gems-kernel/source/THIRDPARTY/xnu/bsd/net/if_headless.c

1507 lines
41 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2019-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#if SKYWALK
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/kern_event.h>
#include <sys/mcache.h>
#include <sys/syslog.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_types.h>
#include <libkern/OSAtomic.h>
#include <net/dlil.h>
#include <net/kpi_interface.h>
#include <net/kpi_protocol.h>
#include <kern/locks.h>
#include <kern/zalloc.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <net/if_media.h>
#include <net/ether_if_module.h>
#include <skywalk/os_skywalk_private.h>
#include <skywalk/nexus/netif/nx_netif.h>
#include <skywalk/channel/channel_var.h>
static boolean_t
is_power_of_two(unsigned int val)
{
return (val & (val - 1)) == 0;
}
#define HEADLESS_ZERO_IFNAME "zero"
#define HEADLESS_NULL_IFNAME "null"
SYSCTL_DECL(_net_link);
SYSCTL_NODE(_net_link, OID_AUTO, headless, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
"headless interface");
static int if_headless_nxattach = 0;
SYSCTL_INT(_net_link_headless, OID_AUTO, nxattach,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_headless_nxattach, 0,
"headless interface auto-attach nexus");
static int if_headless_debug = 0;
SYSCTL_INT(_net_link_headless, OID_AUTO, debug,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_headless_debug, 0,
"headless interface debug logs");
static int if_headless_multibuflet = 0;
SYSCTL_INT(_net_link_headless, OID_AUTO, multibuflet,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_headless_multibuflet, 0,
"headless interface using multi-buflet packets");
static int if_headless_packet_length = 1500;
SYSCTL_INT(_net_link_headless, OID_AUTO, packet_length,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_headless_packet_length, 0,
"headless interface packet length");
static int if_headless_create_payload = 0;
SYSCTL_INT(_net_link_headless, OID_AUTO, create_payload,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_headless_create_payload, 0,
"headless interface create payload data or not");
/*
* SIOCSDRVSPEC
*/
enum {
IF_HEADLESS_S_CMD_NONE = 0,
IF_HEADLESS_S_CMD_SET_MEDIA = 1,
};
#define IF_HEADLESS_MEDIA_LIST_MAX 27
struct if_headless_media {
int32_t iffm_current;
uint32_t iffm_count;
uint32_t iffm_reserved[3];
int32_t iffm_list[IF_HEADLESS_MEDIA_LIST_MAX];
};
struct if_headless_request {
uint64_t iffr_reserved[4];
union {
char iffru_buf[128]; /* stable size */
struct if_headless_media iffru_media;
} iffr_u;
#define iffr_media iffr_u.iffru_media
};
/* sysctl net.link.headless.tx_headroom */
#define headless_TX_HEADROOM_MAX 32
static uint16_t if_headless_tx_headroom = 0;
extern void if_headless_init(void);
static int
headless_tx_headroom_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
uint16_t new_value;
int changed;
int error;
error = sysctl_io_number(req, if_headless_tx_headroom,
sizeof(if_headless_tx_headroom), &new_value, &changed);
if (error == 0 && changed != 0) {
if (new_value > headless_TX_HEADROOM_MAX ||
(new_value % 8) != 0) {
return EINVAL;
}
if_headless_tx_headroom = new_value;
}
return 0;
}
SYSCTL_PROC(_net_link_headless, OID_AUTO, tx_headroom,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, headless_tx_headroom_sysctl, "IU", "headless ethernet Tx headroom");
/* sysctl net.link.headless.max_mtu */
#define headless_MAX_MTU_DEFAULT 2048
#define headless_MAX_MTU_MAX ((16 * 1024) - ETHER_HDR_LEN)
static unsigned int if_headless_max_mtu = headless_MAX_MTU_DEFAULT;
/* sysctl net.link.headless.buflet_size */
#define headless_BUFLET_SIZE_MIN 512
#define headless_BUFLET_SIZE_MAX 2048
static unsigned int if_headless_buflet_size = headless_BUFLET_SIZE_MIN;
static int
headless_max_mtu_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
unsigned int new_value;
int changed;
int error;
error = sysctl_io_number(req, if_headless_max_mtu,
sizeof(if_headless_max_mtu), &new_value, &changed);
if (error == 0 && changed != 0) {
if (new_value > headless_MAX_MTU_MAX ||
new_value < ETHERMTU ||
new_value <= if_headless_buflet_size) {
return EINVAL;
}
if_headless_max_mtu = new_value;
}
return 0;
}
SYSCTL_PROC(_net_link_headless, OID_AUTO, max_mtu,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, headless_max_mtu_sysctl, "IU", "headless interface maximum MTU");
static int
headless_buflet_size_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
unsigned int new_value;
int changed;
int error;
error = sysctl_io_number(req, if_headless_buflet_size,
sizeof(if_headless_buflet_size), &new_value, &changed);
if (error == 0 && changed != 0) {
/* must be a power of 2 between min and max */
if (new_value > headless_BUFLET_SIZE_MAX ||
new_value < headless_BUFLET_SIZE_MIN ||
!is_power_of_two(new_value) ||
new_value >= if_headless_max_mtu) {
return EINVAL;
}
if_headless_buflet_size = new_value;
}
return 0;
}
SYSCTL_PROC(_net_link_headless, OID_AUTO, buflet_size,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, headless_buflet_size_sysctl, "IU", "headless interface buflet size");
/**
** virtual ethernet structures, types
**/
#define IFF_NUM_TX_RINGS_WMM_MODE 4
#define IFF_NUM_RX_RINGS_WMM_MODE 1
#define IFF_MAX_TX_RINGS IFF_NUM_TX_RINGS_WMM_MODE
#define IFF_MAX_RX_RINGS IFF_NUM_RX_RINGS_WMM_MODE
typedef uint16_t iff_flags_t;
#define IFF_FLAGS_HWCSUM 0x0001
#define IFF_FLAGS_BSD_MODE 0x0002
#define IFF_FLAGS_DETACHING 0x0004
#define IFF_FLAGS_WMM_MODE 0x0008
#define IFF_FLAGS_MULTIBUFLETS 0x0010
#define IFF_FLAGS_COPYPKT_MODE 0x0020
typedef struct {
kern_pbufpool_t fpp_pp;
uint32_t fpp_retain_count;
} headless_packet_pool, *headless_packet_pool_t;
typedef struct {
uuid_t fnx_provider;
uuid_t fnx_instance;
} headless_nx, *headless_nx_t;
struct if_headless {
struct if_clone * iff_cloner;
char iff_name[IFNAMSIZ]; /* our unique id */
ifnet_t iff_ifp;
iff_flags_t iff_flags;
uint32_t iff_retain_count;
ifnet_t iff_peer; /* the other end */
int iff_media_current;
int iff_media_active;
uint32_t iff_media_count;
int iff_media_list[IF_HEADLESS_MEDIA_LIST_MAX];
struct mbuf * iff_pending_tx_packet;
boolean_t iff_start_busy;
unsigned int iff_max_mtu;
headless_nx iff_nx;
kern_channel_ring_t iff_rx_ring[IFF_MAX_RX_RINGS];
kern_channel_ring_t iff_tx_ring[IFF_MAX_TX_RINGS];
thread_call_t iff_doorbell_tcall;
boolean_t iff_tcall_active;
boolean_t iff_waiting_for_tcall;
boolean_t iff_channel_connected;
headless_packet_pool_t iff_fpp;
uint16_t iff_tx_headroom;
};
typedef struct if_headless * if_headless_ref;
static if_headless_ref
ifnet_get_if_headless(ifnet_t ifp);
#define HEADLESS_DPRINTF(fmt, ...) \
{ if (if_headless_debug != 0) printf("%s " fmt, __func__, ## __VA_ARGS__); }
static inline void
headless_set_detaching(if_headless_ref headlessif)
{
headlessif->iff_flags |= IFF_FLAGS_DETACHING;
}
static inline boolean_t
headless_is_detaching(if_headless_ref headlessif)
{
return (headlessif->iff_flags & IFF_FLAGS_DETACHING) != 0;
}
static inline boolean_t
headless_using_multibuflets(if_headless_ref headlessif)
{
return (headlessif->iff_flags & IFF_FLAGS_MULTIBUFLETS) != 0;
}
#define HEADLESS_MAXUNIT IF_MAXUNIT
#define HEADLESS_ZONE_MAX_ELEM MIN(IFNETS_MAX, HEADLESS_MAXUNIT)
static int headless_clone_create(struct if_clone *, u_int32_t, void *);
static int headless_clone_destroy(ifnet_t);
static int headless_ioctl(ifnet_t ifp, u_long cmd, void * addr);
static void headless_if_free(ifnet_t ifp);
static void headless_ifnet_set_attrs(if_headless_ref headlessif, ifnet_t ifp);
static void headless_free(if_headless_ref headlessif);
static struct if_clone
headless_zero_cloner = IF_CLONE_INITIALIZER(HEADLESS_ZERO_IFNAME,
headless_clone_create,
headless_clone_destroy,
0,
HEADLESS_MAXUNIT);
static struct if_clone
headless_null_cloner = IF_CLONE_INITIALIZER(HEADLESS_NULL_IFNAME,
headless_clone_create,
headless_clone_destroy,
0,
HEADLESS_MAXUNIT);
static void interface_link_event(ifnet_t ifp, u_int32_t event_code);
/* some media words to pretend to be ethernet */
static int default_media_words[] = {
IFM_MAKEWORD(IFM_ETHER, 0, 0, 0),
IFM_MAKEWORD(IFM_ETHER, IFM_10G_T, IFM_FDX, 0),
IFM_MAKEWORD(IFM_ETHER, IFM_2500_T, IFM_FDX, 0),
IFM_MAKEWORD(IFM_ETHER, IFM_5000_T, IFM_FDX, 0),
};
#define default_media_words_count (sizeof(default_media_words) \
/ sizeof (default_media_words[0]))
/**
** veth locks
**/
static LCK_GRP_DECLARE(headless_lck_grp, "headless");
static LCK_MTX_DECLARE(headless_lck_mtx, &headless_lck_grp);
static inline void
headless_lock(void)
{
lck_mtx_lock(&headless_lck_mtx);
}
static inline void
headless_unlock(void)
{
lck_mtx_unlock(&headless_lck_mtx);
}
static inline unsigned int
headless_max_mtu(ifnet_t ifp)
{
if_headless_ref headlessif;
unsigned int max_mtu = ETHERMTU;
headless_lock();
headlessif = ifnet_get_if_headless(ifp);
if (headlessif != NULL) {
max_mtu = headlessif->iff_max_mtu;
}
headless_unlock();
return max_mtu;
}
static void
headless_packet_pool_free(headless_packet_pool_t fpp)
{
kern_pbufpool_destroy(fpp->fpp_pp);
kfree_type(headless_packet_pool, fpp);
}
static void
headless_free(if_headless_ref headlessif)
{
assert(headlessif->iff_retain_count == 0);
if (headlessif->iff_fpp != NULL) {
headless_packet_pool_free(headlessif->iff_fpp);
}
HEADLESS_DPRINTF("%s\n", headlessif->iff_name);
kfree_type(struct if_headless, headlessif);
}
static void
headless_release(if_headless_ref headlessif)
{
u_int32_t old_retain_count;
old_retain_count = OSDecrementAtomic(&headlessif->iff_retain_count);
switch (old_retain_count) {
case 0:
assert(old_retain_count != 0);
break;
case 1:
headless_free(headlessif);
break;
default:
break;
}
return;
}
static void
headless_retain(if_headless_ref headlessif)
{
OSIncrementAtomic(&headlessif->iff_retain_count);
}
static void
headless_seg_ctor_fn(const kern_pbufpool_t pp, const kern_segment_t buf_seg,
const IOSKMemoryDescriptor buf_desc)
{
#pragma unused(pp, buf_seg, buf_desc)
}
static void
headless_seg_dtor_fn(const kern_pbufpool_t pp, const kern_segment_t buf_seg,
const IOSKMemoryDescriptor buf_desc)
{
#pragma unused(pp, buf_seg, buf_desc)
}
static headless_packet_pool_t
headless_packet_pool_alloc(boolean_t multi_buflet, unsigned int max_mtu)
{
headless_packet_pool_t fpp = NULL;
errno_t error;
struct kern_pbufpool * pp;
struct kern_pbufpool_init pp_init;
bzero(&pp_init, sizeof(pp_init));
pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION;
pp_init.kbi_flags |= KBIF_USER_ACCESS;
pp_init.kbi_flags |= KBIF_VIRTUAL_DEVICE;
(void)snprintf((char *)pp_init.kbi_name, sizeof(pp_init.kbi_name),
"%s", "headless ethernet");
pp_init.kbi_packets = 4096; /* XXX make this configurable */
if (multi_buflet) {
pp_init.kbi_bufsize = if_headless_buflet_size;
pp_init.kbi_max_frags = howmany(max_mtu, if_headless_buflet_size);
pp_init.kbi_buflets = pp_init.kbi_packets *
pp_init.kbi_max_frags;
pp_init.kbi_flags |= KBIF_BUFFER_ON_DEMAND;
} else {
pp_init.kbi_bufsize = max_mtu;
pp_init.kbi_max_frags = 1;
pp_init.kbi_buflets = pp_init.kbi_packets;
}
pp_init.kbi_buf_seg_size = skmem_usr_buf_seg_size;
if (skywalk_netif_direct_enabled()) {
pp_init.kbi_flags |= KBIF_USER_ACCESS;
}
pp_init.kbi_buf_seg_ctor = headless_seg_ctor_fn;
pp_init.kbi_buf_seg_dtor = headless_seg_dtor_fn;
pp_init.kbi_ctx = NULL;
pp_init.kbi_ctx_retain = NULL;
pp_init.kbi_ctx_release = NULL;
error = kern_pbufpool_create(&pp_init, &pp, NULL);
if (error != 0) {
printf("%s: kern_pbufpool_create failed %d\n", __func__, error);
} else {
fpp = kalloc_type(headless_packet_pool, Z_WAITOK | Z_ZERO);
fpp->fpp_pp = pp;
fpp->fpp_retain_count = 1;
}
return fpp;
}
/**
** nexus netif domain provider
**/
static errno_t
headless_nxdp_init(kern_nexus_domain_provider_t domprov)
{
#pragma unused(domprov)
return 0;
}
static void
headless_nxdp_fini(kern_nexus_domain_provider_t domprov)
{
#pragma unused(domprov)
}
static uuid_t headless_nx_dom_prov;
static errno_t
headless_register_nexus_domain_provider(void)
{
const struct kern_nexus_domain_provider_init dp_init = {
.nxdpi_version = KERN_NEXUS_DOMAIN_PROVIDER_CURRENT_VERSION,
.nxdpi_flags = 0,
.nxdpi_init = headless_nxdp_init,
.nxdpi_fini = headless_nxdp_fini
};
errno_t err = 0;
/* headless_nxdp_init() is called before this function returns */
err = kern_nexus_register_domain_provider(NEXUS_TYPE_NET_IF,
(const uint8_t *)
"com.apple.headless",
&dp_init, sizeof(dp_init),
&headless_nx_dom_prov);
if (err != 0) {
printf("%s: failed to register domain provider\n", __func__);
return err;
}
return 0;
}
/**
** netif nexus routines
**/
static if_headless_ref
headless_nexus_context(kern_nexus_t nexus)
{
if_headless_ref headlessif;
headlessif = (if_headless_ref)kern_nexus_get_context(nexus);
assert(headlessif != NULL);
return headlessif;
}
static errno_t
headless_nx_ring_init(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel, kern_channel_ring_t ring, boolean_t is_tx_ring,
void **ring_ctx)
{
if_headless_ref headlessif;
#pragma unused(nxprov, channel, ring_ctx)
headless_lock();
headlessif = headless_nexus_context(nexus);
if (headless_is_detaching(headlessif)) {
headless_unlock();
return 0;
}
if (is_tx_ring) {
assert(headlessif->iff_tx_ring[0] == NULL);
headlessif->iff_tx_ring[0] = ring;
} else {
assert(headlessif->iff_rx_ring[0] == NULL);
headlessif->iff_rx_ring[0] = ring;
}
headless_unlock();
HEADLESS_DPRINTF("%s: %s ring init\n",
headlessif->iff_name, is_tx_ring ? "TX" : "RX");
return 0;
}
static void
headless_nx_ring_fini(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring)
{
#pragma unused(nxprov, ring)
if_headless_ref headlessif;
thread_call_t tcall = NULL;
headless_lock();
headlessif = headless_nexus_context(nexus);
if (headlessif->iff_rx_ring[0] == ring) {
headlessif->iff_rx_ring[0] = NULL;
HEADLESS_DPRINTF("%s: RX ring fini\n", headlessif->iff_name);
} else if (headlessif->iff_tx_ring[0] == ring) {
tcall = headlessif->iff_doorbell_tcall;
headlessif->iff_doorbell_tcall = NULL;
headlessif->iff_tx_ring[0] = NULL;
}
headless_unlock();
if (tcall != NULL) {
boolean_t success;
success = thread_call_cancel_wait(tcall);
HEADLESS_DPRINTF("%s: thread_call_cancel %s\n",
headlessif->iff_name,
success ? "SUCCESS" : "FAILURE");
if (!success) {
headless_lock();
if (headlessif->iff_tcall_active) {
headlessif->iff_waiting_for_tcall = TRUE;
HEADLESS_DPRINTF("%s: *waiting for threadcall\n",
headlessif->iff_name);
do {
msleep(headlessif, &headless_lck_mtx,
PZERO, "headless threadcall", 0);
} while (headlessif->iff_tcall_active);
HEADLESS_DPRINTF("%s: ^threadcall done\n",
headlessif->iff_name);
headlessif->iff_waiting_for_tcall = FALSE;
}
headless_unlock();
}
success = thread_call_free(tcall);
HEADLESS_DPRINTF("%s: thread_call_free %s\n",
headlessif->iff_name,
success ? "SUCCESS" : "FAILURE");
headless_release(headlessif);
assert(success == TRUE);
}
}
static errno_t
headless_nx_pre_connect(kern_nexus_provider_t nxprov,
proc_t proc, kern_nexus_t nexus, nexus_port_t port, kern_channel_t channel,
void **channel_context)
{
#pragma unused(nxprov, proc, nexus, port, channel, channel_context)
return 0;
}
static errno_t
headless_nx_connected(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_t channel)
{
#pragma unused(nxprov, channel)
if_headless_ref headlessif;
headlessif = headless_nexus_context(nexus);
headless_lock();
if (headless_is_detaching(headlessif)) {
headless_unlock();
return EBUSY;
}
headless_retain(headlessif);
headlessif->iff_channel_connected = TRUE;
headless_unlock();
HEADLESS_DPRINTF("%s: connected channel %p\n",
headlessif->iff_name, channel);
return 0;
}
static void
headless_nx_pre_disconnect(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_t channel)
{
#pragma unused(nxprov, channel)
if_headless_ref headlessif;
headlessif = headless_nexus_context(nexus);
HEADLESS_DPRINTF("%s: pre-disconnect channel %p\n",
headlessif->iff_name, channel);
/* Quiesce the interface and flush any pending outbound packets. */
if_down(headlessif->iff_ifp);
headless_lock();
headlessif->iff_channel_connected = FALSE;
headless_unlock();
}
static void
headless_nx_disconnected(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_t channel)
{
#pragma unused(nxprov, channel)
if_headless_ref headlessif;
headlessif = headless_nexus_context(nexus);
HEADLESS_DPRINTF("%s: disconnected channel %p\n",
headlessif->iff_name, channel);
headless_release(headlessif);
}
static errno_t
headless_nx_slot_init(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_ring_t ring, kern_channel_slot_t slot,
uint32_t slot_index, struct kern_slot_prop **slot_prop_addr,
void **slot_context)
{
#pragma unused(nxprov, nexus, ring, slot, slot_index, slot_prop_addr, slot_context)
return 0;
}
static void
headless_nx_slot_fini(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_ring_t ring, kern_channel_slot_t slot,
uint32_t slot_index)
{
#pragma unused(nxprov, nexus, ring, slot, slot_index)
}
static errno_t
headless_nx_sync_tx(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_ring_t tx_ring, uint32_t flags)
{
#pragma unused(nxprov)
if_headless_ref headlessif;
ifnet_t ifp;
kern_channel_slot_t last_tx_slot = NULL;
struct kern_channel_ring_stat_increment stats = {
.kcrsi_slots_transferred = 0, .kcrsi_bytes_transferred = 0
};
kern_channel_slot_t tx_slot;
struct netif_stats *nifs = &NX_NETIF_PRIVATE(nexus)->nif_stats;
STATS_INC(nifs, NETIF_STATS_TX_SYNC);
headlessif = headless_nexus_context(nexus);
HEADLESS_DPRINTF("%s ring %d flags 0x%x\n", headlessif->iff_name,
tx_ring->ckr_ring_id, flags);
headless_lock();
if (headless_is_detaching(headlessif) ||
!headlessif->iff_channel_connected) {
headless_unlock();
return 0;
}
headless_unlock();
ifp = headlessif->iff_ifp;
tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
while (tx_slot != NULL) {
kern_packet_t ph;
/* detach the packet from the TX ring */
ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
assert(ph != 0);
kern_channel_slot_detach_packet(tx_ring, tx_slot, ph);
kern_pbufpool_free(headlessif->iff_fpp->fpp_pp, ph);
last_tx_slot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
STATS_INC(nifs, NETIF_STATS_TX_PACKETS);
}
if (last_tx_slot != NULL) {
kern_channel_advance_slot(tx_ring, last_tx_slot);
kern_channel_increment_ring_net_stats(tx_ring, ifp, &stats);
}
return 0;
}
static errno_t
headless_nx_sync_rx_null(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_ring_t rx_ring, uint32_t flags)
{
#pragma unused(nxprov, rx_ring, flags)
if_headless_ref headlessif;
struct netif_stats *nifs = &NX_NETIF_PRIVATE(nexus)->nif_stats;
headlessif = headless_nexus_context(nexus);
HEADLESS_DPRINTF("%s:\n", headlessif->iff_name);
STATS_INC(nifs, NETIF_STATS_RX_SYNC);
return 0;
}
static errno_t
headless_nx_sync_rx(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_ring_t rx_ring, uint32_t flags)
{
#pragma unused(nxprov)
if_headless_ref headlessif;
ifnet_t ifp;
kern_channel_slot_t last_rx_slot = NULL;
struct kern_channel_ring_stat_increment stats = {
.kcrsi_slots_transferred = 0, .kcrsi_bytes_transferred = 0
};
kern_channel_slot_t rx_slot;
struct netif_stats *nifs = &NX_NETIF_PRIVATE(nexus)->nif_stats;
kern_channel_reclaim(rx_ring);
STATS_INC(nifs, NETIF_STATS_RX_SYNC);
headlessif = headless_nexus_context(nexus);
HEADLESS_DPRINTF("%s ring %d flags 0x%x\n", headlessif->iff_name,
rx_ring->ckr_ring_id, flags);
headless_lock();
if (headless_is_detaching(headlessif) ||
!headlessif->iff_channel_connected) {
headless_unlock();
return 0;
}
headless_unlock();
ifp = headlessif->iff_ifp;
rx_slot = kern_channel_get_next_slot(rx_ring, NULL, NULL);
kern_pbufpool_t pp = headlessif->iff_fpp->fpp_pp;
while (rx_slot != NULL) {
kern_packet_t ph;
kern_buflet_t buf = NULL;
int err;
err = kern_pbufpool_alloc(pp, 1, &ph);
buf = kern_packet_get_next_buflet(ph, buf);
kern_buflet_set_data_offset(buf, 0);
if (if_headless_create_payload) {
// This is a plain TCP SYN packet
void *addr = kern_buflet_get_data_address(buf);
uint64_t *u64 = addr;
*(u64 + 0) = 0xc100d51dc3355b68ULL;
*(u64 + 1) = 0x004500084019c564ULL;
*(u64 + 2) = 0x0634004000004000ULL;
*(u64 + 3) = 0x716111e3068d11c0ULL;
*(u64 + 4) = 0xc0118d06e3116171ULL;
*(u64 + 5) = 0x8a3700000000b002ULL;
*(u64 + 6) = 0x02b000000000378aULL;
*(u64 + 7) = 0x010106030301b405ULL;
*(u64 + 8) = 0x000022cc5c940a08ULL;
*(u64 + 9) = 0x0000040200000000ULL;
}
kern_buflet_set_data_length(buf, (uint16_t)if_headless_packet_length);
err = kern_packet_set_headroom(ph, 0);
ASSERT(err == 0);
err = kern_packet_set_link_header_length(ph, 14);
ASSERT(err == 0);
kern_packet_finalize(ph);
kern_channel_slot_attach_packet(rx_ring, rx_slot, ph);
STATS_INC(nifs, NETIF_STATS_RX_PACKETS);
last_rx_slot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
if (last_rx_slot != NULL) {
kern_channel_advance_slot(rx_ring, last_rx_slot);
kern_channel_increment_ring_net_stats(rx_ring, ifp, &stats);
}
return 0;
}
static void
headless_async_doorbell(thread_call_param_t arg0, thread_call_param_t arg1)
{
#pragma unused(arg1)
errno_t error;
if_headless_ref headlessif = (if_headless_ref)arg0;
kern_channel_ring_t ring;
boolean_t more;
headless_lock();
ring = headlessif->iff_tx_ring[0];
if (headless_is_detaching(headlessif) ||
!headlessif->iff_channel_connected ||
ring == NULL) {
goto done;
}
headlessif->iff_tcall_active = TRUE;
headless_unlock();
error = kern_channel_tx_refill(ring, UINT32_MAX,
UINT32_MAX, FALSE, &more);
if (error != 0) {
HEADLESS_DPRINTF("%s: TX refill failed %d\n",
headlessif->iff_name, error);
} else {
HEADLESS_DPRINTF("%s: TX refilled\n", headlessif->iff_name);
}
headless_lock();
done:
headlessif->iff_tcall_active = FALSE;
if (headlessif->iff_waiting_for_tcall) {
HEADLESS_DPRINTF("%s: threadcall waking up waiter\n",
headlessif->iff_name);
wakeup((caddr_t)headlessif);
}
headless_unlock();
}
static void
headless_schedule_async_doorbell(if_headless_ref headlessif)
{
thread_call_t tcall;
headless_lock();
if (headless_is_detaching(headlessif) ||
!headlessif->iff_channel_connected) {
headless_unlock();
return;
}
tcall = headlessif->iff_doorbell_tcall;
if (tcall != NULL) {
thread_call_enter(tcall);
} else {
tcall = thread_call_allocate_with_options(headless_async_doorbell,
(thread_call_param_t)headlessif,
THREAD_CALL_PRIORITY_KERNEL,
THREAD_CALL_OPTIONS_ONCE);
if (tcall == NULL) {
printf("%s: %s tcall alloc failed\n",
__func__, headlessif->iff_name);
} else {
headlessif->iff_doorbell_tcall = tcall;
headless_retain(headlessif);
thread_call_enter(tcall);
}
}
headless_unlock();
}
static errno_t
headless_nx_tx_doorbell(kern_nexus_provider_t nxprov,
kern_nexus_t nexus, kern_channel_ring_t ring, uint32_t flags)
{
#pragma unused(nxprov, ring, flags)
errno_t error;
if_headless_ref headlessif;
headlessif = headless_nexus_context(nexus);
HEADLESS_DPRINTF("%s\n", headlessif->iff_name);
if ((flags & KERN_NEXUS_TXDOORBELLF_ASYNC_REFILL) == 0) {
boolean_t more;
/* synchronous tx refill */
error = kern_channel_tx_refill(ring, UINT32_MAX,
UINT32_MAX, TRUE, &more);
if (error != 0) {
HEADLESS_DPRINTF("%s: TX refill (sync) %d\n",
headlessif->iff_name, error);
} else {
HEADLESS_DPRINTF("%s: TX refilled (sync)\n",
headlessif->iff_name);
}
} else {
HEADLESS_DPRINTF("%s: schedule async refill\n",
headlessif->iff_name);
headless_schedule_async_doorbell(headlessif);
}
return 0;
}
static errno_t
headless_netif_prepare(kern_nexus_t nexus, ifnet_t ifp)
{
if_headless_ref headlessif;
headlessif = (if_headless_ref)kern_nexus_get_context(nexus);
headless_ifnet_set_attrs(headlessif, ifp);
return 0;
}
static errno_t
create_netif_provider_and_instance(if_headless_ref headlessif,
struct ifnet_init_eparams * init_params, ifnet_t *ifp,
uuid_t * provider, uuid_t * instance)
{
errno_t err;
nexus_controller_t controller = kern_nexus_shared_controller();
struct kern_nexus_net_init net_init;
nexus_name_t provider_name;
nexus_attr_t nexus_attr = NULL;
struct kern_nexus_provider_init prov_init = {
.nxpi_version = KERN_NEXUS_DOMAIN_PROVIDER_CURRENT_VERSION,
.nxpi_flags = NXPIF_VIRTUAL_DEVICE,
.nxpi_pre_connect = headless_nx_pre_connect,
.nxpi_connected = headless_nx_connected,
.nxpi_pre_disconnect = headless_nx_pre_disconnect,
.nxpi_disconnected = headless_nx_disconnected,
.nxpi_ring_init = headless_nx_ring_init,
.nxpi_ring_fini = headless_nx_ring_fini,
.nxpi_slot_init = headless_nx_slot_init,
.nxpi_slot_fini = headless_nx_slot_fini,
.nxpi_sync_tx = headless_nx_sync_tx,
.nxpi_sync_rx = headless_nx_sync_rx,
.nxpi_tx_doorbell = headless_nx_tx_doorbell,
};
if (headlessif->iff_cloner == &headless_zero_cloner) {
prov_init.nxpi_sync_rx = headless_nx_sync_rx;
prov_init.nxpi_sync_tx = headless_nx_sync_tx;
} else if (headlessif->iff_cloner == &headless_null_cloner) {
prov_init.nxpi_sync_rx = headless_nx_sync_rx_null;
prov_init.nxpi_sync_tx = headless_nx_sync_tx;
}
_CASSERT(IFF_MAX_RX_RINGS == 1);
snprintf((char *)provider_name, sizeof(provider_name),
"com.apple.netif.%s", headlessif->iff_name);
err = kern_nexus_controller_register_provider(controller,
headless_nx_dom_prov,
provider_name,
&prov_init,
sizeof(prov_init),
nexus_attr,
provider);
if (err != 0) {
printf("%s register provider failed, error %d\n",
__func__, err);
goto failed;
}
bzero(&net_init, sizeof(net_init));
net_init.nxneti_version = KERN_NEXUS_NET_CURRENT_VERSION;
net_init.nxneti_flags = 0;
net_init.nxneti_eparams = init_params;
net_init.nxneti_lladdr = NULL;
net_init.nxneti_prepare = headless_netif_prepare;
net_init.nxneti_rx_pbufpool = headlessif->iff_fpp->fpp_pp;
net_init.nxneti_tx_pbufpool = headlessif->iff_fpp->fpp_pp;
err = kern_nexus_controller_alloc_net_provider_instance(controller,
*provider,
headlessif,
NULL,
instance,
&net_init,
ifp);
if (err != 0) {
printf("%s alloc_net_provider_instance failed, %d\n",
__func__, err);
kern_nexus_controller_deregister_provider(controller,
*provider);
uuid_clear(*provider);
goto failed;
}
failed:
if (nexus_attr != NULL) {
kern_nexus_attr_destroy(nexus_attr);
}
return err;
}
static errno_t
headless_attach_netif_nexus(if_headless_ref headlessif,
struct ifnet_init_eparams * init_params, ifnet_t *ifp)
{
headless_packet_pool_t fpp;
headless_nx_t nx = &headlessif->iff_nx;
boolean_t multi_buflet;
multi_buflet = headless_using_multibuflets(headlessif);
fpp = headless_packet_pool_alloc(multi_buflet, headlessif->iff_max_mtu);
if (fpp == NULL) {
return ENOMEM;
}
headlessif->iff_fpp = fpp;
return create_netif_provider_and_instance(headlessif, init_params, ifp,
&nx->fnx_provider,
&nx->fnx_instance);
}
static void
detach_provider_and_instance(uuid_t provider, uuid_t instance)
{
nexus_controller_t controller = kern_nexus_shared_controller();
errno_t err;
if (!uuid_is_null(instance)) {
err = kern_nexus_controller_free_provider_instance(controller,
instance);
if (err != 0) {
printf("%s free_provider_instance failed %d\n",
__func__, err);
}
uuid_clear(instance);
}
if (!uuid_is_null(provider)) {
err = kern_nexus_controller_deregister_provider(controller,
provider);
if (err != 0) {
printf("%s deregister_provider %d\n", __func__, err);
}
uuid_clear(provider);
}
return;
}
static void
headless_detach_netif_nexus(headless_nx_t nx)
{
detach_provider_and_instance(nx->fnx_provider, nx->fnx_instance);
}
/**
** headless interface routines
**/
static void
headless_ifnet_set_attrs(if_headless_ref headlessif, ifnet_t ifp)
{
(void)ifnet_set_capabilities_enabled(ifp, 0, -1);
ifnet_set_addrlen(ifp, ETHER_ADDR_LEN);
ifnet_set_baudrate(ifp, 0);
ifnet_set_mtu(ifp, ETHERMTU);
ifnet_set_flags(ifp,
IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX,
0xffff);
ifnet_set_hdrlen(ifp, sizeof(struct ether_header));
if ((headlessif->iff_flags & IFF_FLAGS_HWCSUM) != 0) {
ifnet_set_offload(ifp,
IFNET_CSUM_IP | IFNET_CSUM_TCP | IFNET_CSUM_UDP |
IFNET_CSUM_TCPIPV6 | IFNET_CSUM_UDPIPV6);
} else {
ifnet_set_offload(ifp, 0);
}
}
static void
interface_link_event(ifnet_t ifp, u_int32_t event_code)
{
struct event {
u_int32_t ifnet_family;
u_int32_t unit;
char if_name[IFNAMSIZ];
};
_Alignas(struct kern_event_msg) char message[sizeof(struct kern_event_msg) + sizeof(struct event)] = { 0 };
struct kern_event_msg *header = (struct kern_event_msg*)message;
struct event *data = (struct event *)(header + 1);
header->total_size = sizeof(message);
header->vendor_code = KEV_VENDOR_APPLE;
header->kev_class = KEV_NETWORK_CLASS;
header->kev_subclass = KEV_DL_SUBCLASS;
header->event_code = event_code;
data->ifnet_family = ifnet_family(ifp);
data->unit = (u_int32_t)ifnet_unit(ifp);
strlcpy(data->if_name, ifnet_name(ifp), IFNAMSIZ);
ifnet_event(ifp, header);
}
static if_headless_ref
ifnet_get_if_headless(ifnet_t ifp)
{
return (if_headless_ref)ifnet_softc(ifp);
}
static int
headless_clone_create(struct if_clone *ifc, u_int32_t unit, void *params)
{
#pragma unused(params)
int error;
if_headless_ref headlessif;
struct ifnet_init_eparams headless_init;
ifnet_t ifp;
uint8_t mac_address[ETHER_ADDR_LEN];
headlessif = kalloc_type(struct if_headless, Z_WAITOK_ZERO_NOFAIL);
headlessif->iff_retain_count = 1;
if (strcmp(ifc->ifc_name, HEADLESS_ZERO_IFNAME) == 0) {
headlessif->iff_cloner = &headless_zero_cloner;
ASSERT(strlen(HEADLESS_ZERO_IFNAME) == 4);
bcopy(HEADLESS_ZERO_IFNAME, mac_address, 4);
} else {
headlessif->iff_cloner = &headless_null_cloner;
ASSERT(strlen(HEADLESS_NULL_IFNAME) == 4);
bcopy(HEADLESS_NULL_IFNAME, mac_address, 4);
}
mac_address[ETHER_ADDR_LEN - 2] = (unit & 0xff00) >> 8;
mac_address[ETHER_ADDR_LEN - 1] = unit & 0xff;
headlessif->iff_max_mtu = if_headless_max_mtu;
/* use the interface name as the unique id for ifp recycle */
if ((unsigned int)
snprintf(headlessif->iff_name, sizeof(headlessif->iff_name), "%s%d",
ifc->ifc_name, unit) >= sizeof(headlessif->iff_name)) {
headless_release(headlessif);
return EINVAL;
}
bzero(&headless_init, sizeof(headless_init));
headless_init.ver = IFNET_INIT_CURRENT_VERSION;
headless_init.len = sizeof(headless_init);
headless_init.flags |= IFNET_INIT_SKYWALK_NATIVE;
if (if_headless_multibuflet != 0) {
headlessif->iff_flags |= IFF_FLAGS_MULTIBUFLETS;
}
headlessif->iff_tx_headroom = if_headless_tx_headroom;
headless_init.tx_headroom = headlessif->iff_tx_headroom;
if (if_headless_nxattach == 0) {
headless_init.flags |= IFNET_INIT_NX_NOAUTO;
}
headless_init.uniqueid = headlessif->iff_name;
headless_init.uniqueid_len = (uint32_t)strlen(headlessif->iff_name);
headless_init.name = ifc->ifc_name;
headless_init.unit = unit;
headless_init.family = IFNET_FAMILY_ETHERNET;
headless_init.type = IFT_ETHER;
headless_init.demux = ether_demux;
headless_init.add_proto = ether_add_proto;
headless_init.del_proto = ether_del_proto;
headless_init.check_multi = ether_check_multi;
headless_init.framer_extended = ether_frameout_extended;
headless_init.softc = headlessif;
headless_init.ioctl = headless_ioctl;
headless_init.set_bpf_tap = NULL;
headless_init.detach = headless_if_free;
headless_init.broadcast_addr = etherbroadcastaddr;
headless_init.broadcast_len = ETHER_ADDR_LEN;
error = headless_attach_netif_nexus(headlessif, &headless_init, &ifp);
if (error != 0) {
headless_release(headlessif);
return error;
}
/* take an additional reference to ensure that it doesn't go away */
headless_retain(headlessif);
headlessif->iff_ifp = ifp;
headlessif->iff_media_count = default_media_words_count;
bcopy(default_media_words, headlessif->iff_media_list,
sizeof(default_media_words));
ifnet_set_lladdr(ifp, mac_address, sizeof(mac_address));
/* attach as ethernet */
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
interface_link_event(ifp, KEV_DL_LINK_ON);
return 0;
}
static int
headless_clone_destroy(ifnet_t ifp)
{
if_headless_ref headlessif;
headless_nx nx;
boolean_t nx_attached = FALSE;
interface_link_event(ifp, KEV_DL_LINK_OFF);
headless_lock();
headlessif = ifnet_get_if_headless(ifp);
if (headlessif == NULL || headless_is_detaching(headlessif)) {
headless_unlock();
return 0;
}
headless_set_detaching(headlessif);
nx_attached = TRUE;
nx = headlessif->iff_nx;
bzero(&headlessif->iff_nx, sizeof(headlessif->iff_nx));
headless_unlock();
if (nx_attached) {
headless_detach_netif_nexus(&nx);
headless_release(headlessif);
}
ifnet_detach(ifp);
return 0;
}
static int
headless_set_media(ifnet_t ifp, struct if_headless_request * iffr)
{
if_headless_ref headlessif;
int error;
if (iffr->iffr_media.iffm_count > IF_HEADLESS_MEDIA_LIST_MAX) {
/* list is too long */
return EINVAL;
}
headless_lock();
headlessif = ifnet_get_if_headless(ifp);
if (headlessif == NULL) {
error = EINVAL;
goto done;
}
headlessif->iff_media_count = iffr->iffr_media.iffm_count;
bcopy(iffr->iffr_media.iffm_list, headlessif->iff_media_list,
iffr->iffr_media.iffm_count * sizeof(headlessif->iff_media_list[0]));
#if 0
/* XXX: "auto-negotiate" active with peer? */
/* generate link status event? */
headlessif->iff_media_current = iffr->iffr_media.iffm_current;
#endif
error = 0;
done:
headless_unlock();
return error;
}
static int
if_headless_request_copyin(user_addr_t user_addr,
struct if_headless_request *iffr, size_t len)
{
int error;
if (user_addr == USER_ADDR_NULL || len < sizeof(*iffr)) {
error = EINVAL;
goto done;
}
error = copyin(user_addr, iffr, sizeof(*iffr));
if (error != 0) {
goto done;
}
if (iffr->iffr_reserved[0] != 0 || iffr->iffr_reserved[1] != 0 ||
iffr->iffr_reserved[2] != 0 || iffr->iffr_reserved[3] != 0) {
error = EINVAL;
goto done;
}
done:
return error;
}
static int
headless_set_drvspec(ifnet_t ifp, uint64_t cmd, size_t len,
user_addr_t user_addr)
{
int error;
struct if_headless_request iffr;
switch (cmd) {
case IF_HEADLESS_S_CMD_SET_MEDIA:
error = if_headless_request_copyin(user_addr, &iffr, len);
if (error != 0) {
break;
}
error = headless_set_media(ifp, &iffr);
break;
default:
error = EOPNOTSUPP;
break;
}
return error;
}
static int
headless_get_drvspec(ifnet_t ifp, uint64_t cmd, size_t len,
user_addr_t user_addr)
{
#pragma unused(ifp, len, user_addr)
int error = EOPNOTSUPP;
switch (cmd) {
default:
break;
}
return error;
}
union ifdrvu {
struct ifdrv32 *ifdrvu_32;
struct ifdrv64 *ifdrvu_64;
void *ifdrvu_p;
};
static int
headless_ioctl(ifnet_t ifp, u_long cmd, void * data)
{
unsigned int count;
struct ifdevmtu * devmtu_p;
union ifdrvu drv;
uint64_t drv_cmd;
uint64_t drv_len;
boolean_t drv_set_command = FALSE;
int error = 0;
struct ifmediareq * ifmr;
struct ifreq * ifr;
if_headless_ref headlessif;
int status;
user_addr_t user_addr;
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCSIFADDR:
ifnet_set_flags(ifp, IFF_UP, IFF_UP);
break;
case SIOCGIFMEDIA32:
case SIOCGIFMEDIA64:
headless_lock();
headlessif = ifnet_get_if_headless(ifp);
if (headlessif == NULL) {
headless_unlock();
return EOPNOTSUPP;
}
status = (headlessif->iff_peer != NULL)
? (IFM_AVALID | IFM_ACTIVE) : IFM_AVALID;
ifmr = (struct ifmediareq *)data;
user_addr = (cmd == SIOCGIFMEDIA64) ?
CAST_USER_ADDR_T(((struct ifmediareq64 *)ifmr)->ifmu_ulist) :
CAST_USER_ADDR_T(((struct ifmediareq32 *)ifmr)->ifmu_ulist);
count = ifmr->ifm_count;
ifmr->ifm_active = IFM_ETHER;
ifmr->ifm_current = IFM_ETHER;
ifmr->ifm_mask = 0;
ifmr->ifm_status = status;
if (user_addr == USER_ADDR_NULL) {
ifmr->ifm_count = headlessif->iff_media_count;
} else if (count > 0) {
if (count > headlessif->iff_media_count) {
count = headlessif->iff_media_count;
}
ifmr->ifm_count = count;
error = copyout(&headlessif->iff_media_list, user_addr,
count * sizeof(int));
}
headless_unlock();
break;
case SIOCGIFDEVMTU:
devmtu_p = &ifr->ifr_devmtu;
devmtu_p->ifdm_current = ifnet_mtu(ifp);
devmtu_p->ifdm_max = headless_max_mtu(ifp);
devmtu_p->ifdm_min = IF_MINMTU;
break;
case SIOCSIFMTU:
if ((unsigned int)ifr->ifr_mtu > headless_max_mtu(ifp) ||
ifr->ifr_mtu < IF_MINMTU) {
error = EINVAL;
} else {
error = ifnet_set_mtu(ifp, ifr->ifr_mtu);
}
break;
case SIOCSDRVSPEC32:
case SIOCSDRVSPEC64:
error = proc_suser(current_proc());
if (error != 0) {
break;
}
drv_set_command = TRUE;
OS_FALLTHROUGH;
case SIOCGDRVSPEC32:
case SIOCGDRVSPEC64:
drv.ifdrvu_p = data;
if (cmd == SIOCGDRVSPEC32 || cmd == SIOCSDRVSPEC32) {
drv_cmd = drv.ifdrvu_32->ifd_cmd;
drv_len = drv.ifdrvu_32->ifd_len;
user_addr = CAST_USER_ADDR_T(drv.ifdrvu_32->ifd_data);
} else {
drv_cmd = drv.ifdrvu_64->ifd_cmd;
drv_len = drv.ifdrvu_64->ifd_len;
user_addr = CAST_USER_ADDR_T(drv.ifdrvu_64->ifd_data);
}
if (drv_set_command) {
error = headless_set_drvspec(ifp, drv_cmd,
(size_t)drv_len, user_addr);
} else {
error = headless_get_drvspec(ifp, drv_cmd,
(size_t)drv_len, user_addr);
}
break;
case SIOCSIFLLADDR:
error = ifnet_set_lladdr(ifp, ifr->ifr_addr.sa_data,
ifr->ifr_addr.sa_len);
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) != 0) {
/* marked up, set running if not already set */
if ((ifp->if_flags & IFF_RUNNING) == 0) {
/* set running */
error = ifnet_set_flags(ifp, IFF_RUNNING,
IFF_RUNNING);
}
} else if ((ifp->if_flags & IFF_RUNNING) != 0) {
/* marked down, clear running */
error = ifnet_set_flags(ifp, 0, IFF_RUNNING);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = 0;
break;
default:
error = EOPNOTSUPP;
break;
}
return error;
}
static void
headless_if_free(ifnet_t ifp)
{
if_headless_ref headlessif;
if (ifp == NULL) {
return;
}
headless_lock();
headlessif = ifnet_get_if_headless(ifp);
if (headlessif == NULL) {
headless_unlock();
return;
}
ifp->if_softc = NULL;
assert(headlessif->iff_doorbell_tcall == NULL);
headless_unlock();
headless_release(headlessif);
ifnet_release(ifp);
return;
}
void
if_headless_init(void)
{
int error;
(void)headless_register_nexus_domain_provider();
error = if_clone_attach(&headless_zero_cloner);
if (error != 0) {
return;
}
error = if_clone_attach(&headless_null_cloner);
if (error != 0) {
if_clone_detach(&headless_zero_cloner);
return;
}
return;
}
#else /* !SKYWALK */
extern void if_headless_init(void);
void
if_headless_init(void)
{
/* nothing here */
}
#endif /* SKYWALK */