gems-kernel/source/THIRDPARTY/xnu/bsd/net/if_bridge.c

9929 lines
266 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2004-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $ */
/*
* Copyright 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp
*/
/*
* Network interface bridge support.
*
* TODO:
*
* - Currently only supports Ethernet-like interfaces (Ethernet,
* 802.11, VLANs on Ethernet, etc.) Figure out a nice way
* to bridge other types of interfaces (FDDI-FDDI, and maybe
* consider heterogenous bridges).
*
* - GIF isn't handled due to the lack of IPPROTO_ETHERIP support.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/protosw.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/socket.h> /* for net/if.h */
#include <sys/sockio.h>
#include <sys/kernel.h>
#include <sys/random.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/mcache.h>
#include <sys/kauth.h>
#include <kern/thread_call.h>
#include <libkern/libkern.h>
#include <kern/zalloc.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/net_api_stats.h>
#include <net/pfvar.h>
#include <netinet/in.h> /* for struct arpcom */
#include <netinet/tcp.h> /* for struct tcphdr */
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#define _IP_VHL
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#ifdef DEV_CARP
#include <netinet/ip_carp.h>
#endif
#include <netinet/if_ether.h> /* for struct arpcom */
#include <net/bridgestp.h>
#include <net/if_bridgevar.h>
#include <net/if_llc.h>
#if NVLAN > 0
#include <net/if_vlan_var.h>
#endif /* NVLAN > 0 */
#include <net/if_ether.h>
#include <net/dlil.h>
#include <net/kpi_interfacefilter.h>
#include <net/route.h>
#include <dev/random/randomdev.h>
#include <netinet/bootp.h>
#include <netinet/dhcp.h>
#if SKYWALK
#include <skywalk/nexus/netif/nx_netif.h>
#endif /* SKYWALK */
#include <net/sockaddr_utils.h>
#include <os/log.h>
/*
* if_bridge_debug, BR_DBGF_*
* - 'if_bridge_debug' is a bitmask of BR_DBGF_* flags that can be set
* to enable additional logs for the corresponding bridge function
* - "sysctl net.link.bridge.debug" controls the value of
* 'if_bridge_debug'
*/
static uint32_t if_bridge_debug = 0;
#define BR_DBGF_LIFECYCLE 0x0001
#define BR_DBGF_INPUT 0x0002
#define BR_DBGF_OUTPUT 0x0004
#define BR_DBGF_RT_TABLE 0x0008
#define BR_DBGF_DELAYED_CALL 0x0010
#define BR_DBGF_IOCTL 0x0020
#define BR_DBGF_MBUF 0x0040
#define BR_DBGF_MCAST 0x0080
#define BR_DBGF_HOSTFILTER 0x0100
#define BR_DBGF_CHECKSUM 0x0200
#define BR_DBGF_MAC_NAT 0x0400
/*
* if_bridge_log_level
* - 'if_bridge_log_level' ensures that by default important logs are
* logged regardless of if_bridge_debug by comparing the log level
* in BRIDGE_LOG to if_bridge_log_level
* - use "sysctl net.link.bridge.log_level" controls the value of
* 'if_bridge_log_level'
* - the default value of 'if_bridge_log_level' is LOG_NOTICE; important
* logs must use LOG_NOTICE to ensure they appear by default
*/
static int if_bridge_log_level = LOG_NOTICE;
#define BRIDGE_DBGF_ENABLED(__flag) ((if_bridge_debug & __flag) != 0)
/*
* BRIDGE_LOG, BRIDGE_LOG_SIMPLE
* - macros to generate the specified log conditionally based on
* the specified log level and debug flags
* - BRIDGE_LOG_SIMPLE does not include the function name in the log
*/
#define BRIDGE_LOG(__level, __dbgf, __string, ...) \
do { \
if (__level <= if_bridge_log_level || \
BRIDGE_DBGF_ENABLED(__dbgf)) { \
os_log(OS_LOG_DEFAULT, "%s: " __string, \
__func__, ## __VA_ARGS__); \
} \
} while (0)
#define BRIDGE_LOG_SIMPLE(__level, __dbgf, __string, ...) \
do { \
if (__level <= if_bridge_log_level || \
BRIDGE_DBGF_ENABLED(__dbgf)) { \
os_log(OS_LOG_DEFAULT, __string, ## __VA_ARGS__); \
} \
} while (0)
#define _BRIDGE_LOCK(_sc) lck_mtx_lock(&(_sc)->sc_mtx)
#define _BRIDGE_UNLOCK(_sc) lck_mtx_unlock(&(_sc)->sc_mtx)
#define BRIDGE_LOCK_ASSERT_HELD(_sc) \
LCK_MTX_ASSERT(&(_sc)->sc_mtx, LCK_MTX_ASSERT_OWNED)
#define BRIDGE_LOCK_ASSERT_NOTHELD(_sc) \
LCK_MTX_ASSERT(&(_sc)->sc_mtx, LCK_MTX_ASSERT_NOTOWNED)
#define BRIDGE_LOCK_DEBUG 1
#if BRIDGE_LOCK_DEBUG
#define BR_LCKDBG_MAX 4
#define BRIDGE_LOCK(_sc) bridge_lock(_sc)
#define BRIDGE_UNLOCK(_sc) bridge_unlock(_sc)
#define BRIDGE_LOCK2REF(_sc, _err) _err = bridge_lock2ref(_sc)
#define BRIDGE_UNREF(_sc) bridge_unref(_sc)
#define BRIDGE_XLOCK(_sc) bridge_xlock(_sc)
#define BRIDGE_XDROP(_sc) bridge_xdrop(_sc)
#else /* !BRIDGE_LOCK_DEBUG */
#define BRIDGE_LOCK(_sc) _BRIDGE_LOCK(_sc)
#define BRIDGE_UNLOCK(_sc) _BRIDGE_UNLOCK(_sc)
#define BRIDGE_LOCK2REF(_sc, _err) do { \
BRIDGE_LOCK_ASSERT_HELD(_sc); \
if ((_sc)->sc_iflist_xcnt > 0) \
(_err) = EBUSY; \
else { \
(_sc)->sc_iflist_ref++; \
(_err) = 0; \
} \
_BRIDGE_UNLOCK(_sc); \
} while (0)
#define BRIDGE_UNREF(_sc) do { \
_BRIDGE_LOCK(_sc); \
(_sc)->sc_iflist_ref--; \
if (((_sc)->sc_iflist_xcnt > 0) && ((_sc)->sc_iflist_ref == 0)) { \
_BRIDGE_UNLOCK(_sc); \
wakeup(&(_sc)->sc_cv); \
} else \
_BRIDGE_UNLOCK(_sc); \
} while (0)
#define BRIDGE_XLOCK(_sc) do { \
BRIDGE_LOCK_ASSERT_HELD(_sc); \
(_sc)->sc_iflist_xcnt++; \
while ((_sc)->sc_iflist_ref > 0) \
msleep(&(_sc)->sc_cv, &(_sc)->sc_mtx, PZERO, \
"BRIDGE_XLOCK", NULL); \
} while (0)
#define BRIDGE_XDROP(_sc) do { \
BRIDGE_LOCK_ASSERT_HELD(_sc); \
(_sc)->sc_iflist_xcnt--; \
} while (0)
#endif /* BRIDGE_LOCK_DEBUG */
#if NBPFILTER > 0
#define BRIDGE_BPF_MTAP_INPUT(sc, m) \
if (sc->sc_bpf_input != NULL) \
bridge_bpf_input(sc->sc_ifp, m, __func__, __LINE__)
#else /* NBPFILTER */
#define BRIDGE_BPF_MTAP_INPUT(ifp, m)
#endif /* NBPFILTER */
/*
* Initial size of the route hash table. Must be a power of two.
*/
#ifndef BRIDGE_RTHASH_SIZE
#define BRIDGE_RTHASH_SIZE 16
#endif
/*
* Maximum size of the routing hash table
*/
#define BRIDGE_RTHASH_SIZE_MAX 2048
#define BRIDGE_RTHASH_MASK(sc) ((sc)->sc_rthash_size - 1)
/*
* Maximum number of addresses to cache.
*/
#ifndef BRIDGE_RTABLE_MAX
#define BRIDGE_RTABLE_MAX 100
#endif
/*
* Timeout (in seconds) for entries learned dynamically.
*/
#ifndef BRIDGE_RTABLE_TIMEOUT
#define BRIDGE_RTABLE_TIMEOUT (20 * 60) /* same as ARP */
#endif
/*
* Number of seconds between walks of the route list.
*/
#ifndef BRIDGE_RTABLE_PRUNE_PERIOD
#define BRIDGE_RTABLE_PRUNE_PERIOD (5 * 60)
#endif
/*
* Number of MAC NAT entries
* - sized based on 16 clients (including MAC NAT interface)
* each with 4 addresses
*/
#ifndef BRIDGE_MAC_NAT_ENTRY_MAX
#define BRIDGE_MAC_NAT_ENTRY_MAX 64
#endif /* BRIDGE_MAC_NAT_ENTRY_MAX */
/*
* List of capabilities to possibly mask on the member interface.
*/
#define BRIDGE_IFCAPS_MASK (IFCAP_TSO | IFCAP_TXCSUM)
/*
* List of capabilities to disable on the member interface.
*/
#define BRIDGE_IFCAPS_STRIP IFCAP_LRO
/*
* Bridge interface list entry.
*/
struct bridge_iflist {
TAILQ_ENTRY(bridge_iflist) bif_next;
struct ifnet *bif_ifp; /* member if */
struct bstp_port bif_stp; /* STP state */
uint32_t bif_ifflags; /* member if flags */
int bif_savedcaps; /* saved capabilities */
uint32_t bif_addrmax; /* max # of addresses */
uint32_t bif_addrcnt; /* cur. # of addresses */
uint32_t bif_addrexceeded; /* # of address violations */
interface_filter_t bif_iff_ref;
struct bridge_softc *bif_sc;
uint32_t bif_flags;
/* host filter */
struct in_addr bif_hf_ipsrc;
uint8_t bif_hf_hwsrc[ETHER_ADDR_LEN];
struct ifbrmstats bif_stats;
};
static inline bool
bif_ifflags_are_set(struct bridge_iflist * bif, uint32_t flags)
{
return (bif->bif_ifflags & flags) == flags;
}
static inline bool
bif_has_checksum_offload(struct bridge_iflist * bif)
{
return bif_ifflags_are_set(bif, IFBIF_CHECKSUM_OFFLOAD);
}
/* fake errors to make the code clearer */
#define _EBADIP EJUSTRETURN
#define _EBADIPCHECKSUM EJUSTRETURN
#define _EBADIPV6 EJUSTRETURN
#define _EBADUDP EJUSTRETURN
#define _EBADTCP EJUSTRETURN
#define _EBADUDPCHECKSUM EJUSTRETURN
#define _EBADTCPCHECKSUM EJUSTRETURN
#define BIFF_PROMISC 0x01 /* promiscuous mode set */
#define BIFF_PROTO_ATTACHED 0x02 /* protocol attached */
#define BIFF_FILTER_ATTACHED 0x04 /* interface filter attached */
#define BIFF_MEDIA_ACTIVE 0x08 /* interface media active */
#define BIFF_HOST_FILTER 0x10 /* host filter enabled */
#define BIFF_HF_HWSRC 0x20 /* host filter source MAC is set */
#define BIFF_HF_IPSRC 0x40 /* host filter source IP is set */
#define BIFF_INPUT_BROADCAST 0x80 /* send broadcast packets in */
#define BIFF_IN_MEMBER_LIST 0x100 /* added to the member list */
#define BIFF_WIFI_INFRA 0x200 /* interface is Wi-Fi infra */
#define BIFF_ALL_MULTI 0x400 /* allmulti set */
#define BIFF_LRO_DISABLED 0x800 /* LRO was disabled */
#if SKYWALK
#define BIFF_FLOWSWITCH_ATTACHED 0x1000 /* we attached the flowswitch */
#define BIFF_NETAGENT_REMOVED 0x2000 /* we removed the netagent */
#endif /* SKYWALK */
/*
* mac_nat_entry
* - translates between an IP address and MAC address on a specific
* bridge interface member
*/
struct mac_nat_entry {
LIST_ENTRY(mac_nat_entry) mne_list; /* list linkage */
struct bridge_iflist *mne_bif; /* originating interface */
unsigned long mne_expire; /* expiration time */
union {
struct in_addr mneu_ip; /* originating IPv4 address */
struct in6_addr mneu_ip6; /* originating IPv6 address */
} mne_u;
uint8_t mne_mac[ETHER_ADDR_LEN];
uint8_t mne_flags;
uint8_t mne_reserved;
};
#define mne_ip mne_u.mneu_ip
#define mne_ip6 mne_u.mneu_ip6
#define MNE_FLAGS_IPV6 0x01 /* IPv6 address */
LIST_HEAD(mac_nat_entry_list, mac_nat_entry);
/*
* mac_nat_record
* - used by bridge_mac_nat_output() to convey the translation that needs
* to take place in bridge_mac_nat_translate
* - holds enough information so that the translation can be done later without
* holding the bridge lock
*/
struct mac_nat_record {
uint16_t mnr_ether_type;
union {
uint16_t mnru_arp_offset;
struct {
uint16_t mnruip_dhcp_flags;
uint16_t mnruip_udp_csum;
uint8_t mnruip_header_len;
} mnru_ip;
struct {
uint16_t mnruip6_icmp6_len;
uint16_t mnruip6_lladdr_offset;
uint8_t mnruip6_icmp6_type;
uint8_t mnruip6_header_len;
} mnru_ip6;
} mnr_u;
};
#define mnr_arp_offset mnr_u.mnru_arp_offset
#define mnr_ip_header_len mnr_u.mnru_ip.mnruip_header_len
#define mnr_ip_dhcp_flags mnr_u.mnru_ip.mnruip_dhcp_flags
#define mnr_ip_udp_csum mnr_u.mnru_ip.mnruip_udp_csum
#define mnr_ip6_icmp6_len mnr_u.mnru_ip6.mnruip6_icmp6_len
#define mnr_ip6_icmp6_type mnr_u.mnru_ip6.mnruip6_icmp6_type
#define mnr_ip6_header_len mnr_u.mnru_ip6.mnruip6_header_len
#define mnr_ip6_lladdr_offset mnr_u.mnru_ip6.mnruip6_lladdr_offset
/*
* Bridge route node.
*/
struct bridge_rtnode {
LIST_ENTRY(bridge_rtnode) brt_hash; /* hash table linkage */
LIST_ENTRY(bridge_rtnode) brt_list; /* list linkage */
struct bridge_iflist *brt_dst; /* destination if */
unsigned long brt_expire; /* expiration time */
uint8_t brt_flags; /* address flags */
uint8_t brt_addr[ETHER_ADDR_LEN];
uint16_t brt_vlan; /* vlan id */
};
#define brt_ifp brt_dst->bif_ifp
/*
* Bridge delayed function call context
*/
typedef void (*bridge_delayed_func_t)(struct bridge_softc *);
struct bridge_delayed_call {
struct bridge_softc *bdc_sc;
bridge_delayed_func_t bdc_func; /* Function to call */
struct timespec bdc_ts; /* Time to call */
u_int32_t bdc_flags;
thread_call_t bdc_thread_call;
};
#define BDCF_OUTSTANDING 0x01 /* Delayed call has been scheduled */
#define BDCF_CANCELLING 0x02 /* May be waiting for call completion */
/*
* Software state for each bridge.
*/
LIST_HEAD(_bridge_rtnode_list, bridge_rtnode);
struct bridge_softc {
struct ifnet *sc_ifp; /* make this an interface */
u_int32_t sc_flags;
LIST_ENTRY(bridge_softc) sc_list;
decl_lck_mtx_data(, sc_mtx);
struct _bridge_rtnode_list *sc_rthash; /* our forwarding table */
struct _bridge_rtnode_list sc_rtlist; /* list version of above */
uint32_t sc_rthash_key; /* key for hash */
uint32_t sc_rthash_size; /* size of the hash table */
struct bridge_delayed_call sc_aging_timer;
struct bridge_delayed_call sc_resize_call;
TAILQ_HEAD(, bridge_iflist) sc_spanlist; /* span ports list */
struct bstp_state sc_stp; /* STP state */
bpf_packet_func sc_bpf_input;
bpf_packet_func sc_bpf_output;
void *sc_cv;
uint32_t sc_brtmax; /* max # of addresses */
uint32_t sc_brtcnt; /* cur. # of addresses */
uint32_t sc_brttimeout; /* rt timeout in seconds */
uint32_t sc_iflist_ref; /* refcount for sc_iflist */
uint32_t sc_iflist_xcnt; /* refcount for sc_iflist */
TAILQ_HEAD(, bridge_iflist) sc_iflist; /* member interface list */
uint32_t sc_brtexceeded; /* # of cache drops */
uint32_t sc_filter_flags; /* ipf and flags */
struct ifnet *sc_ifaddr; /* member mac copied from */
u_char sc_defaddr[6]; /* Default MAC address */
char sc_if_xname[IFNAMSIZ];
struct bridge_iflist *sc_mac_nat_bif; /* single MAC NAT interface */
struct mac_nat_entry_list sc_mne_list; /* MAC NAT IPv4 */
struct mac_nat_entry_list sc_mne_list_v6;/* MAC NAT IPv6 */
uint32_t sc_mne_max; /* max # of entries */
uint32_t sc_mne_count; /* cur. # of entries */
uint32_t sc_mne_allocation_failures;
#if BRIDGE_LOCK_DEBUG
/*
* Locking and unlocking calling history
*/
void *lock_lr[BR_LCKDBG_MAX];
int next_lock_lr;
void *unlock_lr[BR_LCKDBG_MAX];
int next_unlock_lr;
#endif /* BRIDGE_LOCK_DEBUG */
};
#define SCF_DETACHING 0x01
#define SCF_RESIZING 0x02
#define SCF_MEDIA_ACTIVE 0x04
typedef enum {
CHECKSUM_OPERATION_NONE = 0,
CHECKSUM_OPERATION_CLEAR_OFFLOAD = 1,
CHECKSUM_OPERATION_FINALIZE = 2,
CHECKSUM_OPERATION_COMPUTE = 3,
} ChecksumOperation;
union iphdr {
struct ip *ip;
struct ip6_hdr *ip6;
void * ptr;
};
typedef struct {
u_int ip_hlen; /* IP header length */
u_int ip_pay_len; /* length of payload (exclusive of ip_hlen) */
u_int ip_opt_len; /* IPv6 options headers length */
uint8_t ip_proto; /* IPPROTO_TCP, IPPROTO_UDP, etc. */
bool ip_is_ipv4;
bool ip_is_fragmented;
union iphdr ip_hdr; /* pointer to IP header */
void * ip_proto_hdr; /* ptr to protocol header (TCP) */
} ip_packet_info, *ip_packet_info_t;
struct bridge_hostfilter_stats bridge_hostfilter_stats;
static LCK_GRP_DECLARE(bridge_lock_grp, "if_bridge");
#if BRIDGE_LOCK_DEBUG
static LCK_ATTR_DECLARE(bridge_lock_attr, 0, 0);
#else
static LCK_ATTR_DECLARE(bridge_lock_attr, LCK_ATTR_DEBUG, 0);
#endif
static LCK_MTX_DECLARE_ATTR(bridge_list_mtx, &bridge_lock_grp, &bridge_lock_attr);
static int bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD;
static KALLOC_TYPE_DEFINE(bridge_rtnode_pool, struct bridge_rtnode, NET_KT_DEFAULT);
static KALLOC_TYPE_DEFINE(bridge_mne_pool, struct mac_nat_entry, NET_KT_DEFAULT);
static int bridge_clone_create(struct if_clone *, uint32_t, void *);
static int bridge_clone_destroy(struct ifnet *);
static errno_t bridge_ioctl(struct ifnet *, u_long, void *);
#if HAS_IF_CAP
static void bridge_mutecaps(struct bridge_softc *);
static void bridge_set_ifcap(struct bridge_softc *, struct bridge_iflist *,
int);
#endif
static errno_t bridge_set_tso(struct bridge_softc *);
static void bridge_proto_attach_changed(struct ifnet *);
static int bridge_init(struct ifnet *);
#if HAS_BRIDGE_DUMMYNET
static void bridge_dummynet(struct mbuf *, struct ifnet *);
#endif
static void bridge_ifstop(struct ifnet *, int);
static int bridge_output(struct ifnet *, struct mbuf *);
static void bridge_finalize_cksum(struct ifnet *, struct mbuf *);
static void bridge_start(struct ifnet *);
static errno_t bridge_input(struct ifnet *, mbuf_t *);
static errno_t bridge_iff_input(void *, ifnet_t, protocol_family_t,
mbuf_t *, char **);
static errno_t bridge_iff_output(void *, ifnet_t, protocol_family_t,
mbuf_t *);
static errno_t bridge_member_output(struct bridge_softc *sc, ifnet_t ifp,
mbuf_t *m);
static int bridge_enqueue(ifnet_t, struct ifnet *,
struct ifnet *, struct mbuf *, ChecksumOperation);
static void bridge_rtdelete(struct bridge_softc *, struct ifnet *ifp, int);
static void bridge_forward(struct bridge_softc *, struct bridge_iflist *,
struct mbuf *);
static void bridge_aging_timer(struct bridge_softc *sc);
static void bridge_broadcast(struct bridge_softc *, struct bridge_iflist *,
struct mbuf *, int);
static void bridge_span(struct bridge_softc *, struct mbuf *);
static int bridge_rtupdate(struct bridge_softc *, const uint8_t *,
uint16_t, struct bridge_iflist *, int, uint8_t);
static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *,
uint16_t);
static void bridge_rttrim(struct bridge_softc *);
static void bridge_rtage(struct bridge_softc *);
static void bridge_rtflush(struct bridge_softc *, int);
static int bridge_rtdaddr(struct bridge_softc *, const uint8_t *,
uint16_t);
static int bridge_rtable_init(struct bridge_softc *);
static void bridge_rtable_fini(struct bridge_softc *);
static void bridge_rthash_resize(struct bridge_softc *);
static int bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *);
static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *,
const uint8_t *, uint16_t);
static int bridge_rtnode_hash(struct bridge_softc *,
struct bridge_rtnode *);
static int bridge_rtnode_insert(struct bridge_softc *,
struct bridge_rtnode *);
static void bridge_rtnode_destroy(struct bridge_softc *,
struct bridge_rtnode *);
#if BRIDGESTP
static void bridge_rtable_expire(struct ifnet *, int);
static void bridge_state_change(struct ifnet *, int);
#endif /* BRIDGESTP */
static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *,
const char *name);
static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *,
struct ifnet *ifp);
static void bridge_delete_member(struct bridge_softc *,
struct bridge_iflist *);
static void bridge_delete_span(struct bridge_softc *,
struct bridge_iflist *);
static int bridge_ioctl_add(struct bridge_softc *, void *);
static int bridge_ioctl_del(struct bridge_softc *, void *);
static int bridge_ioctl_gifflags(struct bridge_softc *, void *);
static int bridge_ioctl_sifflags(struct bridge_softc *, void *);
static int bridge_ioctl_scache(struct bridge_softc *, void *);
static int bridge_ioctl_gcache(struct bridge_softc *, void *);
static int bridge_ioctl_gifs32(struct bridge_softc *, void *);
static int bridge_ioctl_gifs64(struct bridge_softc *, void *);
static int bridge_ioctl_rts32(struct bridge_softc *, void *);
static int bridge_ioctl_rts64(struct bridge_softc *, void *);
static int bridge_ioctl_saddr32(struct bridge_softc *, void *);
static int bridge_ioctl_saddr64(struct bridge_softc *, void *);
static int bridge_ioctl_sto(struct bridge_softc *, void *);
static int bridge_ioctl_gto(struct bridge_softc *, void *);
static int bridge_ioctl_daddr32(struct bridge_softc *, void *);
static int bridge_ioctl_daddr64(struct bridge_softc *, void *);
static int bridge_ioctl_flush(struct bridge_softc *, void *);
static int bridge_ioctl_gpri(struct bridge_softc *, void *);
static int bridge_ioctl_spri(struct bridge_softc *, void *);
static int bridge_ioctl_ght(struct bridge_softc *, void *);
static int bridge_ioctl_sht(struct bridge_softc *, void *);
static int bridge_ioctl_gfd(struct bridge_softc *, void *);
static int bridge_ioctl_sfd(struct bridge_softc *, void *);
static int bridge_ioctl_gma(struct bridge_softc *, void *);
static int bridge_ioctl_sma(struct bridge_softc *, void *);
static int bridge_ioctl_sifprio(struct bridge_softc *, void *);
static int bridge_ioctl_sifcost(struct bridge_softc *, void *);
static int bridge_ioctl_sifmaxaddr(struct bridge_softc *, void *);
static int bridge_ioctl_addspan(struct bridge_softc *, void *);
static int bridge_ioctl_delspan(struct bridge_softc *, void *);
static int bridge_ioctl_gbparam32(struct bridge_softc *, void *);
static int bridge_ioctl_gbparam64(struct bridge_softc *, void *);
static int bridge_ioctl_grte(struct bridge_softc *, void *);
static int bridge_ioctl_gifsstp32(struct bridge_softc *, void *);
static int bridge_ioctl_gifsstp64(struct bridge_softc *, void *);
static int bridge_ioctl_sproto(struct bridge_softc *, void *);
static int bridge_ioctl_stxhc(struct bridge_softc *, void *);
static int bridge_ioctl_purge(struct bridge_softc *sc, void *);
static int bridge_ioctl_gfilt(struct bridge_softc *, void *);
static int bridge_ioctl_sfilt(struct bridge_softc *, void *);
static int bridge_ioctl_ghostfilter(struct bridge_softc *, void *);
static int bridge_ioctl_shostfilter(struct bridge_softc *, void *);
static int bridge_ioctl_gmnelist32(struct bridge_softc *, void *);
static int bridge_ioctl_gmnelist64(struct bridge_softc *, void *);
static int bridge_ioctl_gifstats32(struct bridge_softc *, void *);
static int bridge_ioctl_gifstats64(struct bridge_softc *, void *);
static int bridge_pf(struct mbuf **, struct ifnet *, uint32_t sc_filter_flags, int input);
static int bridge_ip_checkbasic(struct mbuf **);
static int bridge_ip6_checkbasic(struct mbuf **);
static errno_t bridge_set_bpf_tap(ifnet_t, bpf_tap_mode, bpf_packet_func);
static errno_t bridge_bpf_input(ifnet_t, struct mbuf *, const char *, int);
static errno_t bridge_bpf_output(ifnet_t, struct mbuf *);
static void bridge_detach(ifnet_t);
static void bridge_link_event(struct ifnet *, u_int32_t);
static void bridge_iflinkevent(struct ifnet *);
static u_int32_t bridge_updatelinkstatus(struct bridge_softc *);
static int interface_media_active(struct ifnet *);
static void bridge_schedule_delayed_call(struct bridge_delayed_call *);
static void bridge_cancel_delayed_call(struct bridge_delayed_call *);
static void bridge_cleanup_delayed_call(struct bridge_delayed_call *);
static int bridge_host_filter(struct bridge_iflist *, mbuf_t *);
static errno_t bridge_mac_nat_enable(struct bridge_softc *,
struct bridge_iflist *);
static void bridge_mac_nat_disable(struct bridge_softc *sc);
static void bridge_mac_nat_age_entries(struct bridge_softc *sc, unsigned long);
static void bridge_mac_nat_populate_entries(struct bridge_softc *sc);
static void bridge_mac_nat_flush_entries(struct bridge_softc *sc,
struct bridge_iflist *);
static ifnet_t bridge_mac_nat_input(struct bridge_softc *, mbuf_t *,
boolean_t *);
static boolean_t bridge_mac_nat_output(struct bridge_softc *,
struct bridge_iflist *, mbuf_t *, struct mac_nat_record *);
static void bridge_mac_nat_translate(mbuf_t *, struct mac_nat_record *,
const caddr_t);
static bool is_broadcast_ip_packet(mbuf_t *);
static bool in_addr_is_ours(const struct in_addr);
static bool in6_addr_is_ours(const struct in6_addr *, uint32_t);
#define m_copypacket(m, how) m_copym(m, 0, M_COPYALL, how)
static int
gso_tcp(struct ifnet *ifp, struct mbuf **mp, u_int mac_hlen, bool is_ipv4,
boolean_t is_tx);
/* The default bridge vlan is 1 (IEEE 802.1Q-2003 Table 9-2) */
#define VLANTAGOF(_m) 0
u_int8_t bstp_etheraddr[ETHER_ADDR_LEN] =
{ 0x01, 0x80, 0xc2, 0x00, 0x00, 0x00 };
static u_int8_t ethernulladdr[ETHER_ADDR_LEN] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
#if BRIDGESTP
static struct bstp_cb_ops bridge_ops = {
.bcb_state = bridge_state_change,
.bcb_rtage = bridge_rtable_expire
};
#endif /* BRIDGESTP */
SYSCTL_DECL(_net_link);
SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
"Bridge");
static int bridge_inherit_mac = 0; /* share MAC with first bridge member */
SYSCTL_INT(_net_link_bridge, OID_AUTO, inherit_mac,
CTLFLAG_RW | CTLFLAG_LOCKED,
&bridge_inherit_mac, 0,
"Inherit MAC address from the first bridge member");
SYSCTL_INT(_net_link_bridge, OID_AUTO, rtable_prune_period,
CTLFLAG_RW | CTLFLAG_LOCKED,
&bridge_rtable_prune_period, 0,
"Interval between pruning of routing table");
static unsigned int bridge_rtable_hash_size_max = BRIDGE_RTHASH_SIZE_MAX;
SYSCTL_UINT(_net_link_bridge, OID_AUTO, rtable_hash_size_max,
CTLFLAG_RW | CTLFLAG_LOCKED,
&bridge_rtable_hash_size_max, 0,
"Maximum size of the routing hash table");
#if BRIDGE_DELAYED_CALLBACK_DEBUG
static int bridge_delayed_callback_delay = 0;
SYSCTL_INT(_net_link_bridge, OID_AUTO, delayed_callback_delay,
CTLFLAG_RW | CTLFLAG_LOCKED,
&bridge_delayed_callback_delay, 0,
"Delay before calling delayed function");
#endif
SYSCTL_STRUCT(_net_link_bridge, OID_AUTO,
hostfilterstats, CTLFLAG_RD | CTLFLAG_LOCKED,
&bridge_hostfilter_stats, bridge_hostfilter_stats, "");
#if BRIDGESTP
static int log_stp = 0; /* log STP state changes */
SYSCTL_INT(_net_link_bridge, OID_AUTO, log_stp, CTLFLAG_RW,
&log_stp, 0, "Log STP state changes");
#endif /* BRIDGESTP */
struct bridge_control {
int (*bc_func)(struct bridge_softc *, void *);
unsigned int bc_argsize;
unsigned int bc_flags;
};
#define VMNET_TAG "com.apple.vmnet"
#define VMNET_LOCAL_TAG VMNET_TAG ".local"
#define VMNET_BROADCAST_TAG VMNET_TAG ".broadcast"
#define VMNET_MULTICAST_TAG VMNET_TAG ".multicast"
static u_int16_t vmnet_tag;
static u_int16_t vmnet_local_tag;
static u_int16_t vmnet_broadcast_tag;
static u_int16_t vmnet_multicast_tag;
static u_int16_t
allocate_pf_tag(char * name)
{
u_int16_t tag;
tag = pf_tagname2tag_ext(name);
BRIDGE_LOG(LOG_NOTICE, 0, "%s %d", name, tag);
return tag;
}
static void
allocate_vmnet_pf_tags(void)
{
/* allocate tags to use with PF */
if (vmnet_tag == 0) {
vmnet_tag = allocate_pf_tag(VMNET_TAG);
}
if (vmnet_local_tag == 0) {
vmnet_local_tag = allocate_pf_tag(VMNET_LOCAL_TAG);
}
if (vmnet_broadcast_tag == 0) {
vmnet_broadcast_tag = allocate_pf_tag(VMNET_BROADCAST_TAG);
}
if (vmnet_multicast_tag == 0) {
vmnet_multicast_tag = allocate_pf_tag(VMNET_MULTICAST_TAG);
}
}
#define BC_F_COPYIN 0x01 /* copy arguments in */
#define BC_F_COPYOUT 0x02 /* copy arguments out */
#define BC_F_SUSER 0x04 /* do super-user check */
static const struct bridge_control bridge_control_table32[] = {
{ .bc_func = bridge_ioctl_add, .bc_argsize = sizeof(struct ifbreq), /* 0 */
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_del, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gifflags, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sifflags, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_scache, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gcache, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_gifs32, .bc_argsize = sizeof(struct ifbifconf32),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_rts32, .bc_argsize = sizeof(struct ifbaconf32),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_saddr32, .bc_argsize = sizeof(struct ifbareq32),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_sto, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gto, .bc_argsize = sizeof(struct ifbrparam), /* 10 */
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_daddr32, .bc_argsize = sizeof(struct ifbareq32),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_flush, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gpri, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_spri, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_ght, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sht, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gfd, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sfd, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gma, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sma, .bc_argsize = sizeof(struct ifbrparam), /* 20 */
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_sifprio, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_sifcost, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gfilt, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sfilt, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_purge, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_addspan, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_delspan, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gbparam32, .bc_argsize = sizeof(struct ifbropreq32),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_grte, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_gifsstp32, .bc_argsize = sizeof(struct ifbpstpconf32), /* 30 */
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sproto, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_stxhc, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_sifmaxaddr, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_ghostfilter, .bc_argsize = sizeof(struct ifbrhostfilter),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_shostfilter, .bc_argsize = sizeof(struct ifbrhostfilter),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gmnelist32,
.bc_argsize = sizeof(struct ifbrmnelist32),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_gifstats32,
.bc_argsize = sizeof(struct ifbrmreq32),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
};
static const struct bridge_control bridge_control_table64[] = {
{ .bc_func = bridge_ioctl_add, .bc_argsize = sizeof(struct ifbreq), /* 0 */
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_del, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gifflags, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sifflags, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_scache, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gcache, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_gifs64, .bc_argsize = sizeof(struct ifbifconf64),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_rts64, .bc_argsize = sizeof(struct ifbaconf64),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_saddr64, .bc_argsize = sizeof(struct ifbareq64),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_sto, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gto, .bc_argsize = sizeof(struct ifbrparam), /* 10 */
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_daddr64, .bc_argsize = sizeof(struct ifbareq64),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_flush, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gpri, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_spri, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_ght, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sht, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gfd, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sfd, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gma, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sma, .bc_argsize = sizeof(struct ifbrparam), /* 20 */
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_sifprio, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_sifcost, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gfilt, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sfilt, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_purge, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_addspan, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_delspan, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gbparam64, .bc_argsize = sizeof(struct ifbropreq64),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_grte, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_gifsstp64, .bc_argsize = sizeof(struct ifbpstpconf64), /* 30 */
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_sproto, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_stxhc, .bc_argsize = sizeof(struct ifbrparam),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_sifmaxaddr, .bc_argsize = sizeof(struct ifbreq),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_ghostfilter, .bc_argsize = sizeof(struct ifbrhostfilter),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_shostfilter, .bc_argsize = sizeof(struct ifbrhostfilter),
.bc_flags = BC_F_COPYIN | BC_F_SUSER },
{ .bc_func = bridge_ioctl_gmnelist64,
.bc_argsize = sizeof(struct ifbrmnelist64),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
{ .bc_func = bridge_ioctl_gifstats64,
.bc_argsize = sizeof(struct ifbrmreq64),
.bc_flags = BC_F_COPYIN | BC_F_COPYOUT },
};
static const unsigned int bridge_control_table_size =
sizeof(bridge_control_table32) / sizeof(bridge_control_table32[0]);
static LIST_HEAD(, bridge_softc) bridge_list =
LIST_HEAD_INITIALIZER(bridge_list);
#define BRIDGENAME "bridge"
#define BRIDGES_MAX IF_MAXUNIT
#define BRIDGE_ZONE_MAX_ELEM MIN(IFNETS_MAX, BRIDGES_MAX)
static struct if_clone bridge_cloner =
IF_CLONE_INITIALIZER(BRIDGENAME, bridge_clone_create, bridge_clone_destroy,
0, BRIDGES_MAX);
static int if_bridge_txstart = 0;
SYSCTL_INT(_net_link_bridge, OID_AUTO, txstart, CTLFLAG_RW | CTLFLAG_LOCKED,
&if_bridge_txstart, 0, "Bridge interface uses TXSTART model");
SYSCTL_INT(_net_link_bridge, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED,
&if_bridge_debug, 0, "Bridge debug flags");
SYSCTL_INT(_net_link_bridge, OID_AUTO, log_level,
CTLFLAG_RW | CTLFLAG_LOCKED,
&if_bridge_log_level, 0, "Bridge log level");
static int if_bridge_segmentation = 1;
SYSCTL_INT(_net_link_bridge, OID_AUTO, segmentation,
CTLFLAG_RW | CTLFLAG_LOCKED,
&if_bridge_segmentation, 0, "Bridge interface enable segmentation");
static int if_bridge_vmnet_pf_tagging = 1;
SYSCTL_INT(_net_link_bridge, OID_AUTO, vmnet_pf_tagging,
CTLFLAG_RW | CTLFLAG_LOCKED,
&if_bridge_segmentation, 0, "Bridge interface enable vmnet PF tagging");
#define BRIDGE_TSO_REDUCE_MSS_FORWARDING_MAX 256
#define BRIDGE_TSO_REDUCE_MSS_FORWARDING_DEFAULT 110
#define BRIDGE_TSO_REDUCE_MSS_TX_MAX 256
#define BRIDGE_TSO_REDUCE_MSS_TX_DEFAULT 0
static u_int if_bridge_tso_reduce_mss_forwarding
= BRIDGE_TSO_REDUCE_MSS_FORWARDING_DEFAULT;
static u_int if_bridge_tso_reduce_mss_tx
= BRIDGE_TSO_REDUCE_MSS_TX_DEFAULT;
static int
bridge_tso_reduce_mss(struct sysctl_req *req, u_int * val, u_int val_max)
{
int changed;
int error;
u_int new_value;
error = sysctl_io_number(req, *val, sizeof(*val), &new_value,
&changed);
if (error == 0 && changed != 0) {
if (new_value > val_max) {
return EINVAL;
}
*val = new_value;
}
return error;
}
static int
bridge_tso_reduce_mss_forwarding_sysctl SYSCTL_HANDLER_ARGS
{
return bridge_tso_reduce_mss(req, &if_bridge_tso_reduce_mss_forwarding,
BRIDGE_TSO_REDUCE_MSS_FORWARDING_MAX);
}
SYSCTL_PROC(_net_link_bridge, OID_AUTO, tso_reduce_mss_forwarding,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, bridge_tso_reduce_mss_forwarding_sysctl, "IU",
"Bridge tso reduce mss when forwarding");
static int
bridge_tso_reduce_mss_tx_sysctl SYSCTL_HANDLER_ARGS
{
return bridge_tso_reduce_mss(req, &if_bridge_tso_reduce_mss_tx,
BRIDGE_TSO_REDUCE_MSS_TX_MAX);
}
SYSCTL_PROC(_net_link_bridge, OID_AUTO, tso_reduce_mss_tx,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, bridge_tso_reduce_mss_tx_sysctl, "IU",
"Bridge tso reduce mss on transmit");
#if DEBUG || DEVELOPMENT
#define BRIDGE_FORCE_ONE 0x00000001
#define BRIDGE_FORCE_TWO 0x00000002
static u_int32_t if_bridge_force_errors = 0;
SYSCTL_INT(_net_link_bridge, OID_AUTO, force_errors,
CTLFLAG_RW | CTLFLAG_LOCKED,
&if_bridge_force_errors, 0, "Bridge interface force errors");
static inline bool
bridge_error_is_forced(u_int32_t flags)
{
return (if_bridge_force_errors & flags) != 0;
}
#define BRIDGE_ERROR_GET_FORCED(__is_forced, __flags) \
do { \
__is_forced = bridge_error_is_forced(__flags); \
if (__is_forced) { \
BRIDGE_LOG(LOG_NOTICE, 0, "0x%x forced", __flags); \
} \
} while (0)
/*
* net.link.bridge.reduce_tso_mtu
* - when non-zero, the bridge overrides the interface TSO MTU to a lower
* value (i.e. 16K) to enable testing the "use GSO instead" path
*/
static int if_bridge_reduce_tso_mtu = 0;
SYSCTL_INT(_net_link_bridge, OID_AUTO, reduce_tso_mtu,
CTLFLAG_RW | CTLFLAG_LOCKED,
&if_bridge_reduce_tso_mtu, 0, "Bridge interface reduce TSO MTU");
#endif /* DEBUG || DEVELOPMENT */
static void brlog_ether_header(struct ether_header *);
static void brlog_mbuf_data(mbuf_t, size_t, size_t);
static void brlog_mbuf_pkthdr(mbuf_t, const char *, const char *);
static void brlog_mbuf(mbuf_t, const char *, const char *);
static void brlog_link(struct bridge_softc * sc);
#if BRIDGE_LOCK_DEBUG
static void bridge_lock(struct bridge_softc *);
static void bridge_unlock(struct bridge_softc *);
static int bridge_lock2ref(struct bridge_softc *);
static void bridge_unref(struct bridge_softc *);
static void bridge_xlock(struct bridge_softc *);
static void bridge_xdrop(struct bridge_softc *);
static void
bridge_lock(struct bridge_softc *sc)
{
void *lr_saved = __builtin_return_address(0);
BRIDGE_LOCK_ASSERT_NOTHELD(sc);
_BRIDGE_LOCK(sc);
sc->lock_lr[sc->next_lock_lr] = lr_saved;
sc->next_lock_lr = (sc->next_lock_lr + 1) % SO_LCKDBG_MAX;
}
static void
bridge_unlock(struct bridge_softc *sc)
{
void *lr_saved = __builtin_return_address(0);
BRIDGE_LOCK_ASSERT_HELD(sc);
sc->unlock_lr[sc->next_unlock_lr] = lr_saved;
sc->next_unlock_lr = (sc->next_unlock_lr + 1) % SO_LCKDBG_MAX;
_BRIDGE_UNLOCK(sc);
}
static int
bridge_lock2ref(struct bridge_softc *sc)
{
int error = 0;
void *lr_saved = __builtin_return_address(0);
BRIDGE_LOCK_ASSERT_HELD(sc);
if (sc->sc_iflist_xcnt > 0) {
error = EBUSY;
} else {
sc->sc_iflist_ref++;
}
sc->unlock_lr[sc->next_unlock_lr] = lr_saved;
sc->next_unlock_lr = (sc->next_unlock_lr + 1) % SO_LCKDBG_MAX;
_BRIDGE_UNLOCK(sc);
return error;
}
static void
bridge_unref(struct bridge_softc *sc)
{
void *lr_saved = __builtin_return_address(0);
BRIDGE_LOCK_ASSERT_NOTHELD(sc);
_BRIDGE_LOCK(sc);
sc->lock_lr[sc->next_lock_lr] = lr_saved;
sc->next_lock_lr = (sc->next_lock_lr + 1) % SO_LCKDBG_MAX;
sc->sc_iflist_ref--;
sc->unlock_lr[sc->next_unlock_lr] = lr_saved;
sc->next_unlock_lr = (sc->next_unlock_lr + 1) % SO_LCKDBG_MAX;
if ((sc->sc_iflist_xcnt > 0) && (sc->sc_iflist_ref == 0)) {
_BRIDGE_UNLOCK(sc);
wakeup(&sc->sc_cv);
} else {
_BRIDGE_UNLOCK(sc);
}
}
static void
bridge_xlock(struct bridge_softc *sc)
{
void *lr_saved = __builtin_return_address(0);
BRIDGE_LOCK_ASSERT_HELD(sc);
sc->sc_iflist_xcnt++;
while (sc->sc_iflist_ref > 0) {
sc->unlock_lr[sc->next_unlock_lr] = lr_saved;
sc->next_unlock_lr = (sc->next_unlock_lr + 1) % SO_LCKDBG_MAX;
msleep(&sc->sc_cv, &sc->sc_mtx, PZERO, "BRIDGE_XLOCK", NULL);
sc->lock_lr[sc->next_lock_lr] = lr_saved;
sc->next_lock_lr = (sc->next_lock_lr + 1) % SO_LCKDBG_MAX;
}
}
static void
bridge_xdrop(struct bridge_softc *sc)
{
BRIDGE_LOCK_ASSERT_HELD(sc);
sc->sc_iflist_xcnt--;
}
#endif /* BRIDGE_LOCK_DEBUG */
static void
brlog_mbuf_pkthdr(mbuf_t m, const char *prefix, const char *suffix)
{
if (m) {
BRIDGE_LOG_SIMPLE(LOG_NOTICE, 0,
"%spktlen: %u rcvif: 0x%llx header: 0x%llx nextpkt: 0x%llx%s",
prefix ? prefix : "", (unsigned int)mbuf_pkthdr_len(m),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_pkthdr_rcvif(m)),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_pkthdr_header(m)),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_nextpkt(m)),
suffix ? suffix : "");
} else {
BRIDGE_LOG_SIMPLE(LOG_NOTICE, 0, "%s<NULL>%s", prefix, suffix);
}
}
static void
brlog_mbuf(mbuf_t m, const char *prefix, const char *suffix)
{
if (m) {
BRIDGE_LOG_SIMPLE(LOG_NOTICE, 0,
"%s0x%llx type: %u flags: 0x%x len: %u data: 0x%llx "
"maxlen: %u datastart: 0x%llx next: 0x%llx%s",
prefix ? prefix : "", (uint64_t)VM_KERNEL_ADDRPERM(m),
mbuf_type(m), mbuf_flags(m), (unsigned int)mbuf_len(m),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_data(m)),
(unsigned int)mbuf_maxlen(m),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_datastart(m)),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_next(m)),
!suffix || (mbuf_flags(m) & MBUF_PKTHDR) ? "" : suffix);
if ((mbuf_flags(m) & MBUF_PKTHDR)) {
brlog_mbuf_pkthdr(m, "", suffix);
}
} else {
BRIDGE_LOG_SIMPLE(LOG_NOTICE, 0, "%s<NULL>%s", prefix, suffix);
}
}
static void
brlog_mbuf_data(mbuf_t m, size_t offset, size_t len)
{
mbuf_t n;
size_t i, j;
size_t pktlen, mlen, maxlen;
unsigned char *ptr;
pktlen = mbuf_pkthdr_len(m);
if (offset > pktlen) {
return;
}
maxlen = (pktlen - offset > len) ? len : pktlen - offset;
n = m;
mlen = mbuf_len(n);
ptr = mbuf_data(n);
for (i = 0, j = 0; i < maxlen; i++, j++) {
if (j >= mlen) {
n = mbuf_next(n);
if (n == 0) {
break;
}
ptr = mbuf_data(n);
mlen = mbuf_len(n);
j = 0;
}
if (i >= offset) {
BRIDGE_LOG_SIMPLE(LOG_NOTICE, 0,
"%02x%s", ptr[j], i % 2 ? " " : "");
}
}
}
static void
brlog_ether_header(struct ether_header *eh)
{
BRIDGE_LOG_SIMPLE(LOG_NOTICE, 0,
"%02x:%02x:%02x:%02x:%02x:%02x > "
"%02x:%02x:%02x:%02x:%02x:%02x 0x%04x ",
eh->ether_shost[0], eh->ether_shost[1], eh->ether_shost[2],
eh->ether_shost[3], eh->ether_shost[4], eh->ether_shost[5],
eh->ether_dhost[0], eh->ether_dhost[1], eh->ether_dhost[2],
eh->ether_dhost[3], eh->ether_dhost[4], eh->ether_dhost[5],
ntohs(eh->ether_type));
}
static char *
ether_ntop(char *buf, size_t len, const u_char *ap)
{
snprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x",
ap[0], ap[1], ap[2], ap[3], ap[4], ap[5]);
return buf;
}
static void
brlog_link(struct bridge_softc * sc)
{
int i;
uint32_t sdl_buffer[(offsetof(struct sockaddr_dl, sdl_data) +
IFNAMSIZ + ETHER_ADDR_LEN)];
struct sockaddr_dl *sdl = SDL((uint8_t*)&sdl_buffer); /* SDL requires byte pointer */
const u_char * lladdr;
char lladdr_str[48];
memset(sdl, 0, sizeof(sdl_buffer));
sdl->sdl_family = AF_LINK;
sdl->sdl_nlen = strlen(sc->sc_if_xname);
sdl->sdl_alen = ETHER_ADDR_LEN;
sdl->sdl_len = offsetof(struct sockaddr_dl, sdl_data);
memcpy(sdl->sdl_data, sc->sc_if_xname, sdl->sdl_nlen);
memcpy(LLADDR(sdl), sc->sc_defaddr, ETHER_ADDR_LEN);
lladdr_str[0] = '\0';
for (i = 0, lladdr = CONST_LLADDR(sdl);
i < sdl->sdl_alen;
i++, lladdr++) {
char byte_str[4];
snprintf(byte_str, sizeof(byte_str), "%s%x", i ? ":" : "",
*lladdr);
strlcat(lladdr_str, byte_str, sizeof(lladdr_str));
}
BRIDGE_LOG_SIMPLE(LOG_NOTICE, 0,
"%s sdl len %d index %d family %d type 0x%x nlen %d alen %d"
" slen %d addr %s", sc->sc_if_xname,
sdl->sdl_len, sdl->sdl_index,
sdl->sdl_family, sdl->sdl_type, sdl->sdl_nlen,
sdl->sdl_alen, sdl->sdl_slen, lladdr_str);
}
/*
* bridgeattach:
*
* Pseudo-device attach routine.
*/
__private_extern__ int
bridgeattach(int n)
{
#pragma unused(n)
int error;
LIST_INIT(&bridge_list);
#if BRIDGESTP
bstp_sys_init();
#endif /* BRIDGESTP */
error = if_clone_attach(&bridge_cloner);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_clone_attach failed %d", error);
}
return error;
}
static errno_t
bridge_ifnet_set_attrs(struct ifnet * ifp)
{
errno_t error;
error = ifnet_set_mtu(ifp, ETHERMTU);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_set_mtu failed %d", error);
goto done;
}
error = ifnet_set_addrlen(ifp, ETHER_ADDR_LEN);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_set_addrlen failed %d", error);
goto done;
}
error = ifnet_set_hdrlen(ifp, ETHER_HDR_LEN);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_set_hdrlen failed %d", error);
goto done;
}
error = ifnet_set_flags(ifp,
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST,
0xffff);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_set_flags failed %d", error);
goto done;
}
done:
return error;
}
/*
* bridge_clone_create:
*
* Create a new bridge instance.
*/
static int
bridge_clone_create(struct if_clone *ifc, uint32_t unit, void *params)
{
#pragma unused(params)
struct ifnet *ifp = NULL;
struct bridge_softc *sc = NULL;
struct bridge_softc *sc2 = NULL;
struct ifnet_init_eparams init_params;
errno_t error = 0;
uint8_t eth_hostid[ETHER_ADDR_LEN];
int fb, retry, has_hostid;
sc = kalloc_type(struct bridge_softc, Z_WAITOK_ZERO_NOFAIL);
lck_mtx_init(&sc->sc_mtx, &bridge_lock_grp, &bridge_lock_attr);
sc->sc_brtmax = BRIDGE_RTABLE_MAX;
sc->sc_mne_max = BRIDGE_MAC_NAT_ENTRY_MAX;
sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT;
sc->sc_filter_flags = 0;
TAILQ_INIT(&sc->sc_iflist);
/* use the interface name as the unique id for ifp recycle */
snprintf(sc->sc_if_xname, sizeof(sc->sc_if_xname), "%s%d",
ifc->ifc_name, unit);
bzero(&init_params, sizeof(init_params));
init_params.ver = IFNET_INIT_CURRENT_VERSION;
init_params.len = sizeof(init_params);
/* Initialize our routing table. */
error = bridge_rtable_init(sc);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "bridge_rtable_init failed %d", error);
goto done;
}
TAILQ_INIT(&sc->sc_spanlist);
if (if_bridge_txstart) {
init_params.start = bridge_start;
} else {
init_params.flags = IFNET_INIT_LEGACY;
init_params.output = bridge_output;
}
init_params.set_bpf_tap = bridge_set_bpf_tap;
init_params.uniqueid = sc->sc_if_xname;
init_params.uniqueid_len = strlen(sc->sc_if_xname);
init_params.sndq_maxlen = IFQ_MAXLEN;
init_params.name = ifc->ifc_name;
init_params.unit = unit;
init_params.family = IFNET_FAMILY_ETHERNET;
init_params.type = IFT_BRIDGE;
init_params.demux = ether_demux;
init_params.add_proto = ether_add_proto;
init_params.del_proto = ether_del_proto;
init_params.check_multi = ether_check_multi;
init_params.framer_extended = ether_frameout_extended;
init_params.softc = sc;
init_params.ioctl = bridge_ioctl;
init_params.detach = bridge_detach;
init_params.broadcast_addr = etherbroadcastaddr;
init_params.broadcast_len = ETHER_ADDR_LEN;
error = ifnet_allocate_extended(&init_params, &ifp);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_allocate failed %d", error);
goto done;
}
LIST_INIT(&sc->sc_mne_list);
LIST_INIT(&sc->sc_mne_list_v6);
sc->sc_ifp = ifp;
error = bridge_ifnet_set_attrs(ifp);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "bridge_ifnet_set_attrs failed %d",
error);
goto done;
}
/*
* Generate an ethernet address with a locally administered address.
*
* Since we are using random ethernet addresses for the bridge, it is
* possible that we might have address collisions, so make sure that
* this hardware address isn't already in use on another bridge.
* The first try uses the "hostid" and falls back to read_frandom();
* for "hostid", we use the MAC address of the first-encountered
* Ethernet-type interface that is currently configured.
*/
fb = 0;
has_hostid = (uuid_get_ethernet(&eth_hostid[0]) == 0);
for (retry = 1; retry != 0;) {
if (fb || has_hostid == 0) {
read_frandom(&sc->sc_defaddr, ETHER_ADDR_LEN);
sc->sc_defaddr[0] &= ~1; /* clear multicast bit */
sc->sc_defaddr[0] |= 2; /* set the LAA bit */
} else {
bcopy(&eth_hostid[0], &sc->sc_defaddr,
ETHER_ADDR_LEN);
sc->sc_defaddr[0] &= ~1; /* clear multicast bit */
sc->sc_defaddr[0] |= 2; /* set the LAA bit */
sc->sc_defaddr[3] = /* stir it up a bit */
((sc->sc_defaddr[3] & 0x0f) << 4) |
((sc->sc_defaddr[3] & 0xf0) >> 4);
/*
* Mix in the LSB as it's actually pretty significant,
* see rdar://14076061
*/
sc->sc_defaddr[4] =
(((sc->sc_defaddr[4] & 0x0f) << 4) |
((sc->sc_defaddr[4] & 0xf0) >> 4)) ^
sc->sc_defaddr[5];
sc->sc_defaddr[5] = ifp->if_unit & 0xff;
}
fb = 1;
retry = 0;
lck_mtx_lock(&bridge_list_mtx);
LIST_FOREACH(sc2, &bridge_list, sc_list) {
if (_ether_cmp(sc->sc_defaddr,
IF_LLADDR(sc2->sc_ifp)) == 0) {
retry = 1;
}
}
lck_mtx_unlock(&bridge_list_mtx);
}
sc->sc_flags &= ~SCF_MEDIA_ACTIVE;
if (BRIDGE_DBGF_ENABLED(BR_DBGF_LIFECYCLE)) {
brlog_link(sc);
}
error = ifnet_attach(ifp, NULL);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_attach failed %d", error);
goto done;
}
error = ifnet_set_lladdr_and_type(ifp, sc->sc_defaddr, ETHER_ADDR_LEN,
IFT_ETHER);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_set_lladdr_and_type failed %d",
error);
goto done;
}
ifnet_set_offload(ifp,
IFNET_CSUM_IP | IFNET_CSUM_TCP | IFNET_CSUM_UDP |
IFNET_CSUM_TCPIPV6 | IFNET_CSUM_UDPIPV6 | IFNET_MULTIPAGES);
error = bridge_set_tso(sc);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "bridge_set_tso failed %d", error);
goto done;
}
#if BRIDGESTP
bstp_attach(&sc->sc_stp, &bridge_ops);
#endif /* BRIDGESTP */
lck_mtx_lock(&bridge_list_mtx);
LIST_INSERT_HEAD(&bridge_list, sc, sc_list);
lck_mtx_unlock(&bridge_list_mtx);
/* attach as ethernet */
error = bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header),
NULL, NULL);
done:
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "failed error %d", error);
/* TBD: Clean up: sc, sc_rthash etc */
}
return error;
}
/*
* bridge_clone_destroy:
*
* Destroy a bridge instance.
*/
static int
bridge_clone_destroy(struct ifnet *ifp)
{
struct bridge_softc *sc = ifp->if_softc;
struct bridge_iflist *bif;
errno_t error;
BRIDGE_LOCK(sc);
if ((sc->sc_flags & SCF_DETACHING)) {
BRIDGE_UNLOCK(sc);
return 0;
}
sc->sc_flags |= SCF_DETACHING;
bridge_ifstop(ifp, 1);
bridge_cancel_delayed_call(&sc->sc_resize_call);
bridge_cleanup_delayed_call(&sc->sc_resize_call);
bridge_cleanup_delayed_call(&sc->sc_aging_timer);
error = ifnet_set_flags(ifp, 0, IFF_UP);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_set_flags failed %d", error);
}
while ((bif = TAILQ_FIRST(&sc->sc_iflist)) != NULL) {
bridge_delete_member(sc, bif);
}
while ((bif = TAILQ_FIRST(&sc->sc_spanlist)) != NULL) {
bridge_delete_span(sc, bif);
}
BRIDGE_UNLOCK(sc);
error = ifnet_detach(ifp);
if (error != 0) {
panic("%s (%d): ifnet_detach(%p) failed %d",
__func__, __LINE__, ifp, error);
}
return 0;
}
#define DRVSPEC do { \
if (ifd->ifd_cmd >= bridge_control_table_size) { \
error = EINVAL; \
break; \
} \
bc = &bridge_control_table[ifd->ifd_cmd]; \
\
if (cmd == SIOCGDRVSPEC && \
(bc->bc_flags & BC_F_COPYOUT) == 0) { \
error = EINVAL; \
break; \
} else if (cmd == SIOCSDRVSPEC && \
(bc->bc_flags & BC_F_COPYOUT) != 0) { \
error = EINVAL; \
break; \
} \
\
if (bc->bc_flags & BC_F_SUSER) { \
error = kauth_authorize_generic(kauth_cred_get(), \
KAUTH_GENERIC_ISSUSER); \
if (error) \
break; \
} \
\
if (ifd->ifd_len != bc->bc_argsize || \
ifd->ifd_len > sizeof (args)) { \
error = EINVAL; \
break; \
} \
\
bzero(&args, sizeof (args)); \
if (bc->bc_flags & BC_F_COPYIN) { \
error = copyin(ifd->ifd_data, &args, ifd->ifd_len); \
if (error) \
break; \
} \
\
BRIDGE_LOCK(sc); \
error = (*bc->bc_func)(sc, &args); \
BRIDGE_UNLOCK(sc); \
if (error) \
break; \
\
if (bc->bc_flags & BC_F_COPYOUT) \
error = copyout(&args, ifd->ifd_data, ifd->ifd_len); \
} while (0)
static boolean_t
interface_needs_input_broadcast(struct ifnet * ifp)
{
/*
* Selectively enable input broadcast only when necessary.
* The bridge interface itself attaches a fake protocol
* so checking for at least two protocols means that the
* interface is being used for something besides bridging
* and needs to see broadcast packets from other members.
*/
return if_get_protolist(ifp, NULL, 0) >= 2;
}
static boolean_t
bif_set_input_broadcast(struct bridge_iflist * bif, boolean_t input_broadcast)
{
boolean_t old_input_broadcast;
old_input_broadcast = (bif->bif_flags & BIFF_INPUT_BROADCAST) != 0;
if (input_broadcast) {
bif->bif_flags |= BIFF_INPUT_BROADCAST;
} else {
bif->bif_flags &= ~BIFF_INPUT_BROADCAST;
}
return old_input_broadcast != input_broadcast;
}
/*
* bridge_ioctl:
*
* Handle a control request from the operator.
*/
static errno_t
bridge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct bridge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct bridge_iflist *bif;
int error = 0;
BRIDGE_LOCK_ASSERT_NOTHELD(sc);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_IOCTL,
"ifp %s cmd 0x%08lx (%c%c [%lu] %c %lu)",
ifp->if_xname, cmd, (cmd & IOC_IN) ? 'I' : ' ',
(cmd & IOC_OUT) ? 'O' : ' ', IOCPARM_LEN(cmd),
(char)IOCGROUP(cmd), cmd & 0xff);
switch (cmd) {
case SIOCSIFADDR:
case SIOCAIFADDR:
ifnet_set_flags(ifp, IFF_UP, IFF_UP);
break;
case SIOCGIFMEDIA32:
case SIOCGIFMEDIA64: {
struct ifmediareq *ifmr = (struct ifmediareq *)data;
user_addr_t user_addr;
user_addr = (cmd == SIOCGIFMEDIA64) ?
((struct ifmediareq64 *)ifmr)->ifmu_ulist :
CAST_USER_ADDR_T(((struct ifmediareq32 *)ifmr)->ifmu_ulist);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_mask = 0;
ifmr->ifm_count = 1;
BRIDGE_LOCK(sc);
if (!(sc->sc_flags & SCF_DETACHING) &&
(sc->sc_flags & SCF_MEDIA_ACTIVE)) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active = ifmr->ifm_current =
IFM_ETHER | IFM_AUTO;
} else {
ifmr->ifm_active = ifmr->ifm_current = IFM_NONE;
}
BRIDGE_UNLOCK(sc);
if (user_addr != USER_ADDR_NULL) {
error = copyout(&ifmr->ifm_current, user_addr,
sizeof(int));
}
break;
}
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
case SIOCSDRVSPEC32:
case SIOCGDRVSPEC32: {
union {
struct ifbreq ifbreq;
struct ifbifconf32 ifbifconf;
struct ifbareq32 ifbareq;
struct ifbaconf32 ifbaconf;
struct ifbrparam ifbrparam;
struct ifbropreq32 ifbropreq;
} args;
struct ifdrv32 *ifd = (struct ifdrv32 *)data;
const struct bridge_control *bridge_control_table =
bridge_control_table32, *bc;
DRVSPEC;
break;
}
case SIOCSDRVSPEC64:
case SIOCGDRVSPEC64: {
union {
struct ifbreq ifbreq;
struct ifbifconf64 ifbifconf;
struct ifbareq64 ifbareq;
struct ifbaconf64 ifbaconf;
struct ifbrparam ifbrparam;
struct ifbropreq64 ifbropreq;
} args;
struct ifdrv64 *ifd = (struct ifdrv64 *)data;
const struct bridge_control *bridge_control_table =
bridge_control_table64, *bc;
DRVSPEC;
break;
}
case SIOCSIFFLAGS:
if (!(ifp->if_flags & IFF_UP) &&
(ifp->if_flags & IFF_RUNNING)) {
/*
* If interface is marked down and it is running,
* then stop and disable it.
*/
BRIDGE_LOCK(sc);
bridge_ifstop(ifp, 1);
BRIDGE_UNLOCK(sc);
} else if ((ifp->if_flags & IFF_UP) &&
!(ifp->if_flags & IFF_RUNNING)) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
BRIDGE_LOCK(sc);
error = bridge_init(ifp);
BRIDGE_UNLOCK(sc);
}
break;
case SIOCSIFLLADDR:
error = ifnet_set_lladdr(ifp, ifr->ifr_addr.sa_data,
ifr->ifr_addr.sa_len);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_IOCTL,
"%s SIOCSIFLLADDR error %d", ifp->if_xname,
error);
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu < 576) {
error = EINVAL;
break;
}
BRIDGE_LOCK(sc);
if (TAILQ_EMPTY(&sc->sc_iflist)) {
sc->sc_ifp->if_mtu = ifr->ifr_mtu;
BRIDGE_UNLOCK(sc);
break;
}
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) {
if (bif->bif_ifp->if_mtu != (unsigned)ifr->ifr_mtu) {
BRIDGE_LOG(LOG_NOTICE, 0,
"%s invalid MTU: %u(%s) != %d",
sc->sc_ifp->if_xname,
bif->bif_ifp->if_mtu,
bif->bif_ifp->if_xname, ifr->ifr_mtu);
error = EINVAL;
break;
}
}
if (!error) {
sc->sc_ifp->if_mtu = ifr->ifr_mtu;
}
BRIDGE_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error != 0 && error != EOPNOTSUPP) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_IOCTL,
"ifp %s cmd 0x%08lx "
"(%c%c [%lu] %c %lu) failed error: %d",
ifp->if_xname, cmd,
(cmd & IOC_IN) ? 'I' : ' ',
(cmd & IOC_OUT) ? 'O' : ' ',
IOCPARM_LEN(cmd), (char)IOCGROUP(cmd),
cmd & 0xff, error);
}
break;
}
BRIDGE_LOCK_ASSERT_NOTHELD(sc);
return error;
}
#if HAS_IF_CAP
/*
* bridge_mutecaps:
*
* Clear or restore unwanted capabilities on the member interface
*/
static void
bridge_mutecaps(struct bridge_softc *sc)
{
struct bridge_iflist *bif;
int enabled, mask;
/* Initial bitmask of capabilities to test */
mask = BRIDGE_IFCAPS_MASK;
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) {
/* Every member must support it or its disabled */
mask &= bif->bif_savedcaps;
}
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) {
enabled = bif->bif_ifp->if_capenable;
enabled &= ~BRIDGE_IFCAPS_STRIP;
/* strip off mask bits and enable them again if allowed */
enabled &= ~BRIDGE_IFCAPS_MASK;
enabled |= mask;
bridge_set_ifcap(sc, bif, enabled);
}
}
static void
bridge_set_ifcap(struct bridge_softc *sc, struct bridge_iflist *bif, int set)
{
struct ifnet *ifp = bif->bif_ifp;
struct ifreq ifr;
int error;
bzero(&ifr, sizeof(ifr));
ifr.ifr_reqcap = set;
if (ifp->if_capenable != set) {
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, SIOCSIFCAP, (caddr_t)&ifr);
IFF_UNLOCKGIANT(ifp);
if (error) {
BRIDGE_LOG(LOG_NOTICE, 0,
"%s error setting interface capabilities on %s",
sc->sc_ifp->if_xname, ifp->if_xname);
}
}
}
#endif /* HAS_IF_CAP */
static errno_t
siocsifcap(struct ifnet * ifp, uint32_t cap_enable)
{
struct ifreq ifr;
bzero(&ifr, sizeof(ifr));
ifr.ifr_reqcap = cap_enable;
return ifnet_ioctl(ifp, 0, SIOCSIFCAP, &ifr);
}
static const char *
enable_disable_str(boolean_t enable)
{
return enable ? "enable" : "disable";
}
static boolean_t
bridge_set_lro(struct ifnet * ifp, boolean_t enable)
{
uint32_t cap_enable;
uint32_t cap_supported;
boolean_t changed = FALSE;
boolean_t lro_enabled;
cap_supported = ifnet_capabilities_supported(ifp);
if ((cap_supported & IFCAP_LRO) == 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_LIFECYCLE,
"%s doesn't support LRO",
ifp->if_xname);
goto done;
}
cap_enable = ifnet_capabilities_enabled(ifp);
lro_enabled = (cap_enable & IFCAP_LRO) != 0;
if (lro_enabled != enable) {
errno_t error;
if (enable) {
cap_enable |= IFCAP_LRO;
} else {
cap_enable &= ~IFCAP_LRO;
}
error = siocsifcap(ifp, cap_enable);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0,
"%s %s failed (cap 0x%x) %d",
ifp->if_xname,
enable_disable_str(enable),
cap_enable,
error);
} else {
changed = TRUE;
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_LIFECYCLE,
"%s %s success (cap 0x%x)",
ifp->if_xname,
enable_disable_str(enable),
cap_enable);
}
}
done:
return changed;
}
static errno_t
bridge_set_tso(struct bridge_softc *sc)
{
struct bridge_iflist *bif;
u_int32_t tso_v4_mtu;
u_int32_t tso_v6_mtu;
ifnet_offload_t offload;
errno_t error = 0;
/* By default, support TSO */
offload = sc->sc_ifp->if_hwassist | IFNET_TSO_IPV4 | IFNET_TSO_IPV6;
tso_v4_mtu = IP_MAXPACKET;
tso_v6_mtu = IP_MAXPACKET;
/* Use the lowest common denominator of the members */
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) {
ifnet_t ifp = bif->bif_ifp;
if (ifp == NULL) {
continue;
}
if (offload & IFNET_TSO_IPV4) {
if (ifp->if_hwassist & IFNET_TSO_IPV4) {
if (tso_v4_mtu > ifp->if_tso_v4_mtu) {
tso_v4_mtu = ifp->if_tso_v4_mtu;
}
} else {
offload &= ~IFNET_TSO_IPV4;
tso_v4_mtu = 0;
}
}
if (offload & IFNET_TSO_IPV6) {
if (ifp->if_hwassist & IFNET_TSO_IPV6) {
if (tso_v6_mtu > ifp->if_tso_v6_mtu) {
tso_v6_mtu = ifp->if_tso_v6_mtu;
}
} else {
offload &= ~IFNET_TSO_IPV6;
tso_v6_mtu = 0;
}
}
}
if (offload != sc->sc_ifp->if_hwassist) {
error = ifnet_set_offload(sc->sc_ifp, offload);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_LIFECYCLE,
"ifnet_set_offload(%s, 0x%x) failed %d",
sc->sc_ifp->if_xname, offload, error);
goto done;
}
/*
* For ifnet_set_tso_mtu() sake, the TSO MTU must be at least
* as large as the interface MTU
*/
if (sc->sc_ifp->if_hwassist & IFNET_TSO_IPV4) {
if (tso_v4_mtu < sc->sc_ifp->if_mtu) {
tso_v4_mtu = sc->sc_ifp->if_mtu;
}
error = ifnet_set_tso_mtu(sc->sc_ifp, AF_INET,
tso_v4_mtu);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_LIFECYCLE,
"ifnet_set_tso_mtu(%s, "
"AF_INET, %u) failed %d",
sc->sc_ifp->if_xname,
tso_v4_mtu, error);
goto done;
}
}
if (sc->sc_ifp->if_hwassist & IFNET_TSO_IPV6) {
if (tso_v6_mtu < sc->sc_ifp->if_mtu) {
tso_v6_mtu = sc->sc_ifp->if_mtu;
}
error = ifnet_set_tso_mtu(sc->sc_ifp, AF_INET6,
tso_v6_mtu);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_LIFECYCLE,
"ifnet_set_tso_mtu(%s, "
"AF_INET6, %u) failed %d",
sc->sc_ifp->if_xname,
tso_v6_mtu, error);
goto done;
}
}
}
done:
return error;
}
/*
* bridge_lookup_member:
*
* Lookup a bridge member interface.
*/
static struct bridge_iflist *
bridge_lookup_member(struct bridge_softc *sc, const char *name)
{
struct bridge_iflist *bif;
struct ifnet *ifp;
BRIDGE_LOCK_ASSERT_HELD(sc);
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) {
ifp = bif->bif_ifp;
if (strcmp(ifp->if_xname, name) == 0) {
return bif;
}
}
return NULL;
}
/*
* bridge_lookup_member_if:
*
* Lookup a bridge member interface by ifnet*.
*/
static struct bridge_iflist *
bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp)
{
struct bridge_iflist *bif;
BRIDGE_LOCK_ASSERT_HELD(sc);
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) {
if (bif->bif_ifp == member_ifp) {
return bif;
}
}
return NULL;
}
static errno_t
bridge_iff_input(void *cookie, ifnet_t ifp, protocol_family_t protocol,
mbuf_t *data, char **frame_ptr)
{
#pragma unused(protocol)
errno_t error = 0;
struct bridge_iflist *bif = (struct bridge_iflist *)cookie;
struct bridge_softc *sc = bif->bif_sc;
int included = 0;
size_t frmlen = 0;
mbuf_t m = *data;
if ((m->m_flags & M_PROTO1)) {
goto out;
}
if (*frame_ptr >= (char *)mbuf_datastart(m) &&
*frame_ptr <= (char *)mbuf_data(m)) {
included = 1;
frmlen = (char *)mbuf_data(m) - *frame_ptr;
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT,
"%s from %s m 0x%llx data 0x%llx frame 0x%llx %s "
"frmlen %lu", sc->sc_ifp->if_xname,
ifp->if_xname, (uint64_t)VM_KERNEL_ADDRPERM(m),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_data(m)),
(uint64_t)VM_KERNEL_ADDRPERM(*frame_ptr),
included ? "inside" : "outside", frmlen);
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MBUF)) {
brlog_mbuf(m, "bridge_iff_input[", "");
brlog_ether_header((struct ether_header *)
(void *)*frame_ptr);
brlog_mbuf_data(m, 0, 20);
}
if (included == 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT, "frame_ptr outside mbuf");
goto out;
}
/* Move data pointer to start of frame to the link layer header */
(void) mbuf_setdata(m, (char *)mbuf_data(m) - frmlen,
mbuf_len(m) + frmlen);
(void) mbuf_pkthdr_adjustlen(m, frmlen);
/* make sure we can access the ethernet header */
if (mbuf_pkthdr_len(m) < sizeof(struct ether_header)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT,
"short frame %lu < %lu",
mbuf_pkthdr_len(m), sizeof(struct ether_header));
goto out;
}
if (mbuf_len(m) < sizeof(struct ether_header)) {
error = mbuf_pullup(data, sizeof(struct ether_header));
if (error != 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT,
"mbuf_pullup(%lu) failed %d",
sizeof(struct ether_header),
error);
error = EJUSTRETURN;
goto out;
}
if (m != *data) {
m = *data;
*frame_ptr = mbuf_data(m);
}
}
error = bridge_input(ifp, data);
/* Adjust packet back to original */
if (error == 0) {
/* bridge_input might have modified *data */
if (*data != m) {
m = *data;
*frame_ptr = mbuf_data(m);
}
(void) mbuf_setdata(m, (char *)mbuf_data(m) + frmlen,
mbuf_len(m) - frmlen);
(void) mbuf_pkthdr_adjustlen(m, -frmlen);
}
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MBUF) &&
BRIDGE_DBGF_ENABLED(BR_DBGF_INPUT)) {
brlog_mbuf(m, "bridge_iff_input]", "");
}
out:
BRIDGE_LOCK_ASSERT_NOTHELD(sc);
return error;
}
static errno_t
bridge_iff_output(void *cookie, ifnet_t ifp, protocol_family_t protocol,
mbuf_t *data)
{
#pragma unused(protocol)
errno_t error = 0;
struct bridge_iflist *bif = (struct bridge_iflist *)cookie;
struct bridge_softc *sc = bif->bif_sc;
mbuf_t m = *data;
if ((m->m_flags & M_PROTO1)) {
goto out;
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_OUTPUT,
"%s from %s m 0x%llx data 0x%llx",
sc->sc_ifp->if_xname, ifp->if_xname,
(uint64_t)VM_KERNEL_ADDRPERM(m),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_data(m)));
error = bridge_member_output(sc, ifp, data);
if (error != 0 && error != EJUSTRETURN) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_OUTPUT,
"bridge_member_output failed error %d",
error);
}
out:
BRIDGE_LOCK_ASSERT_NOTHELD(sc);
return error;
}
static void
bridge_iff_event(void *cookie, ifnet_t ifp, protocol_family_t protocol,
const struct kev_msg *event_msg)
{
#pragma unused(protocol)
struct bridge_iflist *bif = (struct bridge_iflist *)cookie;
struct bridge_softc *sc = bif->bif_sc;
if (event_msg->vendor_code == KEV_VENDOR_APPLE &&
event_msg->kev_class == KEV_NETWORK_CLASS &&
event_msg->kev_subclass == KEV_DL_SUBCLASS) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE,
"%s event_code %u - %s",
ifp->if_xname, event_msg->event_code,
dlil_kev_dl_code_str(event_msg->event_code));
switch (event_msg->event_code) {
case KEV_DL_LINK_OFF:
case KEV_DL_LINK_ON: {
bridge_iflinkevent(ifp);
#if BRIDGESTP
bstp_linkstate(ifp, event_msg->event_code);
#endif /* BRIDGESTP */
break;
}
case KEV_DL_SIFFLAGS: {
if ((ifp->if_flags & IFF_UP) == 0) {
break;
}
if ((bif->bif_flags & BIFF_PROMISC) == 0) {
errno_t error;
error = ifnet_set_promiscuous(ifp, 1);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0,
"ifnet_set_promiscuous (%s)"
" failed %d", ifp->if_xname,
error);
} else {
bif->bif_flags |= BIFF_PROMISC;
}
}
if ((bif->bif_flags & BIFF_WIFI_INFRA) != 0 &&
(bif->bif_flags & BIFF_ALL_MULTI) == 0) {
errno_t error;
error = if_allmulti(ifp, 1);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0,
"if_allmulti (%s)"
" failed %d", ifp->if_xname,
error);
} else {
bif->bif_flags |= BIFF_ALL_MULTI;
#ifdef XNU_PLATFORM_AppleTVOS
ip6_forwarding = 1;
#endif /* XNU_PLATFORM_AppleTVOS */
}
}
break;
}
case KEV_DL_IFCAP_CHANGED: {
BRIDGE_LOCK(sc);
bridge_set_tso(sc);
BRIDGE_UNLOCK(sc);
break;
}
case KEV_DL_PROTO_DETACHED:
case KEV_DL_PROTO_ATTACHED: {
bridge_proto_attach_changed(ifp);
break;
}
default:
break;
}
}
}
/*
* bridge_iff_detached:
*
* Called when our interface filter has been detached from a
* member interface.
*/
static void
bridge_iff_detached(void *cookie, ifnet_t ifp)
{
#pragma unused(cookie)
struct bridge_iflist *bif;
struct bridge_softc *sc = ifp->if_bridge;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE, "%s", ifp->if_xname);
/* Check if the interface is a bridge member */
if (sc != NULL) {
BRIDGE_LOCK(sc);
bif = bridge_lookup_member_if(sc, ifp);
if (bif != NULL) {
bridge_delete_member(sc, bif);
}
BRIDGE_UNLOCK(sc);
return;
}
/* Check if the interface is a span port */
lck_mtx_lock(&bridge_list_mtx);
LIST_FOREACH(sc, &bridge_list, sc_list) {
BRIDGE_LOCK(sc);
TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
if (ifp == bif->bif_ifp) {
bridge_delete_span(sc, bif);
break;
}
BRIDGE_UNLOCK(sc);
}
lck_mtx_unlock(&bridge_list_mtx);
}
static errno_t
bridge_proto_input(ifnet_t ifp, protocol_family_t protocol, mbuf_t packet,
char *header)
{
#pragma unused(protocol, packet, header)
BRIDGE_LOG(LOG_NOTICE, 0, "%s unexpected packet",
ifp->if_xname);
return 0;
}
static int
bridge_attach_protocol(struct ifnet *ifp)
{
int error;
struct ifnet_attach_proto_param reg;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE, "%s", ifp->if_xname);
bzero(&reg, sizeof(reg));
reg.input = bridge_proto_input;
error = ifnet_attach_protocol(ifp, PF_BRIDGE, &reg);
if (error) {
BRIDGE_LOG(LOG_NOTICE, 0,
"ifnet_attach_protocol(%s) failed, %d",
ifp->if_xname, error);
}
return error;
}
static int
bridge_detach_protocol(struct ifnet *ifp)
{
int error;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE, "%s", ifp->if_xname);
error = ifnet_detach_protocol(ifp, PF_BRIDGE);
if (error) {
BRIDGE_LOG(LOG_NOTICE, 0,
"ifnet_detach_protocol(%s) failed, %d",
ifp->if_xname, error);
}
return error;
}
/*
* bridge_delete_member:
*
* Delete the specified member interface.
*/
static void
bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif)
{
#if SKYWALK
boolean_t add_netagent = FALSE;
#endif /* SKYWALK */
uint32_t bif_flags;
struct ifnet *ifs = bif->bif_ifp, *bifp = sc->sc_ifp;
int lladdr_changed = 0, error;
uint8_t eaddr[ETHER_ADDR_LEN];
u_int32_t event_code = 0;
BRIDGE_LOCK_ASSERT_HELD(sc);
VERIFY(ifs != NULL);
/*
* Remove the member from the list first so it cannot be found anymore
* when we release the bridge lock below
*/
if ((bif->bif_flags & BIFF_IN_MEMBER_LIST) != 0) {
BRIDGE_XLOCK(sc);
TAILQ_REMOVE(&sc->sc_iflist, bif, bif_next);
BRIDGE_XDROP(sc);
}
if (sc->sc_mac_nat_bif != NULL) {
if (bif == sc->sc_mac_nat_bif) {
bridge_mac_nat_disable(sc);
} else {
bridge_mac_nat_flush_entries(sc, bif);
}
}
#if BRIDGESTP
if ((bif->bif_ifflags & IFBIF_STP) != 0) {
bstp_disable(&bif->bif_stp);
}
#endif /* BRIDGESTP */
/*
* If removing the interface that gave the bridge its mac address, set
* the mac address of the bridge to the address of the next member, or
* to its default address if no members are left.
*/
if (bridge_inherit_mac && sc->sc_ifaddr == ifs) {
ifnet_release(sc->sc_ifaddr);
if (TAILQ_EMPTY(&sc->sc_iflist)) {
bcopy(sc->sc_defaddr, eaddr, ETHER_ADDR_LEN);
sc->sc_ifaddr = NULL;
} else {
struct ifnet *fif =
TAILQ_FIRST(&sc->sc_iflist)->bif_ifp;
bcopy(IF_LLADDR(fif), eaddr, ETHER_ADDR_LEN);
sc->sc_ifaddr = fif;
ifnet_reference(fif); /* for sc_ifaddr */
}
lladdr_changed = 1;
}
#if HAS_IF_CAP
bridge_mutecaps(sc); /* recalculate now this interface is removed */
#endif /* HAS_IF_CAP */
error = bridge_set_tso(sc);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "bridge_set_tso failed %d", error);
}
bridge_rtdelete(sc, ifs, IFBF_FLUSHALL);
KASSERT(bif->bif_addrcnt == 0,
("%s: %d bridge routes referenced", __func__, bif->bif_addrcnt));
/*
* Update link status of the bridge based on its remaining members
*/
event_code = bridge_updatelinkstatus(sc);
bif_flags = bif->bif_flags;
BRIDGE_UNLOCK(sc);
/* only perform these steps if the interface is still attached */
if (ifnet_is_attached(ifs, 1)) {
#if SKYWALK
add_netagent = (bif_flags & BIFF_NETAGENT_REMOVED) != 0;
if ((bif_flags & BIFF_FLOWSWITCH_ATTACHED) != 0) {
ifnet_detach_flowswitch_nexus(ifs);
}
#endif /* SKYWALK */
/* disable promiscuous mode */
if ((bif_flags & BIFF_PROMISC) != 0) {
(void) ifnet_set_promiscuous(ifs, 0);
}
/* disable all multi */
if ((bif_flags & BIFF_ALL_MULTI) != 0) {
(void)if_allmulti(ifs, 0);
}
#if HAS_IF_CAP
/* re-enable any interface capabilities */
bridge_set_ifcap(sc, bif, bif->bif_savedcaps);
#endif
/* detach bridge "protocol" */
if ((bif_flags & BIFF_PROTO_ATTACHED) != 0) {
(void)bridge_detach_protocol(ifs);
}
/* detach interface filter */
if ((bif_flags & BIFF_FILTER_ATTACHED) != 0) {
iflt_detach(bif->bif_iff_ref);
}
/* re-enable LRO */
if ((bif_flags & BIFF_LRO_DISABLED) != 0) {
(void)bridge_set_lro(ifs, TRUE);
}
ifnet_decr_iorefcnt(ifs);
}
if (lladdr_changed &&
(error = ifnet_set_lladdr(bifp, eaddr, ETHER_ADDR_LEN)) != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_set_lladdr failed %d", error);
}
if (event_code != 0) {
bridge_link_event(bifp, event_code);
}
#if BRIDGESTP
bstp_destroy(&bif->bif_stp); /* prepare to free */
#endif /* BRIDGESTP */
kfree_type(struct bridge_iflist, bif);
ifs->if_bridge = NULL;
#if SKYWALK
if (add_netagent && ifnet_is_attached(ifs, 1)) {
(void)ifnet_add_netagent(ifs);
ifnet_decr_iorefcnt(ifs);
}
#endif /* SKYWALK */
ifnet_release(ifs);
BRIDGE_LOCK(sc);
}
/*
* bridge_delete_span:
*
* Delete the specified span interface.
*/
static void
bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif)
{
BRIDGE_LOCK_ASSERT_HELD(sc);
KASSERT(bif->bif_ifp->if_bridge == NULL,
("%s: not a span interface", __func__));
ifnet_release(bif->bif_ifp);
TAILQ_REMOVE(&sc->sc_spanlist, bif, bif_next);
kfree_type(struct bridge_iflist, bif);
}
static int
bridge_ioctl_add(struct bridge_softc *sc, void *arg)
{
struct ifbreq *req = arg;
struct bridge_iflist *bif = NULL;
struct ifnet *ifs, *bifp = sc->sc_ifp;
int error = 0, lladdr_changed = 0;
uint8_t eaddr[ETHER_ADDR_LEN];
struct iff_filter iff;
u_int32_t event_code = 0;
boolean_t input_broadcast;
int media_active;
boolean_t wifi_infra = FALSE;
ifs = ifunit(req->ifbr_ifsname);
if (ifs == NULL) {
return ENOENT;
}
if (ifs->if_ioctl == NULL) { /* must be supported */
return EINVAL;
}
if (IFNET_IS_INTCOPROC(ifs) || IFNET_IS_MANAGEMENT(ifs)) {
return EINVAL;
}
/* If it's in the span list, it can't be a member. */
TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
if (ifs == bif->bif_ifp) {
return EBUSY;
}
}
if (ifs->if_bridge == sc) {
return EEXIST;
}
if (ifs->if_bridge != NULL) {
return EBUSY;
}
switch (ifs->if_type) {
case IFT_ETHER:
if (strcmp(ifs->if_name, "en") == 0 &&
ifs->if_subfamily == IFNET_SUBFAMILY_WIFI &&
(ifs->if_eflags & IFEF_IPV4_ROUTER) == 0) {
/* XXX is there a better way to identify Wi-Fi STA? */
wifi_infra = TRUE;
}
break;
case IFT_L2VLAN:
case IFT_IEEE8023ADLAG:
break;
case IFT_GIF:
/* currently not supported */
/* FALLTHRU */
default:
return EINVAL;
}
/* fail to add the interface if the MTU doesn't match */
if (!TAILQ_EMPTY(&sc->sc_iflist) && sc->sc_ifp->if_mtu != ifs->if_mtu) {
BRIDGE_LOG(LOG_NOTICE, 0, "%s invalid MTU for %s",
sc->sc_ifp->if_xname,
ifs->if_xname);
return EINVAL;
}
/* there's already an interface that's doing MAC NAT */
if (wifi_infra && sc->sc_mac_nat_bif != NULL) {
return EBUSY;
}
/* prevent the interface from detaching while we add the member */
if (!ifnet_is_attached(ifs, 1)) {
return ENXIO;
}
/* allocate a new member */
bif = kalloc_type(struct bridge_iflist, Z_WAITOK | Z_ZERO | Z_NOFAIL);
bif->bif_ifp = ifs;
ifnet_reference(ifs);
bif->bif_ifflags |= IFBIF_LEARNING | IFBIF_DISCOVER;
#if HAS_IF_CAP
bif->bif_savedcaps = ifs->if_capenable;
#endif /* HAS_IF_CAP */
bif->bif_sc = sc;
if (wifi_infra) {
(void)bridge_mac_nat_enable(sc, bif);
}
if (IFNET_IS_VMNET(ifs)) {
allocate_vmnet_pf_tags();
}
/* Allow the first Ethernet member to define the MTU */
if (TAILQ_EMPTY(&sc->sc_iflist)) {
sc->sc_ifp->if_mtu = ifs->if_mtu;
}
/*
* Assign the interface's MAC address to the bridge if it's the first
* member and the MAC address of the bridge has not been changed from
* the default (randomly) generated one.
*/
if (bridge_inherit_mac && TAILQ_EMPTY(&sc->sc_iflist) &&
_ether_cmp(IF_LLADDR(sc->sc_ifp), sc->sc_defaddr) == 0) {
bcopy(IF_LLADDR(ifs), eaddr, ETHER_ADDR_LEN);
sc->sc_ifaddr = ifs;
ifnet_reference(ifs); /* for sc_ifaddr */
lladdr_changed = 1;
}
ifs->if_bridge = sc;
#if BRIDGESTP
bstp_create(&sc->sc_stp, &bif->bif_stp, bif->bif_ifp);
#endif /* BRIDGESTP */
#if HAS_IF_CAP
/* Set interface capabilities to the intersection set of all members */
bridge_mutecaps(sc);
#endif /* HAS_IF_CAP */
/*
* Respect lock ordering with DLIL lock for the following operations
*/
BRIDGE_UNLOCK(sc);
/* enable promiscuous mode */
error = ifnet_set_promiscuous(ifs, 1);
switch (error) {
case 0:
bif->bif_flags |= BIFF_PROMISC;
break;
case ENETDOWN:
case EPWROFF:
BRIDGE_LOG(LOG_NOTICE, 0,
"ifnet_set_promiscuous(%s) failed %d, ignoring",
ifs->if_xname, error);
/* Ignore error when device is not up */
error = 0;
break;
default:
BRIDGE_LOG(LOG_NOTICE, 0,
"ifnet_set_promiscuous(%s) failed %d",
ifs->if_xname, error);
BRIDGE_LOCK(sc);
goto out;
}
if (wifi_infra) {
int this_error;
/* Wi-Fi doesn't really support promiscuous, set allmulti */
bif->bif_flags |= BIFF_WIFI_INFRA;
this_error = if_allmulti(ifs, 1);
if (this_error == 0) {
bif->bif_flags |= BIFF_ALL_MULTI;
#ifdef XNU_PLATFORM_AppleTVOS
ip6_forwarding = 1;
#endif /* XNU_PLATFORM_AppleTVOS */
} else {
BRIDGE_LOG(LOG_NOTICE, 0,
"if_allmulti(%s) failed %d, ignoring",
ifs->if_xname, this_error);
}
}
#if SKYWALK
/* ensure that the flowswitch is present for native interface */
if (SKYWALK_NATIVE(ifs)) {
if (ifnet_attach_flowswitch_nexus(ifs)) {
bif->bif_flags |= BIFF_FLOWSWITCH_ATTACHED;
}
}
/* remove the netagent on the flowswitch (rdar://75050182) */
if (if_is_fsw_netagent_enabled()) {
(void)ifnet_remove_netagent(ifs);
bif->bif_flags |= BIFF_NETAGENT_REMOVED;
}
#endif /* SKYWALK */
/*
* install an interface filter
*/
memset(&iff, 0, sizeof(struct iff_filter));
iff.iff_cookie = bif;
iff.iff_name = "com.apple.kernel.bsd.net.if_bridge";
iff.iff_input = bridge_iff_input;
iff.iff_output = bridge_iff_output;
iff.iff_event = bridge_iff_event;
iff.iff_detached = bridge_iff_detached;
error = dlil_attach_filter(ifs, &iff, &bif->bif_iff_ref,
DLIL_IFF_TSO | DLIL_IFF_INTERNAL);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "iflt_attach failed %d", error);
BRIDGE_LOCK(sc);
goto out;
}
bif->bif_flags |= BIFF_FILTER_ATTACHED;
/*
* install a dummy "bridge" protocol
*/
if ((error = bridge_attach_protocol(ifs)) != 0) {
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, 0,
"bridge_attach_protocol failed %d", error);
BRIDGE_LOCK(sc);
goto out;
}
}
bif->bif_flags |= BIFF_PROTO_ATTACHED;
if (lladdr_changed &&
(error = ifnet_set_lladdr(bifp, eaddr, ETHER_ADDR_LEN)) != 0) {
BRIDGE_LOG(LOG_NOTICE, 0, "ifnet_set_lladdr failed %d", error);
}
media_active = interface_media_active(ifs);
/* disable LRO */
if (bridge_set_lro(ifs, FALSE)) {
bif->bif_flags |= BIFF_LRO_DISABLED;
}
/*
* No failures past this point. Add the member to the list.
*/
BRIDGE_LOCK(sc);
bif->bif_flags |= BIFF_IN_MEMBER_LIST;
BRIDGE_XLOCK(sc);
TAILQ_INSERT_TAIL(&sc->sc_iflist, bif, bif_next);
BRIDGE_XDROP(sc);
/* cache the member link status */
if (media_active != 0) {
bif->bif_flags |= BIFF_MEDIA_ACTIVE;
} else {
bif->bif_flags &= ~BIFF_MEDIA_ACTIVE;
}
/* the new member may change the link status of the bridge interface */
event_code = bridge_updatelinkstatus(sc);
/* check whether we need input broadcast or not */
input_broadcast = interface_needs_input_broadcast(ifs);
bif_set_input_broadcast(bif, input_broadcast);
BRIDGE_UNLOCK(sc);
if (event_code != 0) {
bridge_link_event(bifp, event_code);
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE,
"%s input broadcast %s", ifs->if_xname,
input_broadcast ? "ENABLED" : "DISABLED");
BRIDGE_LOCK(sc);
bridge_set_tso(sc);
out:
/* allow the interface to detach */
ifnet_decr_iorefcnt(ifs);
if (error != 0) {
if (bif != NULL) {
bridge_delete_member(sc, bif);
}
} else if (IFNET_IS_VMNET(ifs)) {
INC_ATOMIC_INT64_LIM(net_api_stats.nas_vmnet_total);
}
return error;
}
static int
bridge_ioctl_del(struct bridge_softc *sc, void *arg)
{
struct ifbreq *req = arg;
struct bridge_iflist *bif;
bif = bridge_lookup_member(sc, req->ifbr_ifsname);
if (bif == NULL) {
return ENOENT;
}
bridge_delete_member(sc, bif);
return 0;
}
static int
bridge_ioctl_purge(struct bridge_softc *sc, void *arg)
{
#pragma unused(sc, arg)
return 0;
}
static int
bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg)
{
struct ifbreq *req = arg;
struct bridge_iflist *bif;
bif = bridge_lookup_member(sc, req->ifbr_ifsname);
if (bif == NULL) {
return ENOENT;
}
struct bstp_port *bp;
bp = &bif->bif_stp;
req->ifbr_state = bp->bp_state;
req->ifbr_priority = bp->bp_priority;
req->ifbr_path_cost = bp->bp_path_cost;
req->ifbr_proto = bp->bp_protover;
req->ifbr_role = bp->bp_role;
req->ifbr_stpflags = bp->bp_flags;
req->ifbr_ifsflags = bif->bif_ifflags;
/* Copy STP state options as flags */
if (bp->bp_operedge) {
req->ifbr_ifsflags |= IFBIF_BSTP_EDGE;
}
if (bp->bp_flags & BSTP_PORT_AUTOEDGE) {
req->ifbr_ifsflags |= IFBIF_BSTP_AUTOEDGE;
}
if (bp->bp_ptp_link) {
req->ifbr_ifsflags |= IFBIF_BSTP_PTP;
}
if (bp->bp_flags & BSTP_PORT_AUTOPTP) {
req->ifbr_ifsflags |= IFBIF_BSTP_AUTOPTP;
}
if (bp->bp_flags & BSTP_PORT_ADMEDGE) {
req->ifbr_ifsflags |= IFBIF_BSTP_ADMEDGE;
}
if (bp->bp_flags & BSTP_PORT_ADMCOST) {
req->ifbr_ifsflags |= IFBIF_BSTP_ADMCOST;
}
req->ifbr_portno = bif->bif_ifp->if_index & 0xfff;
req->ifbr_addrcnt = bif->bif_addrcnt;
req->ifbr_addrmax = bif->bif_addrmax;
req->ifbr_addrexceeded = bif->bif_addrexceeded;
return 0;
}
static int
bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg)
{
struct ifbreq *req = arg;
struct bridge_iflist *bif;
#if BRIDGESTP
struct bstp_port *bp;
int error;
#endif /* BRIDGESTP */
bif = bridge_lookup_member(sc, req->ifbr_ifsname);
if (bif == NULL) {
return ENOENT;
}
if (req->ifbr_ifsflags & IFBIF_SPAN) {
/* SPAN is readonly */
return EINVAL;
}
#define _EXCLUSIVE_FLAGS (IFBIF_CHECKSUM_OFFLOAD | IFBIF_MAC_NAT)
if ((req->ifbr_ifsflags & _EXCLUSIVE_FLAGS) == _EXCLUSIVE_FLAGS) {
/* can't specify both MAC-NAT and checksum offload */
return EINVAL;
}
if ((req->ifbr_ifsflags & IFBIF_MAC_NAT) != 0) {
errno_t error;
error = bridge_mac_nat_enable(sc, bif);
if (error != 0) {
return error;
}
} else if (sc->sc_mac_nat_bif == bif) {
bridge_mac_nat_disable(sc);
}
#if BRIDGESTP
if (req->ifbr_ifsflags & IFBIF_STP) {
if ((bif->bif_ifflags & IFBIF_STP) == 0) {
error = bstp_enable(&bif->bif_stp);
if (error) {
return error;
}
}
} else {
if ((bif->bif_ifflags & IFBIF_STP) != 0) {
bstp_disable(&bif->bif_stp);
}
}
/* Pass on STP flags */
bp = &bif->bif_stp;
bstp_set_edge(bp, req->ifbr_ifsflags & IFBIF_BSTP_EDGE ? 1 : 0);
bstp_set_autoedge(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOEDGE ? 1 : 0);
bstp_set_ptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_PTP ? 1 : 0);
bstp_set_autoptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOPTP ? 1 : 0);
#else /* !BRIDGESTP */
if (req->ifbr_ifsflags & IFBIF_STP) {
return EOPNOTSUPP;
}
#endif /* !BRIDGESTP */
/* Save the bits relating to the bridge */
bif->bif_ifflags = req->ifbr_ifsflags & IFBIFMASK;
return 0;
}
static int
bridge_ioctl_scache(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
sc->sc_brtmax = param->ifbrp_csize;
bridge_rttrim(sc);
return 0;
}
static int
bridge_ioctl_gcache(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
param->ifbrp_csize = sc->sc_brtmax;
return 0;
}
#define BRIDGE_IOCTL_GIFS do { \
struct bridge_iflist *bif; \
struct ifbreq breq; \
char *buf, *outbuf; \
unsigned int count, buflen, len; \
\
count = 0; \
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) \
count++; \
TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) \
count++; \
\
buflen = sizeof (breq) * count; \
if (bifc->ifbic_len == 0) { \
bifc->ifbic_len = buflen; \
return (0); \
} \
BRIDGE_UNLOCK(sc); \
outbuf = (char *)kalloc_data(buflen, Z_WAITOK | Z_ZERO); \
BRIDGE_LOCK(sc); \
\
count = 0; \
buf = outbuf; \
len = min(bifc->ifbic_len, buflen); \
bzero(&breq, sizeof (breq)); \
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { \
if (len < sizeof (breq)) \
break; \
\
snprintf(breq.ifbr_ifsname, sizeof (breq.ifbr_ifsname), \
"%s", bif->bif_ifp->if_xname); \
/* Fill in the ifbreq structure */ \
error = bridge_ioctl_gifflags(sc, &breq); \
if (error) \
break; \
memcpy(buf, &breq, sizeof (breq)); \
count++; \
buf += sizeof (breq); \
len -= sizeof (breq); \
} \
TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) { \
if (len < sizeof (breq)) \
break; \
\
snprintf(breq.ifbr_ifsname, \
sizeof (breq.ifbr_ifsname), \
"%s", bif->bif_ifp->if_xname); \
breq.ifbr_ifsflags = bif->bif_ifflags; \
breq.ifbr_portno \
= bif->bif_ifp->if_index & 0xfff; \
memcpy(buf, &breq, sizeof (breq)); \
count++; \
buf += sizeof (breq); \
len -= sizeof (breq); \
} \
\
BRIDGE_UNLOCK(sc); \
bifc->ifbic_len = sizeof (breq) * count; \
error = copyout(outbuf, bifc->ifbic_req, bifc->ifbic_len); \
BRIDGE_LOCK(sc); \
kfree_data(outbuf, buflen); \
} while (0)
static int
bridge_ioctl_gifs64(struct bridge_softc *sc, void *arg)
{
struct ifbifconf64 *bifc = arg;
int error = 0;
BRIDGE_IOCTL_GIFS;
return error;
}
static int
bridge_ioctl_gifs32(struct bridge_softc *sc, void *arg)
{
struct ifbifconf32 *bifc = arg;
int error = 0;
BRIDGE_IOCTL_GIFS;
return error;
}
#define BRIDGE_IOCTL_RTS do { \
struct bridge_rtnode *brt; \
char *buf; \
char *outbuf = NULL; \
unsigned int count, buflen, len; \
unsigned long now; \
\
if (bac->ifbac_len == 0) \
return (0); \
\
bzero(&bareq, sizeof (bareq)); \
count = 0; \
LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) \
count++; \
buflen = sizeof (bareq) * count; \
\
BRIDGE_UNLOCK(sc); \
outbuf = (char *)kalloc_data(buflen, Z_WAITOK | Z_ZERO); \
BRIDGE_LOCK(sc); \
\
count = 0; \
buf = outbuf; \
len = min(bac->ifbac_len, buflen); \
LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { \
if (len < sizeof (bareq)) \
goto out; \
snprintf(bareq.ifba_ifsname, sizeof (bareq.ifba_ifsname), \
"%s", brt->brt_ifp->if_xname); \
memcpy(bareq.ifba_dst, brt->brt_addr, sizeof (brt->brt_addr)); \
bareq.ifba_vlan = brt->brt_vlan; \
if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { \
now = (unsigned long) net_uptime(); \
if (now < brt->brt_expire) \
bareq.ifba_expire = \
brt->brt_expire - now; \
} else \
bareq.ifba_expire = 0; \
bareq.ifba_flags = brt->brt_flags; \
\
memcpy(buf, &bareq, sizeof (bareq)); \
count++; \
buf += sizeof (bareq); \
len -= sizeof (bareq); \
} \
out: \
bac->ifbac_len = sizeof (bareq) * count; \
if (outbuf != NULL) { \
BRIDGE_UNLOCK(sc); \
error = copyout(outbuf, bac->ifbac_req, bac->ifbac_len); \
kfree_data(outbuf, buflen); \
BRIDGE_LOCK(sc); \
} \
return (error); \
} while (0)
static int
bridge_ioctl_rts64(struct bridge_softc *sc, void *arg)
{
struct ifbaconf64 *bac = arg;
struct ifbareq64 bareq;
int error = 0;
BRIDGE_IOCTL_RTS;
return error;
}
static int
bridge_ioctl_rts32(struct bridge_softc *sc, void *arg)
{
struct ifbaconf32 *bac = arg;
struct ifbareq32 bareq;
int error = 0;
BRIDGE_IOCTL_RTS;
return error;
}
static int
bridge_ioctl_saddr32(struct bridge_softc *sc, void *arg)
{
struct ifbareq32 *req = arg;
struct bridge_iflist *bif;
int error;
bif = bridge_lookup_member(sc, req->ifba_ifsname);
if (bif == NULL) {
return ENOENT;
}
error = bridge_rtupdate(sc, req->ifba_dst, req->ifba_vlan, bif, 1,
req->ifba_flags);
return error;
}
static int
bridge_ioctl_saddr64(struct bridge_softc *sc, void *arg)
{
struct ifbareq64 *req = arg;
struct bridge_iflist *bif;
int error;
bif = bridge_lookup_member(sc, req->ifba_ifsname);
if (bif == NULL) {
return ENOENT;
}
error = bridge_rtupdate(sc, req->ifba_dst, req->ifba_vlan, bif, 1,
req->ifba_flags);
return error;
}
static int
bridge_ioctl_sto(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
sc->sc_brttimeout = param->ifbrp_ctime;
return 0;
}
static int
bridge_ioctl_gto(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
param->ifbrp_ctime = sc->sc_brttimeout;
return 0;
}
static int
bridge_ioctl_daddr32(struct bridge_softc *sc, void *arg)
{
struct ifbareq32 *req = arg;
return bridge_rtdaddr(sc, req->ifba_dst, req->ifba_vlan);
}
static int
bridge_ioctl_daddr64(struct bridge_softc *sc, void *arg)
{
struct ifbareq64 *req = arg;
return bridge_rtdaddr(sc, req->ifba_dst, req->ifba_vlan);
}
static int
bridge_ioctl_flush(struct bridge_softc *sc, void *arg)
{
struct ifbreq *req = arg;
bridge_rtflush(sc, req->ifbr_ifsflags);
return 0;
}
static int
bridge_ioctl_gpri(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
struct bstp_state *bs = &sc->sc_stp;
param->ifbrp_prio = bs->bs_bridge_priority;
return 0;
}
static int
bridge_ioctl_spri(struct bridge_softc *sc, void *arg)
{
#if BRIDGESTP
struct ifbrparam *param = arg;
return bstp_set_priority(&sc->sc_stp, param->ifbrp_prio);
#else /* !BRIDGESTP */
#pragma unused(sc, arg)
return EOPNOTSUPP;
#endif /* !BRIDGESTP */
}
static int
bridge_ioctl_ght(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
struct bstp_state *bs = &sc->sc_stp;
param->ifbrp_hellotime = bs->bs_bridge_htime >> 8;
return 0;
}
static int
bridge_ioctl_sht(struct bridge_softc *sc, void *arg)
{
#if BRIDGESTP
struct ifbrparam *param = arg;
return bstp_set_htime(&sc->sc_stp, param->ifbrp_hellotime);
#else /* !BRIDGESTP */
#pragma unused(sc, arg)
return EOPNOTSUPP;
#endif /* !BRIDGESTP */
}
static int
bridge_ioctl_gfd(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param;
struct bstp_state *bs;
param = arg;
bs = &sc->sc_stp;
param->ifbrp_fwddelay = bs->bs_bridge_fdelay >> 8;
return 0;
}
static int
bridge_ioctl_sfd(struct bridge_softc *sc, void *arg)
{
#if BRIDGESTP
struct ifbrparam *param = arg;
return bstp_set_fdelay(&sc->sc_stp, param->ifbrp_fwddelay);
#else /* !BRIDGESTP */
#pragma unused(sc, arg)
return EOPNOTSUPP;
#endif /* !BRIDGESTP */
}
static int
bridge_ioctl_gma(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param;
struct bstp_state *bs;
param = arg;
bs = &sc->sc_stp;
param->ifbrp_maxage = bs->bs_bridge_max_age >> 8;
return 0;
}
static int
bridge_ioctl_sma(struct bridge_softc *sc, void *arg)
{
#if BRIDGESTP
struct ifbrparam *param = arg;
return bstp_set_maxage(&sc->sc_stp, param->ifbrp_maxage);
#else /* !BRIDGESTP */
#pragma unused(sc, arg)
return EOPNOTSUPP;
#endif /* !BRIDGESTP */
}
static int
bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg)
{
#if BRIDGESTP
struct ifbreq *req = arg;
struct bridge_iflist *bif;
bif = bridge_lookup_member(sc, req->ifbr_ifsname);
if (bif == NULL) {
return ENOENT;
}
return bstp_set_port_priority(&bif->bif_stp, req->ifbr_priority);
#else /* !BRIDGESTP */
#pragma unused(sc, arg)
return EOPNOTSUPP;
#endif /* !BRIDGESTP */
}
static int
bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg)
{
#if BRIDGESTP
struct ifbreq *req = arg;
struct bridge_iflist *bif;
bif = bridge_lookup_member(sc, req->ifbr_ifsname);
if (bif == NULL) {
return ENOENT;
}
return bstp_set_path_cost(&bif->bif_stp, req->ifbr_path_cost);
#else /* !BRIDGESTP */
#pragma unused(sc, arg)
return EOPNOTSUPP;
#endif /* !BRIDGESTP */
}
static int
bridge_ioctl_gfilt(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
param->ifbrp_filter = sc->sc_filter_flags;
return 0;
}
static int
bridge_ioctl_sfilt(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
if (param->ifbrp_filter & ~IFBF_FILT_MASK) {
return EINVAL;
}
if (param->ifbrp_filter & IFBF_FILT_USEIPF) {
return EINVAL;
}
sc->sc_filter_flags = param->ifbrp_filter;
return 0;
}
static int
bridge_ioctl_sifmaxaddr(struct bridge_softc *sc, void *arg)
{
struct ifbreq *req = arg;
struct bridge_iflist *bif;
bif = bridge_lookup_member(sc, req->ifbr_ifsname);
if (bif == NULL) {
return ENOENT;
}
bif->bif_addrmax = req->ifbr_addrmax;
return 0;
}
static int
bridge_ioctl_addspan(struct bridge_softc *sc, void *arg)
{
struct ifbreq *req = arg;
struct bridge_iflist *bif = NULL;
struct ifnet *ifs;
ifs = ifunit(req->ifbr_ifsname);
if (ifs == NULL) {
return ENOENT;
}
if (IFNET_IS_INTCOPROC(ifs) || IFNET_IS_MANAGEMENT(ifs)) {
return EINVAL;
}
TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
if (ifs == bif->bif_ifp) {
return EBUSY;
}
if (ifs->if_bridge != NULL) {
return EBUSY;
}
switch (ifs->if_type) {
case IFT_ETHER:
case IFT_L2VLAN:
case IFT_IEEE8023ADLAG:
break;
case IFT_GIF:
/* currently not supported */
/* FALLTHRU */
default:
return EINVAL;
}
bif = kalloc_type(struct bridge_iflist, Z_WAITOK | Z_ZERO | Z_NOFAIL);
bif->bif_ifp = ifs;
bif->bif_ifflags = IFBIF_SPAN;
ifnet_reference(bif->bif_ifp);
TAILQ_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next);
return 0;
}
static int
bridge_ioctl_delspan(struct bridge_softc *sc, void *arg)
{
struct ifbreq *req = arg;
struct bridge_iflist *bif;
struct ifnet *ifs;
ifs = ifunit(req->ifbr_ifsname);
if (ifs == NULL) {
return ENOENT;
}
TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
if (ifs == bif->bif_ifp) {
break;
}
if (bif == NULL) {
return ENOENT;
}
bridge_delete_span(sc, bif);
return 0;
}
#define BRIDGE_IOCTL_GBPARAM do { \
struct bstp_state *bs = &sc->sc_stp; \
struct bstp_port *root_port; \
\
req->ifbop_maxage = bs->bs_bridge_max_age >> 8; \
req->ifbop_hellotime = bs->bs_bridge_htime >> 8; \
req->ifbop_fwddelay = bs->bs_bridge_fdelay >> 8; \
\
root_port = bs->bs_root_port; \
if (root_port == NULL) \
req->ifbop_root_port = 0; \
else \
req->ifbop_root_port = root_port->bp_ifp->if_index; \
\
req->ifbop_holdcount = bs->bs_txholdcount; \
req->ifbop_priority = bs->bs_bridge_priority; \
req->ifbop_protocol = bs->bs_protover; \
req->ifbop_root_path_cost = bs->bs_root_pv.pv_cost; \
req->ifbop_bridgeid = bs->bs_bridge_pv.pv_dbridge_id; \
req->ifbop_designated_root = bs->bs_root_pv.pv_root_id; \
req->ifbop_designated_bridge = bs->bs_root_pv.pv_dbridge_id; \
req->ifbop_last_tc_time.tv_sec = bs->bs_last_tc_time.tv_sec; \
req->ifbop_last_tc_time.tv_usec = bs->bs_last_tc_time.tv_usec; \
} while (0)
static int
bridge_ioctl_gbparam32(struct bridge_softc *sc, void *arg)
{
struct ifbropreq32 *req = arg;
BRIDGE_IOCTL_GBPARAM;
return 0;
}
static int
bridge_ioctl_gbparam64(struct bridge_softc *sc, void *arg)
{
struct ifbropreq64 *req = arg;
BRIDGE_IOCTL_GBPARAM;
return 0;
}
static int
bridge_ioctl_grte(struct bridge_softc *sc, void *arg)
{
struct ifbrparam *param = arg;
param->ifbrp_cexceeded = sc->sc_brtexceeded;
return 0;
}
#define BRIDGE_IOCTL_GIFSSTP do { \
struct bridge_iflist *bif; \
struct bstp_port *bp; \
struct ifbpstpreq bpreq; \
char *buf, *outbuf; \
unsigned int count, buflen, len; \
\
count = 0; \
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { \
if ((bif->bif_ifflags & IFBIF_STP) != 0) \
count++; \
} \
\
buflen = sizeof (bpreq) * count; \
if (bifstp->ifbpstp_len == 0) { \
bifstp->ifbpstp_len = buflen; \
return (0); \
} \
\
BRIDGE_UNLOCK(sc); \
outbuf = (char *)kalloc_data(buflen, Z_WAITOK | Z_ZERO); \
BRIDGE_LOCK(sc); \
\
count = 0; \
buf = outbuf; \
len = min(bifstp->ifbpstp_len, buflen); \
bzero(&bpreq, sizeof (bpreq)); \
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { \
if (len < sizeof (bpreq)) \
break; \
\
if ((bif->bif_ifflags & IFBIF_STP) == 0) \
continue; \
\
bp = &bif->bif_stp; \
bpreq.ifbp_portno = bif->bif_ifp->if_index & 0xfff; \
bpreq.ifbp_fwd_trans = bp->bp_forward_transitions; \
bpreq.ifbp_design_cost = bp->bp_desg_pv.pv_cost; \
bpreq.ifbp_design_port = bp->bp_desg_pv.pv_port_id; \
bpreq.ifbp_design_bridge = bp->bp_desg_pv.pv_dbridge_id; \
bpreq.ifbp_design_root = bp->bp_desg_pv.pv_root_id; \
\
memcpy(buf, &bpreq, sizeof (bpreq)); \
count++; \
buf += sizeof (bpreq); \
len -= sizeof (bpreq); \
} \
\
BRIDGE_UNLOCK(sc); \
bifstp->ifbpstp_len = sizeof (bpreq) * count; \
error = copyout(outbuf, bifstp->ifbpstp_req, bifstp->ifbpstp_len); \
BRIDGE_LOCK(sc); \
kfree_data(outbuf, buflen); \
return (error); \
} while (0)
static int
bridge_ioctl_gifsstp32(struct bridge_softc *sc, void *arg)
{
struct ifbpstpconf32 *bifstp = arg;
int error = 0;
BRIDGE_IOCTL_GIFSSTP;
return error;
}
static int
bridge_ioctl_gifsstp64(struct bridge_softc *sc, void *arg)
{
struct ifbpstpconf64 *bifstp = arg;
int error = 0;
BRIDGE_IOCTL_GIFSSTP;
return error;
}
static int
bridge_ioctl_sproto(struct bridge_softc *sc, void *arg)
{
#if BRIDGESTP
struct ifbrparam *param = arg;
return bstp_set_protocol(&sc->sc_stp, param->ifbrp_proto);
#else /* !BRIDGESTP */
#pragma unused(sc, arg)
return EOPNOTSUPP;
#endif /* !BRIDGESTP */
}
static int
bridge_ioctl_stxhc(struct bridge_softc *sc, void *arg)
{
#if BRIDGESTP
struct ifbrparam *param = arg;
return bstp_set_holdcount(&sc->sc_stp, param->ifbrp_txhc);
#else /* !BRIDGESTP */
#pragma unused(sc, arg)
return EOPNOTSUPP;
#endif /* !BRIDGESTP */
}
static int
bridge_ioctl_ghostfilter(struct bridge_softc *sc, void *arg)
{
struct ifbrhostfilter *req = arg;
struct bridge_iflist *bif;
bif = bridge_lookup_member(sc, req->ifbrhf_ifsname);
if (bif == NULL) {
return ENOENT;
}
bzero(req, sizeof(struct ifbrhostfilter));
if (bif->bif_flags & BIFF_HOST_FILTER) {
req->ifbrhf_flags |= IFBRHF_ENABLED;
bcopy(bif->bif_hf_hwsrc, req->ifbrhf_hwsrca,
ETHER_ADDR_LEN);
req->ifbrhf_ipsrc = bif->bif_hf_ipsrc.s_addr;
}
return 0;
}
static int
bridge_ioctl_shostfilter(struct bridge_softc *sc, void *arg)
{
struct ifbrhostfilter *req = arg;
struct bridge_iflist *bif;
bif = bridge_lookup_member(sc, req->ifbrhf_ifsname);
if (bif == NULL) {
return ENOENT;
}
if (req->ifbrhf_flags & IFBRHF_ENABLED) {
bif->bif_flags |= BIFF_HOST_FILTER;
if (req->ifbrhf_flags & IFBRHF_HWSRC) {
bcopy(req->ifbrhf_hwsrca, bif->bif_hf_hwsrc,
ETHER_ADDR_LEN);
if (bcmp(req->ifbrhf_hwsrca, ethernulladdr,
ETHER_ADDR_LEN) != 0) {
bif->bif_flags |= BIFF_HF_HWSRC;
} else {
bif->bif_flags &= ~BIFF_HF_HWSRC;
}
}
if (req->ifbrhf_flags & IFBRHF_IPSRC) {
bif->bif_hf_ipsrc.s_addr = req->ifbrhf_ipsrc;
if (bif->bif_hf_ipsrc.s_addr != INADDR_ANY) {
bif->bif_flags |= BIFF_HF_IPSRC;
} else {
bif->bif_flags &= ~BIFF_HF_IPSRC;
}
}
} else {
bif->bif_flags &= ~(BIFF_HOST_FILTER | BIFF_HF_HWSRC |
BIFF_HF_IPSRC);
bzero(bif->bif_hf_hwsrc, ETHER_ADDR_LEN);
bif->bif_hf_ipsrc.s_addr = INADDR_ANY;
}
return 0;
}
static char *
bridge_mac_nat_entry_out(struct mac_nat_entry_list * list,
unsigned int * count_p, char *buf, unsigned int *len_p)
{
unsigned int count = *count_p;
struct ifbrmne ifbmne;
unsigned int len = *len_p;
struct mac_nat_entry *mne;
unsigned long now;
bzero(&ifbmne, sizeof(ifbmne));
LIST_FOREACH(mne, list, mne_list) {
if (len < sizeof(ifbmne)) {
break;
}
snprintf(ifbmne.ifbmne_ifname, sizeof(ifbmne.ifbmne_ifname),
"%s", mne->mne_bif->bif_ifp->if_xname);
memcpy(ifbmne.ifbmne_mac, mne->mne_mac,
sizeof(ifbmne.ifbmne_mac));
now = (unsigned long) net_uptime();
if (now < mne->mne_expire) {
ifbmne.ifbmne_expire = mne->mne_expire - now;
} else {
ifbmne.ifbmne_expire = 0;
}
if ((mne->mne_flags & MNE_FLAGS_IPV6) != 0) {
ifbmne.ifbmne_af = AF_INET6;
ifbmne.ifbmne_ip6_addr = mne->mne_ip6;
} else {
ifbmne.ifbmne_af = AF_INET;
ifbmne.ifbmne_ip_addr = mne->mne_ip;
}
memcpy(buf, &ifbmne, sizeof(ifbmne));
count++;
buf += sizeof(ifbmne);
len -= sizeof(ifbmne);
}
*count_p = count;
*len_p = len;
return buf;
}
/*
* bridge_ioctl_gmnelist()
* Perform the get mac_nat_entry list ioctl.
*
* Note:
* The struct ifbrmnelist32 and struct ifbrmnelist64 have the same
* field size/layout except for the last field ifbml_buf, the user-supplied
* buffer pointer. That is passed in separately via the 'user_addr'
* parameter from the respective 32-bit or 64-bit ioctl routine.
*/
static int
bridge_ioctl_gmnelist(struct bridge_softc *sc, struct ifbrmnelist32 *mnl,
user_addr_t user_addr)
{
unsigned int count;
char *buf;
int error = 0;
char *outbuf = NULL;
struct mac_nat_entry *mne;
unsigned int buflen;
unsigned int len;
mnl->ifbml_elsize = sizeof(struct ifbrmne);
count = 0;
LIST_FOREACH(mne, &sc->sc_mne_list, mne_list) {
count++;
}
LIST_FOREACH(mne, &sc->sc_mne_list_v6, mne_list) {
count++;
}
buflen = sizeof(struct ifbrmne) * count;
if (buflen == 0 || mnl->ifbml_len == 0) {
mnl->ifbml_len = buflen;
return error;
}
BRIDGE_UNLOCK(sc);
outbuf = (char *)kalloc_data(buflen, Z_WAITOK | Z_ZERO);
BRIDGE_LOCK(sc);
count = 0;
buf = outbuf;
len = min(mnl->ifbml_len, buflen);
buf = bridge_mac_nat_entry_out(&sc->sc_mne_list, &count, buf, &len);
buf = bridge_mac_nat_entry_out(&sc->sc_mne_list_v6, &count, buf, &len);
mnl->ifbml_len = count * sizeof(struct ifbrmne);
BRIDGE_UNLOCK(sc);
error = copyout(outbuf, user_addr, mnl->ifbml_len);
kfree_data(outbuf, buflen);
BRIDGE_LOCK(sc);
return error;
}
static int
bridge_ioctl_gmnelist64(struct bridge_softc *sc, void *arg)
{
struct ifbrmnelist64 *mnl = arg;
return bridge_ioctl_gmnelist(sc, arg, mnl->ifbml_buf);
}
static int
bridge_ioctl_gmnelist32(struct bridge_softc *sc, void *arg)
{
struct ifbrmnelist32 *mnl = arg;
return bridge_ioctl_gmnelist(sc, arg,
CAST_USER_ADDR_T(mnl->ifbml_buf));
}
/*
* bridge_ioctl_gifstats()
* Return per-member stats.
*
* Note:
* The ifbrmreq32 and ifbrmreq64 structures have the same
* field size/layout except for the last field brmr_buf, the user-supplied
* buffer pointer. That is passed in separately via the 'user_addr'
* parameter from the respective 32-bit or 64-bit ioctl routine.
*/
static int
bridge_ioctl_gifstats(struct bridge_softc *sc, struct ifbrmreq32 *mreq,
user_addr_t user_addr)
{
struct bridge_iflist *bif;
int error = 0;
unsigned int buflen;
bif = bridge_lookup_member(sc, mreq->brmr_ifname);
if (bif == NULL) {
error = ENOENT;
goto done;
}
buflen = mreq->brmr_elsize = sizeof(struct ifbrmstats);
if (buflen == 0 || mreq->brmr_len == 0) {
mreq->brmr_len = buflen;
goto done;
}
if (mreq->brmr_len != 0 && mreq->brmr_len < buflen) {
error = ENOBUFS;
goto done;
}
mreq->brmr_len = buflen;
error = copyout(&bif->bif_stats, user_addr, buflen);
done:
return error;
}
static int
bridge_ioctl_gifstats32(struct bridge_softc *sc, void *arg)
{
struct ifbrmreq32 *mreq = arg;
return bridge_ioctl_gifstats(sc, arg, mreq->brmr_buf);
}
static int
bridge_ioctl_gifstats64(struct bridge_softc *sc, void *arg)
{
struct ifbrmreq64 *mreq = arg;
return bridge_ioctl_gifstats(sc, arg, mreq->brmr_buf);
}
/*
* bridge_proto_attach_changed
*
* Called when protocol attachment on the interface changes.
*/
static void
bridge_proto_attach_changed(struct ifnet *ifp)
{
boolean_t changed = FALSE;
struct bridge_iflist *bif;
boolean_t input_broadcast;
struct bridge_softc *sc = ifp->if_bridge;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE, "%s", ifp->if_xname);
if (sc == NULL) {
return;
}
input_broadcast = interface_needs_input_broadcast(ifp);
BRIDGE_LOCK(sc);
bif = bridge_lookup_member_if(sc, ifp);
if (bif != NULL) {
changed = bif_set_input_broadcast(bif, input_broadcast);
}
BRIDGE_UNLOCK(sc);
if (changed) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE,
"%s input broadcast %s", ifp->if_xname,
input_broadcast ? "ENABLED" : "DISABLED");
}
return;
}
/*
* interface_media_active:
*
* Tells if an interface media is active.
*/
static int
interface_media_active(struct ifnet *ifp)
{
struct ifmediareq ifmr;
int status = 0;
bzero(&ifmr, sizeof(ifmr));
if (ifnet_ioctl(ifp, 0, SIOCGIFMEDIA, &ifmr) == 0) {
if ((ifmr.ifm_status & IFM_AVALID) && ifmr.ifm_count > 0) {
status = ifmr.ifm_status & IFM_ACTIVE ? 1 : 0;
}
}
return status;
}
/*
* bridge_updatelinkstatus:
*
* Update the media active status of the bridge based on the
* media active status of its member.
* If changed, return the corresponding onf/off link event.
*/
static u_int32_t
bridge_updatelinkstatus(struct bridge_softc *sc)
{
struct bridge_iflist *bif;
int active_member = 0;
u_int32_t event_code = 0;
BRIDGE_LOCK_ASSERT_HELD(sc);
/*
* Find out if we have an active interface
*/
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) {
if (bif->bif_flags & BIFF_MEDIA_ACTIVE) {
active_member = 1;
break;
}
}
if (active_member && !(sc->sc_flags & SCF_MEDIA_ACTIVE)) {
sc->sc_flags |= SCF_MEDIA_ACTIVE;
event_code = KEV_DL_LINK_ON;
} else if (!active_member && (sc->sc_flags & SCF_MEDIA_ACTIVE)) {
sc->sc_flags &= ~SCF_MEDIA_ACTIVE;
event_code = KEV_DL_LINK_OFF;
}
return event_code;
}
/*
* bridge_iflinkevent:
*/
static void
bridge_iflinkevent(struct ifnet *ifp)
{
struct bridge_softc *sc = ifp->if_bridge;
struct bridge_iflist *bif;
u_int32_t event_code = 0;
int media_active;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE, "%s", ifp->if_xname);
/* Check if the interface is a bridge member */
if (sc == NULL) {
return;
}
media_active = interface_media_active(ifp);
BRIDGE_LOCK(sc);
bif = bridge_lookup_member_if(sc, ifp);
if (bif != NULL) {
if (media_active) {
bif->bif_flags |= BIFF_MEDIA_ACTIVE;
} else {
bif->bif_flags &= ~BIFF_MEDIA_ACTIVE;
}
if (sc->sc_mac_nat_bif != NULL) {
bridge_mac_nat_flush_entries(sc, bif);
}
event_code = bridge_updatelinkstatus(sc);
}
BRIDGE_UNLOCK(sc);
if (event_code != 0) {
bridge_link_event(sc->sc_ifp, event_code);
}
}
/*
* bridge_delayed_callback:
*
* Makes a delayed call
*/
static void
bridge_delayed_callback(void *param, __unused void *param2)
{
struct bridge_delayed_call *call = (struct bridge_delayed_call *)param;
struct bridge_softc *sc = call->bdc_sc;
#if BRIDGE_DELAYED_CALLBACK_DEBUG
if (bridge_delayed_callback_delay > 0) {
struct timespec ts;
ts.tv_sec = bridge_delayed_callback_delay;
ts.tv_nsec = 0;
BRIDGE_LOG(LOG_NOTICE, 0,
"sleeping for %d seconds",
bridge_delayed_callback_delay);
msleep(&bridge_delayed_callback_delay, NULL, PZERO,
__func__, &ts);
BRIDGE_LOG(LOG_NOTICE, 0, "awoken");
}
#endif /* BRIDGE_DELAYED_CALLBACK_DEBUG */
BRIDGE_LOCK(sc);
#if BRIDGE_DELAYED_CALLBACK_DEBUG
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_DELAYED_CALL,
"%s call 0x%llx flags 0x%x",
sc->sc_if_xname, (uint64_t)VM_KERNEL_ADDRPERM(call),
call->bdc_flags);
}
#endif /* BRIDGE_DELAYED_CALLBACK_DEBUG */
if (call->bdc_flags & BDCF_CANCELLING) {
wakeup(call);
} else {
if ((sc->sc_flags & SCF_DETACHING) == 0) {
(*call->bdc_func)(sc);
}
}
call->bdc_flags &= ~BDCF_OUTSTANDING;
BRIDGE_UNLOCK(sc);
}
/*
* bridge_schedule_delayed_call:
*
* Schedule a function to be called on a separate thread
* The actual call may be scheduled to run at a given time or ASAP.
*/
static void
bridge_schedule_delayed_call(struct bridge_delayed_call *call)
{
uint64_t deadline = 0;
struct bridge_softc *sc = call->bdc_sc;
BRIDGE_LOCK_ASSERT_HELD(sc);
if ((sc->sc_flags & SCF_DETACHING) ||
(call->bdc_flags & (BDCF_OUTSTANDING | BDCF_CANCELLING))) {
return;
}
if (call->bdc_ts.tv_sec || call->bdc_ts.tv_nsec) {
nanoseconds_to_absolutetime(
(uint64_t)call->bdc_ts.tv_sec * NSEC_PER_SEC +
call->bdc_ts.tv_nsec, &deadline);
clock_absolutetime_interval_to_deadline(deadline, &deadline);
}
call->bdc_flags = BDCF_OUTSTANDING;
#if BRIDGE_DELAYED_CALLBACK_DEBUG
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_DELAYED_CALL,
"%s call 0x%llx flags 0x%x",
sc->sc_if_xname, (uint64_t)VM_KERNEL_ADDRPERM(call),
call->bdc_flags);
}
#endif /* BRIDGE_DELAYED_CALLBACK_DEBUG */
if (call->bdc_ts.tv_sec || call->bdc_ts.tv_nsec) {
thread_call_func_delayed(
(thread_call_func_t)bridge_delayed_callback,
call, deadline);
} else {
if (call->bdc_thread_call == NULL) {
call->bdc_thread_call = thread_call_allocate(
(thread_call_func_t)bridge_delayed_callback,
call);
}
thread_call_enter(call->bdc_thread_call);
}
}
/*
* bridge_cancel_delayed_call:
*
* Cancel a queued or running delayed call.
* If call is running, does not return until the call is done to
* prevent race condition with the brigde interface getting destroyed
*/
static void
bridge_cancel_delayed_call(struct bridge_delayed_call *call)
{
boolean_t result;
struct bridge_softc *sc = call->bdc_sc;
/*
* The call was never scheduled
*/
if (sc == NULL) {
return;
}
BRIDGE_LOCK_ASSERT_HELD(sc);
call->bdc_flags |= BDCF_CANCELLING;
while (call->bdc_flags & BDCF_OUTSTANDING) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_DELAYED_CALL,
"%s call 0x%llx flags 0x%x",
sc->sc_if_xname, (uint64_t)VM_KERNEL_ADDRPERM(call),
call->bdc_flags);
result = thread_call_func_cancel(
(thread_call_func_t)bridge_delayed_callback, call, FALSE);
if (result) {
/*
* We managed to dequeue the delayed call
*/
call->bdc_flags &= ~BDCF_OUTSTANDING;
} else {
/*
* Wait for delayed call do be done running
*/
msleep(call, &sc->sc_mtx, PZERO, __func__, NULL);
}
}
call->bdc_flags &= ~BDCF_CANCELLING;
}
/*
* bridge_cleanup_delayed_call:
*
* Dispose resource allocated for a delayed call
* Assume the delayed call is not queued or running .
*/
static void
bridge_cleanup_delayed_call(struct bridge_delayed_call *call)
{
boolean_t result;
struct bridge_softc *sc = call->bdc_sc;
/*
* The call was never scheduled
*/
if (sc == NULL) {
return;
}
BRIDGE_LOCK_ASSERT_HELD(sc);
VERIFY((call->bdc_flags & BDCF_OUTSTANDING) == 0);
VERIFY((call->bdc_flags & BDCF_CANCELLING) == 0);
if (call->bdc_thread_call != NULL) {
result = thread_call_free(call->bdc_thread_call);
if (result == FALSE) {
panic("%s thread_call_free() failed for call %p",
__func__, call);
}
call->bdc_thread_call = NULL;
}
}
/*
* bridge_init:
*
* Initialize a bridge interface.
*/
static int
bridge_init(struct ifnet *ifp)
{
struct bridge_softc *sc = (struct bridge_softc *)ifp->if_softc;
errno_t error;
BRIDGE_LOCK_ASSERT_HELD(sc);
if ((ifnet_flags(ifp) & IFF_RUNNING)) {
return 0;
}
error = ifnet_set_flags(ifp, IFF_RUNNING, IFF_RUNNING);
/*
* Calling bridge_aging_timer() is OK as there are no entries to
* age so we're just going to arm the timer
*/
bridge_aging_timer(sc);
#if BRIDGESTP
if (error == 0) {
bstp_init(&sc->sc_stp); /* Initialize Spanning Tree */
}
#endif /* BRIDGESTP */
return error;
}
/*
* bridge_ifstop:
*
* Stop the bridge interface.
*/
static void
bridge_ifstop(struct ifnet *ifp, int disable)
{
#pragma unused(disable)
struct bridge_softc *sc = ifp->if_softc;
BRIDGE_LOCK_ASSERT_HELD(sc);
if ((ifnet_flags(ifp) & IFF_RUNNING) == 0) {
return;
}
bridge_cancel_delayed_call(&sc->sc_aging_timer);
#if BRIDGESTP
bstp_stop(&sc->sc_stp);
#endif /* BRIDGESTP */
bridge_rtflush(sc, IFBF_FLUSHDYN);
(void) ifnet_set_flags(ifp, 0, IFF_RUNNING);
}
/*
* bridge_compute_cksum:
*
* If the packet has checksum flags, compare the hardware checksum
* capabilities of the source and destination interfaces. If they
* are the same, there's nothing to do. If they are different,
* finalize the checksum so that it can be sent on the destination
* interface.
*/
static void
bridge_compute_cksum(struct ifnet *src_if, struct ifnet *dst_if, struct mbuf *m)
{
uint32_t csum_flags;
uint16_t dst_hw_csum;
uint32_t did_sw = 0;
struct ether_header *eh;
uint16_t src_hw_csum;
if (src_if == dst_if) {
return;
}
csum_flags = m->m_pkthdr.csum_flags & IF_HWASSIST_CSUM_MASK;
if (csum_flags == 0) {
/* no checksum offload */
return;
}
/*
* if destination/source differ in checksum offload
* capabilities, finalize/compute the checksum
*/
dst_hw_csum = IF_HWASSIST_CSUM_FLAGS(dst_if->if_hwassist);
src_hw_csum = IF_HWASSIST_CSUM_FLAGS(src_if->if_hwassist);
if (dst_hw_csum == src_hw_csum) {
return;
}
eh = mtod(m, struct ether_header *);
switch (ntohs(eh->ether_type)) {
case ETHERTYPE_IP:
did_sw = in_finalize_cksum(m, sizeof(*eh), csum_flags);
break;
case ETHERTYPE_IPV6:
did_sw = in6_finalize_cksum(m, sizeof(*eh), -1, -1, csum_flags);
break;
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"[%s -> %s] before 0x%x did 0x%x after 0x%x",
src_if->if_xname, dst_if->if_xname, csum_flags, did_sw,
m->m_pkthdr.csum_flags);
}
static errno_t
bridge_transmit(struct ifnet * ifp, struct mbuf *m)
{
struct flowadv adv = { .code = FADV_SUCCESS };
errno_t error;
error = dlil_output(ifp, 0, m, NULL, NULL, 1, &adv);
if (error == 0) {
if (adv.code == FADV_FLOW_CONTROLLED) {
error = EQFULL;
} else if (adv.code == FADV_SUSPENDED) {
error = EQSUSPENDED;
}
}
return error;
}
static int
get_last_ip6_hdr(struct mbuf *m, int off, int proto, int * nxtp,
bool *is_fragmented)
{
int newoff;
*is_fragmented = false;
while (1) {
newoff = ip6_nexthdr(m, off, proto, nxtp);
if (newoff < 0) {
return off;
} else if (newoff < off) {
return -1; /* invalid */
} else if (newoff == off) {
return newoff;
}
off = newoff;
proto = *nxtp;
if (proto == IPPROTO_FRAGMENT) {
*is_fragmented = true;
}
}
}
static int
bridge_get_ip_proto(struct mbuf * * mp, u_int mac_hlen, bool is_ipv4,
ip_packet_info_t info_p, struct bripstats * stats_p)
{
int error = 0;
u_int hlen;
u_int ip_hlen;
u_int ip_pay_len;
struct mbuf * m0 = *mp;
int off;
int opt_len = 0;
int proto = 0;
bzero(info_p, sizeof(*info_p));
if (is_ipv4) {
struct ip * ip;
u_int ip_total_len;
/* IPv4 */
hlen = mac_hlen + sizeof(struct ip);
if (m0->m_pkthdr.len < hlen) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"Short IP packet %d < %d",
m0->m_pkthdr.len, hlen);
error = _EBADIP;
stats_p->bips_bad_ip++;
goto done;
}
if (m0->m_len < hlen) {
*mp = m0 = m_pullup(m0, hlen);
if (m0 == NULL) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"m_pullup failed hlen %d",
hlen);
error = ENOBUFS;
stats_p->bips_bad_ip++;
goto done;
}
}
ip = (struct ip *)(void *)(mtod(m0, uint8_t *) + mac_hlen);
if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"bad IP version");
error = _EBADIP;
stats_p->bips_bad_ip++;
goto done;
}
ip_hlen = IP_VHL_HL(ip->ip_vhl) << 2;
if (ip_hlen < sizeof(struct ip)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"bad IP header length %d < %d",
ip_hlen,
(int)sizeof(struct ip));
error = _EBADIP;
stats_p->bips_bad_ip++;
goto done;
}
hlen = mac_hlen + ip_hlen;
if (m0->m_len < hlen) {
*mp = m0 = m_pullup(m0, hlen);
if (m0 == NULL) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"m_pullup failed hlen %d",
hlen);
error = ENOBUFS;
stats_p->bips_bad_ip++;
goto done;
}
}
ip_total_len = ntohs(ip->ip_len);
if (ip_total_len < ip_hlen) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"IP total len %d < header len %d",
ip_total_len, ip_hlen);
error = _EBADIP;
stats_p->bips_bad_ip++;
goto done;
}
if (ip_total_len > (m0->m_pkthdr.len - mac_hlen)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"invalid IP payload length %d > %d",
ip_total_len,
(m0->m_pkthdr.len - mac_hlen));
error = _EBADIP;
stats_p->bips_bad_ip++;
goto done;
}
ip_pay_len = ip_total_len - ip_hlen;
info_p->ip_proto = ip->ip_p;
info_p->ip_hdr.ip = ip;
#define FRAG_BITS (IP_OFFMASK | IP_MF)
if ((ntohs(ip->ip_off) & FRAG_BITS) != 0) {
info_p->ip_is_fragmented = true;
}
stats_p->bips_ip++;
} else {
struct ip6_hdr *ip6;
/* IPv6 */
hlen = mac_hlen + sizeof(struct ip6_hdr);
if (m0->m_pkthdr.len < hlen) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"short IPv6 packet %d < %d",
m0->m_pkthdr.len, hlen);
error = _EBADIPV6;
stats_p->bips_bad_ip6++;
goto done;
}
if (m0->m_len < hlen) {
*mp = m0 = m_pullup(m0, hlen);
if (m0 == NULL) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"m_pullup failed hlen %d",
hlen);
error = ENOBUFS;
stats_p->bips_bad_ip6++;
goto done;
}
}
ip6 = (struct ip6_hdr *)(mtod(m0, uint8_t *) + mac_hlen);
if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"bad IPv6 version");
error = _EBADIPV6;
stats_p->bips_bad_ip6++;
goto done;
}
off = get_last_ip6_hdr(m0, mac_hlen, IPPROTO_IPV6, &proto,
&info_p->ip_is_fragmented);
if (off < 0 || m0->m_pkthdr.len < off) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"ip6_lasthdr() returned %d",
off);
error = _EBADIPV6;
stats_p->bips_bad_ip6++;
goto done;
}
ip_hlen = sizeof(*ip6);
opt_len = off - mac_hlen - ip_hlen;
if (opt_len < 0) {
error = _EBADIPV6;
stats_p->bips_bad_ip6++;
goto done;
}
info_p->ip_proto = proto;
info_p->ip_hdr.ip6 = ip6;
ip_pay_len = ntohs(ip6->ip6_plen);
if (ip_pay_len > (m0->m_pkthdr.len - mac_hlen - ip_hlen)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"invalid IPv6 payload length %d > %d",
ip_pay_len,
(m0->m_pkthdr.len - mac_hlen - ip_hlen));
error = _EBADIPV6;
stats_p->bips_bad_ip6++;
goto done;
}
stats_p->bips_ip6++;
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"IPv%c proto %d ip %u pay %u opt %u pkt %u%s",
is_ipv4 ? '4' : '6',
proto, ip_hlen, ip_pay_len, opt_len,
m0->m_pkthdr.len, info_p->ip_is_fragmented ? " frag" : "");
info_p->ip_hlen = ip_hlen;
info_p->ip_pay_len = ip_pay_len;
info_p->ip_opt_len = opt_len;
info_p->ip_is_ipv4 = is_ipv4;
done:
return error;
}
static int
bridge_get_tcp_header(struct mbuf * * mp, u_int mac_hlen, bool is_ipv4,
ip_packet_info_t info_p, struct bripstats * stats_p)
{
int error;
u_int hlen;
error = bridge_get_ip_proto(mp, mac_hlen, is_ipv4, info_p, stats_p);
if (error != 0) {
goto done;
}
if (info_p->ip_proto != IPPROTO_TCP) {
/* not a TCP frame, not an error, just a bad guess */
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"non-TCP (%d) IPv%c frame %d bytes",
info_p->ip_proto, is_ipv4 ? '4' : '6',
(*mp)->m_pkthdr.len);
goto done;
}
if (info_p->ip_is_fragmented) {
/* both TSO and IP fragmentation don't make sense */
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_CHECKSUM,
"fragmented TSO packet?");
stats_p->bips_bad_tcp++;
error = _EBADTCP;
goto done;
}
hlen = mac_hlen + info_p->ip_hlen + sizeof(struct tcphdr) +
info_p->ip_opt_len;
if ((*mp)->m_len < hlen) {
*mp = m_pullup(*mp, hlen);
if (*mp == NULL) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"m_pullup %d failed",
hlen);
stats_p->bips_bad_tcp++;
error = _EBADTCP;
goto done;
}
}
info_p->ip_proto_hdr = ((caddr_t)info_p->ip_hdr.ptr) +
info_p->ip_hlen + info_p->ip_opt_len;
done:
return error;
}
static inline void
proto_csum_stats_increment(uint8_t proto, struct brcsumstats * stats_p)
{
if (proto == IPPROTO_TCP) {
stats_p->brcs_tcp_checksum++;
} else {
stats_p->brcs_udp_checksum++;
}
return;
}
static bool
ether_header_type_is_ip(struct ether_header * eh, bool *is_ipv4)
{
uint16_t ether_type;
bool is_ip = TRUE;
ether_type = ntohs(eh->ether_type);
switch (ether_type) {
case ETHERTYPE_IP:
*is_ipv4 = TRUE;
break;
case ETHERTYPE_IPV6:
*is_ipv4 = FALSE;
break;
default:
is_ip = FALSE;
break;
}
return is_ip;
}
static errno_t
bridge_verify_checksum(struct mbuf * * mp, struct ifbrmstats *stats_p)
{
struct brcsumstats *csum_stats_p;
struct ether_header *eh;
errno_t error = 0;
ip_packet_info info;
bool is_ipv4;
struct mbuf * m;
u_int mac_hlen = sizeof(struct ether_header);
uint16_t sum;
bool valid;
eh = mtod(*mp, struct ether_header *);
if (!ether_header_type_is_ip(eh, &is_ipv4)) {
goto done;
}
error = bridge_get_ip_proto(mp, mac_hlen, is_ipv4, &info,
&stats_p->brms_out_ip);
m = *mp;
if (error != 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"bridge_get_ip_proto failed %d",
error);
goto done;
}
if (is_ipv4) {
if ((m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) != 0) {
/* hardware offloaded IP header checksum */
valid = (m->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"IP checksum HW %svalid",
valid ? "" : "in");
if (!valid) {
stats_p->brms_out_cksum_bad_hw.brcs_ip_checksum++;
error = _EBADIPCHECKSUM;
goto done;
}
stats_p->brms_out_cksum_good_hw.brcs_ip_checksum++;
} else {
/* verify */
sum = inet_cksum(m, 0, mac_hlen, info.ip_hlen);
valid = (sum == 0);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"IP checksum SW %svalid",
valid ? "" : "in");
if (!valid) {
stats_p->brms_out_cksum_bad.brcs_ip_checksum++;
error = _EBADIPCHECKSUM;
goto done;
}
stats_p->brms_out_cksum_good.brcs_ip_checksum++;
}
}
if (info.ip_is_fragmented) {
/* can't verify checksum on fragmented packets */
goto done;
}
switch (info.ip_proto) {
case IPPROTO_TCP:
stats_p->brms_out_ip.bips_tcp++;
break;
case IPPROTO_UDP:
stats_p->brms_out_ip.bips_udp++;
break;
default:
goto done;
}
/* check for hardware offloaded UDP/TCP checksum */
#define HW_CSUM (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)
if ((m->m_pkthdr.csum_flags & HW_CSUM) == HW_CSUM) {
/* checksum verified by hardware */
valid = (m->m_pkthdr.csum_rx_val == 0xffff);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"IPv%c %s checksum HW 0x%x %svalid",
is_ipv4 ? '4' : '6',
(info.ip_proto == IPPROTO_TCP)
? "TCP" : "UDP",
m->m_pkthdr.csum_data,
valid ? "" : "in" );
if (!valid) {
/* bad checksum */
csum_stats_p = &stats_p->brms_out_cksum_bad_hw;
error = (info.ip_proto == IPPROTO_TCP) ? _EBADTCPCHECKSUM
: _EBADTCPCHECKSUM;
} else {
/* good checksum */
csum_stats_p = &stats_p->brms_out_cksum_good_hw;
}
proto_csum_stats_increment(info.ip_proto, csum_stats_p);
goto done;
}
m->m_data += mac_hlen;
m->m_len -= mac_hlen;
m->m_pkthdr.len -= mac_hlen;
if (is_ipv4) {
sum = inet_cksum(m, info.ip_proto,
info.ip_hlen,
info.ip_pay_len);
} else {
sum = inet6_cksum(m, info.ip_proto,
info.ip_hlen + info.ip_opt_len,
info.ip_pay_len - info.ip_opt_len);
}
valid = (sum == 0);
if (valid) {
csum_stats_p = &stats_p->brms_out_cksum_good;
} else {
csum_stats_p = &stats_p->brms_out_cksum_bad;
error = (info.ip_proto == IPPROTO_TCP)
? _EBADTCPCHECKSUM : _EBADUDPCHECKSUM;
}
proto_csum_stats_increment(info.ip_proto, csum_stats_p);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"IPv%c %s checksum SW %svalid (0x%x) hlen %d paylen %d",
is_ipv4 ? '4' : '6',
(info.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
valid ? "" : "in",
sum, info.ip_hlen, info.ip_pay_len);
m->m_data -= mac_hlen;
m->m_len += mac_hlen;
m->m_pkthdr.len += mac_hlen;
done:
return error;
}
static errno_t
bridge_offload_checksum(struct mbuf * * mp, ip_packet_info * info_p,
struct ifbrmstats * stats_p)
{
uint16_t * csum_p;
errno_t error = 0;
u_int hlen;
struct mbuf * m0 = *mp;
u_int mac_hlen = sizeof(struct ether_header);
u_int pkt_hdr_len;
struct tcphdr * tcp;
u_int tcp_hlen;
struct udphdr * udp;
if (info_p->ip_is_ipv4) {
/* compute IP header checksum */
info_p->ip_hdr.ip->ip_sum = 0;
info_p->ip_hdr.ip->ip_sum = inet_cksum(m0, 0, mac_hlen,
info_p->ip_hlen);
stats_p->brms_in_computed_cksum.brcs_ip_checksum++;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"IPv4 checksum 0x%x",
ntohs(info_p->ip_hdr.ip->ip_sum));
}
if (info_p->ip_is_fragmented) {
/* can't compute checksum on fragmented packets */
goto done;
}
pkt_hdr_len = m0->m_pkthdr.len;
switch (info_p->ip_proto) {
case IPPROTO_TCP:
hlen = mac_hlen + info_p->ip_hlen + info_p->ip_opt_len
+ sizeof(struct tcphdr);
if (m0->m_len < hlen) {
*mp = m0 = m_pullup(m0, hlen);
if (m0 == NULL) {
stats_p->brms_in_ip.bips_bad_tcp++;
error = _EBADTCP;
goto done;
}
}
tcp = (struct tcphdr *)(void *)
((caddr_t)info_p->ip_hdr.ptr + info_p->ip_hlen
+ info_p->ip_opt_len);
tcp_hlen = tcp->th_off << 2;
hlen = mac_hlen + info_p->ip_hlen + info_p->ip_opt_len + tcp_hlen;
if (hlen > pkt_hdr_len) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"bad tcp header length %u",
tcp_hlen);
stats_p->brms_in_ip.bips_bad_tcp++;
error = _EBADTCP;
goto done;
}
csum_p = &tcp->th_sum;
stats_p->brms_in_ip.bips_tcp++;
break;
case IPPROTO_UDP:
hlen = mac_hlen + info_p->ip_hlen + info_p->ip_opt_len + sizeof(*udp);
if (m0->m_len < hlen) {
*mp = m0 = m_pullup(m0, hlen);
if (m0 == NULL) {
stats_p->brms_in_ip.bips_bad_udp++;
error = ENOBUFS;
goto done;
}
}
udp = (struct udphdr *)(void *)
((caddr_t)info_p->ip_hdr.ptr + info_p->ip_hlen
+ info_p->ip_opt_len);
csum_p = &udp->uh_sum;
stats_p->brms_in_ip.bips_udp++;
break;
default:
/* not TCP or UDP */
goto done;
}
*csum_p = 0;
m0->m_data += mac_hlen;
m0->m_len -= mac_hlen;
m0->m_pkthdr.len -= mac_hlen;
if (info_p->ip_is_ipv4) {
*csum_p = inet_cksum(m0, info_p->ip_proto, info_p->ip_hlen,
info_p->ip_pay_len);
} else {
*csum_p = inet6_cksum(m0, info_p->ip_proto,
info_p->ip_hlen + info_p->ip_opt_len,
info_p->ip_pay_len - info_p->ip_opt_len);
}
if (info_p->ip_proto == IPPROTO_UDP && *csum_p == 0) {
/* RFC 1122 4.1.3.4 */
*csum_p = 0xffff;
}
m0->m_data -= mac_hlen;
m0->m_len += mac_hlen;
m0->m_pkthdr.len += mac_hlen;
proto_csum_stats_increment(info_p->ip_proto,
&stats_p->brms_in_computed_cksum);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"IPv%c %s set checksum 0x%x",
info_p->ip_is_ipv4 ? '4' : '6',
(info_p->ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
ntohs(*csum_p));
done:
return error;
}
static errno_t
bridge_send(struct ifnet *src_ifp,
struct ifnet *dst_ifp, struct mbuf *m, ChecksumOperation cksum_op)
{
switch (cksum_op) {
case CHECKSUM_OPERATION_CLEAR_OFFLOAD:
m->m_pkthdr.csum_flags &= ~CSUM_TX_FLAGS;
break;
case CHECKSUM_OPERATION_FINALIZE:
/* the checksum might not be correct, finalize now */
bridge_finalize_cksum(dst_ifp, m);
break;
case CHECKSUM_OPERATION_COMPUTE:
bridge_compute_cksum(src_ifp, dst_ifp, m);
break;
default:
break;
}
#if HAS_IF_CAP
/*
* If underlying interface can not do VLAN tag insertion itself
* then attach a packet tag that holds it.
*/
if ((m->m_flags & M_VLANTAG) &&
(dst_ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) {
m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
if (m == NULL) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_CHECKSUM,
"%s: unable to prepend VLAN header",
dst_ifp->if_xname);
(void) ifnet_stat_increment_out(dst_ifp,
0, 0, 1);
return 0;
}
m->m_flags &= ~M_VLANTAG;
}
#endif /* HAS_IF_CAP */
return bridge_transmit(dst_ifp, m);
}
static errno_t
bridge_send_tso(struct ifnet *dst_ifp, struct mbuf *m, bool is_ipv4)
{
errno_t error;
u_int mac_hlen;
mac_hlen = sizeof(struct ether_header);
#if HAS_IF_CAP
/*
* If underlying interface can not do VLAN tag insertion itself
* then attach a packet tag that holds it.
*/
if ((m->m_flags & M_VLANTAG) &&
(dst_ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) {
m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
if (m == NULL) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_CHECKSUM,
"%s: unable to prepend VLAN header",
dst_ifp->if_xname);
(void) ifnet_stat_increment_out(dst_ifp,
0, 0, 1);
error = ENOBUFS;
goto done;
}
m->m_flags &= ~M_VLANTAG;
mac_hlen += ETHER_VLAN_ENCAP_LEN;
}
#endif /* HAS_IF_CAP */
error = gso_tcp(dst_ifp, &m, mac_hlen, is_ipv4, TRUE);
return error;
}
static uint32_t
get_if_tso_mtu(struct ifnet * ifp, bool is_ipv4)
{
uint32_t tso_mtu;
tso_mtu = is_ipv4 ? ifp->if_tso_v4_mtu : ifp->if_tso_v6_mtu;
if (tso_mtu == 0) {
tso_mtu = IP_MAXPACKET;
}
#if DEBUG || DEVELOPMENT
#define REDUCED_TSO_MTU (16 * 1024)
if (if_bridge_reduce_tso_mtu != 0 && tso_mtu > REDUCED_TSO_MTU) {
tso_mtu = REDUCED_TSO_MTU;
}
#endif /* DEBUG || DEVELOPMENT */
return tso_mtu;
}
/*
* tso_hwassist:
* - determine whether the destination interface supports TSO offload
* - if the packet is already marked for offload and the hardware supports
* it, just allow the packet to continue on
* - if not, parse the packet headers to verify that this is a large TCP
* packet requiring segmentation; if the hardware doesn't support it
* set need_sw_tso; otherwise, mark the packet for TSO offload
*/
static int
tso_hwassist(struct mbuf **mp, bool is_ipv4, struct ifnet * ifp, u_int mac_hlen,
bool * need_sw_tso, bool * is_large_tcp)
{
int error = 0;
u_int32_t if_csum;
u_int32_t if_tso;
u_int32_t mbuf_tso;
bool supports_cksum = false;
*need_sw_tso = false;
*is_large_tcp = false;
if (is_ipv4) {
/*
* Enable both TCP and IP offload if the hardware supports it.
* If the hardware doesn't support TCP offload, supports_cksum
* will be false so we won't set either offload.
*/
if_csum = ifp->if_hwassist & (CSUM_TCP | CSUM_IP);
supports_cksum = (if_csum & CSUM_TCP) != 0;
if_tso = IFNET_TSO_IPV4;
mbuf_tso = CSUM_TSO_IPV4;
} else {
supports_cksum = (ifp->if_hwassist & CSUM_TCPIPV6) != 0;
if_csum = CSUM_TCPIPV6;
if_tso = IFNET_TSO_IPV6;
mbuf_tso = CSUM_TSO_IPV6;
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"%s: does%s support checksum 0x%x if_csum 0x%x",
ifp->if_xname, supports_cksum ? "" : " not",
ifp->if_hwassist, if_csum);
if ((ifp->if_hwassist & if_tso) != 0 &&
((*mp)->m_pkthdr.csum_flags & mbuf_tso) != 0) {
/* hardware TSO, mbuf already marked */
} else {
/* verify that this is a large TCP frame */
uint32_t csum_flags;
ip_packet_info info;
int mss;
uint32_t pkt_mtu;
struct bripstats stats;
struct tcphdr * tcp;
uint32_t tso_mtu;
error = bridge_get_tcp_header(mp, mac_hlen, is_ipv4,
&info, &stats);
if (error != 0) {
/* bad packet */
goto done;
}
if (info.ip_proto_hdr == NULL) {
/* not a TCP packet */
goto done;
}
pkt_mtu = info.ip_hlen + info.ip_pay_len + info.ip_opt_len;
if (pkt_mtu <= ifp->if_mtu) {
/* not actually a large packet */
goto done;
}
if ((ifp->if_hwassist & if_tso) == 0) {
/* hardware does not support TSO, enable sw tso */
*need_sw_tso = if_bridge_segmentation != 0;
goto done;
}
tso_mtu = get_if_tso_mtu(ifp, is_ipv4);
if (pkt_mtu > tso_mtu) {
/* hardware can't segment this, enable sw tso */
*need_sw_tso = if_bridge_segmentation != 0;
goto done;
}
/* use hardware TSO */
(*mp)->m_pkthdr.pkt_proto = IPPROTO_TCP;
tcp = (struct tcphdr *)info.ip_proto_hdr;
mss = ifp->if_mtu - info.ip_hlen - info.ip_opt_len
- (tcp->th_off << 2) - if_bridge_tso_reduce_mss_tx;
assert(mss > 0);
csum_flags = mbuf_tso;
if (supports_cksum) {
csum_flags |= if_csum;
}
(*mp)->m_pkthdr.tso_segsz = mss;
(*mp)->m_pkthdr.csum_flags |= csum_flags;
(*mp)->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
*is_large_tcp = true;
}
done:
return error;
}
/*
* bridge_enqueue:
*
* Enqueue a packet on a bridge member interface.
*
*/
static errno_t
bridge_enqueue(ifnet_t bridge_ifp, struct ifnet *src_ifp,
struct ifnet *dst_ifp, struct mbuf *m, ChecksumOperation cksum_op)
{
errno_t error = 0;
int len;
VERIFY(dst_ifp != NULL);
/*
* We may be sending a fragment so traverse the mbuf
*
* NOTE: bridge_fragment() is called only when PFIL_HOOKS is enabled.
*/
for (struct mbuf *next_m = NULL; m != NULL; m = next_m) {
bool need_sw_tso = false;
bool is_ipv4 = false;
bool is_large_pkt;
errno_t _error = 0;
len = m->m_pkthdr.len;
m->m_flags |= M_PROTO1; /* set to avoid loops */
next_m = m->m_nextpkt;
m->m_nextpkt = NULL;
/*
* Need to segment the packet if it is a large frame
* and the destination interface does not support TSO.
*
* Note that with trailers, it's possible for a packet to
* be large but not actually require segmentation.
*/
is_large_pkt = (len > (bridge_ifp->if_mtu + ETHER_HDR_LEN));
if (is_large_pkt) {
struct ether_header *eh;
bool is_large_tcp = false;
eh = mtod(m, struct ether_header *);
if (ether_header_type_is_ip(eh, &is_ipv4)) {
_error = tso_hwassist(&m, is_ipv4,
dst_ifp, sizeof(struct ether_header),
&need_sw_tso, &is_large_tcp);
if (is_large_tcp) {
cksum_op = CHECKSUM_OPERATION_NONE;
}
} else {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"large non IP packet");
}
}
if (_error != 0) {
if (m != NULL) {
m_freem(m);
}
} else if (need_sw_tso) {
_error = bridge_send_tso(dst_ifp, m, is_ipv4);
} else {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"%s bridge_send(%s) len %d op %d",
bridge_ifp->if_xname,
dst_ifp->if_xname,
len, cksum_op);
_error = bridge_send(src_ifp, dst_ifp, m, cksum_op);
}
/* Preserve first error value */
if (error == 0 && _error != 0) {
error = _error;
}
if (_error == 0) {
(void) ifnet_stat_increment_out(bridge_ifp, 1, len, 0);
} else {
(void) ifnet_stat_increment_out(bridge_ifp, 0, 0, 1);
}
}
return error;
}
#if HAS_BRIDGE_DUMMYNET
/*
* bridge_dummynet:
*
* Receive a queued packet from dummynet and pass it on to the output
* interface.
*
* The mbuf has the Ethernet header already attached.
*/
static void
bridge_dummynet(struct mbuf *m, struct ifnet *ifp)
{
struct bridge_softc *sc;
sc = ifp->if_bridge;
/*
* The packet didn't originate from a member interface. This should only
* ever happen if a member interface is removed while packets are
* queued for it.
*/
if (sc == NULL) {
m_freem(m);
return;
}
if (PFIL_HOOKED(&inet_pfil_hook) || PFIL_HOOKED_INET6) {
if (bridge_pfil(&m, sc->sc_ifp, ifp, PFIL_OUT) != 0) {
return;
}
if (m == NULL) {
return;
}
}
(void) bridge_enqueue(sc->sc_ifp, NULL, ifp, m, CHECKSUM_OPERATION_NONE);
}
#endif /* HAS_BRIDGE_DUMMYNET */
/*
* bridge_member_output:
*
* Send output from a bridge member interface. This
* performs the bridging function for locally originated
* packets.
*
* The mbuf has the Ethernet header already attached.
*/
static errno_t
bridge_member_output(struct bridge_softc *sc, ifnet_t ifp, mbuf_t *data)
{
ifnet_t bridge_ifp;
struct ether_header *eh;
struct ifnet *dst_if;
uint16_t vlan;
struct bridge_iflist *mac_nat_bif;
ifnet_t mac_nat_ifp;
mbuf_t m = *data;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_OUTPUT,
"ifp %s", ifp->if_xname);
if (m->m_len < ETHER_HDR_LEN) {
m = m_pullup(m, ETHER_HDR_LEN);
if (m == NULL) {
*data = NULL;
return EJUSTRETURN;
}
}
eh = mtod(m, struct ether_header *);
vlan = VLANTAGOF(m);
BRIDGE_LOCK(sc);
mac_nat_bif = sc->sc_mac_nat_bif;
mac_nat_ifp = (mac_nat_bif != NULL) ? mac_nat_bif->bif_ifp : NULL;
if (mac_nat_ifp == ifp) {
/* record the IP address used by the MAC NAT interface */
(void)bridge_mac_nat_output(sc, mac_nat_bif, data, NULL);
m = *data;
if (m == NULL) {
/* packet was deallocated */
BRIDGE_UNLOCK(sc);
return EJUSTRETURN;
}
}
bridge_ifp = sc->sc_ifp;
/*
* APPLE MODIFICATION
* If the packet is an 802.1X ethertype, then only send on the
* original output interface.
*/
if (eh->ether_type == htons(ETHERTYPE_PAE)) {
dst_if = ifp;
goto sendunicast;
}
/*
* If bridge is down, but the original output interface is up,
* go ahead and send out that interface. Otherwise, the packet
* is dropped below.
*/
if ((bridge_ifp->if_flags & IFF_RUNNING) == 0) {
dst_if = ifp;
goto sendunicast;
}
/*
* If the packet is a multicast, or we don't know a better way to
* get there, send to all interfaces.
*/
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
dst_if = NULL;
} else {
dst_if = bridge_rtlookup(sc, eh->ether_dhost, vlan);
}
if (dst_if == NULL) {
struct bridge_iflist *bif;
struct mbuf *mc;
errno_t error;
bridge_span(sc, m);
BRIDGE_LOCK2REF(sc, error);
if (error != 0) {
m_freem(m);
return EJUSTRETURN;
}
/*
* Duplicate and send the packet across all member interfaces
* except the originating interface.
*/
TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) {
dst_if = bif->bif_ifp;
if (dst_if == ifp) {
/* skip the originating interface */
continue;
}
/* skip interface with inactive link status */
if ((bif->bif_flags & BIFF_MEDIA_ACTIVE) == 0) {
continue;
}
#if 0
if (dst_if->if_type == IFT_GIF) {
continue;
}
#endif
/* skip interface that isn't running */
if ((dst_if->if_flags & IFF_RUNNING) == 0) {
continue;
}
/*
* If the interface is participating in spanning
* tree, make sure the port is in a state that
* allows forwarding.
*/
if ((bif->bif_ifflags & IFBIF_STP) &&
bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) {
continue;
}
/*
* If the destination is the MAC NAT interface,
* skip sending the packet. The packet can't be sent
* if the source MAC is incorrect.
*/
if (dst_if == mac_nat_ifp) {
continue;
}
/* make a deep copy to send on this member interface */
mc = m_dup(m, M_DONTWAIT);
if (mc == NULL) {
(void)ifnet_stat_increment_out(bridge_ifp,
0, 0, 1);
continue;
}
(void)bridge_enqueue(bridge_ifp, ifp, dst_if,
mc, CHECKSUM_OPERATION_COMPUTE);
}
BRIDGE_UNREF(sc);
if ((ifp->if_flags & IFF_RUNNING) == 0) {
m_freem(m);
return EJUSTRETURN;
}
/* allow packet to continue on the originating interface */
return 0;
}
sendunicast:
/*
* XXX Spanning tree consideration here?
*/
bridge_span(sc, m);
if ((dst_if->if_flags & IFF_RUNNING) == 0) {
m_freem(m);
BRIDGE_UNLOCK(sc);
return EJUSTRETURN;
}
BRIDGE_UNLOCK(sc);
if (dst_if == ifp) {
/* allow packet to continue on the originating interface */
return 0;
}
if (dst_if != mac_nat_ifp) {
(void) bridge_enqueue(bridge_ifp, ifp, dst_if, m,
CHECKSUM_OPERATION_COMPUTE);
} else {
/*
* This is not the original output interface
* and the destination is the MAC NAT interface.
* Drop the packet because the packet can't be sent
* if the source MAC is incorrect.
*/
m_freem(m);
}
return EJUSTRETURN;
}
/*
* Output callback.
*
* This routine is called externally from above only when if_bridge_txstart
* is disabled; otherwise it is called internally by bridge_start().
*/
static int
bridge_output(struct ifnet *ifp, struct mbuf *m)
{
struct bridge_softc *sc = ifnet_softc(ifp);
struct ether_header *eh;
struct ifnet *dst_if = NULL;
int error = 0;
eh = mtod(m, struct ether_header *);
BRIDGE_LOCK(sc);
if (!(m->m_flags & (M_BCAST | M_MCAST))) {
dst_if = bridge_rtlookup(sc, eh->ether_dhost, 0);
}
(void) ifnet_stat_increment_out(ifp, 1, m->m_pkthdr.len, 0);
#if NBPFILTER > 0
if (sc->sc_bpf_output) {
bridge_bpf_output(ifp, m);
}
#endif
if (dst_if == NULL) {
/* callee will unlock */
bridge_broadcast(sc, NULL, m, 0);
} else {
ifnet_t bridge_ifp;
bridge_ifp = sc->sc_ifp;
BRIDGE_UNLOCK(sc);
error = bridge_enqueue(bridge_ifp, NULL, dst_if, m,
CHECKSUM_OPERATION_FINALIZE);
}
return error;
}
static void
bridge_finalize_cksum(struct ifnet *ifp, struct mbuf *m)
{
struct ether_header *eh;
bool is_ipv4;
uint32_t sw_csum, hwcap;
uint32_t did_sw;
uint32_t csum_flags;
eh = mtod(m, struct ether_header *);
if (!ether_header_type_is_ip(eh, &is_ipv4)) {
return;
}
/* do in software what the hardware cannot */
hwcap = (ifp->if_hwassist | CSUM_DATA_VALID);
csum_flags = m->m_pkthdr.csum_flags;
sw_csum = csum_flags & ~IF_HWASSIST_CSUM_FLAGS(hwcap);
sw_csum &= IF_HWASSIST_CSUM_MASK;
if (is_ipv4) {
if ((hwcap & CSUM_PARTIAL) && !(sw_csum & CSUM_DELAY_DATA) &&
(m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
if (m->m_pkthdr.csum_flags & CSUM_TCP) {
uint16_t start =
sizeof(*eh) + sizeof(struct ip);
uint16_t ulpoff =
m->m_pkthdr.csum_data & 0xffff;
m->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PARTIAL);
m->m_pkthdr.csum_tx_stuff = (ulpoff + start);
m->m_pkthdr.csum_tx_start = start;
} else {
sw_csum |= (CSUM_DELAY_DATA &
m->m_pkthdr.csum_flags);
}
}
did_sw = in_finalize_cksum(m, sizeof(*eh), sw_csum);
} else {
if ((hwcap & CSUM_PARTIAL) &&
!(sw_csum & CSUM_DELAY_IPV6_DATA) &&
(m->m_pkthdr.csum_flags & CSUM_DELAY_IPV6_DATA)) {
if (m->m_pkthdr.csum_flags & CSUM_TCPIPV6) {
uint16_t start =
sizeof(*eh) + sizeof(struct ip6_hdr);
uint16_t ulpoff =
m->m_pkthdr.csum_data & 0xffff;
m->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PARTIAL);
m->m_pkthdr.csum_tx_stuff = (ulpoff + start);
m->m_pkthdr.csum_tx_start = start;
} else {
sw_csum |= (CSUM_DELAY_IPV6_DATA &
m->m_pkthdr.csum_flags);
}
}
did_sw = in6_finalize_cksum(m, sizeof(*eh), -1, -1, sw_csum);
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"[%s] before 0x%x hwcap 0x%x sw_csum 0x%x did 0x%x after 0x%x",
ifp->if_xname, csum_flags, hwcap, sw_csum,
did_sw, m->m_pkthdr.csum_flags);
}
/*
* bridge_start:
*
* Start output on a bridge.
*
* This routine is invoked by the start worker thread; because we never call
* it directly, there is no need do deploy any serialization mechanism other
* than what's already used by the worker thread, i.e. this is already single
* threaded.
*
* This routine is called only when if_bridge_txstart is enabled.
*/
static void
bridge_start(struct ifnet *ifp)
{
struct mbuf *m;
for (;;) {
if (ifnet_dequeue(ifp, &m) != 0) {
break;
}
(void) bridge_output(ifp, m);
}
}
/*
* bridge_forward:
*
* The forwarding function of the bridge.
*
* NOTE: Releases the lock on return.
*/
static void
bridge_forward(struct bridge_softc *sc, struct bridge_iflist *sbif,
struct mbuf *m)
{
struct bridge_iflist *dbif;
ifnet_t bridge_ifp;
struct ifnet *src_if, *dst_if;
struct ether_header *eh;
uint16_t vlan;
uint8_t *dst;
int error;
struct mac_nat_record mnr;
bool translate_mac = FALSE;
uint32_t sc_filter_flags = 0;
BRIDGE_LOCK_ASSERT_HELD(sc);
bridge_ifp = sc->sc_ifp;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_OUTPUT,
"%s m 0x%llx", bridge_ifp->if_xname,
(uint64_t)VM_KERNEL_ADDRPERM(m));
src_if = m->m_pkthdr.rcvif;
if (src_if != sbif->bif_ifp) {
const char * src_if_name;
src_if_name = (src_if != NULL) ? src_if->if_xname : "?";
BRIDGE_LOG(LOG_NOTICE, 0,
"src_if %s != bif_ifp %s",
src_if_name, sbif->bif_ifp->if_xname);
goto drop;
}
(void) ifnet_stat_increment_in(bridge_ifp, 1, m->m_pkthdr.len, 0);
vlan = VLANTAGOF(m);
if ((sbif->bif_ifflags & IFBIF_STP) &&
sbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) {
goto drop;
}
eh = mtod(m, struct ether_header *);
dst = eh->ether_dhost;
/* If the interface is learning, record the address. */
if (sbif->bif_ifflags & IFBIF_LEARNING) {
error = bridge_rtupdate(sc, eh->ether_shost, vlan,
sbif, 0, IFBAF_DYNAMIC);
/*
* If the interface has addresses limits then deny any source
* that is not in the cache.
*/
if (error && sbif->bif_addrmax) {
goto drop;
}
}
if ((sbif->bif_ifflags & IFBIF_STP) != 0 &&
sbif->bif_stp.bp_state == BSTP_IFSTATE_LEARNING) {
goto drop;
}
/*
* At this point, the port either doesn't participate
* in spanning tree or it is in the forwarding state.
*/
/*
* If the packet is unicast, destined for someone on
* "this" side of the bridge, drop it.
*/
if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) {
/* unicast */
dst_if = bridge_rtlookup(sc, dst, vlan);
if (src_if == dst_if) {
goto drop;
}
} else {
/* broadcast/multicast */
/*
* Check if its a reserved multicast address, any address
* listed in 802.1D section 7.12.6 may not be forwarded by the
* bridge.
* This is currently 01-80-C2-00-00-00 to 01-80-C2-00-00-0F
*/
if (dst[0] == 0x01 && dst[1] == 0x80 &&
dst[2] == 0xc2 && dst[3] == 0x00 &&
dst[4] == 0x00 && dst[5] <= 0x0f) {
goto drop;
}
/* ...forward it to all interfaces. */
os_atomic_inc(&bridge_ifp->if_imcasts, relaxed);
dst_if = NULL;
}
/*
* If we have a destination interface which is a member of our bridge,
* OR this is a unicast packet, push it through the bpf(4) machinery.
* For broadcast or multicast packets, don't bother because it will
* be reinjected into ether_input. We do this before we pass the packets
* through the pfil(9) framework, as it is possible that pfil(9) will
* drop the packet, or possibly modify it, making it difficult to debug
* firewall issues on the bridge.
*/
#if NBPFILTER > 0
if (eh->ether_type == htons(ETHERTYPE_RSN_PREAUTH) ||
dst_if != NULL || (m->m_flags & (M_BCAST | M_MCAST)) == 0) {
m->m_pkthdr.rcvif = bridge_ifp;
BRIDGE_BPF_MTAP_INPUT(sc, m);
}
#endif /* NBPFILTER */
if (dst_if == NULL) {
/* bridge_broadcast will unlock */
bridge_broadcast(sc, sbif, m, 1);
return;
}
/*
* Unicast.
*/
/*
* At this point, we're dealing with a unicast frame
* going to a different interface.
*/
if ((dst_if->if_flags & IFF_RUNNING) == 0) {
goto drop;
}
dbif = bridge_lookup_member_if(sc, dst_if);
if (dbif == NULL) {
/* Not a member of the bridge (anymore?) */
goto drop;
}
/* Private segments can not talk to each other */
if (sbif->bif_ifflags & dbif->bif_ifflags & IFBIF_PRIVATE) {
goto drop;
}
if ((dbif->bif_ifflags & IFBIF_STP) &&
dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) {
goto drop;
}
#if HAS_DHCPRA_MASK
/* APPLE MODIFICATION <rdar:6985737> */
if ((dst_if->if_extflags & IFEXTF_DHCPRA_MASK) != 0) {
m = ip_xdhcpra_output(dst_if, m);
if (!m) {
++bridge_ifp.if_xdhcpra;
BRIDGE_UNLOCK(sc);
return;
}
}
#endif /* HAS_DHCPRA_MASK */
if (dbif == sc->sc_mac_nat_bif) {
/* determine how to translate the packet */
translate_mac
= bridge_mac_nat_output(sc, sbif, &m, &mnr);
if (m == NULL) {
/* packet was deallocated */
BRIDGE_UNLOCK(sc);
return;
}
} else if (bif_has_checksum_offload(dbif) &&
!bif_has_checksum_offload(sbif)) {
/*
* If the destination interface has checksum offload enabled,
* verify the checksum now, unless the source interface also has
* checksum offload enabled. The checksum in that case has
* already just been computed and verifying it is unnecessary.
*/
error = bridge_verify_checksum(&m, &dbif->bif_stats);
if (error != 0) {
BRIDGE_UNLOCK(sc);
if (m != NULL) {
m_freem(m);
}
return;
}
}
sc_filter_flags = sc->sc_filter_flags;
BRIDGE_UNLOCK(sc);
if (PF_IS_ENABLED && (sc_filter_flags & IFBF_FILT_MEMBER)) {
if (bridge_pf(&m, dst_if, sc_filter_flags, FALSE) != 0) {
return;
}
if (m == NULL) {
return;
}
}
/* if we need to, translate the MAC address */
if (translate_mac) {
bridge_mac_nat_translate(&m, &mnr, IF_LLADDR(dst_if));
}
/*
* We're forwarding an inbound packet in which the checksum must
* already have been computed and if required, verified.
*/
if (m != NULL) {
(void) bridge_enqueue(bridge_ifp, src_if, dst_if, m,
CHECKSUM_OPERATION_CLEAR_OFFLOAD);
}
return;
drop:
BRIDGE_UNLOCK(sc);
m_freem(m);
}
static void
inject_input_packet(ifnet_t ifp, mbuf_t m)
{
mbuf_pkthdr_setrcvif(m, ifp);
mbuf_pkthdr_setheader(m, mbuf_data(m));
mbuf_setdata(m, (char *)mbuf_data(m) + ETHER_HDR_LEN,
mbuf_len(m) - ETHER_HDR_LEN);
mbuf_pkthdr_adjustlen(m, -ETHER_HDR_LEN);
m->m_flags |= M_PROTO1; /* set to avoid loops */
dlil_input_packet_list(ifp, m);
return;
}
static bool
in_addr_is_ours(struct in_addr ip)
{
struct in_ifaddr *ia;
bool ours = false;
lck_rw_lock_shared(&in_ifaddr_rwlock);
TAILQ_FOREACH(ia, INADDR_HASH(ip.s_addr), ia_hash) {
if (IA_SIN(ia)->sin_addr.s_addr == ip.s_addr) {
ours = true;
break;
}
}
lck_rw_done(&in_ifaddr_rwlock);
return ours;
}
static bool
in6_addr_is_ours(const struct in6_addr * ip6_p, uint32_t ifscope)
{
struct in6_ifaddr *ia6;
bool ours = false;
if (in6_embedded_scope && IN6_IS_ADDR_LINKLOCAL(ip6_p)) {
struct in6_addr dst_ip;
/* need to embed scope ID for comparison */
bcopy(ip6_p, &dst_ip, sizeof(dst_ip));
dst_ip.s6_addr16[1] = htons(ifscope);
ip6_p = &dst_ip;
}
lck_rw_lock_shared(&in6_ifaddr_rwlock);
TAILQ_FOREACH(ia6, IN6ADDR_HASH(ip6_p), ia6_hash) {
if (in6_are_addr_equal_scoped(&ia6->ia_addr.sin6_addr, ip6_p,
ia6->ia_addr.sin6_scope_id, ifscope)) {
ours = true;
break;
}
}
lck_rw_done(&in6_ifaddr_rwlock);
return ours;
}
static void
bridge_interface_input(ifnet_t bridge_ifp, mbuf_t m,
bpf_packet_func bpf_input_func)
{
size_t byte_count;
struct ether_header *eh;
errno_t error;
bool is_ipv4;
int len;
u_int mac_hlen;
int pkt_count;
/* segment large packets before sending them up */
if (if_bridge_segmentation == 0) {
goto done;
}
len = m->m_pkthdr.len;
if (len <= (bridge_ifp->if_mtu + ETHER_HDR_LEN)) {
goto done;
}
eh = mtod(m, struct ether_header *);
if (!ether_header_type_is_ip(eh, &is_ipv4)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"large non IPv4/IPv6 packet");
goto done;
}
/*
* We have a large IPv4/IPv6 TCP packet. Segment it if required.
*
* If gso_tcp() returns success (0), the packet(s) are
* ready to be passed up. If the destination is a local IP address,
* the packet will be passed up as a large, single packet.
*
* If gso_tcp() returns an error, the packet has already
* been freed.
*/
mac_hlen = sizeof(*eh);
error = gso_tcp(bridge_ifp, &m, mac_hlen, is_ipv4, FALSE);
if (error != 0) {
return;
}
done:
pkt_count = 0;
byte_count = 0;
for (mbuf_t scan = m; scan != NULL; scan = scan->m_nextpkt) {
/* Mark the packet as arriving on the bridge interface */
mbuf_pkthdr_setrcvif(scan, bridge_ifp);
mbuf_pkthdr_setheader(scan, mbuf_data(scan));
if (bpf_input_func != NULL) {
(*bpf_input_func)(bridge_ifp, scan);
}
mbuf_setdata(scan, (char *)mbuf_data(scan) + ETHER_HDR_LEN,
mbuf_len(scan) - ETHER_HDR_LEN);
mbuf_pkthdr_adjustlen(scan, -ETHER_HDR_LEN);
byte_count += mbuf_pkthdr_len(scan);
pkt_count++;
}
(void)ifnet_stat_increment_in(bridge_ifp, pkt_count, byte_count, 0);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT,
"%s %d packet(s) %ld bytes",
bridge_ifp->if_xname, pkt_count, byte_count);
dlil_input_packet_list(bridge_ifp, m);
return;
}
static bool
is_our_ip(ip_packet_info_t info_p, uint32_t ifscope)
{
bool ours;
if (info_p->ip_is_ipv4) {
struct in_addr dst_ip;
bcopy(&info_p->ip_hdr.ip->ip_dst, &dst_ip, sizeof(dst_ip));
ours = in_addr_is_ours(dst_ip);
} else {
ours = in6_addr_is_ours(&info_p->ip_hdr.ip6->ip6_dst, ifscope);
}
return ours;
}
static inline errno_t
bridge_vmnet_tag_input(ifnet_t bridge_ifp, ifnet_t ifp,
const u_char * ether_dhost, mbuf_t *mp,
bool is_broadcast, bool is_ip, bool is_ipv4,
ip_packet_info * info_p, struct bripstats * stats_p,
bool *info_initialized)
{
errno_t error = 0;
bool is_local = false;
struct pf_mtag *pf_mtag;
u_int16_t tag = vmnet_tag;
*info_initialized = false;
if (is_broadcast) {
if (_ether_cmp(ether_dhost, etherbroadcastaddr) == 0) {
tag = vmnet_broadcast_tag;
} else {
tag = vmnet_multicast_tag;
}
} else if (is_ip) {
unsigned int mac_hlen = sizeof(struct ether_header);
bzero(stats_p, sizeof(*stats_p));
*info_initialized = true;
error = bridge_get_ip_proto(mp, mac_hlen, is_ipv4, info_p,
stats_p);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_INPUT,
"%s(%s) bridge_get_ip_proto failed %d",
bridge_ifp->if_xname,
ifp->if_xname, error);
if (*mp == NULL) {
return EJUSTRETURN;
}
} else {
is_local = is_our_ip(info_p, bridge_ifp->if_index);
if (is_local) {
tag = vmnet_local_tag;
}
}
}
pf_mtag = pf_get_mtag(*mp);
if (pf_mtag != NULL) {
pf_mtag->pftag_tag = tag;
}
#if DEBUG || DEVELOPMENT
{
bool forced;
BRIDGE_ERROR_GET_FORCED(forced, BRIDGE_FORCE_ONE);
if (forced) {
m_freem(*mp);
*mp = NULL;
error = EJUSTRETURN;
goto done;
}
BRIDGE_ERROR_GET_FORCED(forced, BRIDGE_FORCE_TWO);
if (forced) {
error = _EBADIP;
goto done;
}
}
done:
#endif /* DEBUG || DEVELOPMENT */
return error;
}
static void
bripstats_apply(struct bripstats *dst_p, const struct bripstats *src_p)
{
dst_p->bips_ip += src_p->bips_ip;
dst_p->bips_ip6 += src_p->bips_ip6;
dst_p->bips_udp += src_p->bips_udp;
dst_p->bips_tcp += src_p->bips_tcp;
dst_p->bips_bad_ip += src_p->bips_bad_ip;
dst_p->bips_bad_ip6 += src_p->bips_bad_ip6;
dst_p->bips_bad_udp += src_p->bips_bad_udp;
dst_p->bips_bad_tcp += src_p->bips_bad_tcp;
}
static void
bridge_bripstats_apply(ifnet_t ifp, const struct bripstats *stats_p)
{
struct bridge_iflist *bif;
struct bridge_softc *sc = ifp->if_bridge;
BRIDGE_LOCK(sc);
bif = bridge_lookup_member_if(sc, ifp);
if (bif == NULL) {
goto done;
}
if (!bif_has_checksum_offload(bif)) {
goto done;
}
bripstats_apply(&bif->bif_stats.brms_in_ip, stats_p);
done:
BRIDGE_UNLOCK(sc);
return;
}
/*
* bridge_input:
*
* Filter input from a member interface. Queue the packet for
* bridging if it is not for us.
*/
errno_t
bridge_input(struct ifnet *ifp, mbuf_t *data)
{
struct bridge_softc *sc = ifp->if_bridge;
struct bridge_iflist *bif, *bif2;
struct ether_header eh_in;
bool is_ip = false;
bool is_ipv4 = false;
ifnet_t bridge_ifp;
struct mbuf *mc, *mc2;
unsigned int mac_hlen = sizeof(struct ether_header);
uint16_t vlan;
errno_t error;
ip_packet_info info;
struct bripstats stats;
bool info_initialized = false;
errno_t ip_packet_error = 0;
bool is_broadcast;
bool is_ip_broadcast = false;
bool is_ifp_mac = false;
mbuf_t m = *data;
uint32_t sc_filter_flags = 0;
bridge_ifp = sc->sc_ifp;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT,
"%s from %s m 0x%llx data 0x%llx",
bridge_ifp->if_xname, ifp->if_xname,
(uint64_t)VM_KERNEL_ADDRPERM(m),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_data(m)));
if ((sc->sc_ifp->if_flags & IFF_RUNNING) == 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT,
"%s not running passing along",
bridge_ifp->if_xname);
return 0;
}
vlan = VLANTAGOF(m);
#ifdef IFF_MONITOR
/*
* Implement support for bridge monitoring. If this flag has been
* set on this interface, discard the packet once we push it through
* the bpf(4) machinery, but before we do, increment the byte and
* packet counters associated with this interface.
*/
if ((bridge_ifp->if_flags & IFF_MONITOR) != 0) {
m->m_pkthdr.rcvif = bridge_ifp;
BRIDGE_BPF_MTAP_INPUT(sc, m);
(void) ifnet_stat_increment_in(bridge_ifp, 1, m->m_pkthdr.len, 0);
*data = NULL;
m_freem(m);
return EJUSTRETURN;
}
#endif /* IFF_MONITOR */
is_broadcast = (m->m_flags & (M_BCAST | M_MCAST)) != 0;
/*
* Need to clear the promiscuous flag otherwise it will be
* dropped by DLIL after processing filters
*/
if ((mbuf_flags(m) & MBUF_PROMISC)) {
mbuf_setflags_mask(m, 0, MBUF_PROMISC);
}
/* copy the ethernet header */
eh_in = *(mtod(m, struct ether_header *));
is_ip = ether_header_type_is_ip(&eh_in, &is_ipv4);
if (if_bridge_vmnet_pf_tagging != 0 && IFNET_IS_VMNET(ifp)) {
/* tag packets coming from VMNET interfaces */
ip_packet_error = bridge_vmnet_tag_input(bridge_ifp, ifp,
eh_in.ether_dhost, data, is_broadcast, is_ip, is_ipv4,
&info, &stats, &info_initialized);
m = *data;
if (m == NULL) {
bridge_bripstats_apply(ifp, &stats);
return EJUSTRETURN;
}
}
sc_filter_flags = sc->sc_filter_flags;
if (PF_IS_ENABLED && (sc_filter_flags & IFBF_FILT_MEMBER)) {
error = bridge_pf(data, ifp, sc_filter_flags, TRUE);
m = *data;
if (error != 0 || m == NULL) {
return EJUSTRETURN;
}
}
BRIDGE_LOCK(sc);
bif = bridge_lookup_member_if(sc, ifp);
if (bif == NULL) {
BRIDGE_UNLOCK(sc);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT,
"%s bridge_lookup_member_if failed",
bridge_ifp->if_xname);
return 0;
}
if (is_ip && bif_has_checksum_offload(bif)) {
if (info_initialized) {
bripstats_apply(&bif->bif_stats.brms_in_ip, &stats);
} else {
error = bridge_get_ip_proto(data, mac_hlen, is_ipv4,
&info, &bif->bif_stats.brms_in_ip);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_CHECKSUM,
"%s(%s) bridge_get_ip_proto failed %d",
bridge_ifp->if_xname,
bif->bif_ifp->if_xname, error);
ip_packet_error = error;
}
}
if (ip_packet_error == 0) {
/* need to compute IP/UDP/TCP/checksums */
error = bridge_offload_checksum(data, &info,
&bif->bif_stats);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_CHECKSUM,
"%s(%s) bridge_offload_checksum failed %d",
bridge_ifp->if_xname,
bif->bif_ifp->if_xname, error);
ip_packet_error = error;
}
}
if (ip_packet_error != 0) {
BRIDGE_UNLOCK(sc);
if (*data != NULL) {
m_freem(*data);
*data = NULL;
}
return EJUSTRETURN;
}
m = *data;
}
if (bif->bif_flags & BIFF_HOST_FILTER) {
error = bridge_host_filter(bif, data);
if (error != 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_INPUT,
"%s bridge_host_filter failed",
bif->bif_ifp->if_xname);
BRIDGE_UNLOCK(sc);
return EJUSTRETURN;
}
m = *data;
}
if (!is_broadcast &&
_ether_cmp(eh_in.ether_dhost, IF_LLADDR(ifp)) == 0) {
/* the packet is unicast to the interface's MAC address */
if (is_ip && sc->sc_mac_nat_bif == bif) {
/* doing MAC-NAT, check if destination is IP broadcast */
is_ip_broadcast = is_broadcast_ip_packet(data);
if (*data == NULL) {
BRIDGE_UNLOCK(sc);
return EJUSTRETURN;
}
m = *data;
}
if (!is_ip_broadcast) {
is_ifp_mac = TRUE;
}
}
bridge_span(sc, m);
if (is_broadcast || is_ip_broadcast) {
if (is_broadcast && (m->m_flags & M_MCAST) != 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MCAST,
" multicast: "
"%02x:%02x:%02x:%02x:%02x:%02x",
eh_in.ether_dhost[0], eh_in.ether_dhost[1],
eh_in.ether_dhost[2], eh_in.ether_dhost[3],
eh_in.ether_dhost[4], eh_in.ether_dhost[5]);
}
/* Tap off 802.1D packets; they do not get forwarded. */
if (is_broadcast &&
_ether_cmp(eh_in.ether_dhost, bstp_etheraddr) == 0) {
#if BRIDGESTP
m = bstp_input(&bif->bif_stp, ifp, m);
#else /* !BRIDGESTP */
m_freem(m);
m = NULL;
#endif /* !BRIDGESTP */
if (m == NULL) {
BRIDGE_UNLOCK(sc);
return EJUSTRETURN;
}
}
if ((bif->bif_ifflags & IFBIF_STP) &&
bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) {
BRIDGE_UNLOCK(sc);
return 0;
}
/*
* Make a deep copy of the packet and enqueue the copy
* for bridge processing.
*/
mc = m_dup(m, M_DONTWAIT);
if (mc == NULL) {
BRIDGE_UNLOCK(sc);
return 0;
}
/*
* Perform the bridge forwarding function with the copy.
*
* Note that bridge_forward calls BRIDGE_UNLOCK
*/
if (is_ip_broadcast) {
struct ether_header *eh;
/* make the copy look like it is actually broadcast */
mc->m_flags |= M_BCAST;
eh = mtod(mc, struct ether_header *);
bcopy(etherbroadcastaddr, eh->ether_dhost,
ETHER_ADDR_LEN);
}
bridge_forward(sc, bif, mc);
/*
* Reinject the mbuf as arriving on the bridge so we have a
* chance at claiming multicast packets. We can not loop back
* here from ether_input as a bridge is never a member of a
* bridge.
*/
VERIFY(bridge_ifp->if_bridge == NULL);
mc2 = m_dup(m, M_DONTWAIT);
if (mc2 != NULL) {
/* Keep the layer3 header aligned */
int i = min(mc2->m_pkthdr.len, max_protohdr);
mc2 = m_copyup(mc2, i, ETHER_ALIGN);
}
if (mc2 != NULL) {
/* mark packet as arriving on the bridge */
mc2->m_pkthdr.rcvif = bridge_ifp;
mc2->m_pkthdr.pkt_hdr = mbuf_data(mc2);
BRIDGE_BPF_MTAP_INPUT(sc, mc2);
(void) mbuf_setdata(mc2,
(char *)mbuf_data(mc2) + ETHER_HDR_LEN,
mbuf_len(mc2) - ETHER_HDR_LEN);
(void) mbuf_pkthdr_adjustlen(mc2, -ETHER_HDR_LEN);
(void) ifnet_stat_increment_in(bridge_ifp, 1,
mbuf_pkthdr_len(mc2), 0);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MCAST,
"%s mcast for us", bridge_ifp->if_xname);
dlil_input_packet_list(bridge_ifp, mc2);
}
/* Return the original packet for local processing. */
return 0;
}
if ((bif->bif_ifflags & IFBIF_STP) &&
bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) {
BRIDGE_UNLOCK(sc);
return 0;
}
#ifdef DEV_CARP
#define CARP_CHECK_WE_ARE_DST(iface) \
((iface)->if_carp &&\
carp_forus((iface)->if_carp, eh_in.ether_dhost))
#define CARP_CHECK_WE_ARE_SRC(iface) \
((iface)->if_carp &&\
carp_forus((iface)->if_carp, eh_in.ether_shost))
#else
#define CARP_CHECK_WE_ARE_DST(iface) 0
#define CARP_CHECK_WE_ARE_SRC(iface) 0
#endif
#define PFIL_HOOKED_INET6 PFIL_HOOKED(&inet6_pfil_hook)
#define PFIL_PHYS(sc, ifp, m)
#define GRAB_OUR_PACKETS(iface) \
if ((iface)->if_type == IFT_GIF) \
continue; \
/* It is destined for us. */ \
if (_ether_cmp(IF_LLADDR((iface)), eh_in.ether_dhost) == 0 || \
CARP_CHECK_WE_ARE_DST((iface))) { \
if ((iface)->if_type == IFT_BRIDGE) { \
BRIDGE_BPF_MTAP_INPUT(sc, m); \
/* Filter on the physical interface. */ \
PFIL_PHYS(sc, iface, m); \
} else { \
bpf_tap_in(iface, DLT_EN10MB, m, NULL, 0); \
} \
if (bif->bif_ifflags & IFBIF_LEARNING) { \
error = bridge_rtupdate(sc, eh_in.ether_shost, \
vlan, bif, 0, IFBAF_DYNAMIC); \
if (error && bif->bif_addrmax) { \
BRIDGE_UNLOCK(sc); \
m_freem(m); \
return (EJUSTRETURN); \
} \
} \
BRIDGE_UNLOCK(sc); \
inject_input_packet(iface, m); \
return (EJUSTRETURN); \
} \
\
/* We just received a packet that we sent out. */ \
if (_ether_cmp(IF_LLADDR((iface)), eh_in.ether_shost) == 0 || \
CARP_CHECK_WE_ARE_SRC((iface))) { \
BRIDGE_UNLOCK(sc); \
m_freem(m); \
return (EJUSTRETURN); \
}
/*
* Unicast.
*/
/* handle MAC-NAT if enabled */
if (is_ifp_mac && sc->sc_mac_nat_bif == bif) {
ifnet_t dst_if;
boolean_t is_input = FALSE;
dst_if = bridge_mac_nat_input(sc, data, &is_input);
m = *data;
if (dst_if == ifp) {
/* our input packet */
} else if (dst_if != NULL || m == NULL) {
BRIDGE_UNLOCK(sc);
if (dst_if != NULL) {
ASSERT(m != NULL);
if (is_input) {
inject_input_packet(dst_if, m);
} else {
(void)bridge_enqueue(bridge_ifp, NULL,
dst_if, m,
CHECKSUM_OPERATION_CLEAR_OFFLOAD);
}
}
return EJUSTRETURN;
}
}
/*
* If the packet is for the bridge, pass it up for local processing.
*/
if (_ether_cmp(eh_in.ether_dhost, IF_LLADDR(bridge_ifp)) == 0 ||
CARP_CHECK_WE_ARE_DST(bridge_ifp)) {
bpf_packet_func bpf_input_func = sc->sc_bpf_input;
/*
* If the interface is learning, and the source
* address is valid and not multicast, record
* the address.
*/
if (bif->bif_ifflags & IFBIF_LEARNING) {
(void) bridge_rtupdate(sc, eh_in.ether_shost,
vlan, bif, 0, IFBAF_DYNAMIC);
}
BRIDGE_UNLOCK(sc);
bridge_interface_input(bridge_ifp, m, bpf_input_func);
return EJUSTRETURN;
}
/*
* if the destination of the packet is for the MAC address of
* the member interface itself, then we don't need to forward
* it -- just pass it back. Note that it'll likely just be
* dropped by the stack, but if something else is bound to
* the interface directly (for example, the wireless stats
* protocol -- although that actually uses BPF right now),
* then it will consume the packet
*
* ALSO, note that we do this check AFTER checking for the
* bridge's own MAC address, because the bridge may be
* using the SAME MAC address as one of its interfaces
*/
if (is_ifp_mac) {
#ifdef VERY_VERY_VERY_DIAGNOSTIC
BRIDGE_LOG(LOG_NOTICE, 0,
"not forwarding packet bound for member interface");
#endif
BRIDGE_UNLOCK(sc);
return 0;
}
/* Now check the remaining bridge members. */
TAILQ_FOREACH(bif2, &sc->sc_iflist, bif_next) {
if (bif2->bif_ifp != ifp) {
GRAB_OUR_PACKETS(bif2->bif_ifp);
}
}
#undef CARP_CHECK_WE_ARE_DST
#undef CARP_CHECK_WE_ARE_SRC
#undef GRAB_OUR_PACKETS
/*
* Perform the bridge forwarding function.
*
* Note that bridge_forward calls BRIDGE_UNLOCK
*/
bridge_forward(sc, bif, m);
return EJUSTRETURN;
}
/*
* bridge_broadcast:
*
* Send a frame to all interfaces that are members of
* the bridge, except for the one on which the packet
* arrived.
*
* NOTE: Releases the lock on return.
*/
static void
bridge_broadcast(struct bridge_softc *sc, struct bridge_iflist * sbif,
struct mbuf *m, int runfilt)
{
ifnet_t bridge_ifp;
struct bridge_iflist *dbif;
struct ifnet * src_if;
struct mbuf *mc;
struct mbuf *mc_in;
struct ifnet *dst_if;
int error = 0, used = 0;
boolean_t bridge_if_out;
ChecksumOperation cksum_op;
struct mac_nat_record mnr;
struct bridge_iflist *mac_nat_bif = sc->sc_mac_nat_bif;
boolean_t translate_mac = FALSE;
uint32_t sc_filter_flags = 0;
bridge_ifp = sc->sc_ifp;
if (sbif != NULL) {
bridge_if_out = FALSE;
src_if = sbif->bif_ifp;
cksum_op = CHECKSUM_OPERATION_CLEAR_OFFLOAD;
if (mac_nat_bif != NULL && sbif != mac_nat_bif) {
/* get the translation record while holding the lock */
translate_mac
= bridge_mac_nat_output(sc, sbif, &m, &mnr);
if (m == NULL) {
/* packet was deallocated */
BRIDGE_UNLOCK(sc);
return;
}
}
} else {
/*
* sbif is NULL when the bridge interface calls
* bridge_broadcast().
*/
bridge_if_out = TRUE;
cksum_op = CHECKSUM_OPERATION_FINALIZE;
sbif = NULL;
src_if = NULL;
}
BRIDGE_LOCK2REF(sc, error);
if (error) {
m_freem(m);
return;
}
TAILQ_FOREACH(dbif, &sc->sc_iflist, bif_next) {
dst_if = dbif->bif_ifp;
if (dst_if == src_if) {
/* skip the interface that the packet came in on */
continue;
}
/* Private segments can not talk to each other */
if (sbif != NULL &&
(sbif->bif_ifflags & dbif->bif_ifflags & IFBIF_PRIVATE)) {
continue;
}
if ((dbif->bif_ifflags & IFBIF_STP) &&
dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) {
continue;
}
if ((dbif->bif_ifflags & IFBIF_DISCOVER) == 0 &&
(m->m_flags & (M_BCAST | M_MCAST)) == 0) {
continue;
}
if ((dst_if->if_flags & IFF_RUNNING) == 0) {
continue;
}
if (!(dbif->bif_flags & BIFF_MEDIA_ACTIVE)) {
continue;
}
if (TAILQ_NEXT(dbif, bif_next) == NULL) {
mc = m;
used = 1;
} else {
mc = m_dup(m, M_DONTWAIT);
if (mc == NULL) {
(void) ifnet_stat_increment_out(bridge_ifp,
0, 0, 1);
continue;
}
}
/*
* If broadcast input is enabled, do so only if this
* is an input packet.
*/
if (!bridge_if_out &&
(dbif->bif_flags & BIFF_INPUT_BROADCAST) != 0) {
mc_in = m_dup(mc, M_DONTWAIT);
/* this could fail, but we continue anyways */
} else {
mc_in = NULL;
}
/* out */
if (translate_mac && mac_nat_bif == dbif) {
/* translate the packet without holding the lock */
bridge_mac_nat_translate(&mc, &mnr, IF_LLADDR(dst_if));
}
sc_filter_flags = sc->sc_filter_flags;
if (runfilt &&
PF_IS_ENABLED && (sc_filter_flags & IFBF_FILT_MEMBER)) {
if (used == 0) {
/* Keep the layer3 header aligned */
int i = min(mc->m_pkthdr.len, max_protohdr);
mc = m_copyup(mc, i, ETHER_ALIGN);
if (mc == NULL) {
(void) ifnet_stat_increment_out(
sc->sc_ifp, 0, 0, 1);
if (mc_in != NULL) {
m_freem(mc_in);
mc_in = NULL;
}
continue;
}
}
if (bridge_pf(&mc, dst_if, sc_filter_flags, FALSE) != 0) {
if (mc_in != NULL) {
m_freem(mc_in);
mc_in = NULL;
}
continue;
}
if (mc == NULL) {
if (mc_in != NULL) {
m_freem(mc_in);
mc_in = NULL;
}
continue;
}
}
if (mc != NULL) {
/* verify checksum if necessary */
if (bif_has_checksum_offload(dbif) && sbif != NULL &&
!bif_has_checksum_offload(sbif)) {
error = bridge_verify_checksum(&mc,
&dbif->bif_stats);
if (error != 0) {
if (mc != NULL) {
m_freem(mc);
}
mc = NULL;
}
}
if (mc != NULL) {
(void) bridge_enqueue(bridge_ifp,
NULL, dst_if, mc, cksum_op);
}
}
/* in */
if (mc_in == NULL) {
continue;
}
bpf_tap_in(dst_if, DLT_EN10MB, mc_in, NULL, 0);
mbuf_pkthdr_setrcvif(mc_in, dst_if);
mbuf_pkthdr_setheader(mc_in, mbuf_data(mc_in));
mbuf_setdata(mc_in, (char *)mbuf_data(mc_in) + ETHER_HDR_LEN,
mbuf_len(mc_in) - ETHER_HDR_LEN);
mbuf_pkthdr_adjustlen(mc_in, -ETHER_HDR_LEN);
mc_in->m_flags |= M_PROTO1; /* set to avoid loops */
dlil_input_packet_list(dst_if, mc_in);
}
if (used == 0) {
m_freem(m);
}
BRIDGE_UNREF(sc);
}
/*
* bridge_span:
*
* Duplicate a packet out one or more interfaces that are in span mode,
* the original mbuf is unmodified.
*/
static void
bridge_span(struct bridge_softc *sc, struct mbuf *m)
{
struct bridge_iflist *bif;
struct ifnet *dst_if;
struct mbuf *mc;
if (TAILQ_EMPTY(&sc->sc_spanlist)) {
return;
}
TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
dst_if = bif->bif_ifp;
if ((dst_if->if_flags & IFF_RUNNING) == 0) {
continue;
}
mc = m_copypacket(m, M_DONTWAIT);
if (mc == NULL) {
(void) ifnet_stat_increment_out(sc->sc_ifp, 0, 0, 1);
continue;
}
(void) bridge_enqueue(sc->sc_ifp, NULL, dst_if, mc,
CHECKSUM_OPERATION_NONE);
}
}
/*
* bridge_rtupdate:
*
* Add a bridge routing entry.
*/
static int
bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst, uint16_t vlan,
struct bridge_iflist *bif, int setflags, uint8_t flags)
{
struct bridge_rtnode *brt;
int error;
BRIDGE_LOCK_ASSERT_HELD(sc);
/* Check the source address is valid and not multicast. */
if (ETHER_IS_MULTICAST(dst) ||
(dst[0] == 0 && dst[1] == 0 && dst[2] == 0 &&
dst[3] == 0 && dst[4] == 0 && dst[5] == 0) != 0) {
return EINVAL;
}
/* 802.1p frames map to vlan 1 */
if (vlan == 0) {
vlan = 1;
}
/*
* A route for this destination might already exist. If so,
* update it, otherwise create a new one.
*/
if ((brt = bridge_rtnode_lookup(sc, dst, vlan)) == NULL) {
if (sc->sc_brtcnt >= sc->sc_brtmax) {
sc->sc_brtexceeded++;
return ENOSPC;
}
/* Check per interface address limits (if enabled) */
if (bif->bif_addrmax && bif->bif_addrcnt >= bif->bif_addrmax) {
bif->bif_addrexceeded++;
return ENOSPC;
}
/*
* Allocate a new bridge forwarding node, and
* initialize the expiration time and Ethernet
* address.
*/
brt = zalloc_noblock(bridge_rtnode_pool);
if (brt == NULL) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_RT_TABLE,
"zalloc_nolock failed");
return ENOMEM;
}
bzero(brt, sizeof(struct bridge_rtnode));
if (bif->bif_ifflags & IFBIF_STICKY) {
brt->brt_flags = IFBAF_STICKY;
} else {
brt->brt_flags = IFBAF_DYNAMIC;
}
memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN);
brt->brt_vlan = vlan;
if ((error = bridge_rtnode_insert(sc, brt)) != 0) {
zfree(bridge_rtnode_pool, brt);
return error;
}
brt->brt_dst = bif;
bif->bif_addrcnt++;
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_RT_TABLE,
"added %02x:%02x:%02x:%02x:%02x:%02x "
"on %s count %u hashsize %u",
dst[0], dst[1], dst[2], dst[3], dst[4], dst[5],
sc->sc_ifp->if_xname, sc->sc_brtcnt,
sc->sc_rthash_size);
}
if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
brt->brt_dst != bif) {
brt->brt_dst->bif_addrcnt--;
brt->brt_dst = bif;
brt->brt_dst->bif_addrcnt++;
}
if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
unsigned long now;
now = (unsigned long) net_uptime();
brt->brt_expire = now + sc->sc_brttimeout;
}
if (setflags) {
brt->brt_flags = flags;
}
return 0;
}
/*
* bridge_rtlookup:
*
* Lookup the destination interface for an address.
*/
static struct ifnet *
bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan)
{
struct bridge_rtnode *brt;
BRIDGE_LOCK_ASSERT_HELD(sc);
if ((brt = bridge_rtnode_lookup(sc, addr, vlan)) == NULL) {
return NULL;
}
return brt->brt_ifp;
}
/*
* bridge_rttrim:
*
* Trim the routine table so that we have a number
* of routing entries less than or equal to the
* maximum number.
*/
static void
bridge_rttrim(struct bridge_softc *sc)
{
struct bridge_rtnode *brt, *nbrt;
BRIDGE_LOCK_ASSERT_HELD(sc);
/* Make sure we actually need to do this. */
if (sc->sc_brtcnt <= sc->sc_brtmax) {
return;
}
/* Force an aging cycle; this might trim enough addresses. */
bridge_rtage(sc);
if (sc->sc_brtcnt <= sc->sc_brtmax) {
return;
}
LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) {
if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
bridge_rtnode_destroy(sc, brt);
if (sc->sc_brtcnt <= sc->sc_brtmax) {
return;
}
}
}
}
/*
* bridge_aging_timer:
*
* Aging periodic timer for the bridge routing table.
*/
static void
bridge_aging_timer(struct bridge_softc *sc)
{
BRIDGE_LOCK_ASSERT_HELD(sc);
bridge_rtage(sc);
if ((sc->sc_ifp->if_flags & IFF_RUNNING) &&
(sc->sc_flags & SCF_DETACHING) == 0) {
sc->sc_aging_timer.bdc_sc = sc;
sc->sc_aging_timer.bdc_func = bridge_aging_timer;
sc->sc_aging_timer.bdc_ts.tv_sec = bridge_rtable_prune_period;
bridge_schedule_delayed_call(&sc->sc_aging_timer);
}
}
/*
* bridge_rtage:
*
* Perform an aging cycle.
*/
static void
bridge_rtage(struct bridge_softc *sc)
{
struct bridge_rtnode *brt, *nbrt;
unsigned long now;
BRIDGE_LOCK_ASSERT_HELD(sc);
now = (unsigned long) net_uptime();
LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) {
if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
if (now >= brt->brt_expire) {
bridge_rtnode_destroy(sc, brt);
}
}
}
if (sc->sc_mac_nat_bif != NULL) {
bridge_mac_nat_age_entries(sc, now);
}
}
/*
* bridge_rtflush:
*
* Remove all dynamic addresses from the bridge.
*/
static void
bridge_rtflush(struct bridge_softc *sc, int full)
{
struct bridge_rtnode *brt, *nbrt;
BRIDGE_LOCK_ASSERT_HELD(sc);
LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) {
if (full || (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
bridge_rtnode_destroy(sc, brt);
}
}
}
/*
* bridge_rtdaddr:
*
* Remove an address from the table.
*/
static int
bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan)
{
struct bridge_rtnode *brt;
int found = 0;
BRIDGE_LOCK_ASSERT_HELD(sc);
/*
* If vlan is zero then we want to delete for all vlans so the lookup
* may return more than one.
*/
while ((brt = bridge_rtnode_lookup(sc, addr, vlan)) != NULL) {
bridge_rtnode_destroy(sc, brt);
found = 1;
}
return found ? 0 : ENOENT;
}
/*
* bridge_rtdelete:
*
* Delete routes to a specific member interface.
*/
static void
bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int full)
{
struct bridge_rtnode *brt, *nbrt;
BRIDGE_LOCK_ASSERT_HELD(sc);
LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) {
if (brt->brt_ifp == ifp && (full ||
(brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) {
bridge_rtnode_destroy(sc, brt);
}
}
}
/*
* bridge_rtable_init:
*
* Initialize the route table for this bridge.
*/
static int
bridge_rtable_init(struct bridge_softc *sc)
{
u_int32_t i;
sc->sc_rthash = kalloc_type(struct _bridge_rtnode_list,
BRIDGE_RTHASH_SIZE, Z_WAITOK_ZERO_NOFAIL);
sc->sc_rthash_size = BRIDGE_RTHASH_SIZE;
for (i = 0; i < sc->sc_rthash_size; i++) {
LIST_INIT(&sc->sc_rthash[i]);
}
sc->sc_rthash_key = RandomULong();
LIST_INIT(&sc->sc_rtlist);
return 0;
}
/*
* bridge_rthash_delayed_resize:
*
* Resize the routing table hash on a delayed thread call.
*/
static void
bridge_rthash_delayed_resize(struct bridge_softc *sc)
{
u_int32_t new_rthash_size = 0;
u_int32_t old_rthash_size = 0;
struct _bridge_rtnode_list *new_rthash = NULL;
struct _bridge_rtnode_list *old_rthash = NULL;
u_int32_t i;
struct bridge_rtnode *brt;
int error = 0;
BRIDGE_LOCK_ASSERT_HELD(sc);
/*
* Four entries per hash bucket is our ideal load factor
*/
if (sc->sc_brtcnt < sc->sc_rthash_size * 4) {
goto out;
}
/*
* Doubling the number of hash buckets may be too simplistic
* especially when facing a spike of new entries
*/
new_rthash_size = sc->sc_rthash_size * 2;
sc->sc_flags |= SCF_RESIZING;
BRIDGE_UNLOCK(sc);
new_rthash = kalloc_type(struct _bridge_rtnode_list, new_rthash_size,
Z_WAITOK | Z_ZERO);
BRIDGE_LOCK(sc);
sc->sc_flags &= ~SCF_RESIZING;
if (new_rthash == NULL) {
error = ENOMEM;
goto out;
}
if ((sc->sc_flags & SCF_DETACHING)) {
error = ENODEV;
goto out;
}
/*
* Fail safe from here on
*/
old_rthash = sc->sc_rthash;
old_rthash_size = sc->sc_rthash_size;
sc->sc_rthash = new_rthash;
sc->sc_rthash_size = new_rthash_size;
/*
* Get a new key to force entries to be shuffled around to reduce
* the likelihood they will land in the same buckets
*/
sc->sc_rthash_key = RandomULong();
for (i = 0; i < sc->sc_rthash_size; i++) {
LIST_INIT(&sc->sc_rthash[i]);
}
LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) {
LIST_REMOVE(brt, brt_hash);
(void) bridge_rtnode_hash(sc, brt);
}
out:
if (error == 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_RT_TABLE,
"%s new size %u",
sc->sc_ifp->if_xname, sc->sc_rthash_size);
kfree_type(struct _bridge_rtnode_list, old_rthash_size, old_rthash);
} else {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_RT_TABLE,
"%s failed %d", sc->sc_ifp->if_xname, error);
kfree_type(struct _bridge_rtnode_list, new_rthash_size, new_rthash);
}
}
/*
* Resize the number of hash buckets based on the load factor
* Currently only grow
* Failing to resize the hash table is not fatal
*/
static void
bridge_rthash_resize(struct bridge_softc *sc)
{
BRIDGE_LOCK_ASSERT_HELD(sc);
if ((sc->sc_flags & SCF_DETACHING) || (sc->sc_flags & SCF_RESIZING)) {
return;
}
/*
* Four entries per hash bucket is our ideal load factor
*/
if (sc->sc_brtcnt < sc->sc_rthash_size * 4) {
return;
}
/*
* Hard limit on the size of the routing hash table
*/
if (sc->sc_rthash_size >= bridge_rtable_hash_size_max) {
return;
}
sc->sc_resize_call.bdc_sc = sc;
sc->sc_resize_call.bdc_func = bridge_rthash_delayed_resize;
bridge_schedule_delayed_call(&sc->sc_resize_call);
}
/*
* bridge_rtable_fini:
*
* Deconstruct the route table for this bridge.
*/
static void
bridge_rtable_fini(struct bridge_softc *sc)
{
KASSERT(sc->sc_brtcnt == 0,
("%s: %d bridge routes referenced", __func__, sc->sc_brtcnt));
kfree_type(struct _bridge_rtnode_list, sc->sc_rthash_size,
sc->sc_rthash);
sc->sc_rthash = NULL;
sc->sc_rthash_size = 0;
}
/*
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
*/
#define mix(a, b, c) \
do { \
a -= b; a -= c; a ^= (c >> 13); \
b -= c; b -= a; b ^= (a << 8); \
c -= a; c -= b; c ^= (b >> 13); \
a -= b; a -= c; a ^= (c >> 12); \
b -= c; b -= a; b ^= (a << 16); \
c -= a; c -= b; c ^= (b >> 5); \
a -= b; a -= c; a ^= (c >> 3); \
b -= c; b -= a; b ^= (a << 10); \
c -= a; c -= b; c ^= (b >> 15); \
} while ( /*CONSTCOND*/ 0)
static __inline uint32_t
bridge_rthash(struct bridge_softc *sc, const uint8_t *addr)
{
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key;
b += addr[5] << 8;
b += addr[4];
a += addr[3] << 24;
a += addr[2] << 16;
a += addr[1] << 8;
a += addr[0];
mix(a, b, c);
return c & BRIDGE_RTHASH_MASK(sc);
}
#undef mix
static int
bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b)
{
int i, d;
for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) {
d = ((int)a[i]) - ((int)b[i]);
}
return d;
}
/*
* bridge_rtnode_lookup:
*
* Look up a bridge route node for the specified destination. Compare the
* vlan id or if zero then just return the first match.
*/
static struct bridge_rtnode *
bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr,
uint16_t vlan)
{
struct bridge_rtnode *brt;
uint32_t hash;
int dir;
BRIDGE_LOCK_ASSERT_HELD(sc);
hash = bridge_rthash(sc, addr);
LIST_FOREACH(brt, &sc->sc_rthash[hash], brt_hash) {
dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr);
if (dir == 0 && (brt->brt_vlan == vlan || vlan == 0)) {
return brt;
}
if (dir > 0) {
return NULL;
}
}
return NULL;
}
/*
* bridge_rtnode_hash:
*
* Insert the specified bridge node into the route hash table.
* This is used when adding a new node or to rehash when resizing
* the hash table
*/
static int
bridge_rtnode_hash(struct bridge_softc *sc, struct bridge_rtnode *brt)
{
struct bridge_rtnode *lbrt;
uint32_t hash;
int dir;
BRIDGE_LOCK_ASSERT_HELD(sc);
hash = bridge_rthash(sc, brt->brt_addr);
lbrt = LIST_FIRST(&sc->sc_rthash[hash]);
if (lbrt == NULL) {
LIST_INSERT_HEAD(&sc->sc_rthash[hash], brt, brt_hash);
goto out;
}
do {
dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr);
if (dir == 0 && brt->brt_vlan == lbrt->brt_vlan) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_RT_TABLE,
"%s EEXIST %02x:%02x:%02x:%02x:%02x:%02x",
sc->sc_ifp->if_xname,
brt->brt_addr[0], brt->brt_addr[1],
brt->brt_addr[2], brt->brt_addr[3],
brt->brt_addr[4], brt->brt_addr[5]);
return EEXIST;
}
if (dir > 0) {
LIST_INSERT_BEFORE(lbrt, brt, brt_hash);
goto out;
}
if (LIST_NEXT(lbrt, brt_hash) == NULL) {
LIST_INSERT_AFTER(lbrt, brt, brt_hash);
goto out;
}
lbrt = LIST_NEXT(lbrt, brt_hash);
} while (lbrt != NULL);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_RT_TABLE,
"%s impossible %02x:%02x:%02x:%02x:%02x:%02x",
sc->sc_ifp->if_xname,
brt->brt_addr[0], brt->brt_addr[1], brt->brt_addr[2],
brt->brt_addr[3], brt->brt_addr[4], brt->brt_addr[5]);
out:
return 0;
}
/*
* bridge_rtnode_insert:
*
* Insert the specified bridge node into the route table. We
* assume the entry is not already in the table.
*/
static int
bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt)
{
int error;
error = bridge_rtnode_hash(sc, brt);
if (error != 0) {
return error;
}
LIST_INSERT_HEAD(&sc->sc_rtlist, brt, brt_list);
sc->sc_brtcnt++;
bridge_rthash_resize(sc);
return 0;
}
/*
* bridge_rtnode_destroy:
*
* Destroy a bridge rtnode.
*/
static void
bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt)
{
BRIDGE_LOCK_ASSERT_HELD(sc);
LIST_REMOVE(brt, brt_hash);
LIST_REMOVE(brt, brt_list);
sc->sc_brtcnt--;
brt->brt_dst->bif_addrcnt--;
zfree(bridge_rtnode_pool, brt);
}
#if BRIDGESTP
/*
* bridge_rtable_expire:
*
* Set the expiry time for all routes on an interface.
*/
static void
bridge_rtable_expire(struct ifnet *ifp, int age)
{
struct bridge_softc *sc = ifp->if_bridge;
struct bridge_rtnode *brt;
BRIDGE_LOCK(sc);
/*
* If the age is zero then flush, otherwise set all the expiry times to
* age for the interface
*/
if (age == 0) {
bridge_rtdelete(sc, ifp, IFBF_FLUSHDYN);
} else {
unsigned long now;
now = (unsigned long) net_uptime();
LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) {
/* Cap the expiry time to 'age' */
if (brt->brt_ifp == ifp &&
brt->brt_expire > now + age &&
(brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
brt->brt_expire = now + age;
}
}
}
BRIDGE_UNLOCK(sc);
}
/*
* bridge_state_change:
*
* Callback from the bridgestp code when a port changes states.
*/
static void
bridge_state_change(struct ifnet *ifp, int state)
{
struct bridge_softc *sc = ifp->if_bridge;
static const char *stpstates[] = {
"disabled",
"listening",
"learning",
"forwarding",
"blocking",
"discarding"
};
if (log_stp) {
log(LOG_NOTICE, "%s: state changed to %s on %s",
sc->sc_ifp->if_xname,
stpstates[state], ifp->if_xname);
}
}
#endif /* BRIDGESTP */
/*
* bridge_set_bpf_tap:
*
* Sets ups the BPF callbacks.
*/
static errno_t
bridge_set_bpf_tap(ifnet_t ifp, bpf_tap_mode mode, bpf_packet_func bpf_callback)
{
struct bridge_softc *sc = (struct bridge_softc *)ifnet_softc(ifp);
/* TBD locking */
if (sc == NULL || (sc->sc_flags & SCF_DETACHING)) {
return ENODEV;
}
switch (mode) {
case BPF_TAP_DISABLE:
sc->sc_bpf_input = sc->sc_bpf_output = NULL;
break;
case BPF_TAP_INPUT:
sc->sc_bpf_input = bpf_callback;
break;
case BPF_TAP_OUTPUT:
sc->sc_bpf_output = bpf_callback;
break;
case BPF_TAP_INPUT_OUTPUT:
sc->sc_bpf_input = sc->sc_bpf_output = bpf_callback;
break;
default:
break;
}
return 0;
}
/*
* bridge_detach:
*
* Callback when interface has been detached.
*/
static void
bridge_detach(ifnet_t ifp)
{
struct bridge_softc *sc = (struct bridge_softc *)ifnet_softc(ifp);
#if BRIDGESTP
bstp_detach(&sc->sc_stp);
#endif /* BRIDGESTP */
/* Tear down the routing table. */
bridge_rtable_fini(sc);
lck_mtx_lock(&bridge_list_mtx);
LIST_REMOVE(sc, sc_list);
lck_mtx_unlock(&bridge_list_mtx);
ifnet_release(ifp);
lck_mtx_destroy(&sc->sc_mtx, &bridge_lock_grp);
kfree_type(struct bridge_softc, sc);
}
/*
* bridge_bpf_input:
*
* Invoke the input BPF callback if enabled
*/
static errno_t
bridge_bpf_input(ifnet_t ifp, struct mbuf *m, const char * func, int line)
{
struct bridge_softc *sc = (struct bridge_softc *)ifnet_softc(ifp);
bpf_packet_func input_func = sc->sc_bpf_input;
if (input_func != NULL) {
if (mbuf_pkthdr_rcvif(m) != ifp) {
BRIDGE_LOG(LOG_NOTICE, 0,
"%s.%d: rcvif: 0x%llx != ifp 0x%llx", func, line,
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_pkthdr_rcvif(m)),
(uint64_t)VM_KERNEL_ADDRPERM(ifp));
}
(*input_func)(ifp, m);
}
return 0;
}
/*
* bridge_bpf_output:
*
* Invoke the output BPF callback if enabled
*/
static errno_t
bridge_bpf_output(ifnet_t ifp, struct mbuf *m)
{
struct bridge_softc *sc = (struct bridge_softc *)ifnet_softc(ifp);
bpf_packet_func output_func = sc->sc_bpf_output;
if (output_func != NULL) {
(*output_func)(ifp, m);
}
return 0;
}
/*
* bridge_link_event:
*
* Report a data link event on an interface
*/
static void
bridge_link_event(struct ifnet *ifp, u_int32_t event_code)
{
struct event {
u_int32_t ifnet_family;
u_int32_t unit;
char if_name[IFNAMSIZ];
};
_Alignas(struct kern_event_msg) char message[sizeof(struct kern_event_msg) + sizeof(struct event)] = { 0 };
struct kern_event_msg *header = (struct kern_event_msg*)message;
struct event *data = (struct event *)(header + 1);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_LIFECYCLE,
"%s event_code %u - %s", ifp->if_xname,
event_code, dlil_kev_dl_code_str(event_code));
header->total_size = sizeof(message);
header->vendor_code = KEV_VENDOR_APPLE;
header->kev_class = KEV_NETWORK_CLASS;
header->kev_subclass = KEV_DL_SUBCLASS;
header->event_code = event_code;
data->ifnet_family = ifnet_family(ifp);
data->unit = (u_int32_t)ifnet_unit(ifp);
strlcpy(data->if_name, ifnet_name(ifp), IFNAMSIZ);
ifnet_event(ifp, header);
}
#define BRIDGE_HF_DROP(reason, func, line) { \
bridge_hostfilter_stats.reason++; \
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_HOSTFILTER, \
"%s.%d" #reason, func, line); \
error = EINVAL; \
}
/*
* Make sure this is a DHCP or Bootp request that match the host filter
*/
static int
bridge_dhcp_filter(struct bridge_iflist *bif, struct mbuf *m, size_t offset)
{
int error = EINVAL;
struct dhcp dhcp;
/*
* Note: We use the dhcp structure because bootp structure definition
* is larger and some vendors do not pad the request
*/
error = mbuf_copydata(m, offset, sizeof(struct dhcp), &dhcp);
if (error != 0) {
BRIDGE_HF_DROP(brhf_dhcp_too_small, __func__, __LINE__);
goto done;
}
if (dhcp.dp_op != BOOTREQUEST) {
BRIDGE_HF_DROP(brhf_dhcp_bad_op, __func__, __LINE__);
goto done;
}
/*
* The hardware address must be an exact match
*/
if (dhcp.dp_htype != ARPHRD_ETHER) {
BRIDGE_HF_DROP(brhf_dhcp_bad_htype, __func__, __LINE__);
goto done;
}
if (dhcp.dp_hlen != ETHER_ADDR_LEN) {
BRIDGE_HF_DROP(brhf_dhcp_bad_hlen, __func__, __LINE__);
goto done;
}
if (bcmp(dhcp.dp_chaddr, bif->bif_hf_hwsrc,
ETHER_ADDR_LEN) != 0) {
BRIDGE_HF_DROP(brhf_dhcp_bad_chaddr, __func__, __LINE__);
goto done;
}
/*
* Client address must match the host address or be not specified
*/
if (dhcp.dp_ciaddr.s_addr != bif->bif_hf_ipsrc.s_addr &&
dhcp.dp_ciaddr.s_addr != INADDR_ANY) {
BRIDGE_HF_DROP(brhf_dhcp_bad_ciaddr, __func__, __LINE__);
goto done;
}
error = 0;
done:
return error;
}
static int
bridge_host_filter(struct bridge_iflist *bif, mbuf_t *data)
{
int error = EINVAL;
struct ether_header *eh;
static struct in_addr inaddr_any = { .s_addr = INADDR_ANY };
mbuf_t m = *data;
eh = mtod(m, struct ether_header *);
/*
* Restrict the source hardware address
*/
if ((bif->bif_flags & BIFF_HF_HWSRC) != 0 &&
bcmp(eh->ether_shost, bif->bif_hf_hwsrc,
ETHER_ADDR_LEN) != 0) {
BRIDGE_HF_DROP(brhf_bad_ether_srchw_addr, __func__, __LINE__);
goto done;
}
/*
* Restrict Ethernet protocols to ARP and IP/IPv6
*/
if (eh->ether_type == htons(ETHERTYPE_ARP)) {
struct ether_arp *ea;
size_t minlen = sizeof(struct ether_header) +
sizeof(struct ether_arp);
/*
* Make the Ethernet and ARP headers contiguous
*/
if (mbuf_pkthdr_len(m) < minlen) {
BRIDGE_HF_DROP(brhf_arp_too_small, __func__, __LINE__);
goto done;
}
if (mbuf_len(m) < minlen && mbuf_pullup(data, minlen) != 0) {
BRIDGE_HF_DROP(brhf_arp_pullup_failed,
__func__, __LINE__);
goto done;
}
m = *data;
/*
* Verify this is an ethernet/ip arp
*/
eh = mtod(m, struct ether_header *);
ea = (struct ether_arp *)(eh + 1);
if (ea->arp_hrd != htons(ARPHRD_ETHER)) {
BRIDGE_HF_DROP(brhf_arp_bad_hw_type,
__func__, __LINE__);
goto done;
}
if (ea->arp_pro != htons(ETHERTYPE_IP)) {
BRIDGE_HF_DROP(brhf_arp_bad_pro_type,
__func__, __LINE__);
goto done;
}
/*
* Verify the address lengths are correct
*/
if (ea->arp_hln != ETHER_ADDR_LEN) {
BRIDGE_HF_DROP(brhf_arp_bad_hw_len, __func__, __LINE__);
goto done;
}
if (ea->arp_pln != sizeof(struct in_addr)) {
BRIDGE_HF_DROP(brhf_arp_bad_pro_len,
__func__, __LINE__);
goto done;
}
/*
* Allow only ARP request or ARP reply
*/
if (ea->arp_op != htons(ARPOP_REQUEST) &&
ea->arp_op != htons(ARPOP_REPLY)) {
BRIDGE_HF_DROP(brhf_arp_bad_op, __func__, __LINE__);
goto done;
}
if ((bif->bif_flags & BIFF_HF_HWSRC) != 0) {
/*
* Verify source hardware address matches
*/
if (bcmp(ea->arp_sha, bif->bif_hf_hwsrc,
ETHER_ADDR_LEN) != 0) {
BRIDGE_HF_DROP(brhf_arp_bad_sha, __func__, __LINE__);
goto done;
}
}
if ((bif->bif_flags & BIFF_HF_IPSRC) != 0) {
/*
* Verify source protocol address:
* May be null for an ARP probe
*/
if (bcmp(ea->arp_spa, &bif->bif_hf_ipsrc.s_addr,
sizeof(struct in_addr)) != 0 &&
bcmp(ea->arp_spa, &inaddr_any,
sizeof(struct in_addr)) != 0) {
BRIDGE_HF_DROP(brhf_arp_bad_spa, __func__, __LINE__);
goto done;
}
}
bridge_hostfilter_stats.brhf_arp_ok += 1;
error = 0;
} else if (eh->ether_type == htons(ETHERTYPE_IP)) {
size_t minlen = sizeof(struct ether_header) + sizeof(struct ip);
struct ip iphdr;
size_t offset;
/*
* Make the Ethernet and IP headers contiguous
*/
if (mbuf_pkthdr_len(m) < minlen) {
BRIDGE_HF_DROP(brhf_ip_too_small, __func__, __LINE__);
goto done;
}
offset = sizeof(struct ether_header);
error = mbuf_copydata(m, offset, sizeof(struct ip), &iphdr);
if (error != 0) {
BRIDGE_HF_DROP(brhf_ip_too_small, __func__, __LINE__);
goto done;
}
if ((bif->bif_flags & BIFF_HF_IPSRC) != 0) {
/*
* Verify the source IP address
*/
if (iphdr.ip_p == IPPROTO_UDP) {
struct udphdr udp;
minlen += sizeof(struct udphdr);
if (mbuf_pkthdr_len(m) < minlen) {
BRIDGE_HF_DROP(brhf_ip_too_small,
__func__, __LINE__);
goto done;
}
/*
* Allow all zero addresses for DHCP requests
*/
if (iphdr.ip_src.s_addr != bif->bif_hf_ipsrc.s_addr &&
iphdr.ip_src.s_addr != INADDR_ANY) {
BRIDGE_HF_DROP(brhf_ip_bad_srcaddr,
__func__, __LINE__);
goto done;
}
offset = sizeof(struct ether_header) +
(IP_VHL_HL(iphdr.ip_vhl) << 2);
error = mbuf_copydata(m, offset,
sizeof(struct udphdr), &udp);
if (error != 0) {
BRIDGE_HF_DROP(brhf_ip_too_small,
__func__, __LINE__);
goto done;
}
/*
* Either it's a Bootp/DHCP packet that we like or
* it's a UDP packet from the host IP as source address
*/
if (udp.uh_sport == htons(IPPORT_BOOTPC) &&
udp.uh_dport == htons(IPPORT_BOOTPS)) {
minlen += sizeof(struct dhcp);
if (mbuf_pkthdr_len(m) < minlen) {
BRIDGE_HF_DROP(brhf_ip_too_small,
__func__, __LINE__);
goto done;
}
offset += sizeof(struct udphdr);
error = bridge_dhcp_filter(bif, m, offset);
if (error != 0) {
goto done;
}
} else if (iphdr.ip_src.s_addr == INADDR_ANY) {
BRIDGE_HF_DROP(brhf_ip_bad_srcaddr,
__func__, __LINE__);
goto done;
}
} else if (iphdr.ip_src.s_addr != bif->bif_hf_ipsrc.s_addr) {
assert(bif->bif_hf_ipsrc.s_addr != INADDR_ANY);
BRIDGE_HF_DROP(brhf_ip_bad_srcaddr, __func__, __LINE__);
goto done;
}
}
/*
* Allow only boring IP protocols
*/
if (iphdr.ip_p != IPPROTO_TCP &&
iphdr.ip_p != IPPROTO_UDP &&
iphdr.ip_p != IPPROTO_ICMP &&
iphdr.ip_p != IPPROTO_IGMP) {
BRIDGE_HF_DROP(brhf_ip_bad_proto, __func__, __LINE__);
goto done;
}
bridge_hostfilter_stats.brhf_ip_ok += 1;
error = 0;
} else if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
size_t minlen = sizeof(struct ether_header) + sizeof(struct ip6_hdr);
struct ip6_hdr ip6hdr;
size_t offset;
/*
* Make the Ethernet and IP headers contiguous
*/
if (mbuf_pkthdr_len(m) < minlen) {
BRIDGE_HF_DROP(brhf_ip_too_small, __func__, __LINE__);
goto done;
}
offset = sizeof(struct ether_header);
error = mbuf_copydata(m, offset, sizeof(struct ip6_hdr), &ip6hdr);
if (error != 0) {
BRIDGE_HF_DROP(brhf_ip_too_small, __func__, __LINE__);
goto done;
}
/*
* Allow only boring IPv6 protocols
*/
if (ip6hdr.ip6_nxt != IPPROTO_TCP &&
ip6hdr.ip6_nxt != IPPROTO_UDP &&
ip6hdr.ip6_nxt != IPPROTO_ICMPV6) {
BRIDGE_HF_DROP(brhf_ip_bad_proto, __func__, __LINE__);
goto done;
}
bridge_hostfilter_stats.brhf_ip_ok += 1;
error = 0;
} else {
BRIDGE_HF_DROP(brhf_bad_ether_type, __func__, __LINE__);
goto done;
}
done:
if (error != 0) {
if (BRIDGE_DBGF_ENABLED(BR_DBGF_HOSTFILTER)) {
if (m) {
brlog_mbuf_data(m, 0,
sizeof(struct ether_header) +
sizeof(struct ip));
}
}
if (m != NULL) {
m_freem(m);
}
}
return error;
}
/*
* MAC NAT
*/
static errno_t
bridge_mac_nat_enable(struct bridge_softc *sc, struct bridge_iflist *bif)
{
errno_t error = 0;
BRIDGE_LOCK_ASSERT_HELD(sc);
if (IFNET_IS_VMNET(bif->bif_ifp)) {
error = EINVAL;
goto done;
}
if (sc->sc_mac_nat_bif != NULL) {
if (sc->sc_mac_nat_bif != bif) {
error = EBUSY;
}
goto done;
}
sc->sc_mac_nat_bif = bif;
bif->bif_ifflags |= IFBIF_MAC_NAT;
bridge_mac_nat_populate_entries(sc);
done:
return error;
}
static void
bridge_mac_nat_disable(struct bridge_softc *sc)
{
struct bridge_iflist *mac_nat_bif = sc->sc_mac_nat_bif;
assert(mac_nat_bif != NULL);
bridge_mac_nat_flush_entries(sc, mac_nat_bif);
mac_nat_bif->bif_ifflags &= ~IFBIF_MAC_NAT;
sc->sc_mac_nat_bif = NULL;
return;
}
static void
mac_nat_entry_print2(struct mac_nat_entry *mne,
char *ifname, const char *msg1, const char *msg2)
{
int af;
char etopbuf[24];
char ntopbuf[MAX_IPv6_STR_LEN];
const char *space;
af = ((mne->mne_flags & MNE_FLAGS_IPV6) != 0) ? AF_INET6 : AF_INET;
ether_ntop(etopbuf, sizeof(etopbuf), mne->mne_mac);
(void)inet_ntop(af, &mne->mne_u, ntopbuf, sizeof(ntopbuf));
if (msg2 == NULL) {
msg2 = "";
space = "";
} else {
space = " ";
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"%s %s%s%s %p (%s, %s, %s)",
ifname, msg1, space, msg2, mne, mne->mne_bif->bif_ifp->if_xname,
ntopbuf, etopbuf);
}
static void
mac_nat_entry_print(struct mac_nat_entry *mne,
char *ifname, const char *msg)
{
mac_nat_entry_print2(mne, ifname, msg, NULL);
}
static struct mac_nat_entry *
bridge_lookup_mac_nat_entry(struct bridge_softc *sc, int af, void * ip)
{
struct mac_nat_entry *mne;
struct mac_nat_entry *ret_mne = NULL;
if (af == AF_INET) {
in_addr_t s_addr = ((struct in_addr *)ip)->s_addr;
LIST_FOREACH(mne, &sc->sc_mne_list, mne_list) {
if (mne->mne_ip.s_addr == s_addr) {
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MAC_NAT)) {
mac_nat_entry_print(mne, sc->sc_if_xname,
"found");
}
ret_mne = mne;
break;
}
}
} else {
const struct in6_addr *ip6 = (const struct in6_addr *)ip;
LIST_FOREACH(mne, &sc->sc_mne_list_v6, mne_list) {
if (IN6_ARE_ADDR_EQUAL(&mne->mne_ip6, ip6)) {
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MAC_NAT)) {
mac_nat_entry_print(mne, sc->sc_if_xname,
"found");
}
ret_mne = mne;
break;
}
}
}
return ret_mne;
}
static void
bridge_destroy_mac_nat_entry(struct bridge_softc *sc,
struct mac_nat_entry *mne, const char *reason)
{
LIST_REMOVE(mne, mne_list);
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MAC_NAT)) {
mac_nat_entry_print(mne, sc->sc_if_xname, reason);
}
zfree(bridge_mne_pool, mne);
sc->sc_mne_count--;
}
static struct mac_nat_entry *
bridge_create_mac_nat_entry(struct bridge_softc *sc,
struct bridge_iflist *bif, int af, const void *ip, uint8_t *eaddr)
{
struct mac_nat_entry_list *list;
struct mac_nat_entry *mne;
if (sc->sc_mne_count >= sc->sc_mne_max) {
sc->sc_mne_allocation_failures++;
return NULL;
}
mne = zalloc_noblock(bridge_mne_pool);
if (mne == NULL) {
sc->sc_mne_allocation_failures++;
return NULL;
}
sc->sc_mne_count++;
bzero(mne, sizeof(*mne));
bcopy(eaddr, mne->mne_mac, sizeof(mne->mne_mac));
mne->mne_bif = bif;
if (af == AF_INET) {
bcopy(ip, &mne->mne_ip, sizeof(mne->mne_ip));
list = &sc->sc_mne_list;
} else {
bcopy(ip, &mne->mne_ip6, sizeof(mne->mne_ip6));
mne->mne_flags |= MNE_FLAGS_IPV6;
list = &sc->sc_mne_list_v6;
}
LIST_INSERT_HEAD(list, mne, mne_list);
mne->mne_expire = (unsigned long)net_uptime() + sc->sc_brttimeout;
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MAC_NAT)) {
mac_nat_entry_print(mne, sc->sc_if_xname, "created");
}
return mne;
}
static struct mac_nat_entry *
bridge_update_mac_nat_entry(struct bridge_softc *sc,
struct bridge_iflist *bif, int af, void *ip, uint8_t *eaddr)
{
struct mac_nat_entry *mne;
mne = bridge_lookup_mac_nat_entry(sc, af, ip);
if (mne != NULL) {
struct bridge_iflist *mac_nat_bif = sc->sc_mac_nat_bif;
if (mne->mne_bif == mac_nat_bif) {
/* the MAC NAT interface takes precedence */
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MAC_NAT)) {
if (mne->mne_bif != bif) {
mac_nat_entry_print2(mne,
sc->sc_if_xname, "reject",
bif->bif_ifp->if_xname);
}
}
} else if (mne->mne_bif != bif) {
const char *old_if = mne->mne_bif->bif_ifp->if_xname;
mne->mne_bif = bif;
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MAC_NAT)) {
mac_nat_entry_print2(mne,
sc->sc_if_xname, "replaced",
old_if);
}
bcopy(eaddr, mne->mne_mac, sizeof(mne->mne_mac));
}
mne->mne_expire = (unsigned long)net_uptime() +
sc->sc_brttimeout;
} else {
mne = bridge_create_mac_nat_entry(sc, bif, af, ip, eaddr);
}
return mne;
}
static void
bridge_mac_nat_flush_entries_common(struct bridge_softc *sc,
struct mac_nat_entry_list *list, struct bridge_iflist *bif)
{
struct mac_nat_entry *mne;
struct mac_nat_entry *tmne;
LIST_FOREACH_SAFE(mne, list, mne_list, tmne) {
if (bif != NULL && mne->mne_bif != bif) {
continue;
}
bridge_destroy_mac_nat_entry(sc, mne, "flushed");
}
}
/*
* bridge_mac_nat_flush_entries:
*
* Flush MAC NAT entries for the specified member. Flush all entries if
* the member is the one that requires MAC NAT, otherwise just flush the
* ones for the specified member.
*/
static void
bridge_mac_nat_flush_entries(struct bridge_softc *sc, struct bridge_iflist * bif)
{
struct bridge_iflist *flush_bif;
flush_bif = (bif == sc->sc_mac_nat_bif) ? NULL : bif;
bridge_mac_nat_flush_entries_common(sc, &sc->sc_mne_list, flush_bif);
bridge_mac_nat_flush_entries_common(sc, &sc->sc_mne_list_v6, flush_bif);
}
static void
bridge_mac_nat_populate_entries(struct bridge_softc *sc)
{
errno_t error;
ifnet_t ifp;
ifaddr_t *list;
struct bridge_iflist *mac_nat_bif = sc->sc_mac_nat_bif;
assert(mac_nat_bif != NULL);
ifp = mac_nat_bif->bif_ifp;
error = ifnet_get_address_list(ifp, &list);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"ifnet_get_address_list(%s) failed %d",
ifp->if_xname, error);
return;
}
for (ifaddr_t *scan = list; *scan != NULL; scan++) {
sa_family_t af;
void *ip;
union {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} u;
af = ifaddr_address_family(*scan);
switch (af) {
case AF_INET:
case AF_INET6:
error = ifaddr_address(*scan, &u.sa, sizeof(u));
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"ifaddr_address failed %d",
error);
break;
}
if (af == AF_INET) {
ip = (void *)&u.sin.sin_addr;
} else {
if (IN6_IS_ADDR_LINKLOCAL(&u.sin6.sin6_addr)) {
/* remove scope ID */
u.sin6.sin6_addr.s6_addr16[1] = 0;
}
ip = (void *)&u.sin6.sin6_addr;
}
bridge_create_mac_nat_entry(sc, mac_nat_bif, af, ip,
(uint8_t *)IF_LLADDR(ifp));
break;
default:
break;
}
}
ifnet_free_address_list(list);
return;
}
static void
bridge_mac_nat_age_entries_common(struct bridge_softc *sc,
struct mac_nat_entry_list *list, unsigned long now)
{
struct mac_nat_entry *mne;
struct mac_nat_entry *tmne;
LIST_FOREACH_SAFE(mne, list, mne_list, tmne) {
if (now >= mne->mne_expire) {
bridge_destroy_mac_nat_entry(sc, mne, "aged out");
}
}
}
static void
bridge_mac_nat_age_entries(struct bridge_softc *sc, unsigned long now)
{
if (sc->sc_mac_nat_bif == NULL) {
return;
}
bridge_mac_nat_age_entries_common(sc, &sc->sc_mne_list, now);
bridge_mac_nat_age_entries_common(sc, &sc->sc_mne_list_v6, now);
}
static const char *
get_in_out_string(boolean_t is_output)
{
return is_output ? "OUT" : "IN";
}
/*
* is_valid_arp_packet:
* Verify that this is a valid ARP packet.
*
* Returns TRUE if the packet is valid, FALSE otherwise.
*/
static boolean_t
is_valid_arp_packet(mbuf_t *data, boolean_t is_output,
struct ether_header **eh_p, struct ether_arp **ea_p)
{
struct ether_arp *ea;
struct ether_header *eh;
size_t minlen = sizeof(struct ether_header) + sizeof(struct ether_arp);
boolean_t is_valid = FALSE;
int flags = is_output ? BR_DBGF_OUTPUT : BR_DBGF_INPUT;
if (mbuf_pkthdr_len(*data) < minlen) {
BRIDGE_LOG(LOG_DEBUG, flags,
"ARP %s short frame %lu < %lu",
get_in_out_string(is_output),
mbuf_pkthdr_len(*data), minlen);
goto done;
}
if (mbuf_len(*data) < minlen && mbuf_pullup(data, minlen) != 0) {
BRIDGE_LOG(LOG_DEBUG, flags,
"ARP %s size %lu mbuf_pullup fail",
get_in_out_string(is_output),
minlen);
*data = NULL;
goto done;
}
/* validate ARP packet */
eh = mtod(*data, struct ether_header *);
ea = (struct ether_arp *)(eh + 1);
if (ntohs(ea->arp_hrd) != ARPHRD_ETHER) {
BRIDGE_LOG(LOG_DEBUG, flags,
"ARP %s htype not ethernet",
get_in_out_string(is_output));
goto done;
}
if (ea->arp_hln != ETHER_ADDR_LEN) {
BRIDGE_LOG(LOG_DEBUG, flags,
"ARP %s hlen not ethernet",
get_in_out_string(is_output));
goto done;
}
if (ntohs(ea->arp_pro) != ETHERTYPE_IP) {
BRIDGE_LOG(LOG_DEBUG, flags,
"ARP %s ptype not IP",
get_in_out_string(is_output));
goto done;
}
if (ea->arp_pln != sizeof(struct in_addr)) {
BRIDGE_LOG(LOG_DEBUG, flags,
"ARP %s plen not IP",
get_in_out_string(is_output));
goto done;
}
is_valid = TRUE;
*ea_p = ea;
*eh_p = eh;
done:
return is_valid;
}
static struct mac_nat_entry *
bridge_mac_nat_arp_input(struct bridge_softc *sc, mbuf_t *data)
{
struct ether_arp *ea;
struct ether_header *eh;
struct mac_nat_entry *mne = NULL;
u_short op;
struct in_addr tpa;
if (!is_valid_arp_packet(data, FALSE, &eh, &ea)) {
goto done;
}
op = ntohs(ea->arp_op);
switch (op) {
case ARPOP_REQUEST:
case ARPOP_REPLY:
/* only care about REQUEST and REPLY */
break;
default:
goto done;
}
/* check the target IP address for a NAT entry */
bcopy(ea->arp_tpa, &tpa, sizeof(tpa));
if (tpa.s_addr != 0) {
mne = bridge_lookup_mac_nat_entry(sc, AF_INET, &tpa);
}
if (mne != NULL) {
if (op == ARPOP_REPLY) {
/* translate the MAC address */
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MAC_NAT)) {
char mac_src[24];
char mac_dst[24];
ether_ntop(mac_src, sizeof(mac_src),
ea->arp_tha);
ether_ntop(mac_dst, sizeof(mac_dst),
mne->mne_mac);
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"%s %s ARP %s -> %s",
sc->sc_if_xname,
mne->mne_bif->bif_ifp->if_xname,
mac_src, mac_dst);
}
bcopy(mne->mne_mac, ea->arp_tha, sizeof(ea->arp_tha));
}
} else {
/* handle conflicting ARP (sender matches mne) */
struct in_addr spa;
bcopy(ea->arp_spa, &spa, sizeof(spa));
if (spa.s_addr != 0 && spa.s_addr != tpa.s_addr) {
/* check the source IP for a NAT entry */
mne = bridge_lookup_mac_nat_entry(sc, AF_INET, &spa);
}
}
done:
return mne;
}
static boolean_t
bridge_mac_nat_arp_output(struct bridge_softc *sc,
struct bridge_iflist *bif, mbuf_t *data, struct mac_nat_record *mnr)
{
struct ether_arp *ea;
struct ether_header *eh;
struct in_addr ip;
struct mac_nat_entry *mne = NULL;
u_short op;
boolean_t translate = FALSE;
if (!is_valid_arp_packet(data, TRUE, &eh, &ea)) {
goto done;
}
op = ntohs(ea->arp_op);
switch (op) {
case ARPOP_REQUEST:
case ARPOP_REPLY:
/* only care about REQUEST and REPLY */
break;
default:
goto done;
}
bcopy(ea->arp_spa, &ip, sizeof(ip));
if (ip.s_addr == 0) {
goto done;
}
/* XXX validate IP address: no multicast/broadcast */
mne = bridge_update_mac_nat_entry(sc, bif, AF_INET, &ip, ea->arp_sha);
if (mnr != NULL && mne != NULL) {
/* record the offset to do the replacement */
translate = TRUE;
mnr->mnr_arp_offset = (char *)ea->arp_sha - (char *)eh;
}
done:
return translate;
}
#define ETHER_IPV4_HEADER_LEN (sizeof(struct ether_header) + \
+ sizeof(struct ip))
static struct ether_header *
get_ether_ip_header(mbuf_t *data, boolean_t is_output)
{
struct ether_header *eh = NULL;
int flags = is_output ? BR_DBGF_OUTPUT : BR_DBGF_INPUT;
size_t minlen = ETHER_IPV4_HEADER_LEN;
if (mbuf_pkthdr_len(*data) < minlen) {
BRIDGE_LOG(LOG_DEBUG, flags,
"IP %s short frame %lu < %lu",
get_in_out_string(is_output),
mbuf_pkthdr_len(*data), minlen);
goto done;
}
if (mbuf_len(*data) < minlen && mbuf_pullup(data, minlen) != 0) {
BRIDGE_LOG(LOG_DEBUG, flags,
"IP %s size %lu mbuf_pullup fail",
get_in_out_string(is_output),
minlen);
*data = NULL;
goto done;
}
eh = mtod(*data, struct ether_header *);
done:
return eh;
}
static bool
is_broadcast_ip_packet(mbuf_t *data)
{
struct ether_header *eh;
uint16_t ether_type;
bool is_broadcast = FALSE;
eh = mtod(*data, struct ether_header *);
ether_type = ntohs(eh->ether_type);
switch (ether_type) {
case ETHERTYPE_IP:
eh = get_ether_ip_header(data, FALSE);
if (eh != NULL) {
struct in_addr dst;
struct ip *iphdr;
iphdr = (struct ip *)(void *)(eh + 1);
bcopy(&iphdr->ip_dst, &dst, sizeof(dst));
is_broadcast = (dst.s_addr == INADDR_BROADCAST);
}
break;
default:
break;
}
return is_broadcast;
}
static struct mac_nat_entry *
bridge_mac_nat_ip_input(struct bridge_softc *sc, mbuf_t *data)
{
struct in_addr dst;
struct ether_header *eh;
struct ip *iphdr;
struct mac_nat_entry *mne = NULL;
eh = get_ether_ip_header(data, FALSE);
if (eh == NULL) {
goto done;
}
iphdr = (struct ip *)(void *)(eh + 1);
bcopy(&iphdr->ip_dst, &dst, sizeof(dst));
/* XXX validate IP address */
if (dst.s_addr == 0) {
goto done;
}
mne = bridge_lookup_mac_nat_entry(sc, AF_INET, &dst);
done:
return mne;
}
static void
bridge_mac_nat_udp_output(struct bridge_softc *sc,
struct bridge_iflist *bif, mbuf_t m,
uint8_t ip_header_len, struct mac_nat_record *mnr)
{
uint16_t dp_flags;
errno_t error;
size_t offset;
struct udphdr udphdr;
/* copy the UDP header */
offset = sizeof(struct ether_header) + ip_header_len;
error = mbuf_copydata(m, offset, sizeof(struct udphdr), &udphdr);
if (error != 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"mbuf_copydata udphdr failed %d",
error);
return;
}
if (ntohs(udphdr.uh_sport) != IPPORT_BOOTPC ||
ntohs(udphdr.uh_dport) != IPPORT_BOOTPS) {
/* not a BOOTP/DHCP packet */
return;
}
/* check whether the broadcast bit is already set */
offset += sizeof(struct udphdr) + offsetof(struct dhcp, dp_flags);
error = mbuf_copydata(m, offset, sizeof(dp_flags), &dp_flags);
if (error != 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"mbuf_copydata dp_flags failed %d",
error);
return;
}
if ((ntohs(dp_flags) & DHCP_FLAGS_BROADCAST) != 0) {
/* it's already set, nothing to do */
return;
}
/* broadcast bit needs to be set */
mnr->mnr_ip_dhcp_flags = dp_flags | htons(DHCP_FLAGS_BROADCAST);
mnr->mnr_ip_header_len = ip_header_len;
if (udphdr.uh_sum != 0) {
uint16_t delta;
/* adjust checksum to take modified dp_flags into account */
delta = dp_flags - mnr->mnr_ip_dhcp_flags;
mnr->mnr_ip_udp_csum = udphdr.uh_sum + delta;
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"%s %s DHCP dp_flags 0x%x UDP cksum 0x%x",
sc->sc_if_xname,
bif->bif_ifp->if_xname,
ntohs(mnr->mnr_ip_dhcp_flags),
ntohs(mnr->mnr_ip_udp_csum));
return;
}
static boolean_t
bridge_mac_nat_ip_output(struct bridge_softc *sc,
struct bridge_iflist *bif, mbuf_t *data, struct mac_nat_record *mnr)
{
#pragma unused(mnr)
struct ether_header *eh;
struct in_addr ip;
struct ip *iphdr;
uint8_t ip_header_len;
struct mac_nat_entry *mne = NULL;
boolean_t translate = FALSE;
eh = get_ether_ip_header(data, TRUE);
if (eh == NULL) {
goto done;
}
iphdr = (struct ip *)(void *)(eh + 1);
ip_header_len = IP_VHL_HL(iphdr->ip_vhl) << 2;
if (ip_header_len < sizeof(ip)) {
/* bogus IP header */
goto done;
}
bcopy(&iphdr->ip_src, &ip, sizeof(ip));
/* XXX validate the source address */
if (ip.s_addr != 0) {
mne = bridge_update_mac_nat_entry(sc, bif, AF_INET, &ip,
eh->ether_shost);
}
if (mnr != NULL) {
if (ip.s_addr == 0 && iphdr->ip_p == IPPROTO_UDP) {
/* handle DHCP must broadcast */
bridge_mac_nat_udp_output(sc, bif, *data,
ip_header_len, mnr);
}
translate = TRUE;
}
done:
return translate;
}
#define ETHER_IPV6_HEADER_LEN (sizeof(struct ether_header) + \
+ sizeof(struct ip6_hdr))
static struct ether_header *
get_ether_ipv6_header(mbuf_t *data, size_t plen, boolean_t is_output)
{
struct ether_header *eh = NULL;
int flags = is_output ? BR_DBGF_OUTPUT : BR_DBGF_INPUT;
size_t minlen = ETHER_IPV6_HEADER_LEN + plen;
if (mbuf_pkthdr_len(*data) < minlen) {
BRIDGE_LOG(LOG_DEBUG, flags,
"IP %s short frame %lu < %lu",
get_in_out_string(is_output),
mbuf_pkthdr_len(*data), minlen);
goto done;
}
if (mbuf_len(*data) < minlen && mbuf_pullup(data, minlen) != 0) {
BRIDGE_LOG(LOG_DEBUG, flags,
"IP %s size %lu mbuf_pullup fail",
get_in_out_string(is_output),
minlen);
*data = NULL;
goto done;
}
eh = mtod(*data, struct ether_header *);
done:
return eh;
}
#include <netinet/icmp6.h>
#include <netinet6/nd6.h>
#define ETHER_ND_LLADDR_LEN (ETHER_ADDR_LEN + sizeof(struct nd_opt_hdr))
static void
bridge_mac_nat_icmpv6_output(struct bridge_softc *sc,
struct bridge_iflist *bif,
mbuf_t *data, struct ip6_hdr *ip6h,
struct in6_addr *saddrp,
struct mac_nat_record *mnr)
{
struct ether_header *eh;
struct icmp6_hdr *icmp6;
uint8_t icmp6_type;
uint32_t icmp6len;
int lladdrlen = 0;
char *lladdr = NULL;
unsigned int off = sizeof(*ip6h);
icmp6len = (u_int32_t)ntohs(ip6h->ip6_plen);
if (icmp6len < sizeof(*icmp6)) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"short IPv6 payload length %d < %lu",
icmp6len, sizeof(*icmp6));
return;
}
/* pullup IP6 header + ICMPv6 header */
eh = get_ether_ipv6_header(data, sizeof(*icmp6), TRUE);
if (eh == NULL) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"failed to pullup icmp6 header");
return;
}
ip6h = (struct ip6_hdr *)(void *)(eh + 1);
icmp6 = (struct icmp6_hdr *)((caddr_t)ip6h + off);
icmp6_type = icmp6->icmp6_type;
switch (icmp6_type) {
case ND_NEIGHBOR_SOLICIT:
case ND_NEIGHBOR_ADVERT:
case ND_ROUTER_ADVERT:
case ND_ROUTER_SOLICIT:
break;
default:
return;
}
/* pullup IP6 header + payload */
eh = get_ether_ipv6_header(data, icmp6len, TRUE);
if (eh == NULL) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"failed to pullup icmp6 + payload");
return;
}
ip6h = (struct ip6_hdr *)(void *)(eh + 1);
icmp6 = (struct icmp6_hdr *)((caddr_t)ip6h + off);
switch (icmp6_type) {
case ND_NEIGHBOR_SOLICIT: {
struct nd_neighbor_solicit *nd_ns;
union nd_opts ndopts;
boolean_t is_dad_probe;
struct in6_addr taddr;
if (icmp6len < sizeof(*nd_ns)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"short nd_ns %d < %lu",
icmp6len, sizeof(*nd_ns));
return;
}
nd_ns = (struct nd_neighbor_solicit *)(void *)icmp6;
bcopy(&nd_ns->nd_ns_target, &taddr, sizeof(taddr));
if (IN6_IS_ADDR_MULTICAST(&taddr) ||
IN6_IS_ADDR_UNSPECIFIED(&taddr)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"invalid target ignored");
return;
}
/* parse options */
nd6_option_init(nd_ns + 1, icmp6len - sizeof(*nd_ns), &ndopts);
if (nd6_options(&ndopts) < 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"invalid ND6 NS option");
return;
}
if (ndopts.nd_opts_src_lladdr != NULL) {
lladdr = (char *)(ndopts.nd_opts_src_lladdr + 1);
lladdrlen = ndopts.nd_opts_src_lladdr->nd_opt_len << 3;
}
is_dad_probe = IN6_IS_ADDR_UNSPECIFIED(saddrp);
if (lladdr != NULL) {
if (is_dad_probe) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"bad ND6 DAD packet");
return;
}
if (lladdrlen != ETHER_ND_LLADDR_LEN) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"source lladdrlen %d != %lu",
lladdrlen, ETHER_ND_LLADDR_LEN);
return;
}
}
if (is_dad_probe) {
/* node is trying use taddr, create an mne for taddr */
*saddrp = taddr;
}
break;
}
case ND_NEIGHBOR_ADVERT: {
struct nd_neighbor_advert *nd_na;
union nd_opts ndopts;
struct in6_addr taddr;
nd_na = (struct nd_neighbor_advert *)(void *)icmp6;
if (icmp6len < sizeof(*nd_na)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"short nd_na %d < %lu",
icmp6len, sizeof(*nd_na));
return;
}
bcopy(&nd_na->nd_na_target, &taddr, sizeof(taddr));
if (IN6_IS_ADDR_MULTICAST(&taddr) ||
IN6_IS_ADDR_UNSPECIFIED(&taddr)) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"invalid target ignored");
return;
}
/* parse options */
nd6_option_init(nd_na + 1, icmp6len - sizeof(*nd_na), &ndopts);
if (nd6_options(&ndopts) < 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"invalid ND6 NA option");
return;
}
if (ndopts.nd_opts_tgt_lladdr == NULL) {
/* target linklayer, nothing to do */
return;
}
lladdr = (char *)(ndopts.nd_opts_tgt_lladdr + 1);
lladdrlen = ndopts.nd_opts_tgt_lladdr->nd_opt_len << 3;
if (lladdrlen != ETHER_ND_LLADDR_LEN) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"target lladdrlen %d != %lu",
lladdrlen, ETHER_ND_LLADDR_LEN);
return;
}
break;
}
case ND_ROUTER_ADVERT:
case ND_ROUTER_SOLICIT: {
union nd_opts ndopts;
uint32_t type_length;
const char *description;
if (icmp6_type == ND_ROUTER_ADVERT) {
type_length = sizeof(struct nd_router_advert);
description = "RA";
} else {
type_length = sizeof(struct nd_router_solicit);
description = "RS";
}
if (icmp6len < type_length) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"short ND6 %s %d < %d",
description, icmp6len, type_length);
return;
}
/* parse options */
nd6_option_init(((uint8_t *)icmp6) + type_length,
icmp6len - type_length, &ndopts);
if (nd6_options(&ndopts) < 0) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"invalid ND6 %s option", description);
return;
}
if (ndopts.nd_opts_src_lladdr != NULL) {
lladdr = (char *)(ndopts.nd_opts_src_lladdr + 1);
lladdrlen = ndopts.nd_opts_src_lladdr->nd_opt_len << 3;
if (lladdrlen != ETHER_ND_LLADDR_LEN) {
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"source lladdrlen %d != %lu",
lladdrlen, ETHER_ND_LLADDR_LEN);
return;
}
}
break;
}
default:
break;
}
if (lladdr != NULL) {
mnr->mnr_ip6_lladdr_offset = (uint16_t)
((uintptr_t)lladdr - (uintptr_t)eh);
mnr->mnr_ip6_icmp6_len = icmp6len;
mnr->mnr_ip6_icmp6_type = icmp6_type;
mnr->mnr_ip6_header_len = off;
if (BRIDGE_DBGF_ENABLED(BR_DBGF_MAC_NAT)) {
const char *str;
switch (mnr->mnr_ip6_icmp6_type) {
case ND_ROUTER_ADVERT:
str = "ROUTER ADVERT";
break;
case ND_ROUTER_SOLICIT:
str = "ROUTER SOLICIT";
break;
case ND_NEIGHBOR_ADVERT:
str = "NEIGHBOR ADVERT";
break;
case ND_NEIGHBOR_SOLICIT:
str = "NEIGHBOR SOLICIT";
break;
default:
str = "";
break;
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_MAC_NAT,
"%s %s %s ip6len %d icmp6len %d lladdr offset %d",
sc->sc_if_xname, bif->bif_ifp->if_xname, str,
mnr->mnr_ip6_header_len,
mnr->mnr_ip6_icmp6_len, mnr->mnr_ip6_lladdr_offset);
}
}
}
static struct mac_nat_entry *
bridge_mac_nat_ipv6_input(struct bridge_softc *sc, mbuf_t *data)
{
struct in6_addr dst;
struct ether_header *eh;
struct ip6_hdr *ip6h;
struct mac_nat_entry *mne = NULL;
eh = get_ether_ipv6_header(data, 0, FALSE);
if (eh == NULL) {
goto done;
}
ip6h = (struct ip6_hdr *)(void *)(eh + 1);
bcopy(&ip6h->ip6_dst, &dst, sizeof(dst));
/* XXX validate IPv6 address */
if (IN6_IS_ADDR_UNSPECIFIED(&dst)) {
goto done;
}
mne = bridge_lookup_mac_nat_entry(sc, AF_INET6, &dst);
done:
return mne;
}
static boolean_t
bridge_mac_nat_ipv6_output(struct bridge_softc *sc,
struct bridge_iflist *bif, mbuf_t *data, struct mac_nat_record *mnr)
{
struct ether_header *eh;
ether_addr_t ether_shost;
struct ip6_hdr *ip6h;
struct in6_addr saddr;
boolean_t translate;
translate = (bif == sc->sc_mac_nat_bif) ? FALSE : TRUE;
eh = get_ether_ipv6_header(data, 0, TRUE);
if (eh == NULL) {
translate = FALSE;
goto done;
}
bcopy(eh->ether_shost, &ether_shost, sizeof(ether_shost));
ip6h = (struct ip6_hdr *)(void *)(eh + 1);
bcopy(&ip6h->ip6_src, &saddr, sizeof(saddr));
if (mnr != NULL && ip6h->ip6_nxt == IPPROTO_ICMPV6) {
bridge_mac_nat_icmpv6_output(sc, bif, data, ip6h, &saddr, mnr);
}
if (IN6_IS_ADDR_UNSPECIFIED(&saddr)) {
goto done;
}
(void)bridge_update_mac_nat_entry(sc, bif, AF_INET6, &saddr,
ether_shost.octet);
done:
return translate;
}
/*
* bridge_mac_nat_input:
* Process a packet arriving on the MAC NAT interface (sc_mac_nat_bif).
* This interface is the "external" interface with respect to NAT.
* The interface is only capable of receiving a single MAC address
* (e.g. a Wi-Fi STA interface).
*
* When a packet arrives on the external interface, look up the destination
* IP address in the mac_nat_entry table. If there is a match, *is_input
* is set to TRUE if it's for the MAC NAT interface, otherwise *is_input
* is set to FALSE and translate the MAC address if necessary.
*
* Returns:
* The internal interface to direct the packet to, or NULL if the packet
* should not be redirected.
*
* *data may be updated to point at a different mbuf chain, or set to NULL
* if the chain was deallocated during processing.
*/
static ifnet_t
bridge_mac_nat_input(struct bridge_softc *sc, mbuf_t *data,
boolean_t *is_input)
{
ifnet_t dst_if = NULL;
struct ether_header *eh;
uint16_t ether_type;
boolean_t is_unicast;
mbuf_t m = *data;
struct mac_nat_entry *mne = NULL;
BRIDGE_LOCK_ASSERT_HELD(sc);
*is_input = FALSE;
assert(sc->sc_mac_nat_bif != NULL);
is_unicast = ((m->m_flags & (M_BCAST | M_MCAST)) == 0);
eh = mtod(m, struct ether_header *);
ether_type = ntohs(eh->ether_type);
switch (ether_type) {
case ETHERTYPE_ARP:
mne = bridge_mac_nat_arp_input(sc, data);
break;
case ETHERTYPE_IP:
if (is_unicast) {
mne = bridge_mac_nat_ip_input(sc, data);
}
break;
case ETHERTYPE_IPV6:
if (is_unicast) {
mne = bridge_mac_nat_ipv6_input(sc, data);
}
break;
default:
break;
}
if (mne != NULL) {
if (is_unicast) {
if (m != *data) {
/* it may have changed */
eh = mtod(*data, struct ether_header *);
}
bcopy(mne->mne_mac, eh->ether_dhost,
sizeof(eh->ether_dhost));
}
dst_if = mne->mne_bif->bif_ifp;
*is_input = (mne->mne_bif == sc->sc_mac_nat_bif);
}
return dst_if;
}
/*
* bridge_mac_nat_output:
* Process a packet destined to the MAC NAT interface (sc_mac_nat_bif)
* from the interface 'bif'.
*
* Create a mac_nat_entry containing the source IP address and MAC address
* from the packet. Populate a mac_nat_record with information detailing
* how to translate the packet. Translation takes place later when
* the bridge lock is no longer held.
*
* If 'bif' == sc_mac_nat_bif, the stack over the MAC NAT
* interface is generating an output packet. No translation is required in this
* case, we just record the IP address used to prevent another bif from
* claiming our IP address.
*
* Returns:
* TRUE if the packet should be translated (*mnr updated as well),
* FALSE otherwise.
*
* *data may be updated to point at a different mbuf chain or NULL if
* the chain was deallocated during processing.
*/
static boolean_t
bridge_mac_nat_output(struct bridge_softc *sc,
struct bridge_iflist *bif, mbuf_t *data, struct mac_nat_record *mnr)
{
struct ether_header *eh;
uint16_t ether_type;
boolean_t translate = FALSE;
BRIDGE_LOCK_ASSERT_HELD(sc);
assert(sc->sc_mac_nat_bif != NULL);
eh = mtod(*data, struct ether_header *);
ether_type = ntohs(eh->ether_type);
if (mnr != NULL) {
bzero(mnr, sizeof(*mnr));
mnr->mnr_ether_type = ether_type;
}
switch (ether_type) {
case ETHERTYPE_ARP:
translate = bridge_mac_nat_arp_output(sc, bif, data, mnr);
break;
case ETHERTYPE_IP:
translate = bridge_mac_nat_ip_output(sc, bif, data, mnr);
break;
case ETHERTYPE_IPV6:
translate = bridge_mac_nat_ipv6_output(sc, bif, data, mnr);
break;
default:
break;
}
return translate;
}
static void
bridge_mac_nat_arp_translate(mbuf_t *data, struct mac_nat_record *mnr,
const caddr_t eaddr)
{
errno_t error;
if (mnr->mnr_arp_offset == 0) {
return;
}
/* replace the source hardware address */
error = mbuf_copyback(*data, mnr->mnr_arp_offset,
ETHER_ADDR_LEN, eaddr,
MBUF_DONTWAIT);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"mbuf_copyback failed");
m_freem(*data);
*data = NULL;
}
return;
}
static void
bridge_mac_nat_ip_translate(mbuf_t *data, struct mac_nat_record *mnr)
{
errno_t error;
size_t offset;
if (mnr->mnr_ip_header_len == 0) {
return;
}
/* update the UDP checksum */
offset = sizeof(struct ether_header) + mnr->mnr_ip_header_len;
error = mbuf_copyback(*data, offset + offsetof(struct udphdr, uh_sum),
sizeof(mnr->mnr_ip_udp_csum),
&mnr->mnr_ip_udp_csum,
MBUF_DONTWAIT);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"mbuf_copyback uh_sum failed");
m_freem(*data);
*data = NULL;
}
/* update the DHCP must broadcast flag */
offset += sizeof(struct udphdr);
error = mbuf_copyback(*data, offset + offsetof(struct dhcp, dp_flags),
sizeof(mnr->mnr_ip_dhcp_flags),
&mnr->mnr_ip_dhcp_flags,
MBUF_DONTWAIT);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"mbuf_copyback dp_flags failed");
m_freem(*data);
*data = NULL;
}
}
static void
bridge_mac_nat_ipv6_translate(mbuf_t *data, struct mac_nat_record *mnr,
const caddr_t eaddr)
{
uint16_t cksum;
errno_t error;
mbuf_t m = *data;
if (mnr->mnr_ip6_header_len == 0) {
return;
}
switch (mnr->mnr_ip6_icmp6_type) {
case ND_ROUTER_ADVERT:
case ND_ROUTER_SOLICIT:
case ND_NEIGHBOR_SOLICIT:
case ND_NEIGHBOR_ADVERT:
if (mnr->mnr_ip6_lladdr_offset == 0) {
/* nothing to do */
return;
}
break;
default:
return;
}
/*
* replace the lladdr
*/
error = mbuf_copyback(m, mnr->mnr_ip6_lladdr_offset,
ETHER_ADDR_LEN, eaddr,
MBUF_DONTWAIT);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"mbuf_copyback lladdr failed");
m_freem(m);
*data = NULL;
return;
}
/*
* recompute the icmp6 checksum
*/
/* skip past the ethernet header */
mbuf_setdata(m, (char *)mbuf_data(m) + ETHER_HDR_LEN,
mbuf_len(m) - ETHER_HDR_LEN);
mbuf_pkthdr_adjustlen(m, -ETHER_HDR_LEN);
#define CKSUM_OFFSET_ICMP6 offsetof(struct icmp6_hdr, icmp6_cksum)
/* set the checksum to zero */
cksum = 0;
error = mbuf_copyback(m, mnr->mnr_ip6_header_len + CKSUM_OFFSET_ICMP6,
sizeof(cksum), &cksum, MBUF_DONTWAIT);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"mbuf_copyback cksum=0 failed");
m_freem(m);
*data = NULL;
return;
}
/* compute and set the new checksum */
cksum = in6_cksum(m, IPPROTO_ICMPV6, mnr->mnr_ip6_header_len,
mnr->mnr_ip6_icmp6_len);
error = mbuf_copyback(m, mnr->mnr_ip6_header_len + CKSUM_OFFSET_ICMP6,
sizeof(cksum), &cksum, MBUF_DONTWAIT);
if (error != 0) {
BRIDGE_LOG(LOG_NOTICE, BR_DBGF_MAC_NAT,
"mbuf_copyback cksum failed");
m_freem(m);
*data = NULL;
return;
}
/* restore the ethernet header */
mbuf_setdata(m, (char *)mbuf_data(m) - ETHER_HDR_LEN,
mbuf_len(m) + ETHER_HDR_LEN);
mbuf_pkthdr_adjustlen(m, ETHER_HDR_LEN);
return;
}
static void
bridge_mac_nat_translate(mbuf_t *data, struct mac_nat_record *mnr,
const caddr_t eaddr)
{
struct ether_header *eh;
/* replace the source ethernet address with the single MAC */
eh = mtod(*data, struct ether_header *);
bcopy(eaddr, eh->ether_shost, sizeof(eh->ether_shost));
switch (mnr->mnr_ether_type) {
case ETHERTYPE_ARP:
bridge_mac_nat_arp_translate(data, mnr, eaddr);
break;
case ETHERTYPE_IP:
bridge_mac_nat_ip_translate(data, mnr);
break;
case ETHERTYPE_IPV6:
bridge_mac_nat_ipv6_translate(data, mnr, eaddr);
break;
default:
break;
}
return;
}
/*
* bridge packet filtering
*/
/*
* Perform basic checks on header size since
* pfil assumes ip_input has already processed
* it for it. Cut-and-pasted from ip_input.c.
* Given how simple the IPv6 version is,
* does the IPv4 version really need to be
* this complicated?
*
* XXX Should we update ipstat here, or not?
* XXX Right now we update ipstat but not
* XXX csum_counter.
*/
static int
bridge_ip_checkbasic(struct mbuf **mp)
{
struct mbuf *m = *mp;
struct ip *ip;
int len, hlen;
u_short sum;
if (*mp == NULL) {
return -1;
}
if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
/* max_linkhdr is already rounded up to nearest 4-byte */
if ((m = m_copyup(m, sizeof(struct ip),
max_linkhdr)) == NULL) {
/* XXXJRT new stat, please */
ipstat.ips_toosmall++;
goto bad;
}
} else if (OS_EXPECT((size_t)m->m_len < sizeof(struct ip), 0)) {
if ((m = m_pullup(m, sizeof(struct ip))) == NULL) {
ipstat.ips_toosmall++;
goto bad;
}
}
ip = mtod(m, struct ip *);
if (ip == NULL) {
goto bad;
}
if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
ipstat.ips_badvers++;
goto bad;
}
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
if (hlen < (int)sizeof(struct ip)) { /* minimum header length */
ipstat.ips_badhlen++;
goto bad;
}
if (hlen > m->m_len) {
if ((m = m_pullup(m, hlen)) == 0) {
ipstat.ips_badhlen++;
goto bad;
}
ip = mtod(m, struct ip *);
if (ip == NULL) {
goto bad;
}
}
if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
} else {
if (hlen == sizeof(struct ip)) {
sum = in_cksum_hdr(ip);
} else {
sum = in_cksum(m, hlen);
}
}
if (sum) {
ipstat.ips_badsum++;
goto bad;
}
/* Retrieve the packet length. */
len = ntohs(ip->ip_len);
/*
* Check for additional length bogosity
*/
if (len < hlen) {
ipstat.ips_badlen++;
goto bad;
}
/*
* Check that the amount of data in the buffers
* is as at least much as the IP header would have us expect.
* Drop packet if shorter than we expect.
*/
if (m->m_pkthdr.len < len) {
ipstat.ips_tooshort++;
goto bad;
}
/* Checks out, proceed */
*mp = m;
return 0;
bad:
*mp = m;
return -1;
}
/*
* Same as above, but for IPv6.
* Cut-and-pasted from ip6_input.c.
* XXX Should we update ip6stat, or not?
*/
static int
bridge_ip6_checkbasic(struct mbuf **mp)
{
struct mbuf *m = *mp;
struct ip6_hdr *ip6;
/*
* If the IPv6 header is not aligned, slurp it up into a new
* mbuf with space for link headers, in the event we forward
* it. Otherwise, if it is aligned, make sure the entire base
* IPv6 header is in the first mbuf of the chain.
*/
if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
struct ifnet *inifp = m->m_pkthdr.rcvif;
/* max_linkhdr is already rounded up to nearest 4-byte */
if ((m = m_copyup(m, sizeof(struct ip6_hdr),
max_linkhdr)) == NULL) {
/* XXXJRT new stat, please */
ip6stat.ip6s_toosmall++;
in6_ifstat_inc(inifp, ifs6_in_hdrerr);
goto bad;
}
} else if (OS_EXPECT((size_t)m->m_len < sizeof(struct ip6_hdr), 0)) {
struct ifnet *inifp = m->m_pkthdr.rcvif;
if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
ip6stat.ip6s_toosmall++;
in6_ifstat_inc(inifp, ifs6_in_hdrerr);
goto bad;
}
}
ip6 = mtod(m, struct ip6_hdr *);
if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
ip6stat.ip6s_badvers++;
in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
goto bad;
}
/* Checks out, proceed */
*mp = m;
return 0;
bad:
*mp = m;
return -1;
}
/*
* the PF routines expect to be called from ip_input, so we
* need to do and undo here some of the same processing.
*
* XXX : this is heavily inspired on bridge_pfil()
*/
static int
bridge_pf(struct mbuf **mp, struct ifnet *ifp, uint32_t sc_filter_flags,
int input)
{
/*
* XXX : mpetit : heavily inspired by bridge_pfil()
*/
int snap, error, i, hlen;
struct ether_header *eh1, eh2;
struct ip *ip;
struct llc llc1;
u_int16_t ether_type;
snap = 0;
error = -1; /* Default error if not error == 0 */
if ((sc_filter_flags & IFBF_FILT_MEMBER) == 0) {
return 0; /* filtering is disabled */
}
i = min((*mp)->m_pkthdr.len, max_protohdr);
if ((*mp)->m_len < i) {
*mp = m_pullup(*mp, i);
if (*mp == NULL) {
BRIDGE_LOG(LOG_NOTICE, 0, "m_pullup failed");
return -1;
}
}
eh1 = mtod(*mp, struct ether_header *);
ether_type = ntohs(eh1->ether_type);
/*
* Check for SNAP/LLC.
*/
if (ether_type < ETHERMTU) {
struct llc *llc2 = (struct llc *)(eh1 + 1);
if ((*mp)->m_len >= ETHER_HDR_LEN + 8 &&
llc2->llc_dsap == LLC_SNAP_LSAP &&
llc2->llc_ssap == LLC_SNAP_LSAP &&
llc2->llc_control == LLC_UI) {
ether_type = htons(llc2->llc_un.type_snap.ether_type);
snap = 1;
}
}
/*
* If we're trying to filter bridge traffic, don't look at anything
* other than IP and ARP traffic. If the filter doesn't understand
* IPv6, don't allow IPv6 through the bridge either. This is lame
* since if we really wanted, say, an AppleTalk filter, we are hosed,
* but of course we don't have an AppleTalk filter to begin with.
* (Note that since pfil doesn't understand ARP it will pass *ALL*
* ARP traffic.)
*/
switch (ether_type) {
case ETHERTYPE_ARP:
case ETHERTYPE_REVARP:
return 0; /* Automatically pass */
case ETHERTYPE_IP:
case ETHERTYPE_IPV6:
break;
default:
/*
* Check to see if the user wants to pass non-ip
* packets, these will not be checked by pf and
* passed unconditionally so the default is to drop.
*/
if ((sc_filter_flags & IFBF_FILT_ONLYIP)) {
goto bad;
}
break;
}
/* Strip off the Ethernet header and keep a copy. */
m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t)&eh2);
m_adj(*mp, ETHER_HDR_LEN);
/* Strip off snap header, if present */
if (snap) {
m_copydata(*mp, 0, sizeof(struct llc), (caddr_t)&llc1);
m_adj(*mp, sizeof(struct llc));
}
/*
* Check the IP header for alignment and errors
*/
switch (ether_type) {
case ETHERTYPE_IP:
error = bridge_ip_checkbasic(mp);
break;
case ETHERTYPE_IPV6:
error = bridge_ip6_checkbasic(mp);
break;
default:
error = 0;
break;
}
if (error) {
goto bad;
}
error = 0;
/*
* Run the packet through pf rules
*/
switch (ether_type) {
case ETHERTYPE_IP:
/*
* before calling the firewall, swap fields the same as
* IP does. here we assume the header is contiguous
*/
ip = mtod(*mp, struct ip *);
ip->ip_len = ntohs(ip->ip_len);
ip->ip_off = ntohs(ip->ip_off);
if (ifp != NULL) {
error = pf_af_hook(ifp, 0, mp, AF_INET, input, NULL);
}
if (*mp == NULL || error != 0) { /* filter may consume */
break;
}
/* Recalculate the ip checksum and restore byte ordering */
ip = mtod(*mp, struct ip *);
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
if (hlen < (int)sizeof(struct ip)) {
goto bad;
}
if (hlen > (*mp)->m_len) {
if ((*mp = m_pullup(*mp, hlen)) == 0) {
goto bad;
}
ip = mtod(*mp, struct ip *);
if (ip == NULL) {
goto bad;
}
}
ip->ip_len = htons(ip->ip_len);
ip->ip_off = htons(ip->ip_off);
ip->ip_sum = 0;
if (hlen == sizeof(struct ip)) {
ip->ip_sum = in_cksum_hdr(ip);
} else {
ip->ip_sum = in_cksum(*mp, hlen);
}
break;
case ETHERTYPE_IPV6:
if (ifp != NULL) {
error = pf_af_hook(ifp, 0, mp, AF_INET6, input, NULL);
}
if (*mp == NULL || error != 0) { /* filter may consume */
break;
}
break;
default:
error = 0;
break;
}
if (*mp == NULL) {
return error;
}
if (error != 0) {
goto bad;
}
error = -1;
/*
* Finally, put everything back the way it was and return
*/
if (snap) {
M_PREPEND(*mp, sizeof(struct llc), M_DONTWAIT, 0);
if (*mp == NULL) {
return error;
}
bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc));
}
M_PREPEND(*mp, ETHER_HDR_LEN, M_DONTWAIT, 0);
if (*mp == NULL) {
return error;
}
bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN);
return 0;
bad:
m_freem(*mp);
*mp = NULL;
return error;
}
/*
* Copyright (C) 2014, Stefano Garzarella - Universita` di Pisa.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* XXX-ste: Maybe this function must be moved into kern/uipc_mbuf.c
*
* Create a queue of packets/segments which fit the given mss + hdr_len.
* m0 points to mbuf chain to be segmented.
* This function splits the payload (m0-> m_pkthdr.len - hdr_len)
* into segments of length MSS bytes and then copy the first hdr_len bytes
* from m0 at the top of each segment.
* If hdr2_buf is not NULL (hdr2_len is the buf length), it is copied
* in each segment after the first hdr_len bytes
*
* Return the new queue with the segments on success, NULL on failure.
* (the mbuf queue is freed in this case).
* nsegs contains the number of segments generated.
*/
static struct mbuf *
m_seg(struct mbuf *m0, int hdr_len, int mss, int *nsegs,
char * hdr2_buf, int hdr2_len)
{
int off = 0, n, firstlen;
struct mbuf **mnext, *mseg;
int total_len = m0->m_pkthdr.len;
/*
* Segmentation useless
*/
if (total_len <= hdr_len + mss) {
return m0;
}
if (hdr2_buf == NULL || hdr2_len <= 0) {
hdr2_buf = NULL;
hdr2_len = 0;
}
off = hdr_len + mss;
firstlen = mss; /* first segment stored in the original mbuf */
mnext = &(m0->m_nextpkt); /* pointer to next packet */
for (n = 1; off < total_len; off += mss, n++) {
struct mbuf *m;
/*
* Copy the header from the original packet
* and create a new mbuf chain
*/
if (MHLEN < hdr_len) {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
} else {
m = m_gethdr(M_NOWAIT, MT_DATA);
}
if (m == NULL) {
#ifdef GSO_DEBUG
D("MGETHDR error\n");
#endif
goto err;
}
m_copydata(m0, 0, hdr_len, mtod(m, caddr_t));
m->m_len = hdr_len;
/*
* if the optional header is present, copy it
*/
if (hdr2_buf != NULL) {
m_copyback(m, hdr_len, hdr2_len, hdr2_buf);
}
m->m_flags |= (m0->m_flags & M_COPYFLAGS);
if (off + mss >= total_len) { /* last segment */
mss = total_len - off;
}
/*
* Copy the payload from original packet
*/
mseg = m_copym(m0, off, mss, M_NOWAIT);
if (mseg == NULL) {
m_freem(m);
#ifdef GSO_DEBUG
D("m_copym error\n");
#endif
goto err;
}
m_cat(m, mseg);
m->m_pkthdr.len = hdr_len + hdr2_len + mss;
m->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
/*
* Copy the checksum flags and data (in_cksum() need this)
*/
m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
m->m_pkthdr.csum_data = m0->m_pkthdr.csum_data;
m->m_pkthdr.tso_segsz = m0->m_pkthdr.tso_segsz;
*mnext = m;
mnext = &(m->m_nextpkt);
}
/*
* Update first segment.
* If the optional header is present, is necessary
* to insert it into the first segment.
*/
if (hdr2_buf == NULL) {
m_adj(m0, hdr_len + firstlen - total_len);
m0->m_pkthdr.len = hdr_len + firstlen;
} else {
mseg = m_copym(m0, hdr_len, firstlen, M_NOWAIT);
if (mseg == NULL) {
#ifdef GSO_DEBUG
D("m_copym error\n");
#endif
goto err;
}
m_adj(m0, hdr_len - total_len);
m_copyback(m0, hdr_len, hdr2_len, hdr2_buf);
m_cat(m0, mseg);
m0->m_pkthdr.len = hdr_len + hdr2_len + firstlen;
}
if (nsegs != NULL) {
*nsegs = n;
}
return m0;
err:
while (m0 != NULL) {
mseg = m0->m_nextpkt;
m0->m_nextpkt = NULL;
m_freem(m0);
m0 = mseg;
}
return NULL;
}
/*
* Wrappers of IPv4 checksum functions
*/
static inline void
gso_ipv4_data_cksum(struct mbuf *m, struct ip *ip, int mac_hlen)
{
m->m_data += mac_hlen;
m->m_len -= mac_hlen;
m->m_pkthdr.len -= mac_hlen;
#if __FreeBSD_version < 1000000
ip->ip_len = ntohs(ip->ip_len); /* needed for in_delayed_cksum() */
#endif
in_delayed_cksum(m);
#if __FreeBSD_version < 1000000
ip->ip_len = htons(ip->ip_len);
#endif
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
m->m_len += mac_hlen;
m->m_pkthdr.len += mac_hlen;
m->m_data -= mac_hlen;
}
static inline void
gso_ipv4_hdr_cksum(struct mbuf *m, struct ip *ip, int mac_hlen, int ip_hlen)
{
m->m_data += mac_hlen;
ip->ip_sum = in_cksum(m, ip_hlen);
m->m_pkthdr.csum_flags &= ~CSUM_IP;
m->m_data -= mac_hlen;
}
/*
* Structure that contains the state during the TCP segmentation
*/
struct gso_ip_tcp_state {
void (*update)
(struct gso_ip_tcp_state*, struct mbuf*);
void (*internal)
(struct gso_ip_tcp_state*, struct mbuf*);
union iphdr hdr;
struct tcphdr *tcp;
int mac_hlen;
int ip_hlen;
int tcp_hlen;
int hlen;
int pay_len;
int sw_csum;
uint32_t tcp_seq;
uint16_t ip_id;
boolean_t is_tx;
};
/*
* Update the pointers to TCP and IPv4 headers
*/
static inline void
gso_ipv4_tcp_update(struct gso_ip_tcp_state *state, struct mbuf *m)
{
state->hdr.ip = (struct ip *)(void *)(mtod(m, uint8_t *) + state->mac_hlen);
state->tcp = (struct tcphdr *)(void *)((caddr_t)(state->hdr.ip) + state->ip_hlen);
state->pay_len = m->m_pkthdr.len - state->hlen;
}
/*
* Set properly the TCP and IPv4 headers
*/
static inline void
gso_ipv4_tcp_internal(struct gso_ip_tcp_state *state, struct mbuf *m)
{
/*
* Update IP header
*/
state->hdr.ip->ip_id = htons((state->ip_id)++);
state->hdr.ip->ip_len = htons(m->m_pkthdr.len - state->mac_hlen);
/*
* TCP Checksum
*/
state->tcp->th_sum = 0;
state->tcp->th_sum = in_pseudo(state->hdr.ip->ip_src.s_addr,
state->hdr.ip->ip_dst.s_addr,
htons(state->tcp_hlen + IPPROTO_TCP + state->pay_len));
/*
* Checksum HW not supported (TCP)
*/
if (state->sw_csum & CSUM_DELAY_DATA) {
gso_ipv4_data_cksum(m, state->hdr.ip, state->mac_hlen);
}
state->tcp_seq += state->pay_len;
/*
* IP Checksum
*/
state->hdr.ip->ip_sum = 0;
/*
* Checksum HW not supported (IP)
*/
if (state->sw_csum & CSUM_IP) {
gso_ipv4_hdr_cksum(m, state->hdr.ip, state->mac_hlen, state->ip_hlen);
}
}
/*
* Updates the pointers to TCP and IPv6 headers
*/
static inline void
gso_ipv6_tcp_update(struct gso_ip_tcp_state *state, struct mbuf *m)
{
state->hdr.ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + state->mac_hlen);
state->tcp = (struct tcphdr *)(void *)((caddr_t)(state->hdr.ip6) + state->ip_hlen);
state->pay_len = m->m_pkthdr.len - state->hlen;
}
/*
* Sets properly the TCP and IPv6 headers
*/
static inline void
gso_ipv6_tcp_internal(struct gso_ip_tcp_state *state, struct mbuf *m)
{
state->hdr.ip6->ip6_plen = htons(m->m_pkthdr.len -
state->mac_hlen - state->ip_hlen);
/*
* TCP Checksum
*/
state->tcp->th_sum = 0;
state->tcp->th_sum = in6_pseudo(&state->hdr.ip6->ip6_src,
&state->hdr.ip6->ip6_dst,
htonl(state->tcp_hlen + state->pay_len + IPPROTO_TCP));
/*
* Checksum HW not supported (TCP)
*/
if (state->sw_csum & CSUM_DELAY_IPV6_DATA) {
(void)in6_finalize_cksum(m, state->mac_hlen, -1, -1, state->sw_csum);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IPV6_DATA;
}
state->tcp_seq += state->pay_len;
}
/*
* Init the state during the TCP segmentation
*/
static void
gso_ip_tcp_init_state(struct gso_ip_tcp_state *state, struct ifnet *ifp,
bool is_ipv4, int mac_hlen, int ip_hlen,
void * ip_hdr, struct tcphdr * tcp_hdr)
{
#pragma unused(ifp)
state->hdr.ptr = ip_hdr;
state->tcp = tcp_hdr;
if (is_ipv4) {
state->ip_id = ntohs(state->hdr.ip->ip_id);
state->update = gso_ipv4_tcp_update;
state->internal = gso_ipv4_tcp_internal;
state->sw_csum = CSUM_DELAY_DATA | CSUM_IP; /* XXX */
} else {
state->update = gso_ipv6_tcp_update;
state->internal = gso_ipv6_tcp_internal;
state->sw_csum = CSUM_DELAY_IPV6_DATA; /* XXX */
}
state->mac_hlen = mac_hlen;
state->ip_hlen = ip_hlen;
state->tcp_hlen = state->tcp->th_off << 2;
state->hlen = mac_hlen + ip_hlen + state->tcp_hlen;
state->tcp_seq = ntohl(state->tcp->th_seq);
//state->sw_csum = m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_FLAGS(ifp->if_hwassist);
return;
}
/*
* GSO on TCP/IP (v4 or v6)
*
* If is_tx is TRUE, segmented packets are transmitted after they are
* segmented.
*
* If is_tx is FALSE, the segmented packets are returned as a chain in *mp.
*/
static int
gso_ip_tcp(struct ifnet *ifp, struct mbuf **mp, struct gso_ip_tcp_state *state,
boolean_t is_tx)
{
struct mbuf *m, *m_tx;
int error = 0;
int mss = 0;
int nsegs = 0;
struct mbuf *m0 = *mp;
#ifdef GSO_STATS
int total_len = m0->m_pkthdr.len;
#endif /* GSO_STATS */
#if 1
u_int reduce_mss;
reduce_mss = is_tx ? if_bridge_tso_reduce_mss_tx
: if_bridge_tso_reduce_mss_forwarding;
mss = ifp->if_mtu - state->ip_hlen - state->tcp_hlen - reduce_mss;
assert(mss > 0);
#else
if (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) {/* TSO with GSO */
mss = ifp->if_hw_tsomax - state->ip_hlen - state->tcp_hlen;
} else {
mss = m0->m_pkthdr.tso_segsz;
}
#endif
*mp = m0 = m_seg(m0, state->hlen, mss, &nsegs, 0, 0);
if (m0 == NULL) {
return ENOBUFS; /* XXX ok? */
}
BRIDGE_LOG(LOG_DEBUG, BR_DBGF_CHECKSUM,
"%s %s mss %d nsegs %d",
ifp->if_xname,
is_tx ? "TX" : "RX",
mss, nsegs);
/*
* XXX-ste: can this happen?
*/
if (m0->m_nextpkt == NULL) {
#ifdef GSO_DEBUG
D("only 1 segment");
#endif
if (is_tx) {
error = bridge_transmit(ifp, m0);
}
return error;
}
#ifdef GSO_STATS
GSOSTAT_SET_MAX(tcp.gsos_max_mss, mss);
GSOSTAT_SET_MIN(tcp.gsos_min_mss, mss);
GSOSTAT_ADD(tcp.gsos_osegments, nsegs);
#endif /* GSO_STATS */
/* first pkt */
m = m0;
state->update(state, m);
do {
state->tcp->th_flags &= ~(TH_FIN | TH_PUSH);
state->internal(state, m);
m_tx = m;
m = m->m_nextpkt;
if (is_tx) {
m_tx->m_nextpkt = NULL;
if ((error = bridge_transmit(ifp, m_tx)) != 0) {
/*
* XXX: If a segment can not be sent, discard the following
* segments and propagate the error to the upper levels.
* In this way the TCP retransmits all the initial packet.
*/
#ifdef GSO_DEBUG
D("if_transmit error\n");
#endif
goto err;
}
}
state->update(state, m);
state->tcp->th_flags &= ~TH_CWR;
state->tcp->th_seq = htonl(state->tcp_seq);
} while (m->m_nextpkt);
/* last pkt */
state->internal(state, m);
if (is_tx) {
error = bridge_transmit(ifp, m);
#ifdef GSO_DEBUG
if (error) {
D("last if_transmit error\n");
D("error - type = %d \n", error);
}
#endif
}
#ifdef GSO_STATS
if (!error) {
GSOSTAT_INC(tcp.gsos_segmented);
GSOSTAT_SET_MAX(tcp.gsos_maxsegmented, total_len);
GSOSTAT_SET_MIN(tcp.gsos_minsegmented, total_len);
GSOSTAT_ADD(tcp.gsos_totalbyteseg, total_len);
}
#endif /* GSO_STATS */
return error;
err:
#ifdef GSO_DEBUG
D("error - type = %d \n", error);
#endif
while (m != NULL) {
m_tx = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
m = m_tx;
}
return error;
}
/*
* GSO for TCP/IPv[46]
*/
static int
gso_tcp(struct ifnet *ifp, struct mbuf **mp, u_int mac_hlen, bool is_ipv4,
boolean_t is_tx)
{
int error;
ip_packet_info info;
uint32_t csum_flags;
struct gso_ip_tcp_state state;
struct bripstats stats; /* XXX ignored */
struct tcphdr *tcp;
if (!is_tx && ipforwarding == 0) {
/* no need to segment if the packet will not be forwarded */
return 0;
}
error = bridge_get_tcp_header(mp, mac_hlen, is_ipv4, &info, &stats);
if (error != 0) {
if (*mp != NULL) {
m_freem(*mp);
*mp = NULL;
}
return error;
}
if (info.ip_proto_hdr == NULL) {
/* not a TCP packet */
return 0;
}
tcp = (struct tcphdr *)(void *)info.ip_proto_hdr;
gso_ip_tcp_init_state(&state, ifp, is_ipv4, mac_hlen,
info.ip_hlen, info.ip_hdr.ptr, tcp);
if (is_ipv4) {
csum_flags = CSUM_DELAY_DATA; /* XXX */
if (!is_tx) {
/* if RX to our local IP address, don't segment */
struct in_addr dst_ip;
bcopy(&state.hdr.ip->ip_dst, &dst_ip, sizeof(dst_ip));
if (in_addr_is_ours(dst_ip)) {
return 0;
}
}
} else {
csum_flags = CSUM_DELAY_IPV6_DATA; /* XXX */
if (!is_tx) {
/* if RX to our local IP address, don't segment */
if (in6_addr_is_ours(&state.hdr.ip6->ip6_dst,
ifp->if_index)) {
/* local IP address, no need to segment */
return 0;
}
}
}
(*mp)->m_pkthdr.csum_flags = csum_flags;
(*mp)->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
return gso_ip_tcp(ifp, mp, &state, is_tx);
}