl, bufsize, 0, 1);
m16kcl->m16kcl_next = NULL;
/*
* 2nd-Nth page's slab is part of the first one,
* where N is NSLABSP16KB.
*/
for (k = 1; k < NSLABSP16KB; k++) {
nsp = slab_get(((union mbigcluster *)page) + k);
VERIFY(nsp->sl_refcnt == 0 &&
nsp->sl_flags == 0);
slab_init(nsp, MC_16KCL,
SLF_MAPPED | SLF_PARTIAL,
m16kcl, NULL, 0, 0, 0);
}
/* Insert this slab */
slab_insert(sp, MC_16KCL);
/* Update stats now since slab_get drops the lock */
++m_infree(MC_16KCL);
++m_total(MC_16KCL);
VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
++count;
}
}
VERIFY(mca_list == NULL && con_list == NULL);
/* We're done; let others enter */
mb_clalloc_busy = FALSE;
if (mb_clalloc_waiters > 0) {
mb_clalloc_waiters = 0;
wakeup(mb_clalloc_waitchan);
}
return count;
out:
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
mtracelarge_register(size);
/* We're done; let others enter */
mb_clalloc_busy = FALSE;
if (mb_clalloc_waiters > 0) {
mb_clalloc_waiters = 0;
wakeup(mb_clalloc_waitchan);
}
/*
* When non-blocking we kick a thread if we have to grow the
* pool or if the number of free clusters is less than requested.
*/
if (i > 0 && mbuf_worker_ready && mbuf_worker_needs_wakeup) {
mbwdog_logger("waking up the worker thread to to grow %s by %d",
m_cname(class), i);
wakeup((caddr_t)&mbuf_worker_needs_wakeup);
mbuf_worker_needs_wakeup = FALSE;
}
if (class == MC_BIGCL) {
if (i > 0) {
/*
* Remember total number of 4KB clusters needed
* at this time.
*/
i += m_total(MC_BIGCL);
if (i > m_region_expand(MC_BIGCL)) {
m_region_expand(MC_BIGCL) = i;
}
}
if (m_infree(MC_BIGCL) >= num) {
return 1;
}
} else {
if (i > 0) {
/*
* Remember total number of 16KB clusters needed
* at this time.
*/
i += m_total(MC_16KCL);
if (i > m_region_expand(MC_16KCL)) {
m_region_expand(MC_16KCL) = i;
}
}
if (m_infree(MC_16KCL) >= num) {
return 1;
}
}
return 0;
}
/*
* Populate the global freelist of the corresponding buffer class.
*/
static int
freelist_populate(mbuf_class_t class, unsigned int num, int wait)
{
mcache_obj_t *o = NULL;
int i, numpages = 0, count;
mbuf_class_t super_class;
VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL ||
class == MC_16KCL);
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
VERIFY(PAGE_SIZE == m_maxsize(MC_BIGCL) ||
PAGE_SIZE == m_maxsize(MC_16KCL));
if (m_maxsize(class) >= PAGE_SIZE) {
return m_clalloc(num, wait, m_maxsize(class)) != 0;
}
/*
* The rest of the function will allocate pages and will slice
* them up into the right size
*/
numpages = (num * m_size(class) + PAGE_SIZE - 1) / PAGE_SIZE;
/* Currently assume that pages are 4K or 16K */
if (PAGE_SIZE == m_maxsize(MC_BIGCL)) {
super_class = MC_BIGCL;
} else {
super_class = MC_16KCL;
}
i = m_clalloc(numpages, wait, m_maxsize(super_class));
/* how many objects will we cut the page into? */
int numobj = PAGE_SIZE / m_maxsize(class);
for (count = 0; count < numpages; count++) {
/* respect totals, minlimit, maxlimit */
if (m_total(super_class) <= m_minlimit(super_class) ||
m_total(class) >= m_maxlimit(class)) {
break;
}
if ((o = slab_alloc(super_class, wait)) == NULL) {
break;
}
struct mbuf *m = (struct mbuf *)o;
union mcluster *c = (union mcluster *)o;
union mbigcluster *mbc = (union mbigcluster *)o;
mcl_slab_t *sp = slab_get(o);
mcache_audit_t *mca = NULL;
/*
* since one full page will be converted to MC_MBUF or
* MC_CL, verify that the reference count will match that
* assumption
*/
VERIFY(sp->sl_refcnt == 1 && slab_is_detached(sp));
VERIFY((sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
/*
* Make sure that the cluster is unmolested
* while in freelist
*/
if (mclverify) {
mca = mcl_audit_buf2mca(super_class,
(mcache_obj_t *)o);
mcache_audit_free_verify(mca,
(mcache_obj_t *)o, 0, m_maxsize(super_class));
}
/* Reinitialize it as an mbuf or 2K or 4K slab */
slab_init(sp, class, sp->sl_flags,
sp->sl_base, NULL, PAGE_SIZE, 0, numobj);
VERIFY(sp->sl_head == NULL);
VERIFY(m_total(super_class) >= 1);
m_total(super_class)--;
if (super_class == MC_BIGCL) {
mbstat.m_bigclusters = m_total(MC_BIGCL);
}
m_total(class) += numobj;
VERIFY(m_total(class) <= m_maxlimit(class));
m_infree(class) += numobj;
i = numobj;
if (class == MC_MBUF) {
mbstat.m_mbufs = m_total(MC_MBUF);
mtype_stat_add(MT_FREE, NMBPG);
while (i--) {
/*
* If auditing is enabled, construct the
* shadow mbuf in the audit structure
* instead of the actual one.
* mbuf_slab_audit() will take care of
* restoring the contents after the
* integrity check.
*/
if (mclaudit != NULL) {
struct mbuf *ms;
mca = mcl_audit_buf2mca(MC_MBUF,
(mcache_obj_t *)m);
ms = MCA_SAVED_MBUF_PTR(mca);
ms->m_type = MT_FREE;
} else {
m->m_type = MT_FREE;
}
m->m_next = sp->sl_head;
sp->sl_head = (void *)m++;
}
} else if (class == MC_CL) { /* MC_CL */
mbstat.m_clfree =
m_infree(MC_CL) + m_infree(MC_MBUF_CL);
mbstat.m_clusters = m_total(MC_CL);
while (i--) {
c->mcl_next = sp->sl_head;
sp->sl_head = (void *)c++;
}
} else {
VERIFY(class == MC_BIGCL);
mbstat.m_bigclusters = m_total(MC_BIGCL);
mbstat.m_bigclfree = m_infree(MC_BIGCL) +
m_infree(MC_MBUF_BIGCL);
while (i--) {
mbc->mbc_next = sp->sl_head;
sp->sl_head = (void *)mbc++;
}
}
/* Insert into the mbuf or 2k or 4k slab list */
slab_insert(sp, class);
if ((i = mb_waiters) > 0) {
mb_waiters = 0;
}
if (i != 0) {
mbwdog_logger("waking up all threads");
wakeup(mb_waitchan);
}
}
return count != 0;
}
/*
* For each class, initialize the freelist to hold m_minlimit() objects.
*/
static void
freelist_init(mbuf_class_t class)
{
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
VERIFY(class == MC_CL || class == MC_BIGCL);
VERIFY(m_total(class) == 0);
VERIFY(m_minlimit(class) > 0);
while (m_total(class) < m_minlimit(class)) {
(void) freelist_populate(class, m_minlimit(class), M_WAIT);
}
VERIFY(m_total(class) >= m_minlimit(class));
}
/*
* (Inaccurately) check if it might be worth a trip back to the
* mcache layer due the availability of objects there. We'll
* end up back here if there's nothing up there.
*/
static boolean_t
mbuf_cached_above(mbuf_class_t class, int wait)
{
switch (class) {
case MC_MBUF:
if (wait & MCR_COMP) {
return !mcache_bkt_isempty(m_cache(MC_MBUF_CL)) ||
!mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL));
}
break;
case MC_CL:
if (wait & MCR_COMP) {
return !mcache_bkt_isempty(m_cache(MC_MBUF_CL));
}
break;
case MC_BIGCL:
if (wait & MCR_COMP) {
return !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL));
}
break;
case MC_16KCL:
if (wait & MCR_COMP) {
return !mcache_bkt_isempty(m_cache(MC_MBUF_16KCL));
}
break;
case MC_MBUF_CL:
case MC_MBUF_BIGCL:
case MC_MBUF_16KCL:
break;
default:
VERIFY(0);
/* NOTREACHED */
}
return !mcache_bkt_isempty(m_cache(class));
}
/*
* If possible, convert constructed objects to raw ones.
*/
static boolean_t
mbuf_steal(mbuf_class_t class, unsigned int num)
{
mcache_obj_t *top = NULL;
mcache_obj_t **list = &top;
unsigned int tot = 0;
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
switch (class) {
case MC_MBUF:
case MC_CL:
case MC_BIGCL:
case MC_16KCL:
return FALSE;
case MC_MBUF_CL:
case MC_MBUF_BIGCL:
case MC_MBUF_16KCL:
/* Get the required number of constructed objects if possible */
if (m_infree(class) > m_minlimit(class)) {
tot = cslab_alloc(class, &list,
MIN(num, m_infree(class)));
}
/* And destroy them to get back the raw objects */
if (top != NULL) {
(void) cslab_free(class, top, 1);
}
break;
default:
VERIFY(0);
/* NOTREACHED */
}
return tot == num;
}
static void
m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp)
{
int m, bmap = 0;
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL));
VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
/*
* This logic can be made smarter; for now, simply mark
* all other related classes as potential victims.
*/
switch (class) {
case MC_MBUF:
m_wantpurge(MC_CL)++;
m_wantpurge(MC_BIGCL)++;
m_wantpurge(MC_MBUF_CL)++;
m_wantpurge(MC_MBUF_BIGCL)++;
break;
case MC_CL:
m_wantpurge(MC_MBUF)++;
m_wantpurge(MC_BIGCL)++;
m_wantpurge(MC_MBUF_BIGCL)++;
if (!comp) {
m_wantpurge(MC_MBUF_CL)++;
}
break;
case MC_BIGCL:
m_wantpurge(MC_MBUF)++;
m_wantpurge(MC_CL)++;
m_wantpurge(MC_MBUF_CL)++;
if (!comp) {
m_wantpurge(MC_MBUF_BIGCL)++;
}
break;
case MC_16KCL:
if (!comp) {
m_wantpurge(MC_MBUF_16KCL)++;
}
break;
default:
VERIFY(0);
/* NOTREACHED */
}
/*
* Run through each marked class and check if we really need to
* purge (and therefore temporarily disable) the per-CPU caches
* layer used by the class. If so, remember the classes since
* we are going to drop the lock below prior to purging.
*/
for (m = 0; m < NELEM(mbuf_table); m++) {
if (m_wantpurge(m) > 0) {
m_wantpurge(m) = 0;
/*
* Try hard to steal the required number of objects
* from the freelist of other mbuf classes. Only
* purge and disable the per-CPU caches layer when
* we don't have enough; it's the last resort.
*/
if (!mbuf_steal(m, num)) {
bmap |= (1 << m);
}
}
}
lck_mtx_unlock(mbuf_mlock);
if (bmap != 0) {
/* signal the domains to drain */
net_drain_domains();
/* Sigh; we have no other choices but to ask mcache to purge */
for (m = 0; m < NELEM(mbuf_table); m++) {
if ((bmap & (1 << m)) &&
mcache_purge_cache(m_cache(m), TRUE)) {
lck_mtx_lock(mbuf_mlock);
m_purge_cnt(m)++;
mbstat.m_drain++;
lck_mtx_unlock(mbuf_mlock);
}
}
} else {
/*
* Request mcache to reap extra elements from all of its caches;
* note that all reaps are serialized and happen only at a fixed
* interval.
*/
mcache_reap();
}
lck_mtx_lock(mbuf_mlock);
}
#endif /* CONFIG_MBUF_MCACHE */
static inline struct mbuf *
m_get_common(int wait, short type, int hdr)
{
struct mbuf *m;
#if CONFIG_MBUF_MCACHE
int mcflags = MSLEEPF(wait);
/* Is this due to a non-blocking retry? If so, then try harder */
if (mcflags & MCR_NOSLEEP) {
mcflags |= MCR_TRYHARD;
}
m = mcache_alloc(m_cache(MC_MBUF), mcflags);
#else
m = mz_alloc(wait);
#endif /* CONFIG_MBUF_MCACHE */
if (m != NULL) {
MBUF_INIT(m, hdr, type);
mtype_stat_inc(type);
mtype_stat_dec(MT_FREE);
}
return m;
}
/*
* Space allocation routines; these are also available as macros
* for critical paths.
*/
#define _M_GET(wait, type) m_get_common(wait, type, 0)
#define _M_GETHDR(wait, type) m_get_common(wait, type, 1)
#define _M_RETRY(wait, type) _M_GET(wait, type)
#define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type)
#define _MGET(m, how, type) ((m) = _M_GET(how, type))
#define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type))
struct mbuf *
m_get(int wait, int type)
{
return _M_GET(wait, type);
}
struct mbuf *
m_gethdr(int wait, int type)
{
return _M_GETHDR(wait, type);
}
struct mbuf *
m_retry(int wait, int type)
{
return _M_RETRY(wait, type);
}
struct mbuf *
m_retryhdr(int wait, int type)
{
return _M_RETRYHDR(wait, type);
}
struct mbuf *
m_getclr(int wait, int type)
{
struct mbuf *m;
_MGET(m, wait, type);
if (m != NULL) {
bzero(MTOD(m, caddr_t), MLEN);
}
return m;
}
static int
m_free_paired(struct mbuf *m)
{
VERIFY((m->m_flags & M_EXT) && (MEXT_FLAGS(m) & EXTF_PAIRED));
os_atomic_thread_fence(seq_cst);
if (MEXT_PMBUF(m) == m) {
/*
* Paired ref count might be negative in case we lose
* against another thread clearing MEXT_PMBUF, in the
* event it occurs after the above memory barrier sync.
* In that case just ignore as things have been unpaired.
*/
int16_t prefcnt = os_atomic_dec(&MEXT_PREF(m), acq_rel);
if (prefcnt > 1) {
return 1;
} else if (prefcnt == 1) {
m_ext_free_func_t m_free_func = m_get_ext_free(m);
VERIFY(m_free_func != NULL);
(*m_free_func)(m->m_ext.ext_buf,
m->m_ext.ext_size, m_get_ext_arg(m));
return 1;
} else if (prefcnt == 0) {
VERIFY(MBUF_IS_PAIRED(m));
/*
* Restore minref to its natural value, so that
* the caller will be able to free the cluster
* as appropriate.
*/
MEXT_MINREF(m) = 0;
/*
* Clear MEXT_PMBUF, but leave EXTF_PAIRED intact
* as it is immutable. atomic_set_ptr also causes
* memory barrier sync.
*/
os_atomic_store(&MEXT_PMBUF(m), NULL, release);
switch (m->m_ext.ext_size) {
case MCLBYTES:
m_set_ext(m, m_get_rfa(m), NULL, NULL);
break;
case MBIGCLBYTES:
m_set_ext(m, m_get_rfa(m), m_bigfree, NULL);
break;
case M16KCLBYTES:
m_set_ext(m, m_get_rfa(m), m_16kfree, NULL);
break;
default:
VERIFY(0);
/* NOTREACHED */
}
}
}
/*
* Tell caller the unpair has occurred, and that the reference
* count on the external cluster held for the paired mbuf should
* now be dropped.
*/
return 0;
}
struct mbuf *
m_free(struct mbuf *m)
{
struct mbuf *n = m->m_next;
if (m->m_type == MT_FREE) {
panic("m_free: freeing an already freed mbuf");
}
if (m->m_flags & M_PKTHDR) {
/* Check for scratch area overflow */
m_redzone_verify(m);
/* Free the aux data and tags if there is any */
m_tag_delete_chain(m);
m_do_tx_compl_callback(m, NULL);
}
if (m->m_flags & M_EXT) {
if (MBUF_IS_PAIRED(m) && m_free_paired(m)) {
return n;
}
/*
* Make sure that we don't touch any ext_ref
* member after we decrement the reference count
* since that may lead to use-after-free
* when we do not hold the last reference.
*/
const bool composite = !!(MEXT_FLAGS(m) & EXTF_COMPOSITE);
const m_ext_free_func_t m_free_func = m_get_ext_free(m);
const uint16_t minref = MEXT_MINREF(m);
const uint16_t refcnt = m_decref(m);
if (refcnt == minref && !composite) {
#if CONFIG_MBUF_MCACHE
if (m_free_func == NULL) {
mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
} else if (m_free_func == m_bigfree) {
mcache_free(m_cache(MC_BIGCL),
m->m_ext.ext_buf);
} else if (m_free_func == m_16kfree) {
mcache_free(m_cache(MC_16KCL),
m->m_ext.ext_buf);
} else {
(*m_free_func)(m->m_ext.ext_buf,
m->m_ext.ext_size, m_get_ext_arg(m));
}
mcache_free(ref_cache, m_get_rfa(m));
#else
if (m_free_func == NULL) {
mz_cl_free(ZONE_ID_CLUSTER_2K, m->m_ext.ext_buf);
} else if (m_free_func == m_bigfree) {
mz_cl_free(ZONE_ID_CLUSTER_4K, m->m_ext.ext_buf);
} else if (m_free_func == m_16kfree) {
mz_cl_free(ZONE_ID_CLUSTER_16K, m->m_ext.ext_buf);
} else {
(*m_free_func)(m->m_ext.ext_buf,
m->m_ext.ext_size, m_get_ext_arg(m));
}
mz_ref_free(m_get_rfa(m));
#endif /* CONFIG_MBUF_MCACHE */
m_set_ext(m, NULL, NULL, NULL);
} else if (refcnt == minref && composite) {
VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED));
mtype_stat_dec(m->m_type);
mtype_stat_inc(MT_FREE);
m->m_type = MT_FREE;
m->m_flags = M_EXT;
m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
/*
* MEXT_FLAGS is safe to access here
* since we are now sure that we held
* the last reference to ext_ref.
*/
MEXT_FLAGS(m) &= ~EXTF_READONLY;
#if CONFIG_MBUF_MCACHE
/* "Free" into the intermediate cache */
if (m_free_func == NULL) {
mcache_free(m_cache(MC_MBUF_CL), m);
} else if (m_free_func == m_bigfree) {
mcache_free(m_cache(MC_MBUF_BIGCL), m);
} else {
VERIFY(m_free_func == m_16kfree);
mcache_free(m_cache(MC_MBUF_16KCL), m);
}
#else
/* "Free" into the intermediate cache */
if (m_free_func == NULL) {
mz_composite_free(MC_MBUF_CL, m);
} else if (m_free_func == m_bigfree) {
mz_composite_free(MC_MBUF_BIGCL, m);
} else {
VERIFY(m_free_func == m_16kfree);
mz_composite_free(MC_MBUF_16KCL, m);
}
#endif /* CONFIG_MBUF_MCACHE */
return n;
}
}
mtype_stat_dec(m->m_type);
mtype_stat_inc(MT_FREE);
m->m_type = MT_FREE;
m->m_flags = m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
#if CONFIG_MBUF_MCACHE
mcache_free(m_cache(MC_MBUF), m);
#else
mz_free(m);
#endif /* CONFIG_MBUF_MCACHE */
return n;
}
__private_extern__ struct mbuf *
m_clattach(struct mbuf *m, int type, caddr_t extbuf,
void (*extfree)(caddr_t, u_int, caddr_t), size_t extsize, caddr_t extarg,
int wait, int pair)
{
struct ext_ref *rfa = NULL;
/*
* If pairing is requested and an existing mbuf is provided, reject
* it if it's already been paired to another cluster. Otherwise,
* allocate a new one or free any existing below.
*/
if ((m != NULL && MBUF_IS_PAIRED(m)) ||
(m == NULL && (m = _M_GETHDR(wait, type)) == NULL)) {
return NULL;
}
if (m->m_flags & M_EXT) {
/*
* Make sure that we don't touch any ext_ref
* member after we decrement the reference count
* since that may lead to use-after-free
* when we do not hold the last reference.
*/
const bool composite = !!(MEXT_FLAGS(m) & EXTF_COMPOSITE);
VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED) && MEXT_PMBUF(m) == NULL);
const m_ext_free_func_t m_free_func = m_get_ext_free(m);
const uint16_t minref = MEXT_MINREF(m);
const uint16_t refcnt = m_decref(m);
if (refcnt == minref && !composite) {
#if CONFIG_MBUF_MCACHE
if (m_free_func == NULL) {
mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
} else if (m_free_func == m_bigfree) {
mcache_free(m_cache(MC_BIGCL),
m->m_ext.ext_buf);
} else if (m_free_func == m_16kfree) {
mcache_free(m_cache(MC_16KCL),
m->m_ext.ext_buf);
} else {
(*m_free_func)(m->m_ext.ext_buf,
m->m_ext.ext_size, m_get_ext_arg(m));
}
#else
if (m_free_func == NULL) {
mz_cl_free(ZONE_ID_CLUSTER_2K, m->m_ext.ext_buf);
} else if (m_free_func == m_bigfree) {
mz_cl_free(ZONE_ID_CLUSTER_4K, m->m_ext.ext_buf);
} else if (m_free_func == m_16kfree) {
mz_cl_free(ZONE_ID_CLUSTER_16K, m->m_ext.ext_buf);
} else {
(*m_free_func)(m->m_ext.ext_buf,
m->m_ext.ext_size, m_get_ext_arg(m));
}
#endif /* CONFIG_MBUF_MCACHE */
/* Re-use the reference structure */
rfa = m_get_rfa(m);
} else if (refcnt == minref && composite) {
VERIFY(m->m_type != MT_FREE);
mtype_stat_dec(m->m_type);
mtype_stat_inc(MT_FREE);
m->m_type = MT_FREE;
m->m_flags = M_EXT;
m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
/*
* MEXT_FLAGS is safe to access here
* since we are now sure that we held
* the last reference to ext_ref.
*/
MEXT_FLAGS(m) &= ~EXTF_READONLY;
/* "Free" into the intermediate cache */
#if CONFIG_MBUF_MCACHE
if (m_free_func == NULL) {
mcache_free(m_cache(MC_MBUF_CL), m);
} else if (m_free_func == m_bigfree) {
mcache_free(m_cache(MC_MBUF_BIGCL), m);
} else {
VERIFY(m_free_func == m_16kfree);
mcache_free(m_cache(MC_MBUF_16KCL), m);
}
#else
if (m_free_func == NULL) {
mz_composite_free(MC_MBUF_CL, m);
} else if (m_free_func == m_bigfree) {
mz_composite_free(MC_MBUF_BIGCL, m);
} else {
VERIFY(m_free_func == m_16kfree);
mz_composite_free(MC_MBUF_16KCL, m);
}
#endif /* CONFIG_MBUF_MCACHE */
/*
* Allocate a new mbuf, since we didn't divorce
* the composite mbuf + cluster pair above.
*/
if ((m = _M_GETHDR(wait, type)) == NULL) {
return NULL;
}
}
}
#if CONFIG_MBUF_MCACHE
if (rfa == NULL &&
(rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
m_free(m);
return NULL;
}
#else
if (rfa == NULL &&
(rfa = mz_ref_alloc(wait)) == NULL) {
m_free(m);
return NULL;
}
#endif /* CONFIG_MBUF_MCACHE */
if (!pair) {
MEXT_INIT(m, extbuf, extsize, extfree, extarg, rfa,
0, 1, 0, 0, 0, NULL);
} else {
MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa,
1, 1, 1, EXTF_PAIRED, 0, m);
}
return m;
}
/*
* Perform `fast' allocation mbuf clusters from a cache of recently-freed
* clusters. (If the cache is empty, new clusters are allocated en-masse.)
*/
struct mbuf *
m_getcl(int wait, int type, int flags)
{
struct mbuf *m = NULL;
int hdr = (flags & M_PKTHDR);
#if CONFIG_MBUF_MCACHE
int mcflags = MSLEEPF(wait);
/* Is this due to a non-blocking retry? If so, then try harder */
if (mcflags & MCR_NOSLEEP) {
mcflags |= MCR_TRYHARD;
}
m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags);
#else
m = mz_composite_alloc(MC_MBUF_CL, wait);
#endif /* CONFIG_MBUF_MCACHE */
if (m != NULL) {
u_int16_t flag;
struct ext_ref *rfa;
void *cl;
VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
cl = m->m_ext.ext_buf;
rfa = m_get_rfa(m);
ASSERT(cl != NULL && rfa != NULL);
VERIFY(MBUF_IS_COMPOSITE(m) && m_get_ext_free(m) == NULL);
flag = MEXT_FLAGS(m);
MBUF_INIT(m, hdr, type);
MBUF_CL_INIT(m, cl, rfa, 1, flag);
mtype_stat_inc(type);
mtype_stat_dec(MT_FREE);
}
return m;
}
/* m_mclget() add an mbuf cluster to a normal mbuf */
struct mbuf *
m_mclget(struct mbuf *m, int wait)
{
struct ext_ref *rfa = NULL;
#if CONFIG_MBUF_MCACHE
if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
return m;
}
#else
if ((rfa = mz_ref_alloc(wait)) == NULL) {
return m;
}
#endif /* CONFIG_MBUF_MCACHE */
m->m_ext.ext_buf = m_mclalloc(wait);
if (m->m_ext.ext_buf != NULL) {
MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
} else {
#if CONFIG_MBUF_MCACHE
mcache_free(ref_cache, rfa);
#else
mz_ref_free(rfa);
#endif /* CONFIG_MBUF_MCACHE */
}
return m;
}
/* Allocate an mbuf cluster */
caddr_t
m_mclalloc(int wait)
{
#if CONFIG_MBUF_MCACHE
int mcflags = MSLEEPF(wait);
/* Is this due to a non-blocking retry? If so, then try harder */
if (mcflags & MCR_NOSLEEP) {
mcflags |= MCR_TRYHARD;
}
return mcache_alloc(m_cache(MC_CL), mcflags);
#else
return mz_cl_alloc(ZONE_ID_CLUSTER_2K, wait);
#endif /* CONFIG_MBUF_MCACHE */
}
/* Free an mbuf cluster */
void
m_mclfree(caddr_t p)
{
#if CONFIG_MBUF_MCACHE
mcache_free(m_cache(MC_CL), p);
#else
mz_cl_free(ZONE_ID_CLUSTER_2K, p);
#endif /* CONFIG_MBUF_MCACHE */
}
/*
* mcl_hasreference() checks if a cluster of an mbuf is referenced by
* another mbuf; see comments in m_incref() regarding EXTF_READONLY.
*/
int
m_mclhasreference(struct mbuf *m)
{
if (!(m->m_flags & M_EXT)) {
return 0;
}
ASSERT(m_get_rfa(m) != NULL);
return (MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0;
}
__private_extern__ caddr_t
m_bigalloc(int wait)
{
#if CONFIG_MBUF_MCACHE
int mcflags = MSLEEPF(wait);
/* Is this due to a non-blocking retry? If so, then try harder */
if (mcflags & MCR_NOSLEEP) {
mcflags |= MCR_TRYHARD;
}
return mcache_alloc(m_cache(MC_BIGCL), mcflags);
#else
return mz_cl_alloc(ZONE_ID_CLUSTER_4K, wait);
#endif /* CONFIG_MBUF_MCACHE */
}
__private_extern__ void
m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
{
#if CONFIG_MBUF_MCACHE
mcache_free(m_cache(MC_BIGCL), p);
#else
mz_cl_free(ZONE_ID_CLUSTER_4K, p);
#endif /* CONFIG_MBUF_MCACHE */
}
/* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */
__private_extern__ struct mbuf *
m_mbigget(struct mbuf *m, int wait)
{
struct ext_ref *rfa = NULL;
#if CONFIG_MBUF_MCACHE
if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
return m;
}
#else
if ((rfa = mz_ref_alloc(wait)) == NULL) {
return m;
}
#endif /* CONFIG_MBUF_MCACHE */
m->m_ext.ext_buf = m_bigalloc(wait);
if (m->m_ext.ext_buf != NULL) {
MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
} else {
#if CONFIG_MBUF_MCACHE
mcache_free(ref_cache, rfa);
#else
mz_ref_free(rfa);
#endif /* CONFIG_MBUF_MCACHE */
}
return m;
}
__private_extern__ caddr_t
m_16kalloc(int wait)
{
#if CONFIG_MBUF_MCACHE
int mcflags = MSLEEPF(wait);
/* Is this due to a non-blocking retry? If so, then try harder */
if (mcflags & MCR_NOSLEEP) {
mcflags |= MCR_TRYHARD;
}
return mcache_alloc(m_cache(MC_16KCL), mcflags);
#else
return mz_cl_alloc(ZONE_ID_CLUSTER_16K, wait);
#endif /* CONFIG_MBUF_MCACHE */
}
__private_extern__ void
m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
{
#if CONFIG_MBUF_MCACHE
mcache_free(m_cache(MC_16KCL), p);
#else
mz_cl_free(ZONE_ID_CLUSTER_16K, p);
#endif /* CONFIG_MBUF_MCACHE */
}
/* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */
__private_extern__ struct mbuf *
m_m16kget(struct mbuf *m, int wait)
{
struct ext_ref *rfa = NULL;
#if CONFIG_MBUF_MCACHE
if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
return m;
}
#else
if ((rfa = mz_ref_alloc(wait)) == NULL) {
return m;
}
#endif /* CONFIG_MBUF_MCACHE */
m->m_ext.ext_buf = m_16kalloc(wait);
if (m->m_ext.ext_buf != NULL) {
MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
} else {
#if CONFIG_MBUF_MCACHE
mcache_free(ref_cache, rfa);
#else
mz_ref_free(rfa);
#endif /* CONFIG_MBUF_MCACHE */
}
return m;
}
/*
* "Move" mbuf pkthdr from "from" to "to".
* "from" must have M_PKTHDR set, and "to" must be empty.
*/
void
m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
{
VERIFY(from->m_flags & M_PKTHDR);
/* Check for scratch area overflow */
m_redzone_verify(from);
if (to->m_flags & M_PKTHDR) {
/* Check for scratch area overflow */
m_redzone_verify(to);
/* We will be taking over the tags of 'to' */
m_tag_delete_chain(to);
}
to->m_pkthdr = from->m_pkthdr; /* especially tags */
m_classifier_init(from, 0); /* purge classifier info */
m_tag_init(from, 1); /* purge all tags from src */
m_scratch_init(from); /* clear src scratch area */
to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
if ((to->m_flags & M_EXT) == 0) {
to->m_data = (uintptr_t)to->m_pktdat;
}
m_redzone_init(to); /* setup red zone on dst */
}
/*
* Duplicate "from"'s mbuf pkthdr in "to".
* "from" must have M_PKTHDR set, and "to" must be empty.
* In particular, this does a deep copy of the packet tags.
*/
int
m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
{
VERIFY(from->m_flags & M_PKTHDR);
/* Check for scratch area overflow */
m_redzone_verify(from);
if (to->m_flags & M_PKTHDR) {
/* Check for scratch area overflow */
m_redzone_verify(to);
/* We will be taking over the tags of 'to' */
m_tag_delete_chain(to);
}
to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
if ((to->m_flags & M_EXT) == 0) {
to->m_data = (uintptr_t)to->m_pktdat;
}
to->m_pkthdr = from->m_pkthdr;
/* clear TX completion flag so the callback is not called in the copy */
to->m_pkthdr.pkt_flags &= ~PKTF_TX_COMPL_TS_REQ;
m_redzone_init(to); /* setup red zone on dst */
m_tag_init(to, 0); /* preserve dst static tags */
return m_tag_copy_chain(to, from, how);
}
void
m_copy_pftag(struct mbuf *to, struct mbuf *from)
{
memcpy(m_pftag(to), m_pftag(from), sizeof(struct pf_mtag));
#if PF_ECN
m_pftag(to)->pftag_hdr = NULL;
m_pftag(to)->pftag_flags &= ~(PF_TAG_HDR_INET | PF_TAG_HDR_INET6);
#endif /* PF_ECN */
}
void
m_copy_necptag(struct mbuf *to, struct mbuf *from)
{
memcpy(m_necptag(to), m_necptag(from), sizeof(struct necp_mtag_));
}
void
m_classifier_init(struct mbuf *m, uint32_t pktf_mask)
{
VERIFY(m->m_flags & M_PKTHDR);
m->m_pkthdr.pkt_proto = 0;
m->m_pkthdr.pkt_flowsrc = 0;
m->m_pkthdr.pkt_flowid = 0;
m->m_pkthdr.pkt_ext_flags = 0;
m->m_pkthdr.pkt_flags &= pktf_mask; /* caller-defined mask */
/* preserve service class and interface info for loopback packets */
if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
(void) m_set_service_class(m, MBUF_SC_BE);
}
if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) {
m->m_pkthdr.pkt_ifainfo = 0;
}
/*
* Preserve timestamp if requested
*/
if (!(m->m_pkthdr.pkt_flags & PKTF_TS_VALID)) {
m->m_pkthdr.pkt_timestamp = 0;
}
}
void
m_copy_classifier(struct mbuf *to, struct mbuf *from)
{
VERIFY(to->m_flags & M_PKTHDR);
VERIFY(from->m_flags & M_PKTHDR);
to->m_pkthdr.pkt_proto = from->m_pkthdr.pkt_proto;
to->m_pkthdr.pkt_flowsrc = from->m_pkthdr.pkt_flowsrc;
to->m_pkthdr.pkt_flowid = from->m_pkthdr.pkt_flowid;
to->m_pkthdr.pkt_mpriv_srcid = from->m_pkthdr.pkt_mpriv_srcid;
to->m_pkthdr.pkt_flags = from->m_pkthdr.pkt_flags;
to->m_pkthdr.pkt_ext_flags = from->m_pkthdr.pkt_ext_flags;
(void) m_set_service_class(to, from->m_pkthdr.pkt_svc);
to->m_pkthdr.pkt_ifainfo = from->m_pkthdr.pkt_ifainfo;
}
/*
* Return a list of mbuf hdrs that point to clusters. Try for num_needed;
* if wantall is not set, return whatever number were available. Set up the
* first num_with_pkthdrs with mbuf hdrs configured as packet headers; these
* are chained on the m_nextpkt field. Any packets requested beyond this
* are chained onto the last packet header's m_next field. The size of
* the cluster is controlled by the parameter bufsize.
*/
__private_extern__ struct mbuf *
m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs,
int wait, int wantall, size_t bufsize)
{
struct mbuf *m = NULL;
struct mbuf **np, *top;
unsigned int pnum, needed = *num_needed;
#if CONFIG_MBUF_MCACHE
mcache_obj_t *mp_list = NULL;
int mcflags = MSLEEPF(wait);
mcache_t *cp;
#else
zstack_t mp_list = {};
mbuf_class_t class = MC_MBUF_CL;
#endif /* CONFIG_MBUF_MCACHE */
u_int16_t flag;
struct ext_ref *rfa;
void *cl;
ASSERT(bufsize == m_maxsize(MC_CL) ||
bufsize == m_maxsize(MC_BIGCL) ||
bufsize == m_maxsize(MC_16KCL));
/*
* Caller must first check for njcl because this
* routine is internal and not exposed/used via KPI.
*/
VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0);
top = NULL;
np = &top;
pnum = 0;
/*
* The caller doesn't want all the requested buffers; only some.
* Try hard to get what we can, but don't block. This effectively
* overrides MCR_SLEEP, since this thread will not go to sleep
* if we can't get all the buffers.
*/
#if CONFIG_MBUF_MCACHE
if (!wantall || (mcflags & MCR_NOSLEEP)) {
mcflags |= MCR_TRYHARD;
}
/* Allocate the composite mbuf + cluster elements from the cache */
if (bufsize == m_maxsize(MC_CL)) {
cp = m_cache(MC_MBUF_CL);
} else if (bufsize == m_maxsize(MC_BIGCL)) {
cp = m_cache(MC_MBUF_BIGCL);
} else {
cp = m_cache(MC_MBUF_16KCL);
}
needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags);
#else
if (!wantall || (wait & Z_NOWAIT)) {
wait &= ~Z_NOWAIT;
wait |= Z_NOPAGEWAIT;
}
/* Allocate the composite mbuf + cluster elements from the cache */
if (bufsize == m_maxsize(MC_CL)) {
class = MC_MBUF_CL;
} else if (bufsize == m_maxsize(MC_BIGCL)) {
class = MC_MBUF_BIGCL;
} else {
class = MC_MBUF_16KCL;
}
mp_list = mz_composite_alloc_n(class, needed, wait);
needed = zstack_count(mp_list);
#endif /* CONFIG_MBUF_MCACHE */
for (pnum = 0; pnum < needed; pnum++) {
#if CONFIG_MBUF_MCACHE
m = (struct mbuf *)mp_list;
mp_list = mp_list->obj_next;
#else
m = zstack_pop(&mp_list);
#endif /* CONFIG_MBUF_MCACHE */
VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
cl = m->m_ext.ext_buf;
rfa = m_get_rfa(m);
ASSERT(cl != NULL && rfa != NULL);
VERIFY(MBUF_IS_COMPOSITE(m));
flag = MEXT_FLAGS(m);
MBUF_INIT(m, num_with_pkthdrs, MT_DATA);
if (bufsize == m_maxsize(MC_16KCL)) {
MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
} else if (bufsize == m_maxsize(MC_BIGCL)) {
MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
} else {
MBUF_CL_INIT(m, cl, rfa, 1, flag);
}
if (num_with_pkthdrs > 0) {
--num_with_pkthdrs;
}
*np = m;
if (num_with_pkthdrs > 0) {
np = &m->m_nextpkt;
} else {
np = &m->m_next;
}
}
#if CONFIG_MBUF_MCACHE
ASSERT(pnum != *num_needed || mp_list == NULL);
if (mp_list != NULL) {
mcache_free_ext(cp, mp_list);
}
#else
ASSERT(pnum != *num_needed || zstack_empty(mp_list));
if (!zstack_empty(mp_list)) {
mz_composite_free_n(class, mp_list);
}
#endif /* CONFIG_MBUF_MCACHE */
if (pnum > 0) {
mtype_stat_add(MT_DATA, pnum);
mtype_stat_sub(MT_FREE, pnum);
}
if (wantall && (pnum != *num_needed)) {
if (top != NULL) {
m_freem_list(top);
}
return NULL;
}
if (pnum > *num_needed) {
printf("%s: File a radar related to <rdar://10146739>. \
needed = %u, pnum = %u, num_needed = %u \n",
__func__, needed, pnum, *num_needed);
}
*num_needed = pnum;
return top;
}
/*
* Return list of mbuf linked by m_nextpkt. Try for numlist, and if
* wantall is not set, return whatever number were available. The size of
* each mbuf in the list is controlled by the parameter packetlen. Each
* mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf
* in the chain is called a segment. If maxsegments is not null and the
* value pointed to is not null, this specify the maximum number of segments
* for a chain of mbufs. If maxsegments is zero or the value pointed to
* is zero the caller does not have any restriction on the number of segments.
* The actual number of segments of a mbuf chain is return in the value
* pointed to by maxsegments.
*/
__private_extern__ struct mbuf *
m_allocpacket_internal(unsigned int *numlist, size_t packetlen,
unsigned int *maxsegments, int wait, int wantall, size_t wantsize)
{
struct mbuf **np, *top, *first = NULL;
size_t bufsize, r_bufsize;
unsigned int num = 0;
unsigned int nsegs = 0;
unsigned int needed = 0, resid;
#if CONFIG_MBUF_MCACHE
int mcflags = MSLEEPF(wait);
mcache_obj_t *mp_list = NULL, *rmp_list = NULL;
mcache_t *cp = NULL, *rcp = NULL;
#else
zstack_t mp_list = {}, rmp_list = {};
mbuf_class_t class = MC_MBUF, rclass = MC_MBUF_CL;
#endif /* CONFIG_MBUF_MCACHE */
if (*numlist == 0) {
os_log(OS_LOG_DEFAULT, "m_allocpacket_internal *numlist is 0");
return NULL;
}
top = NULL;
np = &top;
if (wantsize == 0) {
if (packetlen <= MINCLSIZE) {
bufsize = packetlen;
} else if (packetlen > m_maxsize(MC_CL)) {
/* Use 4KB if jumbo cluster pool isn't available */
if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0) {
bufsize = m_maxsize(MC_BIGCL);
} else {
bufsize = m_maxsize(MC_16KCL);
}
} else {
bufsize = m_maxsize(MC_CL);
}
} else if (wantsize == m_maxsize(MC_CL) ||
wantsize == m_maxsize(MC_BIGCL) ||
(wantsize == m_maxsize(MC_16KCL) && njcl > 0)) {
bufsize = wantsize;
} else {
*numlist = 0;
os_log(OS_LOG_DEFAULT, "m_allocpacket_internal wantsize unsupported");
return NULL;
}
if (bufsize <= MHLEN) {
nsegs = 1;
} else if (bufsize <= MINCLSIZE) {
if (maxsegments != NULL && *maxsegments == 1) {
bufsize = m_maxsize(MC_CL);
nsegs = 1;
} else {
nsegs = 2;
}
} else if (bufsize == m_maxsize(MC_16KCL)) {
VERIFY(njcl > 0);
nsegs = ((packetlen - 1) >> M16KCLSHIFT) + 1;
} else if (bufsize == m_maxsize(MC_BIGCL)) {
nsegs = ((packetlen - 1) >> MBIGCLSHIFT) + 1;
} else {
nsegs = ((packetlen - 1) >> MCLSHIFT) + 1;
}
if (maxsegments != NULL) {
if (*maxsegments && nsegs > *maxsegments) {
*maxsegments = nsegs;
*numlist = 0;
os_log(OS_LOG_DEFAULT, "m_allocpacket_internal nsegs > *maxsegments");
return NULL;
}
*maxsegments = nsegs;
}
/*
* The caller doesn't want all the requested buffers; only some.
* Try hard to get what we can, but don't block. This effectively
* overrides MCR_SLEEP, since this thread will not go to sleep
* if we can't get all the buffers.
*/
#if CONFIG_MBUF_MCACHE
if (!wantall || (mcflags & MCR_NOSLEEP)) {
mcflags |= MCR_TRYHARD;
}
#else
if (!wantall || (wait & Z_NOWAIT)) {
wait &= ~Z_NOWAIT;
wait |= Z_NOPAGEWAIT;
}
#endif /* !CONFIG_MBUF_MCACHE */
/*
* Simple case where all elements in the lists/chains are mbufs.
* Unless bufsize is greater than MHLEN, each segment chain is made
* up of exactly 1 mbuf. Otherwise, each segment chain is made up
* of 2 mbufs; the second one is used for the residual data, i.e.
* the remaining data that cannot fit into the first mbuf.
*/
if (bufsize <= MINCLSIZE) {
/* Allocate the elements in one shot from the mbuf cache */
ASSERT(bufsize <= MHLEN || nsegs == 2);
#if CONFIG_MBUF_MCACHE
cp = m_cache(MC_MBUF);
needed = mcache_alloc_ext(cp, &mp_list,
(*numlist) * nsegs, mcflags);
#else
class = MC_MBUF;
mp_list = mz_alloc_n((*numlist) * nsegs, wait);
needed = zstack_count(mp_list);
#endif /* CONFIG_MBUF_MCACHE */
/*
* The number of elements must be even if we are to use an
* mbuf (instead of a cluster) to store the residual data.
* If we couldn't allocate the requested number of mbufs,
* trim the number down (if it's odd) in order to avoid
* creating a partial segment chain.
*/
if (bufsize > MHLEN && (needed & 0x1)) {
needed--;
}
while (num < needed) {
struct mbuf *m = NULL;
#if CONFIG_MBUF_MCACHE
m = (struct mbuf *)mp_list;
mp_list = mp_list->obj_next;
#else
m = zstack_pop(&mp_list);
#endif /* CONFIG_MBUF_MCACHE */
ASSERT(m != NULL);
MBUF_INIT(m, 1, MT_DATA);
num++;
if (bufsize > MHLEN) {
/* A second mbuf for this segment chain */
#if CONFIG_MBUF_MCACHE
m->m_next = (struct mbuf *)mp_list;
mp_list = mp_list->obj_next;
#else
m->m_next = zstack_pop(&mp_list);
#endif /* CONFIG_MBUF_MCACHE */
ASSERT(m->m_next != NULL);
MBUF_INIT(m->m_next, 0, MT_DATA);
num++;
}
*np = m;
np = &m->m_nextpkt;
}
#if CONFIG_MBUF_MCACHE
ASSERT(num != *numlist || mp_list == NULL);
#else
ASSERT(num != *numlist || zstack_empty(mp_list));
#endif /* CONFIG_MBUF_MCACHE */
if (num > 0) {
mtype_stat_add(MT_DATA, num);
mtype_stat_sub(MT_FREE, num);
}
num /= nsegs;
/* We've got them all; return to caller */
if (num == *numlist) {
return top;
}
goto fail;
}
/*
* Complex cases where elements are made up of one or more composite
* mbufs + cluster, depending on packetlen. Each N-segment chain can
* be illustrated as follows:
*
* [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N]
*
* Every composite mbuf + cluster element comes from the intermediate
* cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency,
* the last composite element will come from the MC_MBUF_CL cache,
* unless the residual data is larger than 2KB where we use the
* big cluster composite cache (MC_MBUF_BIGCL) instead. Residual
* data is defined as extra data beyond the first element that cannot
* fit into the previous element, i.e. there is no residual data if
* the chain only has 1 segment.
*/
r_bufsize = bufsize;
resid = packetlen > bufsize ? packetlen % bufsize : 0;
if (resid > 0) {
/* There is residual data; figure out the cluster size */
if (wantsize == 0 && packetlen > MINCLSIZE) {
/*
* Caller didn't request that all of the segments
* in the chain use the same cluster size; use the
* smaller of the cluster sizes.
*/
if (njcl > 0 && resid > m_maxsize(MC_BIGCL)) {
r_bufsize = m_maxsize(MC_16KCL);
} else if (resid > m_maxsize(MC_CL)) {
r_bufsize = m_maxsize(MC_BIGCL);
} else {
r_bufsize = m_maxsize(MC_CL);
}
} else {
/* Use the same cluster size as the other segments */
resid = 0;
}
}
needed = *numlist;
if (resid > 0) {
/*
* Attempt to allocate composite mbuf + cluster elements for
* the residual data in each chain; record the number of such
* elements that can be allocated so that we know how many
* segment chains we can afford to create.
*/
#if CONFIG_MBUF_MCACHE
if (r_bufsize <= m_maxsize(MC_CL)) {
rcp = m_cache(MC_MBUF_CL);
} else if (r_bufsize <= m_maxsize(MC_BIGCL)) {
rcp = m_cache(MC_MBUF_BIGCL);
} else {
rcp = m_cache(MC_MBUF_16KCL);
}
needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags);
#else
if (r_bufsize <= m_maxsize(MC_CL)) {
rclass = MC_MBUF_CL;
} else if (r_bufsize <= m_maxsize(MC_BIGCL)) {
rclass = MC_MBUF_BIGCL;
} else {
rclass = MC_MBUF_16KCL;
}
rmp_list = mz_composite_alloc_n(rclass, *numlist, wait);
needed = zstack_count(rmp_list);
#endif /* CONFIG_MBUF_MCACHE */
if (needed == 0) {
goto fail;
}
/* This is temporarily reduced for calculation */
ASSERT(nsegs > 1);
nsegs--;
}
/*
* Attempt to allocate the rest of the composite mbuf + cluster
* elements for the number of segment chains that we need.
*/
#if CONFIG_MBUF_MCACHE
if (bufsize <= m_maxsize(MC_CL)) {
cp = m_cache(MC_MBUF_CL);
} else if (bufsize <= m_maxsize(MC_BIGCL)) {
cp = m_cache(MC_MBUF_BIGCL);
} else {
cp = m_cache(MC_MBUF_16KCL);
}
needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags);
#else
if (bufsize <= m_maxsize(MC_CL)) {
class = MC_MBUF_CL;
} else if (bufsize <= m_maxsize(MC_BIGCL)) {
class = MC_MBUF_BIGCL;
} else {
class = MC_MBUF_16KCL;
}
mp_list = mz_composite_alloc_n(class, needed * nsegs, wait);
needed = zstack_count(mp_list);
#endif /* CONFIG_MBUF_MCACHE */
/* Round it down to avoid creating a partial segment chain */
needed = (needed / nsegs) * nsegs;
if (needed == 0) {
goto fail;
}
if (resid > 0) {
/*
* We're about to construct the chain(s); take into account
* the number of segments we have created above to hold the
* residual data for each chain, as well as restore the
* original count of segments per chain.
*/
ASSERT(nsegs > 0);
needed += needed / nsegs;
nsegs++;
}
for (;;) {
struct mbuf *m = NULL;
u_int16_t flag;
struct ext_ref *rfa;
void *cl;
int pkthdr;
m_ext_free_func_t m_free_func;
++num;
if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) {
#if CONFIG_MBUF_MCACHE
m = (struct mbuf *)mp_list;
mp_list = mp_list->obj_next;
#else
m = zstack_pop(&mp_list);
#endif /* CONFIG_MBUF_MCACHE */
} else {
#if CONFIG_MBUF_MCACHE
m = (struct mbuf *)rmp_list;
rmp_list = rmp_list->obj_next;
#else
m = zstack_pop(&rmp_list);
#endif /* CONFIG_MBUF_MCACHE */
}
m_free_func = m_get_ext_free(m);
ASSERT(m != NULL);
VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
VERIFY(m_free_func == NULL || m_free_func == m_bigfree ||
m_free_func == m_16kfree);
cl = m->m_ext.ext_buf;
rfa = m_get_rfa(m);
ASSERT(cl != NULL && rfa != NULL);
VERIFY(MBUF_IS_COMPOSITE(m));
flag = MEXT_FLAGS(m);
pkthdr = (nsegs == 1 || (num % nsegs) == 1);
if (pkthdr) {
first = m;
}
MBUF_INIT(m, pkthdr, MT_DATA);
if (m_free_func == m_16kfree) {
MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
} else if (m_free_func == m_bigfree) {
MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
} else {
MBUF_CL_INIT(m, cl, rfa, 1, flag);
}
*np = m;
if ((num % nsegs) == 0) {
np = &first->m_nextpkt;
} else {
np = &m->m_next;
}
if (num == needed) {
break;
}
}
if (num > 0) {
mtype_stat_add(MT_DATA, num);
mtype_stat_sub(MT_FREE, num);
}
num /= nsegs;
/* We've got them all; return to caller */
if (num == *numlist) {
#if CONFIG_MBUF_MCACHE
ASSERT(mp_list == NULL && rmp_list == NULL);
#else
ASSERT(zstack_empty(mp_list) && zstack_empty(rmp_list));
#endif /* CONFIG_MBUF_MCACHE */
return top;
}
fail:
/* Free up what's left of the above */
#if CONFIG_MBUF_MCACHE
if (mp_list != NULL) {
mcache_free_ext(cp, mp_list);
}
if (rmp_list != NULL) {
mcache_free_ext(rcp, rmp_list);
}
#else
if (!zstack_empty(mp_list)) {
if (class == MC_MBUF) {
/* No need to elide, these mbufs came from the cache. */
mz_free_n(mp_list);
} else {
mz_composite_free_n(class, mp_list);
}
}
if (!zstack_empty(rmp_list)) {
mz_composite_free_n(rclass, rmp_list);
}
#endif /* CONFIG_MBUF_MCACHE */
if (wantall && top != NULL) {
m_freem_list(top);
*numlist = 0;
return NULL;
}
*numlist = num;
return top;
}
/*
* Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
* packets on receive ring.
*/
__private_extern__ struct mbuf *
m_getpacket_how(int wait)
{
unsigned int num_needed = 1;
return m_getpackets_internal(&num_needed, 1, wait, 1,
m_maxsize(MC_CL));
}
/*
* Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
* packets on receive ring.
*/
struct mbuf *
m_getpacket(void)
{
unsigned int num_needed = 1;
return m_getpackets_internal(&num_needed, 1, M_WAIT, 1,
m_maxsize(MC_CL));
}
/*
* Return a list of mbuf hdrs that point to clusters. Try for num_needed;
* if this can't be met, return whatever number were available. Set up the
* first num_with_pkthdrs with mbuf hdrs configured as packet headers. These
* are chained on the m_nextpkt field. Any packets requested beyond this are
* chained onto the last packet header's m_next field.
*/
struct mbuf *
m_getpackets(int num_needed, int num_with_pkthdrs, int how)
{
unsigned int n = num_needed;
return m_getpackets_internal(&n, num_with_pkthdrs, how, 0,
m_maxsize(MC_CL));
}
/*
* Return a list of mbuf hdrs set up as packet hdrs chained together
* on the m_nextpkt field
*/
struct mbuf *
m_getpackethdrs(int num_needed, int how)
{
struct mbuf *m;
struct mbuf **np, *top;
top = NULL;
np = &top;
while (num_needed--) {
m = _M_RETRYHDR(how, MT_DATA);
if (m == NULL) {
break;
}
*np = m;
np = &m->m_nextpkt;
}
return top;
}
/*
* Free an mbuf list (m_nextpkt) while following m_next. Returns the count
* for mbufs packets freed. Used by the drivers.
*/
int
m_freem_list(struct mbuf *m)
{
struct mbuf *nextpkt;
#if CONFIG_MBUF_MCACHE
mcache_obj_t *mp_list = NULL;
mcache_obj_t *mcl_list = NULL;
mcache_obj_t *mbc_list = NULL;
mcache_obj_t *m16k_list = NULL;
mcache_obj_t *m_mcl_list = NULL;
mcache_obj_t *m_mbc_list = NULL;
mcache_obj_t *m_m16k_list = NULL;
mcache_obj_t *ref_list = NULL;
#else
zstack_t mp_list = {}, mcl_list = {}, mbc_list = {},
m16k_list = {}, m_mcl_list = {},
m_mbc_list = {}, m_m16k_list = {}, ref_list = {};
#endif /* CONFIG_MBUF_MCACHE */
int pktcount = 0;
int mt_free = 0, mt_data = 0, mt_header = 0, mt_soname = 0, mt_tag = 0;
while (m != NULL) {
pktcount++;
nextpkt = m->m_nextpkt;
m->m_nextpkt = NULL;
while (m != NULL) {
struct mbuf *next = m->m_next;
#if CONFIG_MBUF_MCACHE
mcache_obj_t *o, *rfa;
#else
void *cl = NULL;
#endif /* CONFIG_MBUF_MCACHE */
if (m->m_type == MT_FREE) {
panic("m_free: freeing an already freed mbuf");
}
if (m->m_flags & M_PKTHDR) {
/* Check for scratch area overflow */
m_redzone_verify(m);
/* Free the aux data and tags if there is any */
m_tag_delete_chain(m);
m_do_tx_compl_callback(m, NULL);
}
if (!(m->m_flags & M_EXT)) {
mt_free++;
goto simple_free;
}
if (MBUF_IS_PAIRED(m) && m_free_paired(m)) {
m = next;
continue;
}
mt_free++;
#if CONFIG_MBUF_MCACHE
o = (mcache_obj_t *)(void *)m->m_ext.ext_buf;
#else
cl = m->m_ext.ext_buf;
#endif /* CONFIG_MBUF_MCACHE */
/*
* Make sure that we don't touch any ext_ref
* member after we decrement the reference count
* since that may lead to use-after-free
* when we do not hold the last reference.
*/
const bool composite = !!(MEXT_FLAGS(m) & EXTF_COMPOSITE);
const m_ext_free_func_t m_free_func = m_get_ext_free(m);
const uint16_t minref = MEXT_MINREF(m);
const uint16_t refcnt = m_decref(m);
if (refcnt == minref && !composite) {
#if CONFIG_MBUF_MCACHE
if (m_free_func == NULL) {
o->obj_next = mcl_list;
mcl_list = o;
} else if (m_free_func == m_bigfree) {
o->obj_next = mbc_list;
mbc_list = o;
} else if (m_free_func == m_16kfree) {
o->obj_next = m16k_list;
m16k_list = o;
} else {
(*(m_free_func))((caddr_t)o,
m->m_ext.ext_size,
m_get_ext_arg(m));
}
rfa = (mcache_obj_t *)(void *)m_get_rfa(m);
rfa->obj_next = ref_list;
ref_list = rfa;
#else
if (m_free_func == NULL) {
zstack_push(&mcl_list, cl);
} else if (m_free_func == m_bigfree) {
zstack_push(&mbc_list, cl);
} else if (m_free_func == m_16kfree) {
zstack_push(&m16k_list, cl);
} else {
(*(m_free_func))((caddr_t)cl,
m->m_ext.ext_size,
m_get_ext_arg(m));
}
zstack_push(&ref_list, m_get_rfa(m));
#endif /* CONFIG_MBUF_MCACHE */
m_set_ext(m, NULL, NULL, NULL);
} else if (refcnt == minref && composite) {
VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED));
/*
* Amortize the costs of atomic operations
* by doing them at the end, if possible.
*/
if (m->m_type == MT_DATA) {
mt_data++;
} else if (m->m_type == MT_HEADER) {
mt_header++;
} else if (m->m_type == MT_SONAME) {
mt_soname++;
} else if (m->m_type == MT_TAG) {
mt_tag++;
} else {
mtype_stat_dec(m->m_type);
}
m->m_type = MT_FREE;
m->m_flags = M_EXT;
m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
/*
* MEXT_FLAGS is safe to access here
* since we are now sure that we held
* the last reference to ext_ref.
*/
MEXT_FLAGS(m) &= ~EXTF_READONLY;
/* "Free" into the intermediate cache */
#if CONFIG_MBUF_MCACHE
o = (mcache_obj_t *)m;
if (m_free_func == NULL) {
o->obj_next = m_mcl_list;
m_mcl_list = o;
} else if (m_free_func == m_bigfree) {
o->obj_next = m_mbc_list;
m_mbc_list = o;
} else {
VERIFY(m_free_func == m_16kfree);
o->obj_next = m_m16k_list;
m_m16k_list = o;
}
#else
if (m_free_func == NULL) {
zstack_push(&m_mcl_list, m);
} else if (m_free_func == m_bigfree) {
zstack_push(&m_mbc_list, m);
} else {
VERIFY(m_free_func == m_16kfree);
zstack_push(&m_m16k_list, m);
}
#endif /* CONFIG_MBUF_MCACHE */
m = next;
continue;
}
simple_free:
/*
* Amortize the costs of atomic operations
* by doing them at the end, if possible.
*/
if (m->m_type == MT_DATA) {
mt_data++;
} else if (m->m_type == MT_HEADER) {
mt_header++;
} else if (m->m_type == MT_SONAME) {
mt_soname++;
} else if (m->m_type == MT_TAG) {
mt_tag++;
} else if (m->m_type != MT_FREE) {
mtype_stat_dec(m->m_type);
}
m->m_type = MT_FREE;
m->m_flags = m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
#if CONFIG_MBUF_MCACHE
((mcache_obj_t *)m)->obj_next = mp_list;
mp_list = (mcache_obj_t *)m;
#else
m_elide(m);
zstack_push(&mp_list, m);
#endif /* CONFIG_MBUF_MCACHE */
m = next;
}
m = nextpkt;
}
if (mt_free > 0) {
mtype_stat_add(MT_FREE, mt_free);
}
if (mt_data > 0) {
mtype_stat_sub(MT_DATA, mt_data);
}
if (mt_header > 0) {
mtype_stat_sub(MT_HEADER, mt_header);
}
if (mt_soname > 0) {
mtype_stat_sub(MT_SONAME, mt_soname);
}
if (mt_tag > 0) {
mtype_stat_sub(MT_TAG, mt_tag);
}
#if CONFIG_MBUF_MCACHE
if (mp_list != NULL) {
mcache_free_ext(m_cache(MC_MBUF), mp_list);
}
if (mcl_list != NULL) {
mcache_free_ext(m_cache(MC_CL), mcl_list);
}
if (mbc_list != NULL) {
mcache_free_ext(m_cache(MC_BIGCL), mbc_list);
}
if (m16k_list != NULL) {
mcache_free_ext(m_cache(MC_16KCL), m16k_list);
}
if (m_mcl_list != NULL) {
mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list);
}
if (m_mbc_list != NULL) {
mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list);
}
if (m_m16k_list != NULL) {
mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list);
}
if (ref_list != NULL) {
mcache_free_ext(ref_cache, ref_list);
}
#else
if (!zstack_empty(mp_list)) {
/* mbufs elided above. */
mz_free_n(mp_list);
}
if (!zstack_empty(mcl_list)) {
zfree_nozero_n(ZONE_ID_CLUSTER_2K, mcl_list);
}
if (!zstack_empty(mbc_list)) {
zfree_nozero_n(ZONE_ID_CLUSTER_4K, mbc_list);
}
if (!zstack_empty(m16k_list)) {
zfree_nozero_n(ZONE_ID_CLUSTER_16K, m16k_list);
}
if (!zstack_empty(m_mcl_list)) {
mz_composite_free_n(MC_MBUF_CL, m_mcl_list);
}
if (!zstack_empty(m_mbc_list)) {
mz_composite_free_n(MC_MBUF_BIGCL, m_mbc_list);
}
if (!zstack_empty(m_m16k_list)) {
mz_composite_free_n(MC_MBUF_16KCL, m_m16k_list);
}
if (!zstack_empty(ref_list)) {
zfree_nozero_n(ZONE_ID_MBUF_REF, ref_list);
}
#endif /* CONFIG_MBUF_MCACHE */
return pktcount;
}
void
m_freem(struct mbuf *m)
{
while (m != NULL) {
m = m_free(m);
}
}
/*
* Mbuffer utility routines.
*/
/*
* Set the m_data pointer of a newly allocated mbuf to place an object of the
* specified size at the end of the mbuf, longword aligned.
*
* NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as
* separate macros, each asserting that it was called at the proper moment.
* This required callers to themselves test the storage type and call the
* right one. Rather than require callers to be aware of those layout
* decisions, we centralize here.
*/
void
m_align(struct mbuf *m, int len)
{
int adjust = 0;
/* At this point data must point to start */
VERIFY(m->m_data == (uintptr_t)M_START(m));
VERIFY(len >= 0);
VERIFY(len <= M_SIZE(m));
adjust = M_SIZE(m) - len;
m->m_data += adjust & ~(sizeof(long) - 1);
}
/*
* Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain,
* copy junk along. Does not adjust packet header length.
*/
struct mbuf *
m_prepend(struct mbuf *m, int len, int how)
{
struct mbuf *mn;
_MGET(mn, how, m->m_type);
if (mn == NULL) {
m_freem(m);
return NULL;
}
if (m->m_flags & M_PKTHDR) {
M_COPY_PKTHDR(mn, m);
m->m_flags &= ~M_PKTHDR;
}
mn->m_next = m;
m = mn;
if (m->m_flags & M_PKTHDR) {
VERIFY(len <= MHLEN);
MH_ALIGN(m, len);
} else {
VERIFY(len <= MLEN);
M_ALIGN(m, len);
}
m->m_len = len;
return m;
}
/*
* Replacement for old M_PREPEND macro: allocate new mbuf to prepend to
* chain, copy junk along, and adjust length.
*/
struct mbuf *
m_prepend_2(struct mbuf *m, int len, int how, int align)
{
if (M_LEADINGSPACE(m) >= len &&
(!align || IS_P2ALIGNED((m->m_data - len), sizeof(u_int32_t)))) {
m->m_data -= len;
m->m_len += len;
} else {
m = m_prepend(m, len, how);
}
if ((m) && (m->m_flags & M_PKTHDR)) {
m->m_pkthdr.len += len;
}
return m;
}
/*
* Make a copy of an mbuf chain starting "off0" bytes from the beginning,
* continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
* The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
*
* The last mbuf and offset accessed are passed in and adjusted on return to
* avoid having to iterate over the entire mbuf chain each time.
*/
struct mbuf *
m_copym_mode(struct mbuf *m, int off0, int len0, int wait,
struct mbuf **m_lastm, int *m_off, uint32_t mode)
{
struct mbuf *n, *mhdr = NULL, **np;
int off = off0, len = len0;
struct mbuf *top;
int copyhdr = 0;
if (off < 0 || len < 0) {
panic("m_copym: invalid offset %d or len %d", off, len);
}
VERIFY((mode != M_COPYM_MUST_COPY_HDR &&
mode != M_COPYM_MUST_MOVE_HDR) || (m->m_flags & M_PKTHDR));
if ((off == 0 && (m->m_flags & M_PKTHDR)) ||
mode == M_COPYM_MUST_COPY_HDR || mode == M_COPYM_MUST_MOVE_HDR) {
mhdr = m;
copyhdr = 1;
}
if (m_lastm != NULL && *m_lastm != NULL) {
if (off0 >= *m_off) {
m = *m_lastm;
off = off0 - *m_off;
}
}
while (off >= m->m_len) {
off -= m->m_len;
m = m->m_next;
}
np = &top;
top = NULL;
while (len > 0) {
if (m == NULL) {
if (len != M_COPYALL) {
panic("m_copym: len != M_COPYALL");
}
break;
}
if (copyhdr) {
n = _M_RETRYHDR(wait, m->m_type);
} else {
n = _M_RETRY(wait, m->m_type);
}
*np = n;
if (n == NULL) {
goto nospace;
}
if (copyhdr != 0) {
if ((mode == M_COPYM_MOVE_HDR) ||
(mode == M_COPYM_MUST_MOVE_HDR)) {
M_COPY_PKTHDR(n, mhdr);
} else if ((mode == M_COPYM_COPY_HDR) ||
(mode == M_COPYM_MUST_COPY_HDR)) {
if (m_dup_pkthdr(n, mhdr, wait) == 0) {
goto nospace;
}
}
if (len == M_COPYALL) {
n->m_pkthdr.len -= off0;
} else {
n->m_pkthdr.len = len;
}
copyhdr = 0;
/*
* There is data to copy from the packet header mbuf
* if it is empty or it is before the starting offset
*/
if (mhdr != m) {
np = &n->m_next;
continue;
}
}
n->m_len = MIN(len, (m->m_len - off));
if (m->m_flags & M_EXT) {
n->m_ext = m->m_ext;
m_incref(m);
n->m_data = m->m_data + off;
n->m_flags |= M_EXT;
} else {
/*
* Limit to the capacity of the destination
*/
if (n->m_flags & M_PKTHDR) {
n->m_len = MIN(n->m_len, MHLEN);
} else {
n->m_len = MIN(n->m_len, MLEN);
}
if (MTOD(n, char *) + n->m_len > ((char *)n) + _MSIZE) {
panic("%s n %p copy overflow",
__func__, n);
}
bcopy(MTOD(m, caddr_t) + off, MTOD(n, caddr_t),
(unsigned)n->m_len);
}
if (len != M_COPYALL) {
len -= n->m_len;
}
if (len == 0) {
if (m_lastm != NULL) {
*m_lastm = m;
*m_off = off0 + len0 - (off + n->m_len);
}
}
off = 0;
m = m->m_next;
np = &n->m_next;
}
return top;
nospace:
m_freem(top);
return NULL;
}
struct mbuf *
m_copym(struct mbuf *m, int off0, int len, int wait)
{
return m_copym_mode(m, off0, len, wait, NULL, NULL, M_COPYM_MOVE_HDR);
}
/*
* Equivalent to m_copym except that all necessary mbuf hdrs are allocated
* within this routine also.
*
* The last mbuf and offset accessed are passed in and adjusted on return to
* avoid having to iterate over the entire mbuf chain each time.
*/
struct mbuf *
m_copym_with_hdrs(struct mbuf *m0, int off0, int len0, int wait,
struct mbuf **m_lastm, int *m_off, uint32_t mode)
{
struct mbuf *m = m0, *n, **np = NULL;
int off = off0, len = len0;
struct mbuf *top = NULL;
#if CONFIG_MBUF_MCACHE
int mcflags = MSLEEPF(wait);
mcache_obj_t *list = NULL;
#else
zstack_t list = {};
#endif /* CONFIG_MBUF_MCACHE */
int copyhdr = 0;
int type = 0;
int needed = 0;
if (off == 0 && (m->m_flags & M_PKTHDR)) {
copyhdr = 1;
}
if (m_lastm != NULL && *m_lastm != NULL) {
if (off0 >= *m_off) {
m = *m_lastm;
off = off0 - *m_off;
}
}
while (off >= m->m_len) {
off -= m->m_len;
m = m->m_next;
}
n = m;
while (len > 0) {
needed++;
len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0)));
n = n->m_next;
}
needed++;
len = len0;
#if CONFIG_MBUF_MCACHE
/*
* If the caller doesn't want to be put to sleep, mark it with
* MCR_TRYHARD so that we may reclaim buffers from other places
* before giving up.
*/
if (mcflags & MCR_NOSLEEP) {
mcflags |= MCR_TRYHARD;
}
if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed,
mcflags) != needed) {
goto nospace;
}
#else
list = mz_alloc_n(needed, wait);
if (zstack_count(list) != needed) {
goto nospace;
}
#endif /* CONFIG_MBUF_MCACHE */
needed = 0;
while (len > 0) {
#if CONFIG_MBUF_MCACHE
n = (struct mbuf *)list;
list = list->obj_next;
#else
n = zstack_pop(&list);
#endif /* CONFIG_MBUF_MCACHE */
ASSERT(n != NULL && m != NULL);
type = (top == NULL) ? MT_HEADER : m->m_type;
MBUF_INIT(n, (top == NULL), type);
if (top == NULL) {
top = n;
np = &top->m_next;
continue;
} else {
needed++;
*np = n;
}
if (copyhdr) {
if ((mode == M_COPYM_MOVE_HDR) ||
(mode == M_COPYM_MUST_MOVE_HDR)) {
M_COPY_PKTHDR(n, m);
} else if ((mode == M_COPYM_COPY_HDR) ||
(mode == M_COPYM_MUST_COPY_HDR)) {
if (m_dup_pkthdr(n, m, wait) == 0) {
#if !CONFIG_MBUF_MCACHE
m_elide(n);
#endif
goto nospace;
}
}
n->m_pkthdr.len = len;
copyhdr = 0;
}
n->m_len = MIN(len, (m->m_len - off));
if (m->m_flags & M_EXT) {
n->m_ext = m->m_ext;
m_incref(m);
n->m_data = m->m_data + off;
n->m_flags |= M_EXT;
} else {
if (m_mtod_end(n) > m_mtod_upper_bound(n)) {
panic("%s n %p copy overflow",
__func__, n);
}
bcopy(MTOD(m, caddr_t) + off, MTOD(n, caddr_t),
(unsigned)n->m_len);
}
len -= n->m_len;
if (len == 0) {
if (m_lastm != NULL) {
*m_lastm = m;
*m_off = off0 + len0 - (off + n->m_len);
}
break;
}
off = 0;
m = m->m_next;
np = &n->m_next;
}
mtype_stat_inc(MT_HEADER);
mtype_stat_add(type, needed);
mtype_stat_sub(MT_FREE, needed + 1);
#if CONFIG_MBUF_MCACHE
ASSERT(list == NULL);
#else
ASSERT(zstack_empty(list));
#endif /* CONFIG_MBUF_MCACHE */
return top;
nospace:
#if CONFIG_MBUF_MCACHE
if (list != NULL) {
mcache_free_ext(m_cache(MC_MBUF), list);
}
#else
if (!zstack_empty(list)) {
/* No need to elide, these mbufs came from the cache. */
mz_free_n(list);
}
#endif /* CONFIG_MBUF_MCACHE */
if (top != NULL) {
m_freem(top);
}
return NULL;
}
/*
* Copy data from an mbuf chain starting "off" bytes from the beginning,
* continuing for "len" bytes, into the indicated buffer.
*/
void
m_copydata(struct mbuf *m, int off, int len, void *vp)
{
int off0 = off, len0 = len;
struct mbuf *m0 = m;
unsigned count;
char *cp = vp;
if (__improbable(off < 0 || len < 0)) {
panic("%s: invalid offset %d or len %d", __func__, off, len);
/* NOTREACHED */
}
while (off > 0) {
if (__improbable(m == NULL)) {
panic("%s: invalid mbuf chain %p [off %d, len %d]",
__func__, m0, off0, len0);
/* NOTREACHED */
}
if (off < m->m_len) {
break;
}
off -= m->m_len;
m = m->m_next;
}
while (len > 0) {
if (__improbable(m == NULL)) {
panic("%s: invalid mbuf chain %p [off %d, len %d]",
__func__, m0, off0, len0);
/* NOTREACHED */
}
count = MIN(m->m_len - off, len);
bcopy(MTOD(m, caddr_t) + off, cp, count);
len -= count;
cp += count;
off = 0;
m = m->m_next;
}
}
/*
* Concatenate mbuf chain n to m. Both chains must be of the same type
* (e.g. MT_DATA). Any m_pkthdr is not updated.
*/
void
m_cat(struct mbuf *m, struct mbuf *n)
{
while (m->m_next) {
m = m->m_next;
}
while (n) {
if ((m->m_flags & M_EXT) ||
m->m_data + m->m_len + n->m_len >= (uintptr_t)&m->m_dat[MLEN]) {
/* just join the two chains */
m->m_next = n;
return;
}
/* splat the data from one into the other */
bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
(u_int)n->m_len);
m->m_len += n->m_len;
n = m_free(n);
}
}
void
m_adj(struct mbuf *mp, int req_len)
{
int len = req_len;
struct mbuf *m;
int count;
if ((m = mp) == NULL) {
return;
}
if (len >= 0) {
/*
* Trim from head.
*/
while (m != NULL && len > 0) {
if (m->m_len <= len) {
len -= m->m_len;
m->m_len = 0;
m = m->m_next;
} else {
m->m_len -= len;
m->m_data += len;
len = 0;
}
}
m = mp;
if (m->m_flags & M_PKTHDR) {
m->m_pkthdr.len -= (req_len - len);
}
} else {
/*
* Trim from tail. Scan the mbuf chain,
* calculating its length and finding the last mbuf.
* If the adjustment only affects this mbuf, then just
* adjust and return. Otherwise, rescan and truncate
* after the remaining size.
*/
len = -len;
count = 0;
for (;;) {
count += m->m_len;
if (m->m_next == (struct mbuf *)0) {
break;
}
m = m->m_next;
}
if (m->m_len >= len) {
m->m_len -= len;
m = mp;
if (m->m_flags & M_PKTHDR) {
m->m_pkthdr.len -= len;
}
return;
}
count -= len;
if (count < 0) {
count = 0;
}
/*
* Correct length for chain is "count".
* Find the mbuf with last data, adjust its length,
* and toss data from remaining mbufs on chain.
*/
m = mp;
if (m->m_flags & M_PKTHDR) {
m->m_pkthdr.len = count;
}
for (; m; m = m->m_next) {
if (m->m_len >= count) {
m->m_len = count;
break;
}
count -= m->m_len;
}
while ((m = m->m_next)) {
m->m_len = 0;
}
}
}
/*
* Rearange an mbuf chain so that len bytes are contiguous
* and in the data area of an mbuf (so that mtod
* will work for a structure of size len). Returns the resulting
* mbuf chain on success, frees it and returns null on failure.
* If there is room, it will add up to max_protohdr-len extra bytes to the
* contiguous region in an attempt to avoid being called next time.
*/
struct mbuf *
m_pullup(struct mbuf *n, int len)
{
struct mbuf *m;
int count;
int space;
/* check invalid arguments */
if (n == NULL) {
panic("%s: n == NULL", __func__);
}
if (len < 0) {
os_log_info(OS_LOG_DEFAULT, "%s: failed negative len %d",
__func__, len);
goto bad;
}
if (len > MLEN) {
os_log_info(OS_LOG_DEFAULT, "%s: failed len %d too big",
__func__, len);
goto bad;
}
if ((n->m_flags & M_EXT) == 0 &&
m_mtod_current(n) >= m_mtod_upper_bound(n)) {
os_log_info(OS_LOG_DEFAULT, "%s: m_data out of bounds",
__func__);
goto bad;
}
/*
* If first mbuf has no cluster, and has room for len bytes
* without shifting current data, pullup into it,
* otherwise allocate a new mbuf to prepend to the chain.
*/
if ((n->m_flags & M_EXT) == 0 &&
len < m_mtod_upper_bound(n) - m_mtod_current(n) && n->m_next != NULL) {
if (n->m_len >= len) {
return n;
}
m = n;
n = n->m_next;
len -= m->m_len;
} else {
if (len > MHLEN) {
goto bad;
}
_MGET(m, M_DONTWAIT, n->m_type);
if (m == 0) {
goto bad;
}
m->m_len = 0;
if (n->m_flags & M_PKTHDR) {
M_COPY_PKTHDR(m, n);
n->m_flags &= ~M_PKTHDR;
}
}
space = m_mtod_upper_bound(m) - m_mtod_end(m);
do {
count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len);
bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
(unsigned)count);
len -= count;
m->m_len += count;
n->m_len -= count;
space -= count;
if (n->m_len != 0) {
n->m_data += count;
} else {
n = m_free(n);
}
} while (len > 0 && n != NULL);
if (len > 0) {
(void) m_free(m);
goto bad;
}
m->m_next = n;
return m;
bad:
m_freem(n);
return 0;
}
/*
* Like m_pullup(), except a new mbuf is always allocated, and we allow
* the amount of empty space before the data in the new mbuf to be specified
* (in the event that the caller expects to prepend later).
*/
__private_extern__ struct mbuf *
m_copyup(struct mbuf *n, int len, int dstoff)
{
struct mbuf *m;
int count, space;
VERIFY(len >= 0 && dstoff >= 0);
if (len > (MHLEN - dstoff)) {
goto bad;
}
MGET(m, M_DONTWAIT, n->m_type);
if (m == NULL) {
goto bad;
}
m->m_len = 0;
if (n->m_flags & M_PKTHDR) {
m_copy_pkthdr(m, n);
n->m_flags &= ~M_PKTHDR;
}
m->m_data += dstoff;
space = m_mtod_upper_bound(m) - m_mtod_end(m);
do {
count = min(min(max(len, max_protohdr), space), n->m_len);
memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
(unsigned)count);
len -= count;
m->m_len += count;
n->m_len -= count;
space -= count;
if (n->m_len) {
n->m_data += count;
} else {
n = m_free(n);
}
} while (len > 0 && n);
if (len > 0) {
(void) m_free(m);
goto bad;
}
m->m_next = n;
return m;
bad:
m_freem(n);
return NULL;
}
/*
* Partition an mbuf chain in two pieces, returning the tail --
* all but the first len0 bytes. In case of failure, it returns NULL and
* attempts to restore the chain to its original state.
*/
struct mbuf *
m_split(struct mbuf *m0, int len0, int wait)
{
return m_split0(m0, len0, wait, 1);
}
static struct mbuf *
m_split0(struct mbuf *m0, int len0, int wait, int copyhdr)
{
struct mbuf *m, *n;
unsigned len = len0, remain;
/*
* First iterate to the mbuf which contains the first byte of
* data at offset len0
*/
for (m = m0; m && len > m->m_len; m = m->m_next) {
len -= m->m_len;
}
if (m == NULL) {
return NULL;
}
/*
* len effectively is now the offset in the current
* mbuf where we have to perform split.
*
* remain becomes the tail length.
* Note that len can also be == m->m_len
*/
remain = m->m_len - len;
/*
* If current mbuf len contains the entire remaining offset len,
* just make the second mbuf chain pointing to next mbuf onwards
* and return after making necessary adjustments
*/
if (copyhdr && (m0->m_flags & M_PKTHDR) && remain == 0) {
_MGETHDR(n, wait, m0->m_type);
if (n == NULL) {
return NULL;
}
n->m_next = m->m_next;
m->m_next = NULL;
n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
n->m_pkthdr.len = m0->m_pkthdr.len - len0;
m0->m_pkthdr.len = len0;
return n;
}
if (copyhdr && (m0->m_flags & M_PKTHDR)) {
_MGETHDR(n, wait, m0->m_type);
if (n == NULL) {
return NULL;
}
n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
n->m_pkthdr.len = m0->m_pkthdr.len - len0;
m0->m_pkthdr.len = len0;
/*
* If current points to external storage
* then it can be shared by making last mbuf
* of head chain and first mbuf of current chain
* pointing to different data offsets
*/
if (m->m_flags & M_EXT) {
goto extpacket;
}
if (remain > MHLEN) {
/* m can't be the lead packet */
MH_ALIGN(n, 0);
n->m_next = m_split(m, len, wait);
if (n->m_next == NULL) {
(void) m_free(n);
return NULL;
} else {
return n;
}
} else {
MH_ALIGN(n, remain);
}
} else if (remain == 0) {
n = m->m_next;
m->m_next = NULL;
return n;
} else {
_MGET(n, wait, m->m_type);
if (n == NULL) {
return NULL;
}
if ((m->m_flags & M_EXT) == 0) {
VERIFY(remain <= MLEN);
M_ALIGN(n, remain);
}
}
extpacket:
if (m->m_flags & M_EXT) {
n->m_flags |= M_EXT;
n->m_ext = m->m_ext;
m_incref(m);
n->m_data = m->m_data + len;
} else {
bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), remain);
}
n->m_len = remain;
m->m_len = len;
n->m_next = m->m_next;
m->m_next = NULL;
return n;
}
/*
* Routine to copy from device local memory into mbufs.
*/
struct mbuf *
m_devget(char *buf, int totlen, int off0, struct ifnet *ifp,
void (*copy)(const void *, void *, size_t))
{
struct mbuf *m;
struct mbuf *top = NULL, **mp = &top;
int off = off0, len;
char *cp;
char *epkt;
cp = buf;
epkt = cp + totlen;
if (off) {
/*
* If 'off' is non-zero, packet is trailer-encapsulated,
* so we have to skip the type and length fields.
*/
cp += off + 2 * sizeof(u_int16_t);
totlen -= 2 * sizeof(u_int16_t);
}
_MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
return NULL;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
m->m_len = MHLEN;
while (totlen > 0) {
if (top != NULL) {
_MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
m_freem(top);
return NULL;
}
m->m_len = MLEN;
}
len = MIN(totlen, epkt - cp);
if (len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT) {
m->m_len = len = MIN(len, m_maxsize(MC_CL));
} else {
/* give up when it's out of cluster mbufs */
if (top != NULL) {
m_freem(top);
}
m_freem(m);
return NULL;
}
} else {
/*
* Place initial small packet/header at end of mbuf.
*/
if (len < m->m_len) {
if (top == NULL &&
len + max_linkhdr <= m->m_len) {
m->m_data += max_linkhdr;
}
m->m_len = len;
} else {
len = m->m_len;
}
}
if (copy) {
copy(cp, MTOD(m, caddr_t), (unsigned)len);
} else {
bcopy(cp, MTOD(m, caddr_t), (unsigned)len);
}
cp += len;
*mp = m;
mp = &m->m_next;
totlen -= len;
if (cp == epkt) {
cp = buf;
}
}
return top;
}
#if CONFIG_MBUF_MCACHE
#ifndef MBUF_GROWTH_NORMAL_THRESH
#define MBUF_GROWTH_NORMAL_THRESH 25
#endif
/*
* Cluster freelist allocation check.
*/
static int
m_howmany(int num, size_t bufsize)
{
int i = 0, j = 0;
u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters;
u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree;
u_int32_t sumclusters, freeclusters;
u_int32_t percent_pool, percent_kmem;
u_int32_t mb_growth, mb_growth_thresh;
VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
bufsize == m_maxsize(MC_16KCL));
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
/* Numbers in 2K cluster units */
m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT;
m_clusters = m_total(MC_CL);
m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT;
m_16kclusters = m_total(MC_16KCL);
sumclusters = m_mbclusters + m_clusters + m_bigclusters;
m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT;
m_clfree = m_infree(MC_CL);
m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT;
m_16kclfree = m_infree(MC_16KCL);
freeclusters = m_mbfree + m_clfree + m_bigclfree;
/* Bail if we've maxed out the mbuf memory map */
if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) ||
(njcl > 0 && bufsize == m_maxsize(MC_16KCL) &&
(m_16kclusters << NCLPJCLSHIFT) >= njcl)) {
mbwdog_logger("maxed out nclusters (%u >= %u) or njcl (%u >= %u)",
sumclusters, nclusters,
(m_16kclusters << NCLPJCLSHIFT), njcl);
return 0;
}
if (bufsize == m_maxsize(MC_BIGCL)) {
/* Under minimum */
if (m_bigclusters < m_minlimit(MC_BIGCL)) {
return m_minlimit(MC_BIGCL) - m_bigclusters;
}
percent_pool =
((sumclusters - freeclusters) * 100) / sumclusters;
percent_kmem = (sumclusters * 100) / nclusters;
/*
* If a light/normal user, grow conservatively (75%)
* If a heavy user, grow aggressively (50%)
*/
if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH) {
mb_growth = MB_GROWTH_NORMAL;
} else {
mb_growth = MB_GROWTH_AGGRESSIVE;
}
if (percent_kmem < 5) {
/* For initial allocations */
i = num;
} else {
/* Return if >= MBIGCL_LOWAT clusters available */
if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT &&
m_total(MC_BIGCL) >=
MBIGCL_LOWAT + m_minlimit(MC_BIGCL)) {
return 0;
}
/* Ensure at least num clusters are accessible */
if (num >= m_infree(MC_BIGCL)) {
i = num - m_infree(MC_BIGCL);
}
if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL)) {
j = num - (m_total(MC_BIGCL) -
m_minlimit(MC_BIGCL));
}
i = MAX(i, j);
/*
* Grow pool if percent_pool > 75 (normal growth)
* or percent_pool > 50 (aggressive growth).
*/
mb_growth_thresh = 100 - (100 / (1 << mb_growth));
if (percent_pool > mb_growth_thresh) {
j = ((sumclusters + num) >> mb_growth) -
freeclusters;
}
i = MAX(i, j);
}
/* Check to ensure we didn't go over limits */
if (i + m_bigclusters >= m_maxlimit(MC_BIGCL)) {
i = m_maxlimit(MC_BIGCL) - m_bigclusters;
}
if ((i << 1) + sumclusters >= nclusters) {
i = (nclusters - sumclusters) >> 1;
}
VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL));
VERIFY(sumclusters + (i << 1) <= nclusters);
} else { /* 16K CL */
VERIFY(njcl > 0);
/* Ensure at least num clusters are available */
if (num >= m_16kclfree) {
i = num - m_16kclfree;
}
/* Always grow 16KCL pool aggressively */
if (((m_16kclusters + num) >> 1) > m_16kclfree) {
j = ((m_16kclusters + num) >> 1) - m_16kclfree;
}
i = MAX(i, j);
/* Check to ensure we don't go over limit */
if ((i + m_total(MC_16KCL)) >= m_maxlimit(MC_16KCL)) {
i = m_maxlimit(MC_16KCL) - m_total(MC_16KCL);
}
}
return i;
}
#endif /* CONFIG_MBUF_MCACHE */
/*
* Return the number of bytes in the mbuf chain, m.
*/
unsigned int
m_length(struct mbuf *m)
{
struct mbuf *m0;
unsigned int pktlen;
if (m->m_flags & M_PKTHDR) {
return m->m_pkthdr.len;
}
pktlen = 0;
for (m0 = m; m0 != NULL; m0 = m0->m_next) {
pktlen += m0->m_len;
}
return pktlen;
}
/*
* Copy data from a buffer back into the indicated mbuf chain,
* starting "off" bytes from the beginning, extending the mbuf
* chain if necessary.
*/
void
m_copyback(struct mbuf *m0, int off, int len, const void *cp)
{
#if DEBUG
struct mbuf *origm = m0;
int error;
#endif /* DEBUG */
if (m0 == NULL) {
return;
}
#if DEBUG
error =
#endif /* DEBUG */
m_copyback0(&m0, off, len, cp,
M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT);
#if DEBUG
if (error != 0 || (m0 != NULL && origm != m0)) {
panic("m_copyback");
}
#endif /* DEBUG */
}
struct mbuf *
m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how)
{
int error;
/* don't support chain expansion */
VERIFY(off + len <= m_length(m0));
error = m_copyback0(&m0, off, len, cp,
M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how);
if (error) {
/*
* no way to recover from partial success.
* just free the chain.
*/
m_freem(m0);
return NULL;
}
return m0;
}
/*
* m_makewritable: ensure the specified range writable.
*/
int
m_makewritable(struct mbuf **mp, int off, int len, int how)
{
int error;
#if DEBUG
struct mbuf *n;
int origlen, reslen;
origlen = m_length(*mp);
#endif /* DEBUG */
#if 0 /* M_COPYALL is large enough */
if (len == M_COPYALL) {
len = m_length(*mp) - off; /* XXX */
}
#endif
error = m_copyback0(mp, off, len, NULL,
M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how);
#if DEBUG
reslen = 0;
for (n = *mp; n; n = n->m_next) {
reslen += n->m_len;
}
if (origlen != reslen) {
panic("m_makewritable: length changed");
}
if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len) {
panic("m_makewritable: inconsist");
}
#endif /* DEBUG */
return error;
}
static int
m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags,
int how)
{
int mlen;
struct mbuf *m, *n;
struct mbuf **mp;
int totlen = 0;
const char *cp = vp;
VERIFY(mp0 != NULL);
VERIFY(*mp0 != NULL);
VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL);
VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL);
/*
* we don't bother to update "totlen" in the case of M_COPYBACK0_COW,
* assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive.
*/
VERIFY((~flags & (M_COPYBACK0_EXTEND | M_COPYBACK0_COW)) != 0);
mp = mp0;
m = *mp;
while (off > (mlen = m->m_len)) {
off -= mlen;
totlen += mlen;
if (m->m_next == NULL) {
int tspace;
extend:
if (!(flags & M_COPYBACK0_EXTEND)) {
goto out;
}
/*
* try to make some space at the end of "m".
*/
mlen = m->m_len;
if (off + len >= MINCLSIZE &&
!(m->m_flags & M_EXT) && m->m_len == 0) {
MCLGET(m, how);
}
tspace = M_TRAILINGSPACE(m);
if (tspace > 0) {
tspace = MIN(tspace, off + len);
VERIFY(tspace > 0);
bzero(mtod(m, char *) + m->m_len,
MIN(off, tspace));
m->m_len += tspace;
off += mlen;
totlen -= mlen;
continue;
}
/*
* need to allocate an mbuf.
*/
if (off + len >= MINCLSIZE) {
n = m_getcl(how, m->m_type, 0);
} else {
n = _M_GET(how, m->m_type);
}
if (n == NULL) {
goto out;
}
n->m_len = 0;
n->m_len = MIN(M_TRAILINGSPACE(n), off + len);
bzero(mtod(n, char *), MIN(n->m_len, off));
m->m_next = n;
}
mp = &m->m_next;
m = m->m_next;
}
while (len > 0) {
mlen = m->m_len - off;
if (mlen != 0 && m_mclhasreference(m)) {
char *datap;
int eatlen;
/*
* this mbuf is read-only.
* allocate a new writable mbuf and try again.
*/
#if DIAGNOSTIC
if (!(flags & M_COPYBACK0_COW)) {
panic("m_copyback0: read-only");
}
#endif /* DIAGNOSTIC */
/*
* if we're going to write into the middle of
* a mbuf, split it first.
*/
if (off > 0 && len < mlen) {
n = m_split0(m, off, how, 0);
if (n == NULL) {
goto enobufs;
}
m->m_next = n;
mp = &m->m_next;
m = n;
off = 0;
continue;
}
/*
* XXX TODO coalesce into the trailingspace of
* the previous mbuf when possible.
*/
/*
* allocate a new mbuf. copy packet header if needed.
*/
n = _M_GET(how, m->m_type);
if (n == NULL) {
goto enobufs;
}
if (off == 0 && (m->m_flags & M_PKTHDR)) {
M_COPY_PKTHDR(n, m);
n->m_len = MHLEN;
} else {
if (len >= MINCLSIZE) {
MCLGET(n, M_DONTWAIT);
}
n->m_len =
(n->m_flags & M_EXT) ? MCLBYTES : MLEN;
}
if (n->m_len > len) {
n->m_len = len;
}
/*
* free the region which has been overwritten.
* copying data from old mbufs if requested.
*/
if (flags & M_COPYBACK0_PRESERVE) {
datap = mtod(n, char *);
} else {
datap = NULL;
}
eatlen = n->m_len;
VERIFY(off == 0 || eatlen >= mlen);
if (off > 0) {
VERIFY(len >= mlen);
m->m_len = off;
m->m_next = n;
if (datap) {
m_copydata(m, off, mlen, datap);
datap += mlen;
}
eatlen -= mlen;
mp = &m->m_next;
m = m->m_next;
}
while (m != NULL && m_mclhasreference(m) &&
n->m_type == m->m_type && eatlen > 0) {
mlen = MIN(eatlen, m->m_len);
if (datap) {
m_copydata(m, 0, mlen, datap);
datap += mlen;
}
m->m_data += mlen;
m->m_len -= mlen;
eatlen -= mlen;
if (m->m_len == 0) {
*mp = m = m_free(m);
}
}
if (eatlen > 0) {
n->m_len -= eatlen;
}
n->m_next = m;
*mp = m = n;
continue;
}
mlen = MIN(mlen, len);
if (flags & M_COPYBACK0_COPYBACK) {
bcopy(cp, mtod(m, caddr_t) + off, (unsigned)mlen);
cp += mlen;
}
len -= mlen;
mlen += off;
off = 0;
totlen += mlen;
if (len == 0) {
break;
}
if (m->m_next == NULL) {
goto extend;
}
mp = &m->m_next;
m = m->m_next;
}
out:
if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) {
VERIFY(flags & M_COPYBACK0_EXTEND);
m->m_pkthdr.len = totlen;
}
return 0;
enobufs:
return ENOBUFS;
}
uint64_t
mcl_to_paddr(char *addr)
{
#if CONFIG_MBUF_MCACHE
vm_offset_t base_phys;
if (!MBUF_IN_MAP(addr)) {
return 0;
}
base_phys = mcl_paddr[atop_64(addr - (char *)mbutl)];
if (base_phys == 0) {
return 0;
}
return (uint64_t)(ptoa_64(base_phys) | ((uint64_t)addr & PAGE_MASK));
#else
extern addr64_t kvtophys(vm_offset_t va);
return kvtophys((vm_offset_t)addr);
#endif /* CONFIG_MBUF_MCACHE */
}
/*
* Dup the mbuf chain passed in. The whole thing. No cute additional cruft.
* And really copy the thing. That way, we don't "precompute" checksums
* for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for
* small packets, don't dup into a cluster. That way received packets
* don't take up too much room in the sockbuf (cf. sbspace()).
*/
struct mbuf *
m_dup(struct mbuf *m, int how)
{
struct mbuf *n, **np;
struct mbuf *top;
int copyhdr = 0;
np = &top;
top = NULL;
if (m->m_flags & M_PKTHDR) {
copyhdr = 1;
}
/*
* Quick check: if we have one mbuf and its data fits in an
* mbuf with packet header, just copy and go.
*/
if (m->m_next == NULL) {
/* Then just move the data into an mbuf and be done... */
if (copyhdr) {
if (m->m_pkthdr.len <= MHLEN && m->m_len <= MHLEN) {
if ((n = _M_GETHDR(how, m->m_type)) == NULL) {
return NULL;
}
n->m_len = m->m_len;
m_dup_pkthdr(n, m, how);
bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), m->m_len);
return n;
}
} else if (m->m_len <= MLEN) {
if ((n = _M_GET(how, m->m_type)) == NULL) {
return NULL;
}
bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), m->m_len);
n->m_len = m->m_len;
return n;
}
}
while (m != NULL) {
#if BLUE_DEBUG
printf("<%x: %x, %x, %x\n", m, m->m_flags, m->m_len,
m->m_data);
#endif
if (copyhdr) {
n = _M_GETHDR(how, m->m_type);
} else {
n = _M_GET(how, m->m_type);
}
if (n == NULL) {
goto nospace;
}
if (m->m_flags & M_EXT) {
if (m->m_len <= m_maxsize(MC_CL)) {
MCLGET(n, how);
} else if (m->m_len <= m_maxsize(MC_BIGCL)) {
n = m_mbigget(n, how);
} else if (m->m_len <= m_maxsize(MC_16KCL) && njcl > 0) {
n = m_m16kget(n, how);
}
if (!(n->m_flags & M_EXT)) {
(void) m_free(n);
goto nospace;
}
} else {
VERIFY((copyhdr == 1 && m->m_len <= MHLEN) ||
(copyhdr == 0 && m->m_len <= MLEN));
}
*np = n;
if (copyhdr) {
/* Don't use M_COPY_PKTHDR: preserve m_data */
m_dup_pkthdr(n, m, how);
copyhdr = 0;
if (!(n->m_flags & M_EXT)) {
n->m_data = (uintptr_t)n->m_pktdat;
}
}
n->m_len = m->m_len;
/*
* Get the dup on the same bdry as the original
* Assume that the two mbufs have the same offset to data area
* (up to word boundaries)
*/
bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), (unsigned)n->m_len);
m = m->m_next;
np = &n->m_next;
#if BLUE_DEBUG
printf(">%x: %x, %x, %x\n", n, n->m_flags, n->m_len,
n->m_data);
#endif
}
return top;
nospace:
m_freem(top);
return NULL;
}
#define MBUF_MULTIPAGES(m) \
(((m)->m_flags & M_EXT) && \
((IS_P2ALIGNED((m)->m_data, PAGE_SIZE) \
&& (m)->m_len > PAGE_SIZE) || \
(!IS_P2ALIGNED((m)->m_data, PAGE_SIZE) && \
P2ROUNDUP((m)->m_data, PAGE_SIZE) < ((uintptr_t)(m)->m_data + (m)->m_len))))
static struct mbuf *
m_expand(struct mbuf *m, struct mbuf **last)
{
struct mbuf *top = NULL;
struct mbuf **nm = &top;
uintptr_t data0, data;
unsigned int len0, len;
VERIFY(MBUF_MULTIPAGES(m));
VERIFY(m->m_next == NULL);
data0 = (uintptr_t)m->m_data;
len0 = m->m_len;
*last = top;
for (;;) {
struct mbuf *n;
data = data0;
if (IS_P2ALIGNED(data, PAGE_SIZE) && len0 > PAGE_SIZE) {
len = PAGE_SIZE;
} else if (!IS_P2ALIGNED(data, PAGE_SIZE) &&
P2ROUNDUP(data, PAGE_SIZE) < (data + len0)) {
len = P2ROUNDUP(data, PAGE_SIZE) - data;
} else {
len = len0;
}
VERIFY(len > 0);
VERIFY(m->m_flags & M_EXT);
m->m_data = data;
m->m_len = len;
*nm = *last = m;
nm = &m->m_next;
m->m_next = NULL;
data0 += len;
len0 -= len;
if (len0 == 0) {
break;
}
n = _M_RETRY(M_DONTWAIT, MT_DATA);
if (n == NULL) {
m_freem(top);
top = *last = NULL;
break;
}
n->m_ext = m->m_ext;
m_incref(m);
n->m_flags |= M_EXT;
m = n;
}
return top;
}
struct mbuf *
m_normalize(struct mbuf *m)
{
struct mbuf *top = NULL;
struct mbuf **nm = &top;
boolean_t expanded = FALSE;
while (m != NULL) {
struct mbuf *n;
n = m->m_next;
m->m_next = NULL;
/* Does the data cross one or more page boundaries? */
if (MBUF_MULTIPAGES(m)) {
struct mbuf *last;
if ((m = m_expand(m, &last)) == NULL) {
m_freem(n);
m_freem(top);
top = NULL;
break;
}
*nm = m;
nm = &last->m_next;
expanded = TRUE;
} else {
*nm = m;
nm = &m->m_next;
}
m = n;
}
if (expanded) {
os_atomic_inc(&mb_normalized, relaxed);
}
return top;
}
/*
* Append the specified data to the indicated mbuf chain,
* Extend the mbuf chain if the new data does not fit in
* existing space.
*
* Return 1 if able to complete the job; otherwise 0.
*/
int
m_append(struct mbuf *m0, int len, caddr_t cp)
{
struct mbuf *m, *n;
int remainder, space;
for (m = m0; m->m_next != NULL; m = m->m_next) {
;
}
remainder = len;
space = M_TRAILINGSPACE(m);
if (space > 0) {
/*
* Copy into available space.
*/
if (space > remainder) {
space = remainder;
}
bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
m->m_len += space;
cp += space;
remainder -= space;
}
while (remainder > 0) {
/*
* Allocate a new mbuf; could check space
* and allocate a cluster instead.
*/
n = m_get(M_WAITOK, m->m_type);
if (n == NULL) {
break;
}
n->m_len = min(MLEN, remainder);
bcopy(cp, mtod(n, caddr_t), n->m_len);
cp += n->m_len;
remainder -= n->m_len;
m->m_next = n;
m = n;
}
if (m0->m_flags & M_PKTHDR) {
m0->m_pkthdr.len += len - remainder;
}
return remainder == 0;
}
struct mbuf *
m_last(struct mbuf *m)
{
while (m->m_next != NULL) {
m = m->m_next;
}
return m;
}
unsigned int
m_fixhdr(struct mbuf *m0)
{
u_int len;
VERIFY(m0->m_flags & M_PKTHDR);
len = m_length2(m0, NULL);
m0->m_pkthdr.len = len;
return len;
}
unsigned int
m_length2(struct mbuf *m0, struct mbuf **last)
{
struct mbuf *m;
u_int len;
len = 0;
for (m = m0; m != NULL; m = m->m_next) {
len += m->m_len;
if (m->m_next == NULL) {
break;
}
}
if (last != NULL) {
*last = m;
}
return len;
}
/*
* Defragment a mbuf chain, returning the shortest possible chain of mbufs
* and clusters. If allocation fails and this cannot be completed, NULL will
* be returned, but the passed in chain will be unchanged. Upon success,
* the original chain will be freed, and the new chain will be returned.
*
* If a non-packet header is passed in, the original mbuf (chain?) will
* be returned unharmed.
*
* If offset is specfied, the first mbuf in the chain will have a leading
* space of the amount stated by the "off" parameter.
*
* This routine requires that the m_pkthdr.header field of the original
* mbuf chain is cleared by the caller.
*/
struct mbuf *
m_defrag_offset(struct mbuf *m0, u_int32_t off, int how)
{
struct mbuf *m_new = NULL, *m_final = NULL;
int progress = 0, length, pktlen;
if (!(m0->m_flags & M_PKTHDR)) {
return m0;
}
VERIFY(off < MHLEN);
m_fixhdr(m0); /* Needed sanity check */
pktlen = m0->m_pkthdr.len + off;
if (pktlen > MHLEN) {
m_final = m_getcl(how, MT_DATA, M_PKTHDR);
} else {
m_final = m_gethdr(how, MT_DATA);
}
if (m_final == NULL) {
goto nospace;
}
if (off > 0) {
pktlen -= off;
m_final->m_data += off;
}
/*
* Caller must have handled the contents pointed to by this
* pointer before coming here, as otherwise it will point to
* the original mbuf which will get freed upon success.
*/
VERIFY(m0->m_pkthdr.pkt_hdr == NULL);
if (m_dup_pkthdr(m_final, m0, how) == 0) {
goto nospace;
}
m_new = m_final;
while (progress < pktlen) {
length = pktlen - progress;
if (length > MCLBYTES) {
length = MCLBYTES;
}
length -= ((m_new == m_final) ? off : 0);
if (length < 0) {
goto nospace;
}
if (m_new == NULL) {
if (length > MLEN) {
m_new = m_getcl(how, MT_DATA, 0);
} else {
m_new = m_get(how, MT_DATA);
}
if (m_new == NULL) {
goto nospace;
}
}
m_copydata(m0, progress, length, mtod(m_new, caddr_t));
progress += length;
m_new->m_len = length;
if (m_new != m_final) {
m_cat(m_final, m_new);
}
m_new = NULL;
}
m_freem(m0);
m0 = m_final;
return m0;
nospace:
if (m_final) {
m_freem(m_final);
}
return NULL;
}
struct mbuf *
m_defrag(struct mbuf *m0, int how)
{
return m_defrag_offset(m0, 0, how);
}
void
m_mchtype(struct mbuf *m, int t)
{
mtype_stat_inc(t);
mtype_stat_dec(m->m_type);
(m)->m_type = t;
}
void *__unsafe_indexable
m_mtod(struct mbuf *m)
{
return m_mtod_current(m);
}
void
m_mcheck(struct mbuf *m)
{
_MCHECK(m);
}
/*
* Return a pointer to mbuf/offset of location in mbuf chain.
*/
struct mbuf *
m_getptr(struct mbuf *m, int loc, int *off)
{
while (loc >= 0) {
/* Normal end of search. */
if (m->m_len > loc) {
*off = loc;
return m;
} else {
loc -= m->m_len;
if (m->m_next == NULL) {
if (loc == 0) {
/* Point at the end of valid data. */
*off = m->m_len;
return m;
}
return NULL;
}
m = m->m_next;
}
}
return NULL;
}
#if CONFIG_MBUF_MCACHE
/*
* Inform the corresponding mcache(s) that there's a waiter below.
*/
static void
mbuf_waiter_inc(mbuf_class_t class, boolean_t comp)
{
mcache_waiter_inc(m_cache(class));
if (comp) {
if (class == MC_CL) {
mcache_waiter_inc(m_cache(MC_MBUF_CL));
} else if (class == MC_BIGCL) {
mcache_waiter_inc(m_cache(MC_MBUF_BIGCL));
} else if (class == MC_16KCL) {
mcache_waiter_inc(m_cache(MC_MBUF_16KCL));
} else {
mcache_waiter_inc(m_cache(MC_MBUF_CL));
mcache_waiter_inc(m_cache(MC_MBUF_BIGCL));
}
}
}
/*
* Inform the corresponding mcache(s) that there's no more waiter below.
*/
static void
mbuf_waiter_dec(mbuf_class_t class, boolean_t comp)
{
mcache_waiter_dec(m_cache(class));
if (comp) {
if (class == MC_CL) {
mcache_waiter_dec(m_cache(MC_MBUF_CL));
} else if (class == MC_BIGCL) {
mcache_waiter_dec(m_cache(MC_MBUF_BIGCL));
} else if (class == MC_16KCL) {
mcache_waiter_dec(m_cache(MC_MBUF_16KCL));
} else {
mcache_waiter_dec(m_cache(MC_MBUF_CL));
mcache_waiter_dec(m_cache(MC_MBUF_BIGCL));
}
}
}
static bool mbuf_watchdog_defunct_active = false;
#endif /* CONFIG_MBUF_MCACHE */
static uint32_t
mbuf_watchdog_socket_space(struct socket *so)
{
uint32_t space = 0;
if (so == NULL) {
return 0;
}
space = so->so_snd.sb_mbcnt + so->so_rcv.sb_mbcnt;
#if INET
if ((SOCK_DOM(so) == PF_INET || SOCK_DOM(so) == PF_INET6) &&
SOCK_PROTO(so) == IPPROTO_TCP) {
space += tcp_reass_qlen_space(so);
}
#endif /* INET */
return space;
}
struct mbuf_watchdog_defunct_args {
struct proc *top_app;
uint32_t top_app_space_used;
bool non_blocking;
};
static bool
proc_fd_trylock(proc_t p)
{
return lck_mtx_try_lock(&p->p_fd.fd_lock);
}
static int
mbuf_watchdog_defunct_iterate(proc_t p, void *arg)
{
struct fileproc *fp = NULL;
struct mbuf_watchdog_defunct_args *args =
(struct mbuf_watchdog_defunct_args *)arg;
uint32_t space_used = 0;
/*
* Non-blocking is only used when dumping the mbuf usage from the watchdog
*/
if (args->non_blocking) {
if (!proc_fd_trylock(p)) {
return PROC_RETURNED;
}
} else {
proc_fdlock(p);
}
fdt_foreach(fp, p) {
struct fileglob *fg = fp->fp_glob;
struct socket *so = NULL;
if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) {
continue;
}
so = fg_get_data(fg);
/*
* We calculate the space without the socket
* lock because we don't want to be blocked
* by another process that called send() and
* is stuck waiting for mbufs.
*
* These variables are 32-bit so we don't have
* to worry about incomplete reads.
*/
space_used += mbuf_watchdog_socket_space(so);
}
proc_fdunlock(p);
if (space_used > args->top_app_space_used) {
if (args->top_app != NULL) {
proc_rele(args->top_app);
}
args->top_app = p;
args->top_app_space_used = space_used;
return PROC_CLAIMED;
} else {
return PROC_RETURNED;
}
}
extern char *proc_name_address(void *p);
static void
mbuf_watchdog_defunct(thread_call_param_t arg0, thread_call_param_t arg1)
{
#pragma unused(arg0, arg1)
struct mbuf_watchdog_defunct_args args = {};
struct fileproc *fp = NULL;
args.non_blocking = false;
proc_iterate(PROC_ALLPROCLIST,
mbuf_watchdog_defunct_iterate, &args, NULL, NULL);
/*
* Defunct all sockets from this app.
*/
if (args.top_app != NULL) {
#if CONFIG_MBUF_MCACHE
/* Restart the watchdog count. */
lck_mtx_lock(mbuf_mlock);
microuptime(&mb_wdtstart);
lck_mtx_unlock(mbuf_mlock);
#endif
os_log(OS_LOG_DEFAULT, "%s: defuncting all sockets from %s.%d",
__func__,
proc_name_address(args.top_app),
proc_pid(args.top_app));
proc_fdlock(args.top_app);
fdt_foreach(fp, args.top_app) {
struct fileglob *fg = fp->fp_glob;
struct socket *so = NULL;
if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) {
continue;
}
so = (struct socket *)fp_get_data(fp);
if (!socket_try_lock(so)) {
continue;
}
if (sosetdefunct(args.top_app, so,
SHUTDOWN_SOCKET_LEVEL_DISCONNECT_ALL,
TRUE) == 0) {
sodefunct(args.top_app, so,
SHUTDOWN_SOCKET_LEVEL_DISCONNECT_ALL);
}
socket_unlock(so, 0);
}
proc_fdunlock(args.top_app);
proc_rele(args.top_app);
mbstat.m_forcedefunct++;
#if !CONFIG_MBUF_MCACHE
zcache_drain(ZONE_ID_MBUF_CLUSTER_2K);
zcache_drain(ZONE_ID_MBUF_CLUSTER_4K);
zcache_drain(ZONE_ID_MBUF_CLUSTER_16K);
zone_drain(zone_by_id(ZONE_ID_MBUF));
zone_drain(zone_by_id(ZONE_ID_CLUSTER_2K));
zone_drain(zone_by_id(ZONE_ID_CLUSTER_4K));
zone_drain(zone_by_id(ZONE_ID_CLUSTER_16K));
zone_drain(zone_by_id(ZONE_ID_MBUF_REF));
#endif
}
#if CONFIG_MBUF_MCACHE
mbuf_watchdog_defunct_active = false;
#endif
}
#if !CONFIG_MBUF_MCACHE
static LCK_GRP_DECLARE(mbuf_exhausted_grp, "mbuf-exhausted");
static LCK_TICKET_DECLARE(mbuf_exhausted_lock, &mbuf_exhausted_grp);
static uint32_t mbuf_exhausted_mask;
#define MBUF_EXHAUSTED_DRAIN_MASK (\
(1u << MC_MBUF) | \
(1u << MC_CL) | \
(1u << MC_BIGCL) | \
(1u << MC_16KCL))
#define MBUF_EXHAUSTED_DEFUNCT_MASK (\
(1u << MC_MBUF) | \
(1u << MC_MBUF_CL) | \
(1u << MC_MBUF_BIGCL) | \
(1u << MC_MBUF_16KCL))
static void
mbuf_watchdog_drain_composite(thread_call_param_t arg0, thread_call_param_t arg1)
{
#pragma unused(arg0, arg1)
zcache_drain(ZONE_ID_MBUF_CLUSTER_2K);
zcache_drain(ZONE_ID_MBUF_CLUSTER_4K);
zcache_drain(ZONE_ID_MBUF_CLUSTER_16K);
}
static void
mbuf_zone_exhausted_start(uint32_t bit)
{
uint64_t deadline;
uint32_t mask;
mask = mbuf_exhausted_mask;
mbuf_exhausted_mask = mask | bit;
if ((mask & MBUF_EXHAUSTED_DRAIN_MASK) == 0 &&
(bit & MBUF_EXHAUSTED_DRAIN_MASK)) {
clock_interval_to_deadline(MB_WDT_MAXTIME * 1000 / 10,
NSEC_PER_MSEC, &deadline);
thread_call_enter_delayed(mbuf_drain_tcall, deadline);
}
if ((mask & MBUF_EXHAUSTED_DEFUNCT_MASK) == 0 &&
(bit & MBUF_EXHAUSTED_DEFUNCT_MASK)) {
clock_interval_to_deadline(MB_WDT_MAXTIME * 1000 / 2,
NSEC_PER_MSEC, &deadline);
thread_call_enter_delayed(mbuf_defunct_tcall, deadline);
}
}
static void
mbuf_zone_exhausted_end(uint32_t bit)
{
uint32_t mask;
mask = (mbuf_exhausted_mask &= ~bit);
if ((mask & MBUF_EXHAUSTED_DRAIN_MASK) == 0 &&
(bit & MBUF_EXHAUSTED_DRAIN_MASK)) {
thread_call_cancel(mbuf_drain_tcall);
}
if ((mask & MBUF_EXHAUSTED_DEFUNCT_MASK) == 0 &&
(bit & MBUF_EXHAUSTED_DEFUNCT_MASK)) {
thread_call_cancel(mbuf_defunct_tcall);
}
}
static void
mbuf_zone_exhausted(zone_id_t zid, zone_t zone __unused, bool exhausted)
{
uint32_t bit;
if (zid < m_class_to_zid(MBUF_CLASS_MIN) ||
zid > m_class_to_zid(MBUF_CLASS_MAX)) {
return;
}
bit = 1u << m_class_from_zid(zid);
lck_ticket_lock_nopreempt(&mbuf_exhausted_lock, &mbuf_exhausted_grp);
if (exhausted) {
mbuf_zone_exhausted_start(bit);
} else {
mbuf_zone_exhausted_end(bit);
}
lck_ticket_unlock_nopreempt(&mbuf_exhausted_lock);
}
EVENT_REGISTER_HANDLER(ZONE_EXHAUSTED, mbuf_zone_exhausted);
#endif /* !CONFIG_MBUF_MCACHE */
#if CONFIG_MBUF_MCACHE
/*
* Called during slab (blocking and non-blocking) allocation. If there
* is at least one waiter, and the time since the first waiter is blocked
* is greater than the watchdog timeout, panic the system.
*/
static void
mbuf_watchdog(void)
{
struct timeval now;
unsigned int since;
static thread_call_t defunct_tcall = NULL;
if (mb_waiters == 0 || !mb_watchdog) {
return;
}
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
microuptime(&now);
since = now.tv_sec - mb_wdtstart.tv_sec;
if (mbuf_watchdog_defunct_active) {
/*
* Don't panic the system while we are trying
* to find sockets to defunct.
*/
return;
}
if (since >= MB_WDT_MAXTIME) {
panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__,
mb_waiters, since, mbuf_dump());
/* NOTREACHED */
}
/*
* Check if we are about to panic the system due
* to lack of mbufs and start defuncting sockets
* from processes that use too many sockets.
*
* We're always called with the mbuf_mlock held,
* so that also protects mbuf_watchdog_defunct_active.
*/
if (since >= MB_WDT_MAXTIME / 2) {
/*
* Start a thread to defunct sockets
* from apps that are over-using their socket
* buffers.
*/
if (defunct_tcall == NULL) {
defunct_tcall =
thread_call_allocate_with_options(mbuf_watchdog_defunct,
NULL,
THREAD_CALL_PRIORITY_KERNEL,
THREAD_CALL_OPTIONS_ONCE);
}
if (defunct_tcall != NULL) {
mbuf_watchdog_defunct_active = true;
thread_call_enter(defunct_tcall);
}
}
}
/*
* Called during blocking allocation. Returns TRUE if one or more objects
* are available at the per-CPU caches layer and that allocation should be
* retried at that level.
*/
static boolean_t
mbuf_sleep(mbuf_class_t class, unsigned int num, int wait)
{
boolean_t mcache_retry = FALSE;
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
/* Check if there's anything at the cache layer */
if (mbuf_cached_above(class, wait)) {
mcache_retry = TRUE;
goto done;
}
/* Nothing? Then try hard to get it from somewhere */
m_reclaim(class, num, (wait & MCR_COMP));
/* We tried hard and got something? */
if (m_infree(class) > 0) {
mbstat.m_wait++;
goto done;
} else if (mbuf_cached_above(class, wait)) {
mbstat.m_wait++;
mcache_retry = TRUE;
goto done;
} else if (wait & MCR_TRYHARD) {
mcache_retry = TRUE;
goto done;
}
/*
* There's really nothing for us right now; inform the
* cache(s) that there is a waiter below and go to sleep.
*/
mbuf_waiter_inc(class, (wait & MCR_COMP));
VERIFY(!(wait & MCR_NOSLEEP));
/*
* If this is the first waiter, arm the watchdog timer. Otherwise
* check if we need to panic the system due to watchdog timeout.
*/
if (mb_waiters == 0) {
microuptime(&mb_wdtstart);
} else {
mbuf_watchdog();
}
mb_waiters++;
m_region_expand(class) += m_total(class) + num;
/* wake up the worker thread */
if (mbuf_worker_ready &&
mbuf_worker_needs_wakeup) {
wakeup((caddr_t)&mbuf_worker_needs_wakeup);
mbuf_worker_needs_wakeup = FALSE;
}
mbwdog_logger("waiting (%d mbufs in class %s)", num, m_cname(class));
(void) msleep(mb_waitchan, mbuf_mlock, (PZERO - 1), m_cname(class), NULL);
mbwdog_logger("woke up (%d mbufs in class %s) ", num, m_cname(class));
/* We are now up; stop getting notified until next round */
mbuf_waiter_dec(class, (wait & MCR_COMP));
/* We waited and got something */
if (m_infree(class) > 0) {
mbstat.m_wait++;
goto done;
} else if (mbuf_cached_above(class, wait)) {
mbstat.m_wait++;
mcache_retry = TRUE;
}
done:
return mcache_retry;
}
__attribute__((noreturn))
static void
mbuf_worker_thread(void)
{
int mbuf_expand;
while (1) {
lck_mtx_lock(mbuf_mlock);
mbwdog_logger("worker thread running");
mbuf_worker_run_cnt++;
mbuf_expand = 0;
/*
* Allocations are based on page size, so if we have depleted
* the reserved spaces, try to free mbufs from the major classes.
*/
#if PAGE_SIZE == 4096
uint32_t m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT;
uint32_t m_clusters = m_total(MC_CL);
uint32_t m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT;
uint32_t sumclusters = m_mbclusters + m_clusters + m_bigclusters;
if (sumclusters >= nclusters) {
mbwdog_logger("reclaiming bigcl");
mbuf_drain_locked(TRUE);
m_reclaim(MC_BIGCL, 4, FALSE);
}
#else
uint32_t m_16kclusters = m_total(MC_16KCL);
if (njcl > 0 && (m_16kclusters << NCLPJCLSHIFT) >= njcl) {
mbwdog_logger("reclaiming 16kcl");
mbuf_drain_locked(TRUE);
m_reclaim(MC_16KCL, 4, FALSE);
}
#endif
if (m_region_expand(MC_CL) > 0) {
int n;
mb_expand_cl_cnt++;
/* Adjust to current number of cluster in use */
n = m_region_expand(MC_CL) -
(m_total(MC_CL) - m_infree(MC_CL));
if ((n + m_total(MC_CL)) > m_maxlimit(MC_CL)) {
n = m_maxlimit(MC_CL) - m_total(MC_CL);
}
if (n > 0) {
mb_expand_cl_total += n;
}
m_region_expand(MC_CL) = 0;
if (n > 0) {
mbwdog_logger("expanding MC_CL by %d", n);
freelist_populate(MC_CL, n, M_WAIT);
}
}
if (m_region_expand(MC_BIGCL) > 0) {
int n;
mb_expand_bigcl_cnt++;
/* Adjust to current number of 4 KB cluster in use */
n = m_region_expand(MC_BIGCL) -
(m_total(MC_BIGCL) - m_infree(MC_BIGCL));
if ((n + m_total(MC_BIGCL)) > m_maxlimit(MC_BIGCL)) {
n = m_maxlimit(MC_BIGCL) - m_total(MC_BIGCL);
}
if (n > 0) {
mb_expand_bigcl_total += n;
}
m_region_expand(MC_BIGCL) = 0;
if (n > 0) {
mbwdog_logger("expanding MC_BIGCL by %d", n);
freelist_populate(MC_BIGCL, n, M_WAIT);
}
}
if (m_region_expand(MC_16KCL) > 0) {
int n;
mb_expand_16kcl_cnt++;
/* Adjust to current number of 16 KB cluster in use */
n = m_region_expand(MC_16KCL) -
(m_total(MC_16KCL) - m_infree(MC_16KCL));
if ((n + m_total(MC_16KCL)) > m_maxlimit(MC_16KCL)) {
n = m_maxlimit(MC_16KCL) - m_total(MC_16KCL);
}
if (n > 0) {
mb_expand_16kcl_total += n;
}
m_region_expand(MC_16KCL) = 0;
if (n > 0) {
mbwdog_logger("expanding MC_16KCL by %d", n);
(void) freelist_populate(MC_16KCL, n, M_WAIT);
}
}
/*
* Because we can run out of memory before filling the mbuf
* map, we should not allocate more clusters than they are
* mbufs -- otherwise we could have a large number of useless
* clusters allocated.
*/
mbwdog_logger("totals: MC_MBUF %d MC_BIGCL %d MC_CL %d MC_16KCL %d",
m_total(MC_MBUF), m_total(MC_BIGCL), m_total(MC_CL),
m_total(MC_16KCL));
uint32_t total_mbufs = m_total(MC_MBUF);
uint32_t total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) +
m_total(MC_16KCL);
if (total_mbufs < total_clusters) {
mbwdog_logger("expanding MC_MBUF by %d",
total_clusters - total_mbufs);
}
while (total_mbufs < total_clusters) {
mb_expand_cnt++;
if (freelist_populate(MC_MBUF, 1, M_WAIT) == 0) {
break;
}
total_mbufs = m_total(MC_MBUF);
total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) +
m_total(MC_16KCL);
}
mbuf_worker_needs_wakeup = TRUE;
/*
* If there's a deadlock and we're not sending / receiving
* packets, net_uptime() won't be updated. Update it here
* so we are sure it's correct.
*/
net_update_uptime();
mbuf_worker_last_runtime = net_uptime();
assert_wait((caddr_t)&mbuf_worker_needs_wakeup,
THREAD_UNINT);
mbwdog_logger("worker thread sleeping");
lck_mtx_unlock(mbuf_mlock);
(void) thread_block((thread_continue_t)mbuf_worker_thread);
}
}
__attribute__((noreturn))
static void
mbuf_worker_thread_init(void)
{
mbuf_worker_ready++;
mbuf_worker_thread();
}
static mcl_slab_t *
slab_get(void *buf)
{
mcl_slabg_t *slg;
unsigned int ix, k;
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
VERIFY(MBUF_IN_MAP(buf));
ix = ((unsigned char *)buf - mbutl) >> MBSHIFT;
VERIFY(ix < maxslabgrp);
if ((slg = slabstbl[ix]) == NULL) {
/*
* In the current implementation, we never shrink the slabs
* table; if we attempt to reallocate a cluster group when
* it's already allocated, panic since this is a sign of a
* memory corruption (slabstbl[ix] got nullified).
*/
++slabgrp;
VERIFY(ix < slabgrp);
/*
* Slabs expansion can only be done single threaded; when
* we get here, it must be as a result of m_clalloc() which
* is serialized and therefore mb_clalloc_busy must be set.
*/
VERIFY(mb_clalloc_busy);
lck_mtx_unlock(mbuf_mlock);
/* This is a new buffer; create the slabs group for it */
slg = zalloc_permanent_type(mcl_slabg_t);
slg->slg_slab = zalloc_permanent(sizeof(mcl_slab_t) * NSLABSPMB,
ZALIGN(mcl_slab_t));
lck_mtx_lock(mbuf_mlock);
/*
* No other thread could have gone into m_clalloc() after
* we dropped the lock above, so verify that it's true.
*/
VERIFY(mb_clalloc_busy);
slabstbl[ix] = slg;
/* Chain each slab in the group to its forward neighbor */
for (k = 1; k < NSLABSPMB; k++) {
slg->slg_slab[k - 1].sl_next = &slg->slg_slab[k];
}
VERIFY(slg->slg_slab[NSLABSPMB - 1].sl_next == NULL);
/* And chain the last slab in the previous group to this */
if (ix > 0) {
VERIFY(slabstbl[ix - 1]->
slg_slab[NSLABSPMB - 1].sl_next == NULL);
slabstbl[ix - 1]->slg_slab[NSLABSPMB - 1].sl_next =
&slg->slg_slab[0];
}
}
ix = MTOPG(buf) % NSLABSPMB;
VERIFY(ix < NSLABSPMB);
return &slg->slg_slab[ix];
}
static void
slab_init(mcl_slab_t *sp, mbuf_class_t class, u_int32_t flags,
void *base, void *head, unsigned int len, int refcnt, int chunks)
{
sp->sl_class = class;
sp->sl_flags = flags;
sp->sl_base = base;
sp->sl_head = head;
sp->sl_len = len;
sp->sl_refcnt = refcnt;
sp->sl_chunks = chunks;
slab_detach(sp);
}
static void
slab_insert(mcl_slab_t *sp, mbuf_class_t class)
{
VERIFY(slab_is_detached(sp));
m_slab_cnt(class)++;
TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link);
sp->sl_flags &= ~SLF_DETACHED;
/*
* If a buffer spans multiple contiguous pages then mark them as
* detached too
*/
if (class == MC_16KCL) {
int k;
for (k = 1; k < NSLABSP16KB; k++) {
sp = sp->sl_next;
/* Next slab must already be present */
VERIFY(sp != NULL && slab_is_detached(sp));
sp->sl_flags &= ~SLF_DETACHED;
}
}
}
static void
slab_remove(mcl_slab_t *sp, mbuf_class_t class)
{
int k;
VERIFY(!slab_is_detached(sp));
VERIFY(m_slab_cnt(class) > 0);
m_slab_cnt(class)--;
TAILQ_REMOVE(&m_slablist(class), sp, sl_link);
slab_detach(sp);
if (class == MC_16KCL) {
for (k = 1; k < NSLABSP16KB; k++) {
sp = sp->sl_next;
/* Next slab must already be present */
VERIFY(sp != NULL);
VERIFY(!slab_is_detached(sp));
slab_detach(sp);
}
}
}
static boolean_t
slab_inrange(mcl_slab_t *sp, void *buf)
{
return (uintptr_t)buf >= (uintptr_t)sp->sl_base &&
(uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len);
}
#undef panic
static void
slab_nextptr_panic(mcl_slab_t *sp, void *addr)
{
int i;
unsigned int chunk_len = sp->sl_len / sp->sl_chunks;
uintptr_t buf = (uintptr_t)sp->sl_base;
for (i = 0; i < sp->sl_chunks; i++, buf += chunk_len) {
void *next = ((mcache_obj_t *)buf)->obj_next;
if (next != addr) {
continue;
}
if (!mclverify) {
if (next != NULL && !MBUF_IN_MAP(next)) {
mcache_t *cp = m_cache(sp->sl_class);
panic("%s: %s buffer %p in slab %p modified "
"after free at offset 0: %p out of range "
"[%p-%p)\n", __func__, cp->mc_name,
(void *)buf, sp, next, mbutl, embutl);
/* NOTREACHED */
}
} else {
mcache_audit_t *mca = mcl_audit_buf2mca(sp->sl_class,
(mcache_obj_t *)buf);
mcl_audit_verify_nextptr(next, mca);
}
}
}
static void
slab_detach(mcl_slab_t *sp)
{
sp->sl_link.tqe_next = (mcl_slab_t *)-1;
sp->sl_link.tqe_prev = (mcl_slab_t **)-1;
sp->sl_flags |= SLF_DETACHED;
}
static boolean_t
slab_is_detached(mcl_slab_t *sp)
{
return (intptr_t)sp->sl_link.tqe_next == -1 &&
(intptr_t)sp->sl_link.tqe_prev == -1 &&
(sp->sl_flags & SLF_DETACHED);
}
static void
mcl_audit_init(void *buf, mcache_audit_t **mca_list,
mcache_obj_t **con_list, size_t con_size, unsigned int num)
{
mcache_audit_t *mca, *mca_tail;
mcache_obj_t *con = NULL;
boolean_t save_contents = (con_list != NULL);
unsigned int i, ix;
ASSERT(num <= NMBPG);
ASSERT(con_list == NULL || con_size != 0);
ix = MTOPG(buf);
VERIFY(ix < maxclaudit);
/* Make sure we haven't been here before */
for (i = 0; i < num; i++) {
VERIFY(mclaudit[ix].cl_audit[i] == NULL);
}
mca = mca_tail = *mca_list;
if (save_contents) {
con = *con_list;
}
for (i = 0; i < num; i++) {
mcache_audit_t *next;
next = mca->mca_next;
bzero(mca, sizeof(*mca));
mca->mca_next = next;
mclaudit[ix].cl_audit[i] = mca;
/* Attach the contents buffer if requested */
if (save_contents) {
mcl_saved_contents_t *msc =
(mcl_saved_contents_t *)(void *)con;
VERIFY(msc != NULL);
VERIFY(IS_P2ALIGNED(msc, sizeof(u_int64_t)));
VERIFY(con_size == sizeof(*msc));
mca->mca_contents_size = con_size;
mca->mca_contents = msc;
con = con->obj_next;
bzero(mca->mca_contents, mca->mca_contents_size);
}
mca_tail = mca;
mca = mca->mca_next;
}
if (save_contents) {
*con_list = con;
}
*mca_list = mca_tail->mca_next;
mca_tail->mca_next = NULL;
}
static void
mcl_audit_free(void *buf, unsigned int num)
{
unsigned int i, ix;
mcache_audit_t *mca, *mca_list;
ix = MTOPG(buf);
VERIFY(ix < maxclaudit);
if (mclaudit[ix].cl_audit[0] != NULL) {
mca_list = mclaudit[ix].cl_audit[0];
for (i = 0; i < num; i++) {
mca = mclaudit[ix].cl_audit[i];
mclaudit[ix].cl_audit[i] = NULL;
if (mca->mca_contents) {
mcache_free(mcl_audit_con_cache,
mca->mca_contents);
}
}
mcache_free_ext(mcache_audit_cache,
(mcache_obj_t *)mca_list);
}
}
/*
* Given an address of a buffer (mbuf/2KB/4KB/16KB), return
* the corresponding audit structure for that buffer.
*/
static mcache_audit_t *
mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *mobj)
{
mcache_audit_t *mca = NULL;
int ix = MTOPG(mobj), m_idx = 0;
unsigned char *page_addr;
VERIFY(ix < maxclaudit);
VERIFY(IS_P2ALIGNED(mobj, MIN(m_maxsize(class), PAGE_SIZE)));
page_addr = PGTOM(ix);
switch (class) {
case MC_MBUF:
/*
* For the mbuf case, find the index of the page
* used by the mbuf and use that index to locate the
* base address of the page. Then find out the
* mbuf index relative to the page base and use
* it to locate the audit structure.
*/
m_idx = MBPAGEIDX(page_addr, mobj);
VERIFY(m_idx < (int)NMBPG);
mca = mclaudit[ix].cl_audit[m_idx];
break;
case MC_CL:
/*
* Same thing as above, but for 2KB clusters in a page.
*/
m_idx = CLPAGEIDX(page_addr, mobj);
VERIFY(m_idx < (int)NCLPG);
mca = mclaudit[ix].cl_audit[m_idx];
break;
case MC_BIGCL:
m_idx = BCLPAGEIDX(page_addr, mobj);
VERIFY(m_idx < (int)NBCLPG);
mca = mclaudit[ix].cl_audit[m_idx];
break;
case MC_16KCL:
/*
* Same as above, but only return the first element.
*/
mca = mclaudit[ix].cl_audit[0];
break;
default:
VERIFY(0);
/* NOTREACHED */
}
return mca;
}
static void
mcl_audit_mbuf(mcache_audit_t *mca, void *addr, boolean_t composite,
boolean_t alloc)
{
struct mbuf *m = addr;
mcache_obj_t *next = ((mcache_obj_t *)m)->obj_next;
VERIFY(mca->mca_contents != NULL &&
mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
if (mclverify) {
mcl_audit_verify_nextptr(next, mca);
}
if (!alloc) {
/* Save constructed mbuf fields */
mcl_audit_save_mbuf(m, mca);
if (mclverify) {
mcache_set_pattern(MCACHE_FREE_PATTERN, m,
m_maxsize(MC_MBUF));
}
((mcache_obj_t *)m)->obj_next = next;
return;
}
/* Check if the buffer has been corrupted while in freelist */
if (mclverify) {
mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF));
}
/* Restore constructed mbuf fields */
mcl_audit_restore_mbuf(m, mca, composite);
}
static void
mcl_audit_restore_mbuf(struct mbuf *m, mcache_audit_t *mca, boolean_t composite)
{
struct mbuf *ms = MCA_SAVED_MBUF_PTR(mca);
if (composite) {
struct mbuf *next = m->m_next;
VERIFY(ms->m_flags == M_EXT && m_get_rfa(ms) != NULL &&
MBUF_IS_COMPOSITE(ms));
VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
/*
* We could have hand-picked the mbuf fields and restore
* them individually, but that will be a maintenance
* headache. Instead, restore everything that was saved;
* the mbuf layer will recheck and reinitialize anyway.
*/
bcopy(ms, m, MCA_SAVED_MBUF_SIZE);
m->m_next = next;
} else {
/*
* For a regular mbuf (no cluster attached) there's nothing
* to restore other than the type field, which is expected
* to be MT_FREE.
*/
m->m_type = ms->m_type;
}
_MCHECK(m);
}
static void
mcl_audit_save_mbuf(struct mbuf *m, mcache_audit_t *mca)
{
VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
_MCHECK(m);
bcopy(m, MCA_SAVED_MBUF_PTR(mca), MCA_SAVED_MBUF_SIZE);
}
static void
mcl_audit_cluster(mcache_audit_t *mca, void *addr, size_t size, boolean_t alloc,
boolean_t save_next)
{
mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next;
if (!alloc) {
if (mclverify) {
mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size);
}
if (save_next) {
mcl_audit_verify_nextptr(next, mca);
((mcache_obj_t *)addr)->obj_next = next;
}
} else if (mclverify) {
/* Check if the buffer has been corrupted while in freelist */
mcl_audit_verify_nextptr(next, mca);
mcache_audit_free_verify_set(mca, addr, 0, size);
}
}
static void
mcl_audit_scratch(mcache_audit_t *mca)
{
void *stack[MCACHE_STACK_DEPTH + 1];
mcl_scratch_audit_t *msa;
struct timeval now;
VERIFY(mca->mca_contents != NULL);
msa = MCA_SAVED_SCRATCH_PTR(mca);
msa->msa_pthread = msa->msa_thread;
msa->msa_thread = current_thread();
bcopy(msa->msa_stack, msa->msa_pstack, sizeof(msa->msa_pstack));
msa->msa_pdepth = msa->msa_depth;
bzero(stack, sizeof(stack));
msa->msa_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1;
bcopy(&stack[1], msa->msa_stack, sizeof(msa->msa_stack));
msa->msa_ptstamp = msa->msa_tstamp;
microuptime(&now);
/* tstamp is in ms relative to base_ts */
msa->msa_tstamp = ((now.tv_usec - mb_start.tv_usec) / 1000);
if ((now.tv_sec - mb_start.tv_sec) > 0) {
msa->msa_tstamp += ((now.tv_sec - mb_start.tv_sec) * 1000);
}
}
__abortlike
static void
mcl_audit_mcheck_panic(struct mbuf *m)
{
char buf[DUMP_MCA_BUF_SIZE];
mcache_audit_t *mca;
MRANGE(m);
mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s",
m, (u_int16_t)m->m_type, MT_FREE, mcache_dump_mca(buf, mca));
/* NOTREACHED */
}
__abortlike
static void
mcl_audit_verify_nextptr_panic(void *next, mcache_audit_t *mca)
{
char buf[DUMP_MCA_BUF_SIZE];
panic("mcl_audit: buffer %p modified after free at offset 0: "
"%p out of range [%p-%p)\n%s\n",
mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(buf, mca));
/* NOTREACHED */
}
static void
mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca)
{
if (next != NULL && !MBUF_IN_MAP(next) &&
(next != (void *)MCACHE_FREE_PATTERN || !mclverify)) {
mcl_audit_verify_nextptr_panic(next, mca);
}
}
static uintptr_t
hash_mix(uintptr_t x)
{
#ifndef __LP64__
x += ~(x << 15);
x ^= (x >> 10);
x += (x << 3);
x ^= (x >> 6);
x += ~(x << 11);
x ^= (x >> 16);
#else
x += ~(x << 32);
x ^= (x >> 22);
x += ~(x << 13);
x ^= (x >> 8);
x += (x << 3);
x ^= (x >> 15);
x += ~(x << 27);
x ^= (x >> 31);
#endif
return x;
}
static uint32_t
hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size)
{
uintptr_t hash = 0;
uintptr_t mask = max_size - 1;
while (depth) {
hash += bt[--depth];
}
hash = hash_mix(hash) & mask;
assert(hash < max_size);
return (uint32_t) hash;
}
static uint32_t
hashaddr(uintptr_t pt, uint32_t max_size)
{
uintptr_t hash = 0;
uintptr_t mask = max_size - 1;
hash = hash_mix(pt) & mask;
assert(hash < max_size);
return (uint32_t) hash;
}
/* This function turns on mbuf leak detection */
static void
mleak_activate(void)
{
mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR;
PE_parse_boot_argn("mleak_sample_factor",
&mleak_table.mleak_sample_factor,
sizeof(mleak_table.mleak_sample_factor));
if (mleak_table.mleak_sample_factor == 0) {
mclfindleak = 0;
}
if (mclfindleak == 0) {
return;
}
vm_size_t alloc_size =
mleak_alloc_buckets * sizeof(struct mallocation);
vm_size_t trace_size = mleak_trace_buckets * sizeof(struct mtrace);
mleak_allocations = zalloc_permanent(alloc_size, ZALIGN(struct mallocation));
mleak_traces = zalloc_permanent(trace_size, ZALIGN(struct mtrace));
mleak_stat = zalloc_permanent(MLEAK_STAT_SIZE(MLEAK_NUM_TRACES),
ZALIGN(mleak_stat_t));
mleak_stat->ml_cnt = MLEAK_NUM_TRACES;
#ifdef __LP64__
mleak_stat->ml_isaddr64 = 1;
#endif /* __LP64__ */
}
static void
mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc)
{
int temp;
if (mclfindleak == 0) {
return;
}
if (!alloc) {
return mleak_free(addr);
}
temp = os_atomic_inc_orig(&mleak_table.mleak_capture, relaxed);
if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) {
uintptr_t bt[MLEAK_STACK_DEPTH];
unsigned int logged = backtrace(bt, MLEAK_STACK_DEPTH, NULL, NULL);
mleak_log(bt, addr, logged, num);
}
}
/*
* This function records the allocation in the mleak_allocations table
* and the backtrace in the mleak_traces table; if allocation slot is in use,
* replace old allocation with new one if the trace slot is in use, return
* (or increment refcount if same trace).
*/
static boolean_t
mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num)
{
struct mallocation *allocation;
struct mtrace *trace;
uint32_t trace_index;
/* Quit if someone else modifying the tables */
if (!lck_mtx_try_lock_spin(mleak_lock)) {
mleak_table.total_conflicts++;
return FALSE;
}
allocation = &mleak_allocations[hashaddr((uintptr_t)addr,
mleak_alloc_buckets)];
trace_index = hashbacktrace(bt, depth, mleak_trace_buckets);
trace = &mleak_traces[trace_index];
VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]);
VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]);
allocation->hitcount++;
trace->hitcount++;
/*
* If the allocation bucket we want is occupied
* and the occupier has the same trace, just bail.
*/
if (allocation->element != NULL &&
trace_index == allocation->trace_index) {
mleak_table.alloc_collisions++;
lck_mtx_unlock(mleak_lock);
return TRUE;
}
/*
* Store the backtrace in the traces array;
* Size of zero = trace bucket is free.
*/
if (trace->allocs > 0 &&
bcmp(trace->addr, bt, (depth * sizeof(uintptr_t))) != 0) {
/* Different, unique trace, but the same hash! Bail out. */
trace->collisions++;
mleak_table.trace_collisions++;
lck_mtx_unlock(mleak_lock);
return TRUE;
} else if (trace->allocs > 0) {
/* Same trace, already added, so increment refcount */
trace->allocs++;
} else {
/* Found an unused trace bucket, so record the trace here */
if (trace->depth != 0) {
/* this slot previously used but not currently in use */
mleak_table.trace_overwrites++;
}
mleak_table.trace_recorded++;
trace->allocs = 1;
memcpy(trace->addr, bt, (depth * sizeof(uintptr_t)));
trace->depth = depth;
trace->collisions = 0;
}
/* Step 2: Store the allocation record in the allocations array */
if (allocation->element != NULL) {
/*
* Replace an existing allocation. No need to preserve
* because only a subset of the allocations are being
* recorded anyway.
*/
mleak_table.alloc_collisions++;
} else if (allocation->trace_index != 0) {
mleak_table.alloc_overwrites++;
}
allocation->element = addr;
allocation->trace_index = trace_index;
allocation->count = num;
mleak_table.alloc_recorded++;
mleak_table.outstanding_allocs++;
lck_mtx_unlock(mleak_lock);
return TRUE;
}
static void
mleak_free(mcache_obj_t *addr)
{
while (addr != NULL) {
struct mallocation *allocation = &mleak_allocations
[hashaddr((uintptr_t)addr, mleak_alloc_buckets)];
if (allocation->element == addr &&
allocation->trace_index < mleak_trace_buckets) {
lck_mtx_lock_spin(mleak_lock);
if (allocation->element == addr &&
allocation->trace_index < mleak_trace_buckets) {
struct mtrace *trace;
trace = &mleak_traces[allocation->trace_index];
/* allocs = 0 means trace bucket is unused */
if (trace->allocs > 0) {
trace->allocs--;
}
if (trace->allocs == 0) {
trace->depth = 0;
}
/* NULL element means alloc bucket is unused */
allocation->element = NULL;
mleak_table.outstanding_allocs--;
}
lck_mtx_unlock(mleak_lock);
}
addr = addr->obj_next;
}
}
static void
mleak_sort_traces()
{
int i, j, k;
struct mtrace *swap;
for (i = 0; i < MLEAK_NUM_TRACES; i++) {
mleak_top_trace[i] = NULL;
}
for (i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++) {
if (mleak_traces[i].allocs <= 0) {
continue;
}
mleak_top_trace[j] = &mleak_traces[i];
for (k = j; k > 0; k--) {
if (mleak_top_trace[k]->allocs <=
mleak_top_trace[k - 1]->allocs) {
break;
}
swap = mleak_top_trace[k - 1];
mleak_top_trace[k - 1] = mleak_top_trace[k];
mleak_top_trace[k] = swap;
}
j++;
}
j--;
for (; i < mleak_trace_buckets; i++) {
if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs) {
continue;
}
mleak_top_trace[j] = &mleak_traces[i];
for (k = j; k > 0; k--) {
if (mleak_top_trace[k]->allocs <=
mleak_top_trace[k - 1]->allocs) {
break;
}
swap = mleak_top_trace[k - 1];
mleak_top_trace[k - 1] = mleak_top_trace[k];
mleak_top_trace[k] = swap;
}
}
}
static void
mleak_update_stats()
{
mleak_trace_stat_t *mltr;
int i;
VERIFY(mleak_stat != NULL);
#ifdef __LP64__
VERIFY(mleak_stat->ml_isaddr64);
#else
VERIFY(!mleak_stat->ml_isaddr64);
#endif /* !__LP64__ */
VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES);
mleak_sort_traces();
mltr = &mleak_stat->ml_trace[0];
bzero(mltr, sizeof(*mltr) * MLEAK_NUM_TRACES);
for (i = 0; i < MLEAK_NUM_TRACES; i++) {
int j;
if (mleak_top_trace[i] == NULL ||
mleak_top_trace[i]->allocs == 0) {
continue;
}
mltr->mltr_collisions = mleak_top_trace[i]->collisions;
mltr->mltr_hitcount = mleak_top_trace[i]->hitcount;
mltr->mltr_allocs = mleak_top_trace[i]->allocs;
mltr->mltr_depth = mleak_top_trace[i]->depth;
VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH);
for (j = 0; j < mltr->mltr_depth; j++) {
mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j];
}
mltr++;
}
}
static struct mbtypes {
int mt_type;
const char *mt_name;
} mbtypes[] = {
{ MT_DATA, "data" },
{ MT_OOBDATA, "oob data" },
{ MT_CONTROL, "ancillary data" },
{ MT_HEADER, "packet headers" },
{ MT_SOCKET, "socket structures" },
{ MT_PCB, "protocol control blocks" },
{ MT_RTABLE, "routing table entries" },
{ MT_HTABLE, "IMP host table entries" },
{ MT_ATABLE, "address resolution tables" },
{ MT_FTABLE, "fragment reassembly queue headers" },
{ MT_SONAME, "socket names and addresses" },
{ MT_SOOPTS, "socket options" },
{ MT_RIGHTS, "access rights" },
{ MT_IFADDR, "interface addresses" },
{ MT_TAG, "packet tags" },
{ 0, NULL }
};
#define MBUF_DUMP_BUF_CHK() { \
clen -= k; \
if (clen < 1) \
goto done; \
c += k; \
}
static char *
mbuf_dump(void)
{
unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct,
totreturned = 0;
u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0;
u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0;
u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0;
int nmbtypes = sizeof(mbstat.m_mtypes) / sizeof(short);
uint8_t seen[256];
struct mbtypes *mp;
mb_class_stat_t *sp;
mleak_trace_stat_t *mltr;
char *c = mbuf_dump_buf;
int i, j, k, clen = MBUF_DUMP_BUF_SIZE;
struct mbuf_watchdog_defunct_args args = {};
mbuf_dump_buf[0] = '\0';
/* synchronize all statistics in the mbuf table */
mbuf_stat_sync();
mbuf_mtypes_sync(TRUE);
sp = &mb_stat->mbs_class[0];
for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) {
u_int32_t mem;
if (m_class(i) == MC_MBUF) {
m_mbufs = sp->mbcl_active;
} else if (m_class(i) == MC_CL) {
m_clfree = sp->mbcl_total - sp->mbcl_active;
} else if (m_class(i) == MC_BIGCL) {
m_bigclfree = sp->mbcl_total - sp->mbcl_active;
} else if (njcl > 0 && m_class(i) == MC_16KCL) {
m_16kclfree = sp->mbcl_total - sp->mbcl_active;
m_16kclusters = sp->mbcl_total;
} else if (m_class(i) == MC_MBUF_CL) {
m_mbufclfree = sp->mbcl_total - sp->mbcl_active;
} else if (m_class(i) == MC_MBUF_BIGCL) {
m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active;
} else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) {
m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active;
}
mem = sp->mbcl_ctotal * sp->mbcl_size;
totmem += mem;
totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) *
sp->mbcl_size;
totreturned += sp->mbcl_release_cnt;
}
/* adjust free counts to include composite caches */
m_clfree += m_mbufclfree;
m_bigclfree += m_mbufbigclfree;
m_16kclfree += m_mbuf16kclfree;
totmbufs = 0;
for (mp = mbtypes; mp->mt_name != NULL; mp++) {
totmbufs += mbstat.m_mtypes[mp->mt_type];
}
if (totmbufs > m_mbufs) {
totmbufs = m_mbufs;
}
k = scnprintf(c, clen, "%lu/%u mbufs in use:\n", totmbufs, m_mbufs);
MBUF_DUMP_BUF_CHK();
bzero(&seen, sizeof(seen));
for (mp = mbtypes; mp->mt_name != NULL; mp++) {
if (mbstat.m_mtypes[mp->mt_type] != 0) {
seen[mp->mt_type] = 1;
k = scnprintf(c, clen, "\t%u mbufs allocated to %s\n",
mbstat.m_mtypes[mp->mt_type], mp->mt_name);
MBUF_DUMP_BUF_CHK();
}
}
seen[MT_FREE] = 1;
for (i = 0; i < nmbtypes; i++) {
if (!seen[i] && mbstat.m_mtypes[i] != 0) {
k = scnprintf(c, clen, "\t%u mbufs allocated to "
"<mbuf type %d>\n", mbstat.m_mtypes[i], i);
MBUF_DUMP_BUF_CHK();
}
}
if ((m_mbufs - totmbufs) > 0) {
k = scnprintf(c, clen, "\t%lu mbufs allocated to caches\n",
m_mbufs - totmbufs);
MBUF_DUMP_BUF_CHK();
}
k = scnprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n"
"%u/%u mbuf 4KB clusters in use\n",
(unsigned int)(mbstat.m_clusters - m_clfree),
(unsigned int)mbstat.m_clusters,
(unsigned int)(mbstat.m_bigclusters - m_bigclfree),
(unsigned int)mbstat.m_bigclusters);
MBUF_DUMP_BUF_CHK();
if (njcl > 0) {
k = scnprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n",
m_16kclusters - m_16kclfree, m_16kclusters,
njclbytes / 1024);
MBUF_DUMP_BUF_CHK();
}
totused = totmem - totfree;
if (totmem == 0) {
totpct = 0;
} else if (totused < (ULONG_MAX / 100)) {
totpct = (totused * 100) / totmem;
} else {
u_long totmem1 = totmem / 100;
u_long totused1 = totused / 100;
totpct = (totused1 * 100) / totmem1;
}
k = scnprintf(c, clen, "%lu KB allocated to network (approx. %lu%% "
"in use)\n", totmem / 1024, totpct);
MBUF_DUMP_BUF_CHK();
k = scnprintf(c, clen, "%lu KB returned to the system\n",
totreturned / 1024);
MBUF_DUMP_BUF_CHK();
net_update_uptime();
k = scnprintf(c, clen,
"worker thread runs: %u, expansions: %llu, cl %llu/%llu, "
"bigcl %llu/%llu, 16k %llu/%llu\n", mbuf_worker_run_cnt,
mb_expand_cnt, mb_expand_cl_cnt, mb_expand_cl_total,
mb_expand_bigcl_cnt, mb_expand_bigcl_total, mb_expand_16kcl_cnt,
mb_expand_16kcl_total);
MBUF_DUMP_BUF_CHK();
if (mbuf_worker_last_runtime != 0) {
k = scnprintf(c, clen, "worker thread last run time: "
"%llu (%llu seconds ago)\n",
mbuf_worker_last_runtime,
net_uptime() - mbuf_worker_last_runtime);
MBUF_DUMP_BUF_CHK();
}
if (mbuf_drain_last_runtime != 0) {
k = scnprintf(c, clen, "drain routine last run time: "
"%llu (%llu seconds ago)\n",
mbuf_drain_last_runtime,
net_uptime() - mbuf_drain_last_runtime);
MBUF_DUMP_BUF_CHK();
}
/*
* Log where the most mbufs have accumulated:
* - Process socket buffers
* - TCP reassembly queue
* - Interface AQM queue (output) and DLIL input queue
*/
args.non_blocking = true;
proc_iterate(PROC_ALLPROCLIST,
mbuf_watchdog_defunct_iterate, &args, NULL, NULL);
if (args.top_app != NULL) {
k = scnprintf(c, clen, "\ntop proc mbuf space %u bytes by %s:%d\n",
args.top_app_space_used,
proc_name_address(args.top_app),
proc_pid(args.top_app));
proc_rele(args.top_app);
}
MBUF_DUMP_BUF_CHK();
#if INET
k = dump_tcp_reass_qlen(c, clen);
MBUF_DUMP_BUF_CHK();
#endif /* INET */
#if MPTCP
k = dump_mptcp_reass_qlen(c, clen);
MBUF_DUMP_BUF_CHK();
#endif /* MPTCP */
#if NETWORKING
k = dlil_dump_top_if_qlen(c, clen);
MBUF_DUMP_BUF_CHK();
#endif /* NETWORKING */
/* mbuf leak detection statistics */
mleak_update_stats();
k = scnprintf(c, clen, "\nmbuf leak detection table:\n");
MBUF_DUMP_BUF_CHK();
k = scnprintf(c, clen, "\ttotal captured: %u (one per %u)\n",
mleak_table.mleak_capture / mleak_table.mleak_sample_factor,
mleak_table.mleak_sample_factor);
MBUF_DUMP_BUF_CHK();
k = scnprintf(c, clen, "\ttotal allocs outstanding: %llu\n",
mleak_table.outstanding_allocs);
MBUF_DUMP_BUF_CHK();
k = scnprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n",
mleak_table.alloc_recorded, mleak_table.trace_recorded);
MBUF_DUMP_BUF_CHK();
k = scnprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n",
mleak_table.alloc_collisions, mleak_table.trace_collisions);
MBUF_DUMP_BUF_CHK();
k = scnprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n",
mleak_table.alloc_overwrites, mleak_table.trace_overwrites);
MBUF_DUMP_BUF_CHK();
k = scnprintf(c, clen, "\tlock conflicts: %llu\n\n",
mleak_table.total_conflicts);
MBUF_DUMP_BUF_CHK();
k = scnprintf(c, clen, "top %d outstanding traces:\n",
mleak_stat->ml_cnt);
MBUF_DUMP_BUF_CHK();
for (i = 0; i < mleak_stat->ml_cnt; i++) {
mltr = &mleak_stat->ml_trace[i];
k = scnprintf(c, clen, "[%d] %llu outstanding alloc(s), "
"%llu hit(s), %llu collision(s)\n", (i + 1),
mltr->mltr_allocs, mltr->mltr_hitcount,
mltr->mltr_collisions);
MBUF_DUMP_BUF_CHK();
}
if (mleak_stat->ml_isaddr64) {
k = scnprintf(c, clen, MB_LEAK_HDR_64);
} else {
k = scnprintf(c, clen, MB_LEAK_HDR_32);
}
MBUF_DUMP_BUF_CHK();
for (i = 0; i < MLEAK_STACK_DEPTH; i++) {
k = scnprintf(c, clen, "%2d: ", (i + 1));
MBUF_DUMP_BUF_CHK();
for (j = 0; j < mleak_stat->ml_cnt; j++) {
mltr = &mleak_stat->ml_trace[j];
if (i < mltr->mltr_depth) {
if (mleak_stat->ml_isaddr64) {
k = scnprintf(c, clen, "0x%0llx ",
(uint64_t)VM_KERNEL_UNSLIDE(
mltr->mltr_addr[i]));
} else {
k = scnprintf(c, clen,
"0x%08x ",
(uint32_t)VM_KERNEL_UNSLIDE(
mltr->mltr_addr[i]));
}
} else {
if (mleak_stat->ml_isaddr64) {
k = scnprintf(c, clen,
MB_LEAK_SPACING_64);
} else {
k = scnprintf(c, clen,
MB_LEAK_SPACING_32);
}
}
MBUF_DUMP_BUF_CHK();
}
k = scnprintf(c, clen, "\n");
MBUF_DUMP_BUF_CHK();
}
done:
return mbuf_dump_buf;
}
#undef MBUF_DUMP_BUF_CHK
#endif /* CONFIG_MBUF_MCACHE */
/*
* Convert between a regular and a packet header mbuf. Caller is responsible
* for setting or clearing M_PKTHDR; this routine does the rest of the work.
*/
int
m_reinit(struct mbuf *m, int hdr)
{
int ret = 0;
if (hdr) {
VERIFY(!(m->m_flags & M_PKTHDR));
if (!(m->m_flags & M_EXT) &&
(m->m_data != (uintptr_t)m->m_dat || m->m_len > 0)) {
/*
* If there's no external cluster attached and the
* mbuf appears to contain user data, we cannot
* safely convert this to a packet header mbuf,
* as the packet header structure might overlap
* with the data.
*/
printf("%s: cannot set M_PKTHDR on altered mbuf %llx, "
"m_data %llx (expected %llx), "
"m_len %d (expected 0)\n",
__func__,
(uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)m),
(uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)m->m_data),
(uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)(m->m_dat)), m->m_len);
ret = EBUSY;
} else {
VERIFY((m->m_flags & M_EXT) || m->m_data == (uintptr_t)m->m_dat);
m->m_flags |= M_PKTHDR;
MBUF_INIT_PKTHDR(m);
}
} else {
/* Check for scratch area overflow */
m_redzone_verify(m);
/* Free the aux data and tags if there is any */
m_tag_delete_chain(m);
m_do_tx_compl_callback(m, NULL);
m->m_flags &= ~M_PKTHDR;
}
return ret;
}
int
m_ext_set_prop(struct mbuf *m, uint32_t o, uint32_t n)
{
ASSERT(m->m_flags & M_EXT);
return os_atomic_cmpxchg(&MEXT_PRIV(m), o, n, acq_rel);
}
uint32_t
m_ext_get_prop(struct mbuf *m)
{
ASSERT(m->m_flags & M_EXT);
return MEXT_PRIV(m);
}
int
m_ext_paired_is_active(struct mbuf *m)
{
return MBUF_IS_PAIRED(m) ? (MEXT_PREF(m) > MEXT_MINREF(m)) : 1;
}
void
m_ext_paired_activate(struct mbuf *m)
{
struct ext_ref *rfa;
int hdr, type;
caddr_t extbuf;
m_ext_free_func_t extfree;
u_int extsize;
VERIFY(MBUF_IS_PAIRED(m));
VERIFY(MEXT_REF(m) == MEXT_MINREF(m));
VERIFY(MEXT_PREF(m) == MEXT_MINREF(m));
hdr = (m->m_flags & M_PKTHDR);
type = m->m_type;
extbuf = m->m_ext.ext_buf;
extfree = m_get_ext_free(m);
extsize = m->m_ext.ext_size;
rfa = m_get_rfa(m);
VERIFY(extbuf != NULL && rfa != NULL);
/*
* Safe to reinitialize packet header tags, since it's
* already taken care of at m_free() time. Similar to
* what's done in m_clattach() for the cluster. Bump
* up MEXT_PREF to indicate activation.
*/
MBUF_INIT(m, hdr, type);
MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa,
1, 1, 2, EXTF_PAIRED, MEXT_PRIV(m), m);
}
void
m_scratch_init(struct mbuf *m)
{
struct pkthdr *pkt = &m->m_pkthdr;
VERIFY(m->m_flags & M_PKTHDR);
/* See comments in <rdar://problem/14040693> */
if (pkt->pkt_flags & PKTF_PRIV_GUARDED) {
panic_plain("Invalid attempt to modify guarded module-private "
"area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags);
/* NOTREACHED */
}
bzero(&pkt->pkt_mpriv, sizeof(pkt->pkt_mpriv));
}
/*
* This routine is reserved for mbuf_get_driver_scratch(); clients inside
* xnu that intend on utilizing the module-private area should directly
* refer to the pkt_mpriv structure in the pkthdr. They are also expected
* to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior
* to handing it off to another module, respectively.
*/
u_int32_t
m_scratch_get(struct mbuf *m, u_int8_t **p)
{
struct pkthdr *pkt = &m->m_pkthdr;
VERIFY(m->m_flags & M_PKTHDR);
/* See comments in <rdar://problem/14040693> */
if (pkt->pkt_flags & PKTF_PRIV_GUARDED) {
panic_plain("Invalid attempt to access guarded module-private "
"area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags);
/* NOTREACHED */
}
#if CONFIG_MBUF_MCACHE
if (mcltrace) {
mcache_audit_t *mca;
lck_mtx_lock(mbuf_mlock);
mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
if (mca->mca_uflags & MB_SCVALID) {
mcl_audit_scratch(mca);
}
lck_mtx_unlock(mbuf_mlock);
}
#endif /* CONFIG_MBUF_MCACHE */
*p = (u_int8_t *)&pkt->pkt_mpriv;
return sizeof(pkt->pkt_mpriv);
}
void
m_add_crumb(struct mbuf *m, uint16_t crumb)
{
VERIFY(m->m_flags & M_PKTHDR);
m->m_pkthdr.pkt_crumbs |= crumb;
}
static void
m_redzone_init(struct mbuf *m)
{
VERIFY(m->m_flags & M_PKTHDR);
/*
* Each mbuf has a unique red zone pattern, which is a XOR
* of the red zone cookie and the address of the mbuf.
*/
m->m_pkthdr.redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie;
}
static void
m_redzone_verify(struct mbuf *m)
{
u_int32_t mb_redzone;
VERIFY(m->m_flags & M_PKTHDR);
mb_redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie;
if (m->m_pkthdr.redzone != mb_redzone) {
panic("mbuf %p redzone violation with value 0x%x "
"(instead of 0x%x, using cookie 0x%x)\n",
m, m->m_pkthdr.redzone, mb_redzone, mb_redzone_cookie);
/* NOTREACHED */
}
}
__private_extern__ inline void
m_set_ext(struct mbuf *m, struct ext_ref *rfa, m_ext_free_func_t ext_free,
caddr_t ext_arg)
{
VERIFY(m->m_flags & M_EXT);
if (rfa != NULL) {
m_set_rfa(m, rfa);
if (ext_free != NULL) {
rfa->ext_token = ((uintptr_t)&rfa->ext_token) ^
mb_obscure_extfree;
uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, ext_free) ^ rfa->ext_token;
m->m_ext.ext_free = ptrauth_nop_cast(m_ext_free_func_t, ext_free_val);
if (ext_arg != NULL) {
m->m_ext.ext_arg =
(caddr_t)(((uintptr_t)ext_arg) ^ rfa->ext_token);
} else {
m->m_ext.ext_arg = NULL;
}
} else {
rfa->ext_token = 0;
m->m_ext.ext_free = NULL;
m->m_ext.ext_arg = NULL;
}
} else {
/*
* If we are going to loose the cookie in ext_token by
* resetting the rfa, we should use the global cookie
* to obscure the ext_free and ext_arg pointers.
*/
if (ext_free != NULL) {
uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, ext_free) ^ mb_obscure_extfree;
m->m_ext.ext_free = ptrauth_nop_cast(m_ext_free_func_t, ext_free_val);
if (ext_arg != NULL) {
m->m_ext.ext_arg =
(caddr_t)((uintptr_t)ext_arg ^
mb_obscure_extfree);
} else {
m->m_ext.ext_arg = NULL;
}
} else {
m->m_ext.ext_free = NULL;
m->m_ext.ext_arg = NULL;
}
m->m_ext.ext_refflags = NULL;
}
}
__private_extern__ inline struct ext_ref *
m_get_rfa(struct mbuf *m)
{
if (m->m_ext.ext_refflags == NULL) {
return NULL;
} else {
return (struct ext_ref *)(((uintptr_t)m->m_ext.ext_refflags) ^ mb_obscure_extref);
}
}
static inline void
m_set_rfa(struct mbuf *m, struct ext_ref *rfa)
{
if (rfa != NULL) {
m->m_ext.ext_refflags =
(struct ext_ref *)(((uintptr_t)rfa) ^ mb_obscure_extref);
} else {
m->m_ext.ext_refflags = NULL;
}
}
__private_extern__ inline m_ext_free_func_t
m_get_ext_free(struct mbuf *m)
{
struct ext_ref *rfa;
if (m->m_ext.ext_free == NULL) {
return NULL;
}
rfa = m_get_rfa(m);
if (rfa == NULL) {
uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, m->m_ext.ext_free) ^ mb_obscure_extfree;
return ptrauth_nop_cast(m_ext_free_func_t, ext_free_val);
} else {
uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, m->m_ext.ext_free) ^ rfa->ext_token;
return ptrauth_nop_cast(m_ext_free_func_t, ext_free_val);
}
}
__private_extern__ inline caddr_t
m_get_ext_arg(struct mbuf *m)
{
struct ext_ref *rfa;
if (m->m_ext.ext_arg == NULL) {
return NULL;
}
rfa = m_get_rfa(m);
if (rfa == NULL) {
return (caddr_t)((uintptr_t)m->m_ext.ext_arg ^ mb_obscure_extfree);
} else {
return (caddr_t)(((uintptr_t)m->m_ext.ext_arg) ^
rfa->ext_token);
}
}
#if CONFIG_MBUF_MCACHE
/*
* Simple routine to avoid taking the lock when we can't run the
* mbuf drain.
*/
static int
mbuf_drain_checks(boolean_t ignore_waiters)
{
if (mb_drain_maxint == 0) {
return 0;
}
if (!ignore_waiters && mb_waiters != 0) {
return 0;
}
return 1;
}
/*
* Called by the VM when there's memory pressure or when we exhausted
* the 4k/16k reserved space.
*/
static void
mbuf_drain_locked(boolean_t ignore_waiters)
{
mbuf_class_t mc;
mcl_slab_t *sp, *sp_tmp, *nsp;
unsigned int num, k, interval, released = 0;
unsigned long total_mem = 0, use_mem = 0;
boolean_t ret, purge_caches = FALSE;
ppnum_t offset;
mcache_obj_t *obj;
unsigned long per;
static unsigned char scratch[32];
static ppnum_t scratch_pa = 0;
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
if (!mbuf_drain_checks(ignore_waiters)) {
return;
}
if (scratch_pa == 0) {
bzero(scratch, sizeof(scratch));
scratch_pa = pmap_find_phys(kernel_pmap, (addr64_t)scratch);
VERIFY(scratch_pa);
} else if (mclverify) {
/*
* Panic if a driver wrote to our scratch memory.
*/
for (k = 0; k < sizeof(scratch); k++) {
if (scratch[k]) {
panic("suspect DMA to freed address");
}
}
}
/*
* Don't free memory too often as that could cause excessive
* waiting times for mbufs. Purge caches if we were asked to drain
* in the last 5 minutes.
*/
if (mbuf_drain_last_runtime != 0) {
interval = net_uptime() - mbuf_drain_last_runtime;
if (interval <= mb_drain_maxint) {
return;
}
if (interval <= mb_drain_maxint * 5) {
purge_caches = TRUE;
}
}
mbuf_drain_last_runtime = net_uptime();
/*
* Don't free any memory if we're using 60% or more.
*/
for (mc = 0; mc < NELEM(mbuf_table); mc++) {
total_mem += m_total(mc) * m_maxsize(mc);
use_mem += m_active(mc) * m_maxsize(mc);
}
per = (use_mem * 100) / total_mem;
if (per >= 60) {
return;
}
/*
* Purge all the caches. This effectively disables
* caching for a few seconds, but the mbuf worker thread will
* re-enable them again.
*/
if (purge_caches == TRUE) {
for (mc = 0; mc < NELEM(mbuf_table); mc++) {
if (m_total(mc) < m_avgtotal(mc)) {
continue;
}
lck_mtx_unlock(mbuf_mlock);
ret = mcache_purge_cache(m_cache(mc), FALSE);
lck_mtx_lock(mbuf_mlock);
if (ret == TRUE) {
m_purge_cnt(mc)++;
}
}
}
/*
* Move the objects from the composite class freelist to
* the rudimentary slabs list, but keep at least 10% of the average
* total in the freelist.
*/
for (mc = 0; mc < NELEM(mbuf_table); mc++) {
while (m_cobjlist(mc) &&
m_total(mc) < m_avgtotal(mc) &&
m_infree(mc) > 0.1 * m_avgtotal(mc) + m_minlimit(mc)) {
obj = m_cobjlist(mc);
m_cobjlist(mc) = obj->obj_next;
obj->obj_next = NULL;
num = cslab_free(mc, obj, 1);
VERIFY(num == 1);
m_free_cnt(mc)++;
m_infree(mc)--;
/* cslab_free() handles m_total */
}
}
/*
* Free the buffers present in the slab list up to 10% of the total
* average per class.
*
* We walk the list backwards in an attempt to reduce fragmentation.
*/
for (mc = NELEM(mbuf_table) - 1; (int)mc >= 0; mc--) {
TAILQ_FOREACH_SAFE(sp, &m_slablist(mc), sl_link, sp_tmp) {
/*
* Process only unused slabs occupying memory.
*/
if (sp->sl_refcnt != 0 || sp->sl_len == 0 ||
sp->sl_base == NULL) {
continue;
}
if (m_total(mc) < m_avgtotal(mc) ||
m_infree(mc) < 0.1 * m_avgtotal(mc) + m_minlimit(mc)) {
break;
}
slab_remove(sp, mc);
switch (mc) {
case MC_MBUF:
m_infree(mc) -= NMBPG;
m_total(mc) -= NMBPG;
if (mclaudit != NULL) {
mcl_audit_free(sp->sl_base, NMBPG);
}
break;
case MC_CL:
m_infree(mc) -= NCLPG;
m_total(mc) -= NCLPG;
if (mclaudit != NULL) {
mcl_audit_free(sp->sl_base, NMBPG);
}
break;
case MC_BIGCL:
{
m_infree(mc) -= NBCLPG;
m_total(mc) -= NBCLPG;
if (mclaudit != NULL) {
mcl_audit_free(sp->sl_base, NMBPG);
}
break;
}
case MC_16KCL:
m_infree(mc)--;
m_total(mc)--;
for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
VERIFY(nsp->sl_refcnt == 0 &&
nsp->sl_base != NULL &&
nsp->sl_len == 0);
slab_init(nsp, 0, 0, NULL, NULL, 0, 0,
0);
nsp->sl_flags = 0;
}
if (mclaudit != NULL) {
if (sp->sl_len == PAGE_SIZE) {
mcl_audit_free(sp->sl_base,
NMBPG);
} else {
mcl_audit_free(sp->sl_base, 1);
}
}
break;
default:
/*
* The composite classes have their own
* freelist (m_cobjlist), so we only
* process rudimentary classes here.
*/
VERIFY(0);
}
m_release_cnt(mc) += m_size(mc);
released += m_size(mc);
VERIFY(sp->sl_base != NULL &&
sp->sl_len >= PAGE_SIZE);
offset = MTOPG(sp->sl_base);
/*
* Make sure the IOMapper points to a valid, but
* bogus, address. This should prevent further DMA
* accesses to freed memory.
*/
IOMapperInsertPage(mcl_paddr_base, offset, scratch_pa);
mcl_paddr[offset] = 0;
kmem_free(mb_map, (vm_offset_t)sp->sl_base,
sp->sl_len);
slab_init(sp, 0, 0, NULL, NULL, 0, 0, 0);
sp->sl_flags = 0;
}
}
mbstat.m_drain++;
mbstat.m_bigclusters = m_total(MC_BIGCL);
mbstat.m_clusters = m_total(MC_CL);
mbstat.m_mbufs = m_total(MC_MBUF);
mbuf_stat_sync();
mbuf_mtypes_sync(TRUE);
}
__private_extern__ void
mbuf_drain(boolean_t ignore_waiters)
{
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_NOTOWNED);
if (!mbuf_drain_checks(ignore_waiters)) {
return;
}
lck_mtx_lock(mbuf_mlock);
mbuf_drain_locked(ignore_waiters);
lck_mtx_unlock(mbuf_mlock);
}
static int
m_drain_force_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int val = 0, err;
err = sysctl_handle_int(oidp, &val, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (val) {
mbuf_drain(TRUE);
}
return err;
}
#if DEBUG || DEVELOPMENT
__printflike(3, 4)
static void
_mbwdog_logger(const char *func, const int line, const char *fmt, ...)
{
va_list ap;
struct timeval now;
char str[384], p[256];
int len;
LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
if (mbwdog_logging == NULL) {
/*
* This might block under a mutex, which isn't really great,
* but this happens once, so we'll live.
*/
mbwdog_logging = zalloc_permanent(mbwdog_logging_size,
ZALIGN_NONE);
}
va_start(ap, fmt);
vsnprintf(p, sizeof(p), fmt, ap);
va_end(ap);
microuptime(&now);
len = scnprintf(str, sizeof(str),
"\n%ld.%d (%d/%llx) %s:%d %s",
now.tv_sec, now.tv_usec,
proc_getpid(current_proc()),
(uint64_t)VM_KERNEL_ADDRPERM(current_thread()),
func, line, p);
if (len < 0) {
return;
}
if (mbwdog_logging_used + len > mbwdog_logging_size) {
mbwdog_logging_used = mbwdog_logging_used / 2;
memmove(mbwdog_logging, mbwdog_logging + mbwdog_logging_used,
mbwdog_logging_size - mbwdog_logging_used);
mbwdog_logging[mbwdog_logging_used] = 0;
}
strlcat(mbwdog_logging, str, mbwdog_logging_size);
mbwdog_logging_used += len;
}
#endif // DEBUG || DEVELOPMENT
static void
mtracelarge_register(size_t size)
{
int i;
struct mtracelarge *trace;
uintptr_t bt[MLEAK_STACK_DEPTH];
unsigned int depth;
depth = backtrace(bt, MLEAK_STACK_DEPTH, NULL, NULL);
/* Check if this entry is already on the list. */
for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) {
trace = &mtracelarge_table[i];
if (trace->size == size && trace->depth == depth &&
memcmp(bt, trace->addr, depth * sizeof(uintptr_t)) == 0) {
return;
}
}
for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) {
trace = &mtracelarge_table[i];
if (size > trace->size) {
trace->depth = depth;
memcpy(trace->addr, bt, depth * sizeof(uintptr_t));
trace->size = size;
break;
}
}
}
#if DEBUG || DEVELOPMENT
static int
mbuf_wd_dump_sysctl SYSCTL_HANDLER_ARGS
{
char *str;
ifnet_head_lock_shared();
lck_mtx_lock(mbuf_mlock);
str = mbuf_dump();
lck_mtx_unlock(mbuf_mlock);
ifnet_head_done();
return sysctl_io_string(req, str, 0, 0, NULL);
}
#endif /* DEBUG || DEVELOPMENT */
#endif /* CONFIG_MBUF_MCACHE */
SYSCTL_DECL(_kern_ipc);
#if DEBUG || DEVELOPMENT
#if SKYWALK && CONFIG_MBUF_MCACHE
SYSCTL_UINT(_kern_ipc, OID_AUTO, mc_threshold_scale_factor,
CTLFLAG_RW | CTLFLAG_LOCKED, &mc_threshold_scale_down_factor,
MC_THRESHOLD_SCALE_DOWN_FACTOR,
"scale down factor for mbuf cache thresholds");
#endif /* SKYWALK && CONFIG_MBUF_MCACHE */
#if CONFIG_MBUF_MCACHE
SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_wd_dump,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, mbuf_wd_dump_sysctl, "A", "mbuf watchdog dump");
#endif /* CONFIG_MBUF_MCACHE */
#endif /* DEBUG || DEVELOPMENT */
SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, mbstat_sysctl, "S,mbstat", "");
SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, mb_stat_sysctl, "S,mb_stat", "");
#if CONFIG_MBUF_MCACHE
SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, mleak_top_trace_sysctl, "S,mb_top_trace", "");
SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, mleak_table_sysctl, "S,mleak_table", "");
SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor,
CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized,
CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog,
CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, "");
SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_drain_force,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0,
m_drain_force_sysctl, "I",
"Forces the mbuf garbage collection to run");
SYSCTL_INT(_kern_ipc, OID_AUTO, mb_drain_maxint,
CTLFLAG_RW | CTLFLAG_LOCKED, &mb_drain_maxint, 0,
"Minimum time interval between garbage collection");
#endif /* CONFIG_MBUF_MCACHE */
SYSCTL_INT(_kern_ipc, OID_AUTO, mb_memory_pressure_percentage,
CTLFLAG_RW | CTLFLAG_LOCKED, &mb_memory_pressure_percentage, 0,
"Percentage of when we trigger memory-pressure for an mbuf-class");
#if CONFIG_MBUF_MCACHE
static int mb_uses_mcache = 1;
#else
static int mb_uses_mcache = 0;
#endif /* CONFIG_MBUF_MCACHE */
SYSCTL_INT(_kern_ipc, OID_AUTO, mb_uses_mcache,
CTLFLAG_LOCKED, &mb_uses_mcache, 0,
"Whether mbufs use mcache");