gems-kernel/source/THIRDPARTY/xnu/bsd/net/if_ipsec.c

5116 lines
142 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2012-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <sys/systm.h>
#include <sys/kern_control.h>
#include <net/kpi_protocol.h>
#include <net/kpi_interface.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/if_ipsec.h>
#include <sys/mbuf.h>
#include <sys/sockio.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6_var.h>
#include <sys/kauth.h>
#include <netinet6/ipsec.h>
#include <netinet6/ipsec6.h>
#include <netinet6/esp.h>
#include <netinet6/esp6.h>
#include <netinet/ip.h>
#include <net/flowadv.h>
#include <net/necp.h>
#include <netkey/key.h>
#include <net/pktap.h>
#include <kern/zalloc.h>
#include <os/log.h>
#if SKYWALK
#include <skywalk/os_skywalk_private.h>
#include <skywalk/nexus/flowswitch/nx_flowswitch.h>
#include <skywalk/nexus/netif/nx_netif.h>
#define IPSEC_NEXUS 1
#else // SKYWALK
#define IPSEC_NEXUS 0
#endif // SKYWALK
extern int net_qos_policy_restricted;
extern int net_qos_policy_restrict_avapps;
/* Kernel Control functions */
static errno_t ipsec_ctl_setup(u_int32_t *unit, void **unitinfo);
static errno_t ipsec_ctl_bind(kern_ctl_ref kctlref, struct sockaddr_ctl *sac,
void **unitinfo);
static errno_t ipsec_ctl_connect(kern_ctl_ref kctlref, struct sockaddr_ctl *sac,
void **unitinfo);
static errno_t ipsec_ctl_disconnect(kern_ctl_ref kctlref, u_int32_t unit,
void *unitinfo);
static errno_t ipsec_ctl_send(kern_ctl_ref kctlref, u_int32_t unit,
void *unitinfo, mbuf_t m, int flags);
static errno_t ipsec_ctl_getopt(kern_ctl_ref kctlref, u_int32_t unit, void *unitinfo,
int opt, void *data, size_t *len);
static errno_t ipsec_ctl_setopt(kern_ctl_ref kctlref, u_int32_t unit, void *unitinfo,
int opt, void *data, size_t len);
/* Network Interface functions */
static void ipsec_start(ifnet_t interface);
static errno_t ipsec_output(ifnet_t interface, mbuf_t data);
static errno_t ipsec_demux(ifnet_t interface, mbuf_t data, char *frame_header,
protocol_family_t *protocol);
static errno_t ipsec_add_proto(ifnet_t interface, protocol_family_t protocol,
const struct ifnet_demux_desc *demux_array,
u_int32_t demux_count);
static errno_t ipsec_del_proto(ifnet_t interface, protocol_family_t protocol);
static errno_t ipsec_ioctl(ifnet_t interface, u_long cmd, void *data);
static void ipsec_detached(ifnet_t interface);
/* Protocol handlers */
static errno_t ipsec_attach_proto(ifnet_t interface, protocol_family_t proto);
static errno_t ipsec_proto_input(ifnet_t interface, protocol_family_t protocol,
mbuf_t m, char *frame_header);
static errno_t ipsec_proto_pre_output(ifnet_t interface, protocol_family_t protocol,
mbuf_t *packet, const struct sockaddr *dest, void *route,
char *frame_type, char *link_layer_dest);
static kern_ctl_ref ipsec_kctlref;
static LCK_ATTR_DECLARE(ipsec_lck_attr, 0, 0);
static LCK_GRP_DECLARE(ipsec_lck_grp, "ipsec");
static LCK_MTX_DECLARE_ATTR(ipsec_lock, &ipsec_lck_grp, &ipsec_lck_attr);
#if IPSEC_NEXUS
SYSCTL_DECL(_net_ipsec);
SYSCTL_NODE(_net, OID_AUTO, ipsec, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPsec");
static int if_ipsec_verify_interface_creation = 0;
SYSCTL_INT(_net_ipsec, OID_AUTO, verify_interface_creation, CTLFLAG_RW | CTLFLAG_LOCKED, &if_ipsec_verify_interface_creation, 0, "");
#define IPSEC_IF_VERIFY(_e) if (__improbable(if_ipsec_verify_interface_creation)) { VERIFY(_e); }
#define IPSEC_IF_DEFAULT_SLOT_SIZE 2048
#define IPSEC_IF_DEFAULT_RING_SIZE 64
#define IPSEC_IF_DEFAULT_TX_FSW_RING_SIZE 64
#define IPSEC_IF_DEFAULT_RX_FSW_RING_SIZE 128
#define IPSEC_IF_DEFAULT_BUF_SEG_SIZE skmem_usr_buf_seg_size
#define IPSEC_IF_WMM_RING_COUNT NEXUS_NUM_WMM_QUEUES
#define IPSEC_IF_MAX_RING_COUNT IPSEC_IF_WMM_RING_COUNT
#define IPSEC_NETIF_WMM_TX_RING_COUNT IPSEC_IF_WMM_RING_COUNT
#define IPSEC_NETIF_WMM_RX_RING_COUNT 1
#define IPSEC_NETIF_MAX_TX_RING_COUNT IPSEC_NETIF_WMM_TX_RING_COUNT
#define IPSEC_NETIF_MAX_RX_RING_COUNT IPSEC_NETIF_WMM_RX_RING_COUNT
#define IPSEC_IF_MIN_RING_SIZE 8
#define IPSEC_IF_MAX_RING_SIZE 1024
#define IPSEC_IF_MIN_SLOT_SIZE 1024
#define IPSEC_IF_MAX_SLOT_SIZE (16 * 1024)
#define IPSEC_DEFAULT_MAX_PENDING_INPUT_COUNT 512
#define IPSEC_KPIPE_FLAG_WAKE_PKT 0x01
static uint32_t ipsec_kpipe_mbuf;
static int if_ipsec_max_pending_input = IPSEC_DEFAULT_MAX_PENDING_INPUT_COUNT;
static int sysctl_if_ipsec_ring_size SYSCTL_HANDLER_ARGS;
static int sysctl_if_ipsec_tx_fsw_ring_size SYSCTL_HANDLER_ARGS;
static int sysctl_if_ipsec_rx_fsw_ring_size SYSCTL_HANDLER_ARGS;
static int if_ipsec_ring_size = IPSEC_IF_DEFAULT_RING_SIZE;
static int if_ipsec_tx_fsw_ring_size = IPSEC_IF_DEFAULT_TX_FSW_RING_SIZE;
static int if_ipsec_rx_fsw_ring_size = IPSEC_IF_DEFAULT_RX_FSW_RING_SIZE;
SYSCTL_INT(_net_ipsec, OID_AUTO, max_pending_input, CTLFLAG_LOCKED | CTLFLAG_RW, &if_ipsec_max_pending_input, 0, "");
SYSCTL_PROC(_net_ipsec, OID_AUTO, ring_size, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
&if_ipsec_ring_size, IPSEC_IF_DEFAULT_RING_SIZE, &sysctl_if_ipsec_ring_size, "I", "");
SYSCTL_PROC(_net_ipsec, OID_AUTO, tx_fsw_ring_size, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
&if_ipsec_tx_fsw_ring_size, IPSEC_IF_DEFAULT_TX_FSW_RING_SIZE, &sysctl_if_ipsec_tx_fsw_ring_size, "I", "");
SYSCTL_PROC(_net_ipsec, OID_AUTO, rx_fsw_ring_size, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
&if_ipsec_rx_fsw_ring_size, IPSEC_IF_DEFAULT_RX_FSW_RING_SIZE, &sysctl_if_ipsec_rx_fsw_ring_size, "I", "");
static int if_ipsec_debug = 0;
SYSCTL_INT(_net_ipsec, OID_AUTO, debug, CTLFLAG_LOCKED | CTLFLAG_RW, &if_ipsec_debug, 0, "");
static errno_t
ipsec_register_nexus(void);
typedef struct ipsec_nx {
uuid_t if_provider;
uuid_t if_instance;
uuid_t fsw_provider;
uuid_t fsw_instance;
uuid_t fsw_device;
uuid_t fsw_agent;
} *ipsec_nx_t;
static nexus_controller_t ipsec_ncd;
static int ipsec_ncd_refcount;
static uuid_t ipsec_kpipe_uuid;
#endif // IPSEC_NEXUS
/* Control block allocated for each kernel control connection */
struct ipsec_pcb {
TAILQ_ENTRY(ipsec_pcb) ipsec_chain;
kern_ctl_ref ipsec_ctlref;
ifnet_t ipsec_ifp;
u_int32_t ipsec_unit;
u_int32_t ipsec_unique_id;
// These external flags can be set with IPSEC_OPT_FLAGS
u_int32_t ipsec_external_flags;
// These internal flags are only used within this driver
u_int32_t ipsec_internal_flags;
u_int32_t ipsec_input_frag_size;
bool ipsec_frag_size_set;
int ipsec_ext_ifdata_stats;
mbuf_svc_class_t ipsec_output_service_class;
char ipsec_if_xname[IFXNAMSIZ];
char ipsec_unique_name[IFXNAMSIZ];
// PCB lock protects state fields, like ipsec_kpipe_count
decl_lck_rw_data(, ipsec_pcb_lock);
// lock to protect ipsec_pcb_data_move & ipsec_pcb_drainers
decl_lck_mtx_data(, ipsec_pcb_data_move_lock);
u_int32_t ipsec_pcb_data_move; /* number of data moving contexts */
u_int32_t ipsec_pcb_drainers; /* number of threads waiting to drain */
u_int32_t ipsec_pcb_data_path_state; /* internal state of interface data path */
ipsec_dscp_mapping_t ipsec_output_dscp_mapping;
#if IPSEC_NEXUS
lck_mtx_t ipsec_input_chain_lock;
lck_mtx_t ipsec_kpipe_encrypt_lock;
lck_mtx_t ipsec_kpipe_decrypt_lock;
struct mbuf * ipsec_input_chain;
struct mbuf * ipsec_input_chain_last;
u_int32_t ipsec_input_chain_count;
// Input chain lock protects the list of input mbufs
// The input chain lock must be taken AFTER the PCB lock if both are held
struct ipsec_nx ipsec_nx;
u_int32_t ipsec_kpipe_count;
pid_t ipsec_kpipe_pid;
uuid_t ipsec_kpipe_proc_uuid;
uuid_t ipsec_kpipe_uuid[IPSEC_IF_MAX_RING_COUNT];
void * ipsec_kpipe_rxring[IPSEC_IF_MAX_RING_COUNT];
void * ipsec_kpipe_txring[IPSEC_IF_MAX_RING_COUNT];
kern_pbufpool_t ipsec_kpipe_pp;
u_int32_t ipsec_kpipe_tx_ring_size;
u_int32_t ipsec_kpipe_rx_ring_size;
kern_nexus_t ipsec_netif_nexus;
kern_pbufpool_t ipsec_netif_pp;
void * ipsec_netif_rxring[IPSEC_NETIF_MAX_RX_RING_COUNT];
void * ipsec_netif_txring[IPSEC_NETIF_MAX_TX_RING_COUNT];
uint64_t ipsec_netif_txring_size;
u_int32_t ipsec_slot_size;
u_int32_t ipsec_netif_ring_size;
u_int32_t ipsec_tx_fsw_ring_size;
u_int32_t ipsec_rx_fsw_ring_size;
bool ipsec_use_netif;
bool ipsec_needs_netagent;
#endif // IPSEC_NEXUS
};
/* These are internal flags not exposed outside this file */
#define IPSEC_FLAGS_KPIPE_ALLOCATED 1
/* data movement refcounting functions */
static boolean_t ipsec_data_move_begin(struct ipsec_pcb *pcb);
static void ipsec_data_move_end(struct ipsec_pcb *pcb);
static void ipsec_wait_data_move_drain(struct ipsec_pcb *pcb);
/* Data path states */
#define IPSEC_PCB_DATA_PATH_READY 0x1
/* Macros to set/clear/test data path states */
#define IPSEC_SET_DATA_PATH_READY(_pcb) ((_pcb)->ipsec_pcb_data_path_state |= IPSEC_PCB_DATA_PATH_READY)
#define IPSEC_CLR_DATA_PATH_READY(_pcb) ((_pcb)->ipsec_pcb_data_path_state &= ~IPSEC_PCB_DATA_PATH_READY)
#define IPSEC_IS_DATA_PATH_READY(_pcb) (((_pcb)->ipsec_pcb_data_path_state & IPSEC_PCB_DATA_PATH_READY) != 0)
#if IPSEC_NEXUS
/* Macros to clear/set/test flags. */
static inline void
ipsec_flag_set(struct ipsec_pcb *pcb, uint32_t flag)
{
pcb->ipsec_internal_flags |= flag;
}
static inline void
ipsec_flag_clr(struct ipsec_pcb *pcb, uint32_t flag)
{
pcb->ipsec_internal_flags &= ~flag;
}
static inline bool
ipsec_flag_isset(struct ipsec_pcb *pcb, uint32_t flag)
{
return !!(pcb->ipsec_internal_flags & flag);
}
#endif // IPSEC_NEXUS
TAILQ_HEAD(ipsec_list, ipsec_pcb) ipsec_head;
static KALLOC_TYPE_DEFINE(ipsec_pcb_zone, struct ipsec_pcb, NET_KT_DEFAULT);
#define IPSECQ_MAXLEN 256
#if IPSEC_NEXUS
static int
sysctl_if_ipsec_ring_size SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int value = if_ipsec_ring_size;
int error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr) {
return error;
}
if (value < IPSEC_IF_MIN_RING_SIZE ||
value > IPSEC_IF_MAX_RING_SIZE) {
return EINVAL;
}
if_ipsec_ring_size = value;
return 0;
}
static int
sysctl_if_ipsec_tx_fsw_ring_size SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int value = if_ipsec_tx_fsw_ring_size;
int error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr) {
return error;
}
if (value < IPSEC_IF_MIN_RING_SIZE ||
value > IPSEC_IF_MAX_RING_SIZE) {
return EINVAL;
}
if_ipsec_tx_fsw_ring_size = value;
return 0;
}
static int
sysctl_if_ipsec_rx_fsw_ring_size SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int value = if_ipsec_rx_fsw_ring_size;
int error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr) {
return error;
}
if (value < IPSEC_IF_MIN_RING_SIZE ||
value > IPSEC_IF_MAX_RING_SIZE) {
return EINVAL;
}
if_ipsec_rx_fsw_ring_size = value;
return 0;
}
static inline bool
ipsec_in_wmm_mode(struct ipsec_pcb *pcb)
{
return pcb->ipsec_kpipe_count == IPSEC_IF_WMM_RING_COUNT;
}
#endif // IPSEC_NEXUS
errno_t
ipsec_register_control(void)
{
struct kern_ctl_reg kern_ctl;
errno_t result = 0;
#if (DEVELOPMENT || DEBUG)
(void)PE_parse_boot_argn("ipsec_kpipe_mbuf", &ipsec_kpipe_mbuf,
sizeof(ipsec_kpipe_mbuf));
#endif /* DEVELOPMENT || DEBUG */
#if IPSEC_NEXUS
ipsec_register_nexus();
#endif // IPSEC_NEXUS
TAILQ_INIT(&ipsec_head);
bzero(&kern_ctl, sizeof(kern_ctl));
strlcpy(kern_ctl.ctl_name, IPSEC_CONTROL_NAME, sizeof(kern_ctl.ctl_name));
kern_ctl.ctl_name[sizeof(kern_ctl.ctl_name) - 1] = 0;
kern_ctl.ctl_flags = CTL_FLAG_PRIVILEGED | CTL_FLAG_REG_SETUP; /* Require root */
kern_ctl.ctl_sendsize = 64 * 1024;
kern_ctl.ctl_recvsize = 64 * 1024;
kern_ctl.ctl_setup = ipsec_ctl_setup;
kern_ctl.ctl_bind = ipsec_ctl_bind;
kern_ctl.ctl_connect = ipsec_ctl_connect;
kern_ctl.ctl_disconnect = ipsec_ctl_disconnect;
kern_ctl.ctl_send = ipsec_ctl_send;
kern_ctl.ctl_setopt = ipsec_ctl_setopt;
kern_ctl.ctl_getopt = ipsec_ctl_getopt;
result = ctl_register(&kern_ctl, &ipsec_kctlref);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_register_control - ctl_register failed: %d\n", result);
return result;
}
/* Register the protocol plumbers */
if ((result = proto_register_plumber(PF_INET, IFNET_FAMILY_IPSEC,
ipsec_attach_proto, NULL)) != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_register_control - proto_register_plumber(PF_INET, IFNET_FAMILY_IPSEC) failed: %d\n",
result);
ctl_deregister(ipsec_kctlref);
return result;
}
/* Register the protocol plumbers */
if ((result = proto_register_plumber(PF_INET6, IFNET_FAMILY_IPSEC,
ipsec_attach_proto, NULL)) != 0) {
proto_unregister_plumber(PF_INET, IFNET_FAMILY_IPSEC);
ctl_deregister(ipsec_kctlref);
os_log_error(OS_LOG_DEFAULT, "ipsec_register_control - proto_register_plumber(PF_INET6, IFNET_FAMILY_IPSEC) failed: %d\n",
result);
return result;
}
return 0;
}
/* Helpers */
int
ipsec_interface_isvalid(ifnet_t interface)
{
struct ipsec_pcb *pcb = NULL;
if (interface == NULL) {
return 0;
}
pcb = ifnet_softc(interface);
if (pcb == NULL) {
return 0;
}
/* When ctl disconnects, ipsec_unit is set to 0 */
if (pcb->ipsec_unit == 0) {
return 0;
}
return 1;
}
#if IPSEC_NEXUS
boolean_t
ipsec_interface_needs_netagent(ifnet_t interface)
{
struct ipsec_pcb *pcb = NULL;
if (interface == NULL) {
return FALSE;
}
pcb = ifnet_softc(interface);
if (pcb == NULL) {
return FALSE;
}
return pcb->ipsec_needs_netagent == true;
}
#endif // IPSEC_NEXUS
static errno_t
ipsec_ifnet_set_attrs(ifnet_t ifp)
{
/* Set flags and additional information. */
ifnet_set_mtu(ifp, 1500);
ifnet_set_flags(ifp, IFF_UP | IFF_MULTICAST | IFF_POINTOPOINT, 0xffff);
/* The interface must generate its own IPv6 LinkLocal address,
* if possible following the recommendation of RFC2472 to the 64bit interface ID
*/
ifnet_set_eflags(ifp, IFEF_NOAUTOIPV6LL, IFEF_NOAUTOIPV6LL);
#if !IPSEC_NEXUS
/* Reset the stats in case as the interface may have been recycled */
struct ifnet_stats_param stats;
bzero(&stats, sizeof(struct ifnet_stats_param));
ifnet_set_stat(ifp, &stats);
#endif // !IPSEC_NEXUS
return 0;
}
#if IPSEC_NEXUS
static uuid_t ipsec_nx_dom_prov;
static errno_t
ipsec_nxdp_init(__unused kern_nexus_domain_provider_t domprov)
{
return 0;
}
static void
ipsec_nxdp_fini(__unused kern_nexus_domain_provider_t domprov)
{
// Ignore
}
static errno_t
ipsec_register_nexus(void)
{
const struct kern_nexus_domain_provider_init dp_init = {
.nxdpi_version = KERN_NEXUS_DOMAIN_PROVIDER_CURRENT_VERSION,
.nxdpi_flags = 0,
.nxdpi_init = ipsec_nxdp_init,
.nxdpi_fini = ipsec_nxdp_fini
};
errno_t err = 0;
/* ipsec_nxdp_init() is called before this function returns */
err = kern_nexus_register_domain_provider(NEXUS_TYPE_NET_IF,
(const uint8_t *) "com.apple.ipsec",
&dp_init, sizeof(dp_init),
&ipsec_nx_dom_prov);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: failed to register domain provider\n", __func__);
return err;
}
return 0;
}
static errno_t
ipsec_netif_prepare(kern_nexus_t nexus, ifnet_t ifp)
{
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
pcb->ipsec_netif_nexus = nexus;
return ipsec_ifnet_set_attrs(ifp);
}
static errno_t
ipsec_nexus_pre_connect(kern_nexus_provider_t nxprov,
proc_t p, kern_nexus_t nexus,
nexus_port_t nexus_port, kern_channel_t channel, void **ch_ctx)
{
#pragma unused(nxprov, p)
#pragma unused(nexus, nexus_port, channel, ch_ctx)
return 0;
}
static errno_t
ipsec_nexus_connected(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel)
{
#pragma unused(nxprov, channel)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
boolean_t ok = ifnet_is_attached(pcb->ipsec_ifp, 1);
/* Mark the data path as ready */
if (ok) {
lck_mtx_lock(&pcb->ipsec_pcb_data_move_lock);
IPSEC_SET_DATA_PATH_READY(pcb);
lck_mtx_unlock(&pcb->ipsec_pcb_data_move_lock);
}
return ok ? 0 : ENXIO;
}
static void
ipsec_nexus_pre_disconnect(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel)
{
#pragma unused(nxprov, channel)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
VERIFY(pcb->ipsec_kpipe_count != 0);
/* Wait until all threads in the data paths are done. */
ipsec_wait_data_move_drain(pcb);
}
static void
ipsec_netif_pre_disconnect(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel)
{
#pragma unused(nxprov, channel)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
/* Wait until all threads in the data paths are done. */
ipsec_wait_data_move_drain(pcb);
}
static void
ipsec_nexus_disconnected(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel)
{
#pragma unused(nxprov, channel)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
if (pcb->ipsec_netif_nexus == nexus) {
pcb->ipsec_netif_nexus = NULL;
}
ifnet_decr_iorefcnt(pcb->ipsec_ifp);
}
static errno_t
ipsec_kpipe_ring_init(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel, kern_channel_ring_t ring, boolean_t is_tx_ring,
void **ring_ctx)
{
#pragma unused(nxprov)
#pragma unused(channel)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
uint8_t ring_idx;
for (ring_idx = 0; ring_idx < pcb->ipsec_kpipe_count; ring_idx++) {
if (!uuid_compare(channel->ch_info->cinfo_nx_uuid, pcb->ipsec_kpipe_uuid[ring_idx])) {
break;
}
}
if (ring_idx == pcb->ipsec_kpipe_count) {
uuid_string_t uuidstr;
uuid_unparse(channel->ch_info->cinfo_nx_uuid, uuidstr);
os_log_error(OS_LOG_DEFAULT, "%s: %s cannot find channel %s\n", __func__, pcb->ipsec_if_xname, uuidstr);
return ENOENT;
}
*ring_ctx = (void *)(uintptr_t)ring_idx;
if (!is_tx_ring) {
VERIFY(pcb->ipsec_kpipe_rxring[ring_idx] == NULL);
pcb->ipsec_kpipe_rxring[ring_idx] = ring;
} else {
VERIFY(pcb->ipsec_kpipe_txring[ring_idx] == NULL);
pcb->ipsec_kpipe_txring[ring_idx] = ring;
}
return 0;
}
static void
ipsec_kpipe_ring_fini(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring)
{
#pragma unused(nxprov)
bool found = false;
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
for (unsigned int i = 0; i < pcb->ipsec_kpipe_count; i++) {
if (pcb->ipsec_kpipe_rxring[i] == ring) {
pcb->ipsec_kpipe_rxring[i] = NULL;
found = true;
} else if (pcb->ipsec_kpipe_txring[i] == ring) {
pcb->ipsec_kpipe_txring[i] = NULL;
found = true;
}
}
VERIFY(found);
}
static errno_t
ipsec_kpipe_sync_tx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t tx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
if (!ipsec_data_move_begin(pcb)) {
os_log_info(OS_LOG_DEFAULT, "%s: data path stopped for %s\n", __func__, if_name(pcb->ipsec_ifp));
return 0;
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (!ipsec_flag_isset(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED)) {
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
VERIFY(pcb->ipsec_kpipe_count);
kern_channel_slot_t tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
if (tx_slot == NULL) {
// Nothing to write, bail
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
// Signal the netif ring to read
kern_channel_ring_t rx_ring = pcb->ipsec_netif_rxring[0];
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
if (rx_ring != NULL) {
kern_channel_notify(rx_ring, 0);
}
ipsec_data_move_end(pcb);
return 0;
}
static mbuf_t
ipsec_encrypt_mbuf(ifnet_t interface,
mbuf_t data)
{
struct ipsec_output_state ipsec_state;
int error = 0;
uint32_t af;
// Make sure this packet isn't looping through the interface
if (necp_get_last_interface_index_from_packet(data) == interface->if_index) {
error = -1;
goto ipsec_output_err;
}
// Mark the interface so NECP can evaluate tunnel policy
necp_mark_packet_from_interface(data, interface);
struct ip *ip = mtod(data, struct ip *);
u_int ip_version = ip->ip_v;
switch (ip_version) {
case 4: {
af = AF_INET;
memset(&ipsec_state, 0, sizeof(ipsec_state));
ipsec_state.m = data;
ipsec_state.dst = (struct sockaddr *)&ip->ip_dst;
memset(&ipsec_state.ro, 0, sizeof(ipsec_state.ro));
error = ipsec4_interface_output(&ipsec_state, interface);
if (error == 0 && ipsec_state.tunneled == 6) {
// Tunneled in IPv6 - packet is gone
// TODO: Don't lose mbuf
data = NULL;
goto done;
}
data = ipsec_state.m;
if (error || data == NULL) {
if (error) {
os_log_error(OS_LOG_DEFAULT, "ipsec_encrypt_mbuf: ipsec4_output error %d\n", error);
}
goto ipsec_output_err;
}
goto done;
}
case 6: {
af = AF_INET6;
data = ipsec6_splithdr(data);
if (data == NULL) {
os_log_error(OS_LOG_DEFAULT, "ipsec_encrypt_mbuf: ipsec6_splithdr returned NULL\n");
goto ipsec_output_err;
}
struct ip6_hdr *ip6 = mtod(data, struct ip6_hdr *);
memset(&ipsec_state, 0, sizeof(ipsec_state));
ipsec_state.m = data;
ipsec_state.dst = (struct sockaddr *)&ip6->ip6_dst;
memset(&ipsec_state.ro, 0, sizeof(ipsec_state.ro));
error = ipsec6_interface_output(&ipsec_state, interface, &ip6->ip6_nxt, ipsec_state.m);
if (error == 0 && ipsec_state.tunneled == 4) {
// Tunneled in IPv4 - packet is gone
// TODO: Don't lose mbuf
data = NULL;
goto done;
}
data = ipsec_state.m;
if (error || data == NULL) {
if (error) {
os_log_error(OS_LOG_DEFAULT, "ipsec_encrypt_mbuf: ipsec6_output error %d\n", error);
}
goto ipsec_output_err;
}
goto done;
}
default: {
os_log_error(OS_LOG_DEFAULT, "ipsec_encrypt_mbuf: Received unknown packet version %d\n", ip_version);
error = -1;
goto ipsec_output_err;
}
}
done:
return data;
ipsec_output_err:
if (data) {
mbuf_freem(data);
}
return NULL;
}
static errno_t
ipsec_kpipe_sync_rx_mbuf(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t rx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
struct kern_channel_ring_stat_increment rx_ring_stats;
uint8_t ring_idx = (uint8_t)(uintptr_t)kern_channel_ring_get_context(rx_ring);
if (!ipsec_data_move_begin(pcb)) {
os_log_error(OS_LOG_DEFAULT, "%s: data path stopped for %s\n", __func__, if_name(pcb->ipsec_ifp));
return 0;
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (!ipsec_flag_isset(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED)) {
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
VERIFY(pcb->ipsec_kpipe_count);
VERIFY(ring_idx <= pcb->ipsec_kpipe_count);
// Reclaim user-released slots
(void) kern_channel_reclaim(rx_ring);
uint32_t avail = kern_channel_available_slot_count(rx_ring);
if (avail == 0) {
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
os_log_error(OS_LOG_DEFAULT, "%s: %s ring %s index %d no room in rx_ring\n", __func__,
pcb->ipsec_if_xname, rx_ring->ckr_name, ring_idx);
ipsec_data_move_end(pcb);
return 0;
}
kern_channel_ring_t tx_ring = pcb->ipsec_netif_txring[ring_idx];
if (tx_ring == NULL) {
// Net-If TX ring not set up yet, nothing to read
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
os_log_error(OS_LOG_DEFAULT, "%s: %s ring %s index %d bad netif_txring 1\n", __func__,
pcb->ipsec_if_xname, rx_ring->ckr_name, ring_idx);
ipsec_data_move_end(pcb);
return 0;
}
struct netif_stats *nifs = &NX_NETIF_PRIVATE(pcb->ipsec_netif_nexus)->nif_stats;
// Unlock ipsec before entering ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
(void)kr_enter(tx_ring, TRUE);
// Lock again after entering and validate
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (tx_ring != pcb->ipsec_netif_txring[ring_idx]) {
// Ring no longer valid
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
kr_exit(tx_ring);
os_log_error(OS_LOG_DEFAULT, "%s: %s ring %s index %d bad netif_txring 2\n", __func__,
pcb->ipsec_if_xname, rx_ring->ckr_name, ring_idx);
ipsec_data_move_end(pcb);
return 0;
}
struct kern_channel_ring_stat_increment tx_ring_stats;
bzero(&tx_ring_stats, sizeof(tx_ring_stats));
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
if (tx_slot == NULL) {
// Nothing to read, don't bother signalling
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
kr_exit(tx_ring);
ipsec_data_move_end(pcb);
return 0;
}
struct kern_pbufpool *rx_pp = rx_ring->ckr_pp;
VERIFY(rx_pp != NULL);
struct kern_pbufpool *tx_pp = tx_ring->ckr_pp;
VERIFY(tx_pp != NULL);
bzero(&rx_ring_stats, sizeof(rx_ring_stats));
kern_channel_slot_t rx_pslot = NULL;
kern_channel_slot_t rx_slot = kern_channel_get_next_slot(rx_ring, NULL, NULL);
kern_packet_t tx_chain_ph = 0;
while (rx_slot != NULL && tx_slot != NULL) {
size_t length = 0;
mbuf_t data = NULL;
errno_t error = 0;
// Allocate rx packet
kern_packet_t rx_ph = 0;
error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
os_log_error(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s: failed to allocate packet\n",
pcb->ipsec_ifp->if_xname);
break;
}
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
if (tx_ph == 0) {
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
kern_pbufpool_free(rx_pp, rx_ph);
continue;
}
(void) kern_channel_slot_detach_packet(tx_ring, tx_slot, tx_ph);
if (tx_chain_ph != 0) {
kern_packet_append(tx_ph, tx_chain_ph);
}
tx_chain_ph = tx_ph;
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
kern_buflet_t tx_buf = kern_packet_get_next_buflet(tx_ph, NULL);
VERIFY(tx_buf != NULL);
uint8_t *tx_baddr = kern_buflet_get_data_address(tx_buf);
VERIFY(tx_baddr != NULL);
tx_baddr += kern_buflet_get_data_offset(tx_buf);
bpf_tap_packet_out(pcb->ipsec_ifp, DLT_RAW, tx_ph, NULL, 0);
length = MIN(kern_packet_get_data_length(tx_ph),
pcb->ipsec_slot_size);
// Increment TX stats
tx_ring_stats.kcrsi_slots_transferred++;
tx_ring_stats.kcrsi_bytes_transferred += length;
if (length > 0) {
error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, &data);
if (error == 0) {
error = mbuf_copyback(data, 0, length, tx_baddr, MBUF_DONTWAIT);
if (error == 0) {
// Encrypt and send packet
lck_mtx_lock(&pcb->ipsec_kpipe_encrypt_lock);
data = ipsec_encrypt_mbuf(pcb->ipsec_ifp, data);
lck_mtx_unlock(&pcb->ipsec_kpipe_encrypt_lock);
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s - mbuf_copyback(%zu) error %d\n", pcb->ipsec_ifp->if_xname, length, error);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
}
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s - mbuf_gethdr error %d\n", pcb->ipsec_ifp->if_xname, error);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
}
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s - 0 length packet\n", pcb->ipsec_ifp->if_xname);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
}
if (data == NULL) {
os_log_error(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s: no encrypted packet to send\n", pcb->ipsec_ifp->if_xname);
kern_pbufpool_free(rx_pp, rx_ph);
break;
}
length = mbuf_pkthdr_len(data);
if (length > PP_BUF_SIZE_DEF(rx_pp)) {
// Flush data
mbuf_freem(data);
kern_pbufpool_free(rx_pp, rx_ph);
os_log_error(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s: encrypted packet length %zu > %u\n",
pcb->ipsec_ifp->if_xname, length, PP_BUF_SIZE_DEF(rx_pp));
continue;
}
// Fillout rx packet
kern_buflet_t rx_buf = kern_packet_get_next_buflet(rx_ph, NULL);
VERIFY(rx_buf != NULL);
void *rx_baddr = kern_buflet_get_data_address(rx_buf);
VERIFY(rx_baddr != NULL);
// Copy-in data from mbuf to buflet
mbuf_copydata(data, 0, length, (void *)rx_baddr);
kern_packet_clear_flow_uuid(rx_ph); // Zero flow id
// Finalize and attach the packet
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_buflet_set_data_length(rx_buf, (uint16_t)length);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_TX_PACKETS);
STATS_INC(nifs, NETIF_STATS_TX_COPY_DIRECT);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += length;
if (!pcb->ipsec_ext_ifdata_stats) {
ifnet_stat_increment_out(pcb->ipsec_ifp, 1, (uint16_t)length, 0);
}
mbuf_freem(data);
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
if (rx_pslot) {
kern_channel_advance_slot(rx_ring, rx_pslot);
kern_channel_increment_ring_net_stats(rx_ring, pcb->ipsec_ifp, &rx_ring_stats);
}
if (tx_chain_ph != 0) {
kern_pbufpool_free_chain(tx_pp, tx_chain_ph);
}
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
kern_channel_increment_ring_net_stats(tx_ring, pcb->ipsec_ifp, &tx_ring_stats);
(void)kern_channel_reclaim(tx_ring);
}
/* always reenable output */
errno_t error = ifnet_enable_output(pcb->ipsec_ifp);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx: ifnet_enable_output returned error %d\n", error);
}
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
if (tx_pslot != NULL) {
kern_channel_notify(tx_ring, 0);
}
kr_exit(tx_ring);
ipsec_data_move_end(pcb);
return 0;
}
static errno_t
ipsec_encrypt_kpipe_pkt(ifnet_t interface, kern_packet_t sph,
kern_packet_t dph)
{
uint8_t *sbaddr = NULL;
int err = 0;
uint32_t slen = 0;
VERIFY(interface != NULL);
VERIFY(sph != 0);
VERIFY(dph != 0);
kern_buflet_t sbuf = __packet_get_next_buflet(sph, NULL);
VERIFY(sbuf != NULL);
slen = __buflet_get_data_length(sbuf);
if (__improbable(slen < sizeof(struct ip))) {
os_log_error(OS_LOG_DEFAULT, "ipsec encrypt kpipe pkt: source "
"buffer shorter than ip header, %u\n", slen);
return EINVAL;
}
MD_BUFLET_ADDR(SK_PTR_ADDR_KPKT(sph), sbaddr);
struct ip *ip = (struct ip *)(void *)sbaddr;
ASSERT(IP_HDR_ALIGNED_P(ip));
u_int ip_vers = ip->ip_v;
switch (ip_vers) {
case IPVERSION: {
err = ipsec4_interface_kpipe_output(interface, sph, dph);
if (__improbable(err != 0)) {
os_log_error(OS_LOG_DEFAULT, "ipsec4 interface kpipe "
"output error %d\n", err);
return err;
}
break;
}
case 6: {
err = ipsec6_interface_kpipe_output(interface, sph, dph);
if (__improbable(err != 0)) {
os_log_error(OS_LOG_DEFAULT, "ipsec6 interface kpipe "
"output error %d\n", err);
return err;
}
break;
}
default: {
os_log_error(OS_LOG_DEFAULT, "received unknown packet version: %d\n",
ip_vers);
return EINVAL;
}
}
return err;
}
static errno_t
ipsec_kpipe_sync_rx_packet(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t rx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
struct kern_channel_ring_stat_increment rx_ring_stats;
uint8_t ring_idx = (uint8_t)(uintptr_t)kern_channel_ring_get_context(rx_ring);
if (!ipsec_data_move_begin(pcb)) {
os_log_error(OS_LOG_DEFAULT, "%s: data path stopped for %s\n", __func__, if_name(pcb->ipsec_ifp));
return 0;
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (!ipsec_flag_isset(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED)) {
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
VERIFY(pcb->ipsec_kpipe_count);
VERIFY(ring_idx <= pcb->ipsec_kpipe_count);
// Reclaim user-released slots
(void) kern_channel_reclaim(rx_ring);
uint32_t avail = kern_channel_available_slot_count(rx_ring);
if (avail == 0) {
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
os_log_error(OS_LOG_DEFAULT, "%s: %s ring %s index %d no room in rx_ring\n", __func__,
pcb->ipsec_if_xname, rx_ring->ckr_name, ring_idx);
ipsec_data_move_end(pcb);
return 0;
}
kern_channel_ring_t tx_ring = pcb->ipsec_netif_txring[ring_idx];
if (tx_ring == NULL) {
// Net-If TX ring not set up yet, nothing to read
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
os_log_error(OS_LOG_DEFAULT, "%s: %s ring %s index %d bad netif_txring 1\n", __func__,
pcb->ipsec_if_xname, rx_ring->ckr_name, ring_idx);
ipsec_data_move_end(pcb);
return 0;
}
struct netif_stats *nifs = &NX_NETIF_PRIVATE(pcb->ipsec_netif_nexus)->nif_stats;
// Unlock ipsec before entering ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
(void)kr_enter(tx_ring, TRUE);
// Lock again after entering and validate
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (tx_ring != pcb->ipsec_netif_txring[ring_idx]) {
// Ring no longer valid
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
kr_exit(tx_ring);
os_log_error(OS_LOG_DEFAULT, "%s: %s ring %s index %d bad netif_txring 2\n", __func__,
pcb->ipsec_if_xname, rx_ring->ckr_name, ring_idx);
ipsec_data_move_end(pcb);
return 0;
}
struct kern_channel_ring_stat_increment tx_ring_stats;
bzero(&tx_ring_stats, sizeof(tx_ring_stats));
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
if (tx_slot == NULL) {
// Nothing to read, don't bother signalling
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
kr_exit(tx_ring);
ipsec_data_move_end(pcb);
return 0;
}
struct kern_pbufpool *rx_pp = rx_ring->ckr_pp;
VERIFY(rx_pp != NULL);
struct kern_pbufpool *tx_pp = tx_ring->ckr_pp;
VERIFY(tx_pp != NULL);
bzero(&rx_ring_stats, sizeof(rx_ring_stats));
kern_channel_slot_t rx_pslot = NULL;
kern_channel_slot_t rx_slot = kern_channel_get_next_slot(rx_ring, NULL, NULL);
kern_packet_t tx_chain_ph = 0;
while (rx_slot != NULL && tx_slot != NULL) {
size_t tx_pkt_length = 0;
errno_t error = 0;
// Allocate rx packet
kern_packet_t rx_ph = 0;
error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
os_log_info(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s: "
"failed to allocate packet\n", pcb->ipsec_ifp->if_xname);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
break;
}
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
if (__improbable(tx_ph == 0)) {
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
kern_pbufpool_free(rx_pp, rx_ph);
continue;
}
(void) kern_channel_slot_detach_packet(tx_ring, tx_slot, tx_ph);
if (tx_chain_ph != 0) {
kern_packet_append(tx_ph, tx_chain_ph);
}
tx_chain_ph = tx_ph;
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
bpf_tap_packet_out(pcb->ipsec_ifp, DLT_RAW, tx_ph, NULL, 0);
tx_pkt_length = kern_packet_get_data_length(tx_ph);
if (tx_pkt_length == 0 || tx_pkt_length > pcb->ipsec_slot_size) {
os_log_info(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s: "
"packet length %zu", pcb->ipsec_ifp->if_xname,
tx_pkt_length);
kern_pbufpool_free(rx_pp, rx_ph);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
continue;
}
// Increment TX stats
tx_ring_stats.kcrsi_slots_transferred++;
tx_ring_stats.kcrsi_bytes_transferred += tx_pkt_length;
// Encrypt packet
lck_mtx_lock(&pcb->ipsec_kpipe_encrypt_lock);
error = ipsec_encrypt_kpipe_pkt(pcb->ipsec_ifp, tx_ph, rx_ph);
lck_mtx_unlock(&pcb->ipsec_kpipe_encrypt_lock);
if (__improbable(error != 0)) {
os_log_info(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx %s: "
"failed to encrypt packet", pcb->ipsec_ifp->if_xname);
kern_pbufpool_free(rx_pp, rx_ph);
STATS_INC(nifs, NETIF_STATS_DROP);
continue;
}
kern_packet_clear_flow_uuid(rx_ph); // Zero flow id
// Finalize and attach the packet
kern_buflet_t rx_buf = __packet_get_next_buflet(rx_ph, NULL);
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_TX_PACKETS);
STATS_INC(nifs, NETIF_STATS_TX_COPY_DIRECT);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += kern_packet_get_data_length(rx_ph);
if (!pcb->ipsec_ext_ifdata_stats) {
ifnet_stat_increment_out(pcb->ipsec_ifp, 1,
kern_packet_get_data_length(rx_ph), 0);
}
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
if (rx_pslot) {
kern_channel_advance_slot(rx_ring, rx_pslot);
kern_channel_increment_ring_net_stats(rx_ring, pcb->ipsec_ifp, &rx_ring_stats);
}
if (tx_chain_ph != 0) {
kern_pbufpool_free_chain(tx_pp, tx_chain_ph);
}
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
kern_channel_increment_ring_net_stats(tx_ring, pcb->ipsec_ifp, &tx_ring_stats);
(void)kern_channel_reclaim(tx_ring);
}
/* always reenable output */
errno_t error = ifnet_enable_output(pcb->ipsec_ifp);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_kpipe_sync_rx: ifnet_enable_output returned error %d\n", error);
}
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
if (tx_pslot != NULL) {
kern_channel_notify(tx_ring, 0);
}
kr_exit(tx_ring);
ipsec_data_move_end(pcb);
return 0;
}
static errno_t
ipsec_kpipe_sync_rx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t rx_ring, uint32_t flags)
{
if (__improbable(ipsec_kpipe_mbuf == 1)) {
return ipsec_kpipe_sync_rx_mbuf(nxprov, nexus, rx_ring, flags);
} else {
return ipsec_kpipe_sync_rx_packet(nxprov, nexus, rx_ring, flags);
}
}
static uint8_t
ipsec_find_tx_ring_by_svc(kern_packet_svc_class_t svc_class)
{
switch (svc_class) {
case KPKT_SC_VO: {
return 0;
}
case KPKT_SC_VI: {
return 1;
}
case KPKT_SC_BE: {
return 2;
}
case KPKT_SC_BK: {
return 3;
}
default: {
VERIFY(0);
return 0;
}
}
}
static errno_t
ipsec_netif_ring_init(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel, kern_channel_ring_t ring, boolean_t is_tx_ring,
void **ring_ctx)
{
#pragma unused(nxprov)
#pragma unused(channel)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
if (!is_tx_ring) {
VERIFY(pcb->ipsec_netif_rxring[0] == NULL);
pcb->ipsec_netif_rxring[0] = ring;
} else {
uint8_t ring_idx = 0;
if (ipsec_in_wmm_mode(pcb)) {
int err;
kern_packet_svc_class_t svc_class;
err = kern_channel_get_service_class(ring, &svc_class);
VERIFY(err == 0);
ring_idx = ipsec_find_tx_ring_by_svc(svc_class);
VERIFY(ring_idx < IPSEC_IF_WMM_RING_COUNT);
}
*ring_ctx = (void *)(uintptr_t)ring_idx;
VERIFY(pcb->ipsec_netif_txring[ring_idx] == NULL);
pcb->ipsec_netif_txring[ring_idx] = ring;
}
return 0;
}
static void
ipsec_netif_ring_fini(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring)
{
#pragma unused(nxprov)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
bool found = false;
for (int i = 0; i < IPSEC_NETIF_MAX_RX_RING_COUNT; i++) {
if (pcb->ipsec_netif_rxring[i] == ring) {
pcb->ipsec_netif_rxring[i] = NULL;
VERIFY(!found);
found = true;
}
}
for (int i = 0; i < IPSEC_NETIF_MAX_TX_RING_COUNT; i++) {
if (pcb->ipsec_netif_txring[i] == ring) {
pcb->ipsec_netif_txring[i] = NULL;
VERIFY(!found);
found = true;
}
}
VERIFY(found);
}
static bool
ipsec_netif_check_policy(ifnet_t interface, mbuf_t data)
{
necp_kernel_policy_result necp_result = 0;
necp_kernel_policy_result_parameter necp_result_parameter = {};
uint32_t necp_matched_policy_id = 0;
struct ip_out_args args4 = { };
struct ip6_out_args args6 = { };
// This packet has been marked with IP level policy, do not mark again.
if (data && data->m_pkthdr.necp_mtag.necp_policy_id >= NECP_KERNEL_POLICY_ID_FIRST_VALID_IP) {
return true;
}
size_t length = mbuf_pkthdr_len(data);
if (length < sizeof(struct ip)) {
return false;
}
struct ip *ip = mtod(data, struct ip *);
u_int ip_version = ip->ip_v;
switch (ip_version) {
case 4: {
if (interface != NULL) {
args4.ipoa_flags |= IPOAF_BOUND_IF;
args4.ipoa_boundif = interface->if_index;
}
necp_matched_policy_id = necp_ip_output_find_policy_match(data, IP_OUTARGS, &args4, NULL,
&necp_result, &necp_result_parameter);
break;
}
case 6: {
if (interface != NULL) {
args6.ip6oa_flags |= IP6OAF_BOUND_IF;
args6.ip6oa_boundif = interface->if_index;
}
necp_matched_policy_id = necp_ip6_output_find_policy_match(data, IPV6_OUTARGS, &args6, NULL,
&necp_result, &necp_result_parameter);
break;
}
default: {
return false;
}
}
if (necp_result == NECP_KERNEL_POLICY_RESULT_DROP ||
necp_result == NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT) {
/* Drop and flow divert packets should be blocked at the IP layer */
return false;
}
necp_mark_packet_from_ip(data, necp_matched_policy_id);
return true;
}
static errno_t
ipsec_netif_sync_tx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t tx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
struct netif_stats *nifs = &NX_NETIF_PRIVATE(nexus)->nif_stats;
if (!ipsec_data_move_begin(pcb)) {
os_log_error(OS_LOG_DEFAULT, "%s: data path stopped for %s\n", __func__, if_name(pcb->ipsec_ifp));
return 0;
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
struct kern_channel_ring_stat_increment tx_ring_stats;
bzero(&tx_ring_stats, sizeof(tx_ring_stats));
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
kern_packet_t tx_chain_ph = 0;
STATS_INC(nifs, NETIF_STATS_TX_SYNC);
if (tx_slot == NULL) {
// Nothing to write, don't bother signalling
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
if (pcb->ipsec_kpipe_count &&
ipsec_flag_isset(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED)) {
// Select the corresponding kpipe rx ring
uint8_t ring_idx = (uint8_t)(uintptr_t)kern_channel_ring_get_context(tx_ring);
VERIFY(ring_idx < IPSEC_IF_MAX_RING_COUNT);
kern_channel_ring_t rx_ring = pcb->ipsec_kpipe_rxring[ring_idx];
// Unlock while calling notify
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
// Signal the kernel pipe ring to read
if (rx_ring != NULL) {
kern_channel_notify(rx_ring, 0);
}
ipsec_data_move_end(pcb);
return 0;
}
// If we're here, we're injecting into the BSD stack
while (tx_slot != NULL) {
size_t length = 0;
mbuf_t data = NULL;
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
if (tx_ph == 0) {
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
continue;
}
(void) kern_channel_slot_detach_packet(tx_ring, tx_slot, tx_ph);
if (tx_chain_ph != 0) {
kern_packet_append(tx_ph, tx_chain_ph);
}
tx_chain_ph = tx_ph;
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
kern_buflet_t tx_buf = kern_packet_get_next_buflet(tx_ph, NULL);
VERIFY(tx_buf != NULL);
uint8_t *tx_baddr = kern_buflet_get_data_address(tx_buf);
VERIFY(tx_baddr != 0);
tx_baddr += kern_buflet_get_data_offset(tx_buf);
bpf_tap_packet_out(pcb->ipsec_ifp, DLT_RAW, tx_ph, NULL, 0);
length = MIN(kern_packet_get_data_length(tx_ph),
pcb->ipsec_slot_size);
if (length > 0) {
errno_t error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, &data);
if (error == 0) {
error = mbuf_copyback(data, 0, length, tx_baddr, MBUF_DONTWAIT);
if (error == 0) {
// Mark packet from policy
uint32_t policy_id = kern_packet_get_policy_id(tx_ph);
uint32_t skip_policy_id = kern_packet_get_skip_policy_id(tx_ph);
necp_mark_packet_from_ip_with_skip(data, policy_id, skip_policy_id);
// Check policy with NECP
if (!ipsec_netif_check_policy(pcb->ipsec_ifp, data)) {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_tx %s - failed policy check\n", pcb->ipsec_ifp->if_xname);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
} else {
// Send through encryption
error = ipsec_output(pcb->ipsec_ifp, data);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_tx %s - ipsec_output error %d\n", pcb->ipsec_ifp->if_xname, error);
}
}
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_tx %s - mbuf_copyback(%zu) error %d\n", pcb->ipsec_ifp->if_xname, length, error);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
}
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_tx %s - mbuf_gethdr error %d\n", pcb->ipsec_ifp->if_xname, error);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
}
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_tx %s - 0 length packet\n", pcb->ipsec_ifp->if_xname);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
}
if (data == NULL) {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_tx %s: no encrypted packet to send\n", pcb->ipsec_ifp->if_xname);
break;
}
STATS_INC(nifs, NETIF_STATS_TX_PACKETS);
STATS_INC(nifs, NETIF_STATS_TX_COPY_MBUF);
tx_ring_stats.kcrsi_slots_transferred++;
tx_ring_stats.kcrsi_bytes_transferred += length;
}
if (tx_chain_ph != 0) {
kern_pbufpool_free_chain(tx_ring->ckr_pp, tx_chain_ph);
}
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
kern_channel_increment_ring_net_stats(tx_ring, pcb->ipsec_ifp, &tx_ring_stats);
(void)kern_channel_reclaim(tx_ring);
}
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
static errno_t
ipsec_netif_tx_doorbell_one(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring, uint32_t flags, uint8_t ring_idx)
{
#pragma unused(nxprov)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
boolean_t more = false;
errno_t rc = 0;
VERIFY((flags & KERN_NEXUS_TXDOORBELLF_ASYNC_REFILL) == 0);
/*
* Refill and sync the ring; we may be racing against another thread doing
* an RX sync that also wants to do kr_enter(), and so use the blocking
* variant here.
*/
rc = kern_channel_tx_refill_canblock(ring, UINT32_MAX, UINT32_MAX, true, &more);
if (rc != 0 && rc != EAGAIN && rc != EBUSY) {
os_log_error(OS_LOG_DEFAULT, "%s: %s ring %s tx refill failed %d\n", __func__,
pcb->ipsec_if_xname, ring->ckr_name, rc);
}
(void) kr_enter(ring, TRUE);
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (ring != pcb->ipsec_netif_txring[ring_idx]) {
// ring no longer valid
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
kr_exit(ring);
os_log_error(OS_LOG_DEFAULT, "%s: %s ring %s index %d bad netif_txring 3\n", __func__,
pcb->ipsec_if_xname, ring->ckr_name, ring_idx);
return ENXIO;
}
if (pcb->ipsec_kpipe_count) {
uint32_t tx_available = kern_channel_available_slot_count(ring);
if (pcb->ipsec_netif_txring_size > 0 &&
tx_available >= pcb->ipsec_netif_txring_size - 1) {
// No room left in tx ring, disable output for now
errno_t error = ifnet_disable_output(pcb->ipsec_ifp);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_tx_doorbell: ifnet_disable_output returned error %d\n", error);
}
}
}
if (pcb->ipsec_kpipe_count) {
kern_channel_ring_t rx_ring = pcb->ipsec_kpipe_rxring[ring_idx];
// Unlock while calling notify
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
// Signal the kernel pipe ring to read
if (rx_ring != NULL) {
kern_channel_notify(rx_ring, 0);
}
} else {
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
}
kr_exit(ring);
return 0;
}
static errno_t
ipsec_netif_tx_doorbell(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring, __unused uint32_t flags)
{
errno_t ret = 0;
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
if (!ipsec_data_move_begin(pcb)) {
os_log_error(OS_LOG_DEFAULT, "%s: data path stopped for %s\n", __func__, if_name(pcb->ipsec_ifp));
return 0;
}
if (ipsec_in_wmm_mode(pcb)) {
for (uint8_t i = 0; i < IPSEC_IF_WMM_RING_COUNT; i++) {
kern_channel_ring_t nring = pcb->ipsec_netif_txring[i];
ret = ipsec_netif_tx_doorbell_one(nxprov, nexus, nring, flags, i);
if (ret) {
break;
}
}
} else {
ret = ipsec_netif_tx_doorbell_one(nxprov, nexus, ring, flags, 0);
}
ipsec_data_move_end(pcb);
return ret;
}
static errno_t
ipsec_netif_sync_rx_mbuf(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t rx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
struct kern_channel_ring_stat_increment rx_ring_stats;
struct netif_stats *nifs = &NX_NETIF_PRIVATE(nexus)->nif_stats;
if (!ipsec_data_move_begin(pcb)) {
os_log_error(OS_LOG_DEFAULT, "%s: data path stopped for %s\n", __func__, if_name(pcb->ipsec_ifp));
return 0;
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
// Reclaim user-released slots
(void) kern_channel_reclaim(rx_ring);
STATS_INC(nifs, NETIF_STATS_RX_SYNC);
uint32_t avail = kern_channel_available_slot_count(rx_ring);
if (avail == 0) {
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
struct kern_pbufpool *rx_pp = rx_ring->ckr_pp;
VERIFY(rx_pp != NULL);
bzero(&rx_ring_stats, sizeof(rx_ring_stats));
kern_channel_slot_t rx_pslot = NULL;
kern_channel_slot_t rx_slot = kern_channel_get_next_slot(rx_ring, NULL, NULL);
while (rx_slot != NULL) {
// Check for a waiting packet
lck_mtx_lock(&pcb->ipsec_input_chain_lock);
mbuf_t data = pcb->ipsec_input_chain;
if (data == NULL) {
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
break;
}
// Allocate rx packet
kern_packet_t rx_ph = 0;
errno_t error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_PKT);
STATS_INC(nifs, NETIF_STATS_DROP);
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
break;
}
// Advance waiting packets
if (pcb->ipsec_input_chain_count > 0) {
pcb->ipsec_input_chain_count--;
}
pcb->ipsec_input_chain = data->m_nextpkt;
data->m_nextpkt = NULL;
if (pcb->ipsec_input_chain == NULL) {
pcb->ipsec_input_chain_last = NULL;
}
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
size_t length = mbuf_pkthdr_len(data);
if (length < sizeof(struct ip)) {
// Flush data
mbuf_freem(data);
kern_pbufpool_free(rx_pp, rx_ph);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: legacy decrypted packet length cannot hold IP %zu < %zu\n",
pcb->ipsec_ifp->if_xname, length, sizeof(struct ip));
continue;
}
uint32_t af = 0;
struct ip *ip = mtod(data, struct ip *);
u_int ip_version = ip->ip_v;
switch (ip_version) {
case 4: {
af = AF_INET;
break;
}
case 6: {
af = AF_INET6;
break;
}
default: {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: legacy unknown ip version %u\n",
pcb->ipsec_ifp->if_xname, ip_version);
break;
}
}
if (length > PP_BUF_SIZE_DEF(rx_pp) ||
(pcb->ipsec_frag_size_set && length > pcb->ipsec_input_frag_size)) {
// We need to fragment to send up into the netif
u_int32_t fragment_mtu = PP_BUF_SIZE_DEF(rx_pp);
if (pcb->ipsec_frag_size_set &&
pcb->ipsec_input_frag_size < PP_BUF_SIZE_DEF(rx_pp)) {
fragment_mtu = pcb->ipsec_input_frag_size;
}
mbuf_t fragment_chain = NULL;
switch (af) {
case AF_INET: {
// ip_fragment expects the length in host order
ip->ip_len = ntohs(ip->ip_len);
// ip_fragment will modify the original data, don't free
int fragment_error = ip_fragment(data, pcb->ipsec_ifp, fragment_mtu, TRUE);
if (fragment_error == 0 && data != NULL) {
fragment_chain = data;
} else {
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: failed to fragment IPv4 packet of length %zu (%d)\n",
pcb->ipsec_ifp->if_xname, length, fragment_error);
}
break;
}
case AF_INET6: {
if (length < sizeof(struct ip6_hdr)) {
mbuf_freem(data);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: failed to fragment IPv6 packet of length %zu < %zu\n",
pcb->ipsec_ifp->if_xname, length, sizeof(struct ip6_hdr));
} else {
// ip6_do_fragmentation will free the original data on success only
struct ip6_hdr *ip6 = mtod(data, struct ip6_hdr *);
int fragment_error = ip6_do_fragmentation(&data, 0, pcb->ipsec_ifp, sizeof(struct ip6_hdr),
ip6, NULL, fragment_mtu, ip6->ip6_nxt, htonl(ip6_randomid()));
if (fragment_error == 0 && data != NULL) {
fragment_chain = data;
} else {
mbuf_freem(data);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: failed to fragment IPv6 packet of length %zu (%d)\n",
pcb->ipsec_ifp->if_xname, length, fragment_error);
}
}
break;
}
default: {
// Cannot fragment unknown families
mbuf_freem(data);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: uknown legacy decrypted packet length %zu > %u\n",
pcb->ipsec_ifp->if_xname, length, PP_BUF_SIZE_DEF(rx_pp));
break;
}
}
if (fragment_chain != NULL) {
// Add fragments to chain before continuing
lck_mtx_lock(&pcb->ipsec_input_chain_lock);
if (pcb->ipsec_input_chain != NULL) {
pcb->ipsec_input_chain_last->m_nextpkt = fragment_chain;
} else {
pcb->ipsec_input_chain = fragment_chain;
}
pcb->ipsec_input_chain_count++;
while (fragment_chain->m_nextpkt) {
VERIFY(fragment_chain != fragment_chain->m_nextpkt);
fragment_chain = fragment_chain->m_nextpkt;
pcb->ipsec_input_chain_count++;
}
pcb->ipsec_input_chain_last = fragment_chain;
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
}
// Make sure to free unused rx packet
kern_pbufpool_free(rx_pp, rx_ph);
continue;
}
mbuf_pkthdr_setrcvif(data, pcb->ipsec_ifp);
// Fillout rx packet
kern_buflet_t rx_buf = kern_packet_get_next_buflet(rx_ph, NULL);
VERIFY(rx_buf != NULL);
void *rx_baddr = kern_buflet_get_data_address(rx_buf);
VERIFY(rx_baddr != NULL);
// Copy-in data from mbuf to buflet
mbuf_copydata(data, 0, length, (void *)rx_baddr);
kern_packet_clear_flow_uuid(rx_ph); // Zero flow id
// Finalize and attach the packet
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_buflet_set_data_length(rx_buf, (uint16_t)length);
VERIFY(error == 0);
error = kern_packet_set_headroom(rx_ph, 0);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_RX_PACKETS);
STATS_INC(nifs, NETIF_STATS_RX_COPY_MBUF);
bpf_tap_packet_in(pcb->ipsec_ifp, DLT_RAW, rx_ph, NULL, 0);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += length;
if (!pcb->ipsec_ext_ifdata_stats) {
ifnet_stat_increment_in(pcb->ipsec_ifp, 1, (uint16_t)length, 0);
}
mbuf_freem(data);
// Advance ring
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
for (uint8_t ring_idx = 0; ring_idx < pcb->ipsec_kpipe_count; ring_idx++) {
struct kern_channel_ring_stat_increment tx_ring_stats;
bzero(&tx_ring_stats, sizeof(tx_ring_stats));
kern_channel_ring_t tx_ring = pcb->ipsec_kpipe_txring[ring_idx];
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = NULL;
if (tx_ring == NULL) {
// Net-If TX ring not set up yet, nothing to read
goto done;
}
// Unlock ipsec before entering ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
(void)kr_enter(tx_ring, TRUE);
// Lock again after entering and validate
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (tx_ring != pcb->ipsec_kpipe_txring[ring_idx]) {
goto done;
}
tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
if (tx_slot == NULL) {
// Nothing to read, don't bother signalling
goto done;
}
while (rx_slot != NULL && tx_slot != NULL) {
size_t length = 0;
mbuf_t data = NULL;
errno_t error = 0;
uint32_t af;
// Allocate rx packet
kern_packet_t rx_ph = 0;
error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_PKT);
STATS_INC(nifs, NETIF_STATS_DROP);
break;
}
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
if (tx_ph == 0) {
kern_pbufpool_free(rx_pp, rx_ph);
continue;
}
kern_buflet_t tx_buf = kern_packet_get_next_buflet(tx_ph, NULL);
VERIFY(tx_buf != NULL);
uint8_t *tx_baddr = kern_buflet_get_data_address(tx_buf);
VERIFY(tx_baddr != 0);
tx_baddr += kern_buflet_get_data_offset(tx_buf);
length = MIN(kern_packet_get_data_length(tx_ph),
pcb->ipsec_slot_size);
// Increment TX stats
tx_ring_stats.kcrsi_slots_transferred++;
tx_ring_stats.kcrsi_bytes_transferred += length;
if (length >= sizeof(struct ip)) {
error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, &data);
if (error == 0) {
error = mbuf_copyback(data, 0, length, tx_baddr, MBUF_DONTWAIT);
if (error == 0) {
// Check for wake packet flag
uuid_t flow_uuid;
kern_packet_get_flow_uuid(tx_ph, &flow_uuid);
u_int8_t *id_8 = (u_int8_t *)(uintptr_t)flow_uuid;
if ((id_8[0] & IPSEC_KPIPE_FLAG_WAKE_PKT) == IPSEC_KPIPE_FLAG_WAKE_PKT) {
os_log_info(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: wake packet flag is set\n",
pcb->ipsec_ifp->if_xname);
data->m_pkthdr.pkt_flags |= PKTF_WAKE_PKT;
}
lck_mtx_lock(&pcb->ipsec_kpipe_decrypt_lock);
struct ip *ip = mtod(data, struct ip *);
u_int ip_version = ip->ip_v;
switch (ip_version) {
case 4: {
af = AF_INET;
ip->ip_len = ntohs(ip->ip_len) - sizeof(struct ip);
ip->ip_off = ntohs(ip->ip_off);
if (length < ip->ip_len) {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: IPv4 packet length too short (%zu < %u)\n",
pcb->ipsec_ifp->if_xname, length, ip->ip_len);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
} else {
data = esp4_input_extended(data, sizeof(struct ip), pcb->ipsec_ifp);
}
break;
}
case 6: {
if (length < sizeof(struct ip6_hdr)) {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: IPv6 packet length too short for header %zu\n",
pcb->ipsec_ifp->if_xname, length);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
} else {
af = AF_INET6;
struct ip6_hdr *ip6 = mtod(data, struct ip6_hdr *);
const size_t ip6_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
if (length < ip6_len) {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: IPv6 packet length too short (%zu < %zu)\n",
pcb->ipsec_ifp->if_xname, length, ip6_len);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
} else {
int offset = sizeof(struct ip6_hdr);
esp6_input_extended(&data, &offset, ip6->ip6_nxt, pcb->ipsec_ifp);
}
}
break;
}
default: {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: unknown ip version %u\n",
pcb->ipsec_ifp->if_xname, ip_version);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
break;
}
}
lck_mtx_unlock(&pcb->ipsec_kpipe_decrypt_lock);
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s - mbuf_copyback(%zu) error %d\n", pcb->ipsec_ifp->if_xname, length, error);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
}
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s - mbuf_gethdr error %d\n", pcb->ipsec_ifp->if_xname, error);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
}
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s - bad packet length %zu\n", pcb->ipsec_ifp->if_xname, length);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
}
if (data == NULL) {
// Failed to get decrypted data data
kern_pbufpool_free(rx_pp, rx_ph);
continue;
}
length = mbuf_pkthdr_len(data);
if (length > PP_BUF_SIZE_DEF(rx_pp)) {
// Flush data
mbuf_freem(data);
kern_pbufpool_free(rx_pp, rx_ph);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: decrypted packet length %zu > %u\n",
pcb->ipsec_ifp->if_xname, length, PP_BUF_SIZE_DEF(rx_pp));
continue;
}
mbuf_pkthdr_setrcvif(data, pcb->ipsec_ifp);
// Fillout rx packet
kern_buflet_t rx_buf = kern_packet_get_next_buflet(rx_ph, NULL);
VERIFY(rx_buf != NULL);
void *rx_baddr = kern_buflet_get_data_address(rx_buf);
VERIFY(rx_baddr != NULL);
// Copy-in data from mbuf to buflet
mbuf_copydata(data, 0, length, (void *)rx_baddr);
kern_packet_clear_flow_uuid(rx_ph); // Zero flow id
// Finalize and attach the packet
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_buflet_set_data_length(rx_buf, (uint16_t)length);
VERIFY(error == 0);
error = kern_packet_set_link_header_offset(rx_ph, 0);
VERIFY(error == 0);
error = kern_packet_set_network_header_offset(rx_ph, 0);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_RX_PACKETS);
STATS_INC(nifs, NETIF_STATS_RX_COPY_DIRECT);
bpf_tap_packet_in(pcb->ipsec_ifp, DLT_RAW, rx_ph, NULL, 0);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += length;
if (!pcb->ipsec_ext_ifdata_stats) {
ifnet_stat_increment_in(pcb->ipsec_ifp, 1, (uint16_t)length, 0);
}
mbuf_freem(data);
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
done:
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
kern_channel_increment_ring_net_stats(tx_ring, pcb->ipsec_ifp, &tx_ring_stats);
(void)kern_channel_reclaim(tx_ring);
}
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
if (tx_ring != NULL) {
if (tx_pslot != NULL) {
kern_channel_notify(tx_ring, 0);
}
kr_exit(tx_ring);
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
}
if (rx_pslot) {
kern_channel_advance_slot(rx_ring, rx_pslot);
kern_channel_increment_ring_net_stats(rx_ring, pcb->ipsec_ifp, &rx_ring_stats);
}
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
static errno_t
ipsec_transform_kpipe_pkt_to_netif_pkt(struct ipsec_pcb *pcb,
struct kern_channel_ring_stat_increment *tx_ring_stats,
struct netif_stats *nifs, kern_packet_t kpipe_ph, kern_packet_t netif_ph)
{
kern_buflet_t kpipe_buf = NULL, netif_buf = NULL;
uint8_t *kpipe_baddr = NULL, *netif_baddr = NULL;
uuid_t flow_uuid;
size_t iphlen = 0;
uint32_t kpipe_buf_len = 0, netif_buf_lim = 0;
int err = 0;
VERIFY(kpipe_ph != 0);
VERIFY(netif_ph != 0);
VERIFY(pcb != NULL);
VERIFY(tx_ring_stats != NULL);
VERIFY(nifs != NULL);
kpipe_buf = kern_packet_get_next_buflet(kpipe_ph, NULL);
VERIFY(kpipe_buf != NULL);
kpipe_baddr = kern_buflet_get_data_address(kpipe_buf);
VERIFY(kpipe_baddr != NULL);
kpipe_baddr += kern_buflet_get_data_offset(kpipe_buf);
kpipe_buf_len = kern_buflet_get_data_length(kpipe_buf);
netif_buf = kern_packet_get_next_buflet(netif_ph, NULL);
VERIFY(netif_buf != NULL);
netif_baddr = kern_buflet_get_data_address(netif_buf);
VERIFY(netif_baddr != NULL);
netif_baddr += kern_buflet_get_data_offset(netif_buf);
netif_buf_lim = __buflet_get_data_limit(netif_buf);
netif_buf_lim -= __buflet_get_data_offset(netif_buf);
if (kpipe_buf_len > pcb->ipsec_slot_size) {
os_log_info(OS_LOG_DEFAULT,
"ipsec_transform_kpipe_pkt_to_netif_pkt %s: kpipe buffer length "
"%u > pcb ipsec slot size %u", pcb->ipsec_ifp->if_xname,
kpipe_buf_len, pcb->ipsec_slot_size);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
err = EMSGSIZE;
goto bad;
}
tx_ring_stats->kcrsi_slots_transferred++;
tx_ring_stats->kcrsi_bytes_transferred += kpipe_buf_len;
if (__improbable(kpipe_buf_len < sizeof(struct ip))) {
os_log_info(OS_LOG_DEFAULT, "ipsec_transform_kpipe_pkt_to_netif_pkt %s - bad "
"packet length %u\n", pcb->ipsec_ifp->if_xname, kpipe_buf_len);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
err = EBADMSG;
goto bad;
}
struct ip *ip = (struct ip *)(void *)kpipe_baddr;
ASSERT(IP_HDR_ALIGNED_P(ip));
u_int ip_vers = ip->ip_v;
switch (ip_vers) {
case IPVERSION: {
#ifdef _IP_VHL
iphlen = IP_VHL_HL(ip->ip_vhl) << 2;
#else /* _IP_VHL */
iphlen = ip->ip_hl << 2;
#endif /* _IP_VHL */
break;
}
case 6: {
iphlen = sizeof(struct ip6_hdr);
break;
}
default: {
os_log_info(OS_LOG_DEFAULT, "ipsec_transform_kpipe_pkt_to_netif_pkt %s - bad "
"ip version %u\n", pcb->ipsec_ifp->if_xname, ip_vers);
err = EBADMSG;
goto bad;
}
}
if (__improbable(kpipe_buf_len < iphlen)) {
os_log_info(OS_LOG_DEFAULT, "ipsec_transform_kpipe_pkt_to_netif_pkt %s - bad "
"packet length %u\n", pcb->ipsec_ifp->if_xname, kpipe_buf_len);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
err = EBADMSG;
goto bad;
}
if (__improbable(netif_buf_lim < iphlen)) {
os_log_info(OS_LOG_DEFAULT, "ipsec_transform_kpipe_pkt_to_netif_pkt %s - netif "
"buffer length %u too short\n", pcb->ipsec_ifp->if_xname, netif_buf_lim);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
err = EBADMSG;
goto bad;
}
memcpy(netif_baddr, kpipe_baddr, iphlen);
__buflet_set_data_length(netif_buf, (uint16_t)iphlen);
lck_mtx_lock(&pcb->ipsec_kpipe_decrypt_lock);
err = esp_kpipe_input(pcb->ipsec_ifp, kpipe_ph, netif_ph);
lck_mtx_unlock(&pcb->ipsec_kpipe_decrypt_lock);
if (__improbable((err != 0))) {
goto bad;
}
kern_packet_get_flow_uuid(kpipe_ph, &flow_uuid);
uint8_t *id_8 = (uint8_t *)(uintptr_t)flow_uuid;
if (__improbable((id_8[0] & IPSEC_KPIPE_FLAG_WAKE_PKT) == IPSEC_KPIPE_FLAG_WAKE_PKT)) {
os_log_info(OS_LOG_DEFAULT, "ipsec_transform_kpipe_pkt_to_netif_pkt %s: wake packet "
"flag is set\n", pcb->ipsec_ifp->if_xname);
__packet_set_wake_flag(netif_ph);
}
kern_packet_clear_flow_uuid(netif_ph);
err = kern_buflet_set_data_offset(netif_buf, 0);
VERIFY(err == 0);
err = kern_packet_set_link_header_offset(netif_ph, 0);
VERIFY(err == 0);
err = kern_packet_set_network_header_offset(netif_ph, 0);
VERIFY(err == 0);
err = kern_packet_finalize(netif_ph);
VERIFY(err == 0);
return 0;
bad:
STATS_INC(nifs, NETIF_STATS_DROP);
return err;
}
static errno_t
ipsec_netif_sync_rx_packet(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t rx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct ipsec_pcb *pcb = kern_nexus_get_context(nexus);
struct kern_channel_ring_stat_increment rx_ring_stats;
struct netif_stats *nifs = &NX_NETIF_PRIVATE(nexus)->nif_stats;
if (!ipsec_data_move_begin(pcb)) {
os_log_error(OS_LOG_DEFAULT, "%s: data path stopped for %s\n", __func__, if_name(pcb->ipsec_ifp));
return 0;
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
// Reclaim user-released slots
(void) kern_channel_reclaim(rx_ring);
STATS_INC(nifs, NETIF_STATS_RX_SYNC);
uint32_t avail = kern_channel_available_slot_count(rx_ring);
if (avail == 0) {
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
struct kern_pbufpool *rx_pp = rx_ring->ckr_pp;
VERIFY(rx_pp != NULL);
bzero(&rx_ring_stats, sizeof(rx_ring_stats));
kern_channel_slot_t rx_pslot = NULL;
kern_channel_slot_t rx_slot = kern_channel_get_next_slot(rx_ring, NULL, NULL);
while (rx_slot != NULL) {
// Check for a waiting packet
lck_mtx_lock(&pcb->ipsec_input_chain_lock);
mbuf_t data = pcb->ipsec_input_chain;
if (data == NULL) {
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
break;
}
// Allocate rx packet
kern_packet_t rx_ph = 0;
errno_t error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_PKT);
STATS_INC(nifs, NETIF_STATS_DROP);
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
break;
}
// Advance waiting packets
if (pcb->ipsec_input_chain_count > 0) {
pcb->ipsec_input_chain_count--;
}
pcb->ipsec_input_chain = data->m_nextpkt;
data->m_nextpkt = NULL;
if (pcb->ipsec_input_chain == NULL) {
pcb->ipsec_input_chain_last = NULL;
}
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
size_t length = mbuf_pkthdr_len(data);
if (length < sizeof(struct ip)) {
// Flush data
mbuf_freem(data);
kern_pbufpool_free(rx_pp, rx_ph);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: legacy decrypted packet length cannot hold IP %zu < %zu\n",
pcb->ipsec_ifp->if_xname, length, sizeof(struct ip));
continue;
}
uint32_t af = 0;
struct ip *ip = mtod(data, struct ip *);
u_int ip_version = ip->ip_v;
switch (ip_version) {
case 4: {
af = AF_INET;
break;
}
case 6: {
af = AF_INET6;
break;
}
default: {
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: legacy unknown ip version %u\n",
pcb->ipsec_ifp->if_xname, ip_version);
break;
}
}
if (length > PP_BUF_SIZE_DEF(rx_pp) ||
(pcb->ipsec_frag_size_set && length > pcb->ipsec_input_frag_size)) {
// We need to fragment to send up into the netif
u_int32_t fragment_mtu = PP_BUF_SIZE_DEF(rx_pp);
if (pcb->ipsec_frag_size_set &&
pcb->ipsec_input_frag_size < PP_BUF_SIZE_DEF(rx_pp)) {
fragment_mtu = pcb->ipsec_input_frag_size;
}
mbuf_t fragment_chain = NULL;
switch (af) {
case AF_INET: {
// ip_fragment expects the length in host order
ip->ip_len = ntohs(ip->ip_len);
// ip_fragment will modify the original data, don't free
int fragment_error = ip_fragment(data, pcb->ipsec_ifp, fragment_mtu, TRUE);
if (fragment_error == 0 && data != NULL) {
fragment_chain = data;
} else {
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: failed to fragment IPv4 packet of length %zu (%d)\n",
pcb->ipsec_ifp->if_xname, length, fragment_error);
}
break;
}
case AF_INET6: {
if (length < sizeof(struct ip6_hdr)) {
mbuf_freem(data);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: failed to fragment IPv6 packet of length %zu < %zu\n",
pcb->ipsec_ifp->if_xname, length, sizeof(struct ip6_hdr));
} else {
// ip6_do_fragmentation will free the original data on success only
struct ip6_hdr *ip6 = mtod(data, struct ip6_hdr *);
int fragment_error = ip6_do_fragmentation(&data, 0, pcb->ipsec_ifp, sizeof(struct ip6_hdr),
ip6, NULL, fragment_mtu, ip6->ip6_nxt, htonl(ip6_randomid()));
if (fragment_error == 0 && data != NULL) {
fragment_chain = data;
} else {
mbuf_freem(data);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: failed to fragment IPv6 packet of length %zu (%d)\n",
pcb->ipsec_ifp->if_xname, length, fragment_error);
}
}
break;
}
default: {
// Cannot fragment unknown families
mbuf_freem(data);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "ipsec_netif_sync_rx %s: uknown legacy decrypted packet length %zu > %u\n",
pcb->ipsec_ifp->if_xname, length, PP_BUF_SIZE_DEF(rx_pp));
break;
}
}
if (fragment_chain != NULL) {
// Add fragments to chain before continuing
lck_mtx_lock(&pcb->ipsec_input_chain_lock);
if (pcb->ipsec_input_chain != NULL) {
pcb->ipsec_input_chain_last->m_nextpkt = fragment_chain;
} else {
pcb->ipsec_input_chain = fragment_chain;
}
pcb->ipsec_input_chain_count++;
while (fragment_chain->m_nextpkt) {
VERIFY(fragment_chain != fragment_chain->m_nextpkt);
fragment_chain = fragment_chain->m_nextpkt;
pcb->ipsec_input_chain_count++;
}
pcb->ipsec_input_chain_last = fragment_chain;
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
}
// Make sure to free unused rx packet
kern_pbufpool_free(rx_pp, rx_ph);
continue;
}
mbuf_pkthdr_setrcvif(data, pcb->ipsec_ifp);
// Fillout rx packet
kern_buflet_t rx_buf = kern_packet_get_next_buflet(rx_ph, NULL);
VERIFY(rx_buf != NULL);
void *rx_baddr = kern_buflet_get_data_address(rx_buf);
VERIFY(rx_baddr != NULL);
// Copy-in data from mbuf to buflet
mbuf_copydata(data, 0, length, (void *)rx_baddr);
kern_packet_clear_flow_uuid(rx_ph); // Zero flow id
// Finalize and attach the packet
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_buflet_set_data_length(rx_buf, (uint16_t)length);
VERIFY(error == 0);
error = kern_packet_set_headroom(rx_ph, 0);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_RX_PACKETS);
STATS_INC(nifs, NETIF_STATS_RX_COPY_MBUF);
bpf_tap_packet_in(pcb->ipsec_ifp, DLT_RAW, rx_ph, NULL, 0);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += length;
if (!pcb->ipsec_ext_ifdata_stats) {
ifnet_stat_increment_in(pcb->ipsec_ifp, 1, (uint16_t)length, 0);
}
mbuf_freem(data);
// Advance ring
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
for (uint8_t ring_idx = 0; ring_idx < pcb->ipsec_kpipe_count; ring_idx++) {
struct kern_channel_ring_stat_increment tx_ring_stats = {};
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = NULL;
kern_channel_ring_t tx_ring = pcb->ipsec_kpipe_txring[ring_idx];
if (tx_ring == NULL) {
// Net-If TX ring not set up yet, nothing to read
goto done;
}
// Unlock ipsec before entering ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
(void)kr_enter(tx_ring, TRUE);
// Lock again after entering and validate
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (tx_ring != pcb->ipsec_kpipe_txring[ring_idx]) {
goto done;
}
tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
if (tx_slot == NULL) {
// Nothing to read, don't bother signalling
goto done;
}
while (rx_slot != NULL && tx_slot != NULL) {
errno_t error = 0;
// Allocate rx packet
kern_packet_t rx_ph = 0;
error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_PKT);
STATS_INC(nifs, NETIF_STATS_DROP);
break;
}
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
if (tx_ph == 0) {
kern_pbufpool_free(rx_pp, rx_ph);
continue;
}
error = ipsec_transform_kpipe_pkt_to_netif_pkt(pcb,
&tx_ring_stats, nifs, tx_ph, rx_ph);
if (error != 0) {
// Failed to get decrypted packet
kern_pbufpool_free(rx_pp, rx_ph);
continue;
}
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_RX_PACKETS);
STATS_INC(nifs, NETIF_STATS_RX_COPY_DIRECT);
bpf_tap_packet_in(pcb->ipsec_ifp, DLT_RAW, rx_ph, NULL, 0);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += kern_packet_get_data_length(rx_ph);
if (!pcb->ipsec_ext_ifdata_stats) {
ifnet_stat_increment_in(pcb->ipsec_ifp, 1,
kern_packet_get_data_length(rx_ph), 0);
}
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
done:
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
kern_channel_increment_ring_net_stats(tx_ring, pcb->ipsec_ifp, &tx_ring_stats);
(void)kern_channel_reclaim(tx_ring);
}
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
if (tx_ring != NULL) {
if (tx_pslot != NULL) {
kern_channel_notify(tx_ring, 0);
}
kr_exit(tx_ring);
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
}
if (rx_pslot) {
kern_channel_advance_slot(rx_ring, rx_pslot);
kern_channel_increment_ring_net_stats(rx_ring, pcb->ipsec_ifp, &rx_ring_stats);
}
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return 0;
}
static errno_t
ipsec_netif_sync_rx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t rx_ring, uint32_t flags)
{
if (__improbable(ipsec_kpipe_mbuf == 1)) {
return ipsec_netif_sync_rx_mbuf(nxprov, nexus, rx_ring, flags);
} else {
return ipsec_netif_sync_rx_packet(nxprov, nexus, rx_ring, flags);
}
}
static errno_t
ipsec_nexus_ifattach(struct ipsec_pcb *pcb,
struct ifnet_init_eparams *init_params,
struct ifnet **ifp)
{
errno_t err;
nexus_controller_t controller = kern_nexus_shared_controller();
struct kern_nexus_net_init net_init;
struct kern_pbufpool_init pp_init;
nexus_name_t provider_name;
snprintf((char *)provider_name, sizeof(provider_name),
"com.apple.netif.%s", pcb->ipsec_if_xname);
struct kern_nexus_provider_init prov_init = {
.nxpi_version = KERN_NEXUS_DOMAIN_PROVIDER_CURRENT_VERSION,
.nxpi_flags = NXPIF_VIRTUAL_DEVICE,
.nxpi_pre_connect = ipsec_nexus_pre_connect,
.nxpi_connected = ipsec_nexus_connected,
.nxpi_pre_disconnect = ipsec_netif_pre_disconnect,
.nxpi_disconnected = ipsec_nexus_disconnected,
.nxpi_ring_init = ipsec_netif_ring_init,
.nxpi_ring_fini = ipsec_netif_ring_fini,
.nxpi_slot_init = NULL,
.nxpi_slot_fini = NULL,
.nxpi_sync_tx = ipsec_netif_sync_tx,
.nxpi_sync_rx = ipsec_netif_sync_rx,
.nxpi_tx_doorbell = ipsec_netif_tx_doorbell,
};
nexus_attr_t nxa = NULL;
err = kern_nexus_attr_create(&nxa);
IPSEC_IF_VERIFY(err == 0);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_attr_create failed: %d\n",
__func__, err);
goto failed;
}
uint64_t slot_buffer_size = pcb->ipsec_slot_size;
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_SLOT_BUF_SIZE, slot_buffer_size);
VERIFY(err == 0);
// Reset ring size for netif nexus to limit memory usage
uint64_t ring_size = pcb->ipsec_netif_ring_size;
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_TX_SLOTS, ring_size);
VERIFY(err == 0);
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_RX_SLOTS, ring_size);
VERIFY(err == 0);
assert(err == 0);
if (ipsec_in_wmm_mode(pcb)) {
os_log(OS_LOG_DEFAULT, "%s: %s enabling wmm mode\n",
__func__, pcb->ipsec_if_xname);
init_params->output_sched_model = IFNET_SCHED_MODEL_DRIVER_MANAGED;
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_TX_RINGS,
IPSEC_NETIF_WMM_TX_RING_COUNT);
VERIFY(err == 0);
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_RX_RINGS,
IPSEC_NETIF_WMM_RX_RING_COUNT);
VERIFY(err == 0);
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_QMAP, NEXUS_QMAP_TYPE_WMM);
VERIFY(err == 0);
}
pcb->ipsec_netif_txring_size = ring_size;
bzero(&pp_init, sizeof(pp_init));
pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION;
pp_init.kbi_flags |= KBIF_VIRTUAL_DEVICE;
// Note: we need more packets than can be held in the tx and rx rings because
// packets can also be in the AQM queue(s)
pp_init.kbi_packets = pcb->ipsec_netif_ring_size * (2 * pcb->ipsec_kpipe_count + 1);
pp_init.kbi_bufsize = pcb->ipsec_slot_size;
pp_init.kbi_buf_seg_size = IPSEC_IF_DEFAULT_BUF_SEG_SIZE;
pp_init.kbi_max_frags = 1;
(void) snprintf((char *)pp_init.kbi_name, sizeof(pp_init.kbi_name),
"%s", provider_name);
pp_init.kbi_ctx = NULL;
pp_init.kbi_ctx_retain = NULL;
pp_init.kbi_ctx_release = NULL;
err = kern_pbufpool_create(&pp_init, &pcb->ipsec_netif_pp, NULL);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s pbufbool create failed, error %d\n", __func__, err);
goto failed;
}
err = kern_nexus_controller_register_provider(controller,
ipsec_nx_dom_prov,
provider_name,
&prov_init,
sizeof(prov_init),
nxa,
&pcb->ipsec_nx.if_provider);
IPSEC_IF_VERIFY(err == 0);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s register provider failed, error %d\n",
__func__, err);
goto failed;
}
bzero(&net_init, sizeof(net_init));
net_init.nxneti_version = KERN_NEXUS_NET_CURRENT_VERSION;
net_init.nxneti_flags = 0;
net_init.nxneti_eparams = init_params;
net_init.nxneti_lladdr = NULL;
net_init.nxneti_prepare = ipsec_netif_prepare;
net_init.nxneti_rx_pbufpool = pcb->ipsec_netif_pp;
net_init.nxneti_tx_pbufpool = pcb->ipsec_netif_pp;
err = kern_nexus_controller_alloc_net_provider_instance(controller,
pcb->ipsec_nx.if_provider,
pcb,
NULL,
&pcb->ipsec_nx.if_instance,
&net_init,
ifp);
IPSEC_IF_VERIFY(err == 0);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s alloc_net_provider_instance failed, %d\n",
__func__, err);
kern_nexus_controller_deregister_provider(controller,
pcb->ipsec_nx.if_provider);
uuid_clear(pcb->ipsec_nx.if_provider);
goto failed;
}
failed:
if (nxa) {
kern_nexus_attr_destroy(nxa);
}
if (err && pcb->ipsec_netif_pp != NULL) {
kern_pbufpool_destroy(pcb->ipsec_netif_pp);
pcb->ipsec_netif_pp = NULL;
}
return err;
}
static void
ipsec_detach_provider_and_instance(uuid_t provider, uuid_t instance)
{
nexus_controller_t controller = kern_nexus_shared_controller();
errno_t err;
if (!uuid_is_null(instance)) {
err = kern_nexus_controller_free_provider_instance(controller,
instance);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s free_provider_instance failed %d\n",
__func__, err);
}
uuid_clear(instance);
}
if (!uuid_is_null(provider)) {
err = kern_nexus_controller_deregister_provider(controller,
provider);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s deregister_provider %d\n", __func__, err);
}
uuid_clear(provider);
}
return;
}
static void
ipsec_nexus_detach(struct ipsec_pcb *pcb)
{
ipsec_nx_t nx = &pcb->ipsec_nx;
nexus_controller_t controller = kern_nexus_shared_controller();
errno_t err;
if (!uuid_is_null(nx->fsw_device)) {
err = kern_nexus_ifdetach(controller,
nx->fsw_instance,
nx->fsw_device);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_ifdetach ms device failed %d\n",
__func__, err);
}
}
ipsec_detach_provider_and_instance(nx->fsw_provider,
nx->fsw_instance);
ipsec_detach_provider_and_instance(nx->if_provider,
nx->if_instance);
if (pcb->ipsec_netif_pp != NULL) {
kern_pbufpool_destroy(pcb->ipsec_netif_pp);
pcb->ipsec_netif_pp = NULL;
}
memset(nx, 0, sizeof(*nx));
}
static errno_t
ipsec_create_fs_provider_and_instance(struct ipsec_pcb *pcb,
const char *type_name,
const char *ifname,
uuid_t *provider, uuid_t *instance)
{
nexus_attr_t attr = NULL;
nexus_controller_t controller = kern_nexus_shared_controller();
uuid_t dom_prov;
errno_t err;
struct kern_nexus_init init;
nexus_name_t provider_name;
err = kern_nexus_get_default_domain_provider(NEXUS_TYPE_FLOW_SWITCH,
&dom_prov);
IPSEC_IF_VERIFY(err == 0);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s can't get %s provider, error %d\n",
__func__, type_name, err);
goto failed;
}
err = kern_nexus_attr_create(&attr);
IPSEC_IF_VERIFY(err == 0);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_attr_create failed: %d\n",
__func__, err);
goto failed;
}
uint64_t slot_buffer_size = pcb->ipsec_slot_size;
err = kern_nexus_attr_set(attr, NEXUS_ATTR_SLOT_BUF_SIZE, slot_buffer_size);
VERIFY(err == 0);
// Reset ring size for flowswitch nexus to limit memory usage. Larger RX than netif.
uint64_t tx_ring_size = pcb->ipsec_tx_fsw_ring_size;
err = kern_nexus_attr_set(attr, NEXUS_ATTR_TX_SLOTS, tx_ring_size);
VERIFY(err == 0);
uint64_t rx_ring_size = pcb->ipsec_rx_fsw_ring_size;
err = kern_nexus_attr_set(attr, NEXUS_ATTR_RX_SLOTS, rx_ring_size);
VERIFY(err == 0);
/*
* Configure flowswitch to use super-packet (multi-buflet).
* This allows flowswitch to perform intra-stack packet aggregation.
*/
err = kern_nexus_attr_set(attr, NEXUS_ATTR_MAX_FRAGS,
NX_FSW_TCP_RX_AGG_ENABLED() ? NX_PBUF_FRAGS_MAX : 1);
VERIFY(err == 0);
snprintf((char *)provider_name, sizeof(provider_name),
"com.apple.%s.%s", type_name, ifname);
err = kern_nexus_controller_register_provider(controller,
dom_prov,
provider_name,
NULL,
0,
attr,
provider);
kern_nexus_attr_destroy(attr);
attr = NULL;
IPSEC_IF_VERIFY(err == 0);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s register %s provider failed, error %d\n",
__func__, type_name, err);
goto failed;
}
bzero(&init, sizeof(init));
init.nxi_version = KERN_NEXUS_CURRENT_VERSION;
err = kern_nexus_controller_alloc_provider_instance(controller,
*provider,
NULL, NULL,
instance, &init);
IPSEC_IF_VERIFY(err == 0);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s alloc_provider_instance %s failed, %d\n",
__func__, type_name, err);
kern_nexus_controller_deregister_provider(controller,
*provider);
uuid_clear(*provider);
}
failed:
return err;
}
static errno_t
ipsec_flowswitch_attach(struct ipsec_pcb *pcb)
{
nexus_controller_t controller = kern_nexus_shared_controller();
errno_t err = 0;
ipsec_nx_t nx = &pcb->ipsec_nx;
// Allocate flowswitch
err = ipsec_create_fs_provider_and_instance(pcb,
"flowswitch",
pcb->ipsec_ifp->if_xname,
&nx->fsw_provider,
&nx->fsw_instance);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: failed to create bridge provider and instance\n",
__func__);
goto failed;
}
// Attach flowswitch to device port
err = kern_nexus_ifattach(controller, nx->fsw_instance,
NULL, nx->if_instance,
FALSE, &nx->fsw_device);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s kern_nexus_ifattach ms device %d\n", __func__, err);
goto failed;
}
// Extract the agent UUID and save for later
struct kern_nexus *flowswitch_nx = nx_find(nx->fsw_instance, false);
if (flowswitch_nx != NULL) {
struct nx_flowswitch *flowswitch = NX_FSW_PRIVATE(flowswitch_nx);
if (flowswitch != NULL) {
FSW_RLOCK(flowswitch);
uuid_copy(nx->fsw_agent, flowswitch->fsw_agent_uuid);
FSW_UNLOCK(flowswitch);
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_flowswitch_attach - flowswitch is NULL\n");
}
nx_release(flowswitch_nx);
} else {
os_log_error(OS_LOG_DEFAULT, "ipsec_flowswitch_attach - unable to find flowswitch nexus\n");
}
return 0;
failed:
ipsec_nexus_detach(pcb);
errno_t detach_error = 0;
if ((detach_error = ifnet_detach(pcb->ipsec_ifp)) != 0) {
panic("ipsec_flowswitch_attach - ifnet_detach failed: %d", detach_error);
/* NOT REACHED */
}
return err;
}
#pragma mark Kernel Pipe Nexus
static errno_t
ipsec_register_kernel_pipe_nexus(struct ipsec_pcb *pcb)
{
nexus_attr_t nxa = NULL;
errno_t result;
lck_mtx_lock(&ipsec_lock);
if (ipsec_ncd_refcount++) {
lck_mtx_unlock(&ipsec_lock);
return 0;
}
result = kern_nexus_controller_create(&ipsec_ncd);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_controller_create failed: %d\n",
__FUNCTION__, result);
goto done;
}
uuid_t dom_prov;
result = kern_nexus_get_default_domain_provider(
NEXUS_TYPE_KERNEL_PIPE, &dom_prov);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_get_default_domain_provider failed: %d\n",
__FUNCTION__, result);
goto done;
}
struct kern_nexus_provider_init prov_init = {
.nxpi_version = KERN_NEXUS_DOMAIN_PROVIDER_CURRENT_VERSION,
.nxpi_flags = NXPIF_VIRTUAL_DEVICE,
.nxpi_pre_connect = ipsec_nexus_pre_connect,
.nxpi_connected = ipsec_nexus_connected,
.nxpi_pre_disconnect = ipsec_nexus_pre_disconnect,
.nxpi_disconnected = ipsec_nexus_disconnected,
.nxpi_ring_init = ipsec_kpipe_ring_init,
.nxpi_ring_fini = ipsec_kpipe_ring_fini,
.nxpi_slot_init = NULL,
.nxpi_slot_fini = NULL,
.nxpi_sync_tx = ipsec_kpipe_sync_tx,
.nxpi_sync_rx = ipsec_kpipe_sync_rx,
.nxpi_tx_doorbell = NULL,
};
result = kern_nexus_attr_create(&nxa);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_attr_create failed: %d\n",
__FUNCTION__, result);
goto done;
}
uint64_t slot_buffer_size = IPSEC_IF_DEFAULT_SLOT_SIZE;
result = kern_nexus_attr_set(nxa, NEXUS_ATTR_SLOT_BUF_SIZE, slot_buffer_size);
VERIFY(result == 0);
// Reset ring size for kernel pipe nexus to limit memory usage
// Note: It's better to have less on slots on the kpipe TX ring than the netif
// so back pressure is applied at the AQM layer
uint64_t ring_size =
pcb->ipsec_kpipe_tx_ring_size != 0 ? pcb->ipsec_kpipe_tx_ring_size :
pcb->ipsec_netif_ring_size != 0 ? pcb->ipsec_netif_ring_size :
if_ipsec_ring_size;
result = kern_nexus_attr_set(nxa, NEXUS_ATTR_TX_SLOTS, ring_size);
VERIFY(result == 0);
ring_size =
pcb->ipsec_kpipe_rx_ring_size != 0 ? pcb->ipsec_kpipe_rx_ring_size :
pcb->ipsec_netif_ring_size != 0 ? pcb->ipsec_netif_ring_size :
if_ipsec_ring_size;
result = kern_nexus_attr_set(nxa, NEXUS_ATTR_RX_SLOTS, ring_size);
VERIFY(result == 0);
result = kern_nexus_controller_register_provider(ipsec_ncd,
dom_prov,
(const uint8_t *)"com.apple.nexus.ipsec.kpipe",
&prov_init,
sizeof(prov_init),
nxa,
&ipsec_kpipe_uuid);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_controller_register_provider failed: %d\n",
__FUNCTION__, result);
goto done;
}
done:
if (nxa) {
kern_nexus_attr_destroy(nxa);
}
if (result) {
if (ipsec_ncd) {
kern_nexus_controller_destroy(ipsec_ncd);
ipsec_ncd = NULL;
}
ipsec_ncd_refcount = 0;
}
lck_mtx_unlock(&ipsec_lock);
return result;
}
static void
ipsec_unregister_kernel_pipe_nexus(void)
{
lck_mtx_lock(&ipsec_lock);
VERIFY(ipsec_ncd_refcount > 0);
if (--ipsec_ncd_refcount == 0) {
kern_nexus_controller_destroy(ipsec_ncd);
ipsec_ncd = NULL;
}
lck_mtx_unlock(&ipsec_lock);
}
/* This structure only holds onto kpipe channels that need to be
* freed in the future, but are cleared from the pcb under lock
*/
struct ipsec_detached_channels {
int count;
kern_pbufpool_t pp;
uuid_t uuids[IPSEC_IF_MAX_RING_COUNT];
};
static void
ipsec_detach_channels(struct ipsec_pcb *pcb, struct ipsec_detached_channels *dc)
{
LCK_RW_ASSERT(&pcb->ipsec_pcb_lock, LCK_RW_TYPE_EXCLUSIVE);
if (!ipsec_flag_isset(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED)) {
for (int i = 0; i < IPSEC_IF_MAX_RING_COUNT; i++) {
VERIFY(uuid_is_null(pcb->ipsec_kpipe_uuid[i]));
}
dc->count = 0;
return;
}
dc->count = pcb->ipsec_kpipe_count;
VERIFY(dc->count >= 0);
VERIFY(dc->count <= IPSEC_IF_MAX_RING_COUNT);
for (int i = 0; i < dc->count; i++) {
VERIFY(!uuid_is_null(pcb->ipsec_kpipe_uuid[i]));
uuid_copy(dc->uuids[i], pcb->ipsec_kpipe_uuid[i]);
uuid_clear(pcb->ipsec_kpipe_uuid[i]);
}
for (int i = dc->count; i < IPSEC_IF_MAX_RING_COUNT; i++) {
VERIFY(uuid_is_null(pcb->ipsec_kpipe_uuid[i]));
}
if (dc->count) {
VERIFY(pcb->ipsec_kpipe_pp);
} else {
VERIFY(!pcb->ipsec_kpipe_pp);
}
dc->pp = pcb->ipsec_kpipe_pp;
pcb->ipsec_kpipe_pp = NULL;
ipsec_flag_clr(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED);
}
static void
ipsec_free_channels(struct ipsec_detached_channels *dc)
{
if (!dc->count) {
return;
}
for (int i = 0; i < dc->count; i++) {
errno_t result;
result = kern_nexus_controller_free_provider_instance(ipsec_ncd, dc->uuids[i]);
VERIFY(!result);
}
VERIFY(dc->pp);
kern_pbufpool_destroy(dc->pp);
ipsec_unregister_kernel_pipe_nexus();
memset(dc, 0, sizeof(*dc));
}
static errno_t
ipsec_enable_channel(struct ipsec_pcb *pcb, struct proc *proc)
{
struct kern_nexus_init init;
struct kern_pbufpool_init pp_init;
errno_t result;
kauth_cred_t cred = kauth_cred_get();
result = priv_check_cred(cred, PRIV_SKYWALK_REGISTER_KERNEL_PIPE, 0);
if (result) {
return result;
}
VERIFY(pcb->ipsec_kpipe_count);
VERIFY(!ipsec_flag_isset(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED));
result = ipsec_register_kernel_pipe_nexus(pcb);
lck_rw_lock_exclusive(&pcb->ipsec_pcb_lock);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: %s failed to register kernel pipe nexus\n",
__func__, pcb->ipsec_if_xname);
goto done;
}
VERIFY(ipsec_ncd);
bzero(&pp_init, sizeof(pp_init));
pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION;
pp_init.kbi_flags |= KBIF_VIRTUAL_DEVICE;
// Note: We only needs are many packets as can be held in the tx and rx rings
pp_init.kbi_packets = pcb->ipsec_netif_ring_size * 2 * pcb->ipsec_kpipe_count;
pp_init.kbi_bufsize = pcb->ipsec_slot_size;
pp_init.kbi_buf_seg_size = IPSEC_IF_DEFAULT_BUF_SEG_SIZE;
pp_init.kbi_max_frags = 1;
pp_init.kbi_flags |= KBIF_QUANTUM;
(void) snprintf((char *)pp_init.kbi_name, sizeof(pp_init.kbi_name),
"com.apple.kpipe.%s", pcb->ipsec_if_xname);
pp_init.kbi_ctx = NULL;
pp_init.kbi_ctx_retain = NULL;
pp_init.kbi_ctx_release = NULL;
result = kern_pbufpool_create(&pp_init, &pcb->ipsec_kpipe_pp,
NULL);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: %s pbufbool create failed, error %d\n",
__func__, pcb->ipsec_if_xname, result);
goto done;
}
bzero(&init, sizeof(init));
init.nxi_version = KERN_NEXUS_CURRENT_VERSION;
init.nxi_tx_pbufpool = pcb->ipsec_kpipe_pp;
for (unsigned int i = 0; i < pcb->ipsec_kpipe_count; i++) {
VERIFY(uuid_is_null(pcb->ipsec_kpipe_uuid[i]));
result = kern_nexus_controller_alloc_provider_instance(ipsec_ncd,
ipsec_kpipe_uuid, pcb, NULL, &pcb->ipsec_kpipe_uuid[i], &init);
if (result == 0) {
nexus_port_t port = NEXUS_PORT_KERNEL_PIPE_CLIENT;
const bool has_proc_uuid = !uuid_is_null(pcb->ipsec_kpipe_proc_uuid);
pid_t pid = pcb->ipsec_kpipe_pid;
if (!pid && !has_proc_uuid) {
pid = proc_pid(proc);
}
result = kern_nexus_controller_bind_provider_instance(ipsec_ncd,
pcb->ipsec_kpipe_uuid[i], &port,
pid, has_proc_uuid ? pcb->ipsec_kpipe_proc_uuid : NULL, NULL,
0, has_proc_uuid ? NEXUS_BIND_EXEC_UUID:NEXUS_BIND_PID);
}
if (result) {
/* Unwind all of them on error */
for (int j = 0; j < IPSEC_IF_MAX_RING_COUNT; j++) {
if (!uuid_is_null(pcb->ipsec_kpipe_uuid[j])) {
kern_nexus_controller_free_provider_instance(ipsec_ncd,
pcb->ipsec_kpipe_uuid[j]);
uuid_clear(pcb->ipsec_kpipe_uuid[j]);
}
}
goto done;
}
}
done:
lck_rw_unlock_exclusive(&pcb->ipsec_pcb_lock);
if (result) {
if (pcb->ipsec_kpipe_pp != NULL) {
kern_pbufpool_destroy(pcb->ipsec_kpipe_pp);
pcb->ipsec_kpipe_pp = NULL;
}
ipsec_unregister_kernel_pipe_nexus();
} else {
ipsec_flag_set(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED);
}
return result;
}
#endif // IPSEC_NEXUS
/* Kernel control functions */
static inline int
ipsec_find_by_unit(u_int32_t unit)
{
struct ipsec_pcb *next_pcb = NULL;
int found = 0;
TAILQ_FOREACH(next_pcb, &ipsec_head, ipsec_chain) {
if (next_pcb->ipsec_unit == unit) {
found = 1;
break;
}
}
return found;
}
static inline void
ipsec_free_pcb(struct ipsec_pcb *pcb, bool locked)
{
#if IPSEC_NEXUS
mbuf_freem_list(pcb->ipsec_input_chain);
pcb->ipsec_input_chain_count = 0;
lck_mtx_destroy(&pcb->ipsec_input_chain_lock, &ipsec_lck_grp);
lck_mtx_destroy(&pcb->ipsec_kpipe_encrypt_lock, &ipsec_lck_grp);
lck_mtx_destroy(&pcb->ipsec_kpipe_decrypt_lock, &ipsec_lck_grp);
#endif // IPSEC_NEXUS
lck_mtx_destroy(&pcb->ipsec_pcb_data_move_lock, &ipsec_lck_grp);
lck_rw_destroy(&pcb->ipsec_pcb_lock, &ipsec_lck_grp);
if (!locked) {
lck_mtx_lock(&ipsec_lock);
}
TAILQ_REMOVE(&ipsec_head, pcb, ipsec_chain);
if (!locked) {
lck_mtx_unlock(&ipsec_lock);
}
zfree(ipsec_pcb_zone, pcb);
}
static errno_t
ipsec_ctl_setup(u_int32_t *unit, void **unitinfo)
{
if (unit == NULL || unitinfo == NULL) {
return EINVAL;
}
lck_mtx_lock(&ipsec_lock);
/* Find next available unit */
if (*unit == 0) {
*unit = 1;
while (*unit != ctl_maxunit) {
if (ipsec_find_by_unit(*unit)) {
(*unit)++;
} else {
break;
}
}
if (*unit == ctl_maxunit) {
lck_mtx_unlock(&ipsec_lock);
return EBUSY;
}
} else if (ipsec_find_by_unit(*unit)) {
lck_mtx_unlock(&ipsec_lock);
return EBUSY;
}
/* Find some open interface id */
u_int32_t chosen_unique_id = 1;
struct ipsec_pcb *next_pcb = TAILQ_LAST(&ipsec_head, ipsec_list);
if (next_pcb != NULL) {
/* List was not empty, add one to the last item */
chosen_unique_id = next_pcb->ipsec_unique_id + 1;
next_pcb = NULL;
/*
* If this wrapped the id number, start looking at
* the front of the list for an unused id.
*/
if (chosen_unique_id == 0) {
/* Find the next unused ID */
chosen_unique_id = 1;
TAILQ_FOREACH(next_pcb, &ipsec_head, ipsec_chain) {
if (next_pcb->ipsec_unique_id > chosen_unique_id) {
/* We found a gap */
break;
}
chosen_unique_id = next_pcb->ipsec_unique_id + 1;
}
}
}
struct ipsec_pcb *pcb = zalloc_flags(ipsec_pcb_zone, Z_WAITOK | Z_ZERO);
*unitinfo = pcb;
pcb->ipsec_unit = *unit;
pcb->ipsec_unique_id = chosen_unique_id;
if (next_pcb != NULL) {
TAILQ_INSERT_BEFORE(next_pcb, pcb, ipsec_chain);
} else {
TAILQ_INSERT_TAIL(&ipsec_head, pcb, ipsec_chain);
}
lck_mtx_unlock(&ipsec_lock);
return 0;
}
static errno_t
ipsec_ctl_bind(kern_ctl_ref kctlref,
struct sockaddr_ctl *sac,
void **unitinfo)
{
if (*unitinfo == NULL) {
u_int32_t unit = 0;
(void)ipsec_ctl_setup(&unit, unitinfo);
}
struct ipsec_pcb *pcb = (struct ipsec_pcb *)*unitinfo;
if (pcb == NULL) {
return EINVAL;
}
if (pcb->ipsec_ctlref != NULL) {
// Return if bind was already called
return EINVAL;
}
/* Setup the protocol control block */
pcb->ipsec_ctlref = kctlref;
pcb->ipsec_unit = sac->sc_unit;
pcb->ipsec_output_service_class = MBUF_SC_OAM;
#if IPSEC_NEXUS
pcb->ipsec_use_netif = false;
pcb->ipsec_slot_size = IPSEC_IF_DEFAULT_SLOT_SIZE;
pcb->ipsec_netif_ring_size = if_ipsec_ring_size;
pcb->ipsec_tx_fsw_ring_size = if_ipsec_tx_fsw_ring_size;
pcb->ipsec_rx_fsw_ring_size = if_ipsec_rx_fsw_ring_size;
#endif // IPSEC_NEXUS
lck_rw_init(&pcb->ipsec_pcb_lock, &ipsec_lck_grp, &ipsec_lck_attr);
lck_mtx_init(&pcb->ipsec_pcb_data_move_lock, &ipsec_lck_grp, &ipsec_lck_attr);
#if IPSEC_NEXUS
pcb->ipsec_input_chain_count = 0;
lck_mtx_init(&pcb->ipsec_input_chain_lock, &ipsec_lck_grp, &ipsec_lck_attr);
lck_mtx_init(&pcb->ipsec_kpipe_encrypt_lock, &ipsec_lck_grp, &ipsec_lck_attr);
lck_mtx_init(&pcb->ipsec_kpipe_decrypt_lock, &ipsec_lck_grp, &ipsec_lck_attr);
#endif // IPSEC_NEXUS
return 0;
}
static errno_t
ipsec_ctl_connect(kern_ctl_ref kctlref,
struct sockaddr_ctl *sac,
void **unitinfo)
{
struct ifnet_init_eparams ipsec_init = {};
errno_t result = 0;
if (*unitinfo == NULL) {
(void)ipsec_ctl_bind(kctlref, sac, unitinfo);
}
struct ipsec_pcb *pcb = *unitinfo;
if (pcb == NULL) {
return EINVAL;
}
/* Handle case where ipsec_ctl_setup() was called, but ipsec_ctl_bind() was not */
if (pcb->ipsec_ctlref == NULL) {
(void)ipsec_ctl_bind(kctlref, sac, unitinfo);
}
snprintf(pcb->ipsec_if_xname, sizeof(pcb->ipsec_if_xname), "ipsec%d", pcb->ipsec_unit - 1);
snprintf(pcb->ipsec_unique_name, sizeof(pcb->ipsec_unique_name), "ipsecid%d", pcb->ipsec_unique_id - 1);
os_log(OS_LOG_DEFAULT, "ipsec_ctl_connect: creating interface %s (id %s)\n", pcb->ipsec_if_xname, pcb->ipsec_unique_name);
/* Create the interface */
bzero(&ipsec_init, sizeof(ipsec_init));
ipsec_init.ver = IFNET_INIT_CURRENT_VERSION;
ipsec_init.len = sizeof(ipsec_init);
#if IPSEC_NEXUS
if (pcb->ipsec_use_netif) {
ipsec_init.flags = (IFNET_INIT_SKYWALK_NATIVE | IFNET_INIT_NX_NOAUTO);
} else
#endif // IPSEC_NEXUS
{
ipsec_init.flags = IFNET_INIT_NX_NOAUTO;
ipsec_init.start = ipsec_start;
}
ipsec_init.name = "ipsec";
ipsec_init.unit = pcb->ipsec_unit - 1;
ipsec_init.uniqueid = pcb->ipsec_unique_name;
ipsec_init.uniqueid_len = (uint32_t)strlen(pcb->ipsec_unique_name);
ipsec_init.family = IFNET_FAMILY_IPSEC;
ipsec_init.type = IFT_OTHER;
ipsec_init.demux = ipsec_demux;
ipsec_init.add_proto = ipsec_add_proto;
ipsec_init.del_proto = ipsec_del_proto;
ipsec_init.softc = pcb;
ipsec_init.ioctl = ipsec_ioctl;
ipsec_init.free = ipsec_detached;
#if IPSEC_NEXUS
/* We don't support kpipes without a netif */
if (pcb->ipsec_kpipe_count && !pcb->ipsec_use_netif) {
result = ENOTSUP;
os_log_error(OS_LOG_DEFAULT, "ipsec_ctl_connect - kpipe requires netif: failed %d\n", result);
ipsec_free_pcb(pcb, false);
*unitinfo = NULL;
return result;
}
if (if_ipsec_debug != 0) {
printf("%s: %s%d use_netif %d kpipe_count %d slot_size %u ring_size %u "
"kpipe_tx_ring_size %u kpipe_rx_ring_size %u\n",
__func__,
ipsec_init.name, ipsec_init.unit,
pcb->ipsec_use_netif,
pcb->ipsec_kpipe_count,
pcb->ipsec_slot_size,
pcb->ipsec_netif_ring_size,
pcb->ipsec_kpipe_tx_ring_size,
pcb->ipsec_kpipe_rx_ring_size);
}
if (pcb->ipsec_use_netif) {
if (pcb->ipsec_kpipe_count) {
result = ipsec_enable_channel(pcb, current_proc());
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: %s failed to enable channels\n",
__func__, pcb->ipsec_if_xname);
ipsec_free_pcb(pcb, false);
*unitinfo = NULL;
return result;
}
}
result = ipsec_nexus_ifattach(pcb, &ipsec_init, &pcb->ipsec_ifp);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_ctl_connect - ipsec_nexus_ifattach failed: %d\n", result);
ipsec_free_pcb(pcb, false);
*unitinfo = NULL;
return result;
}
result = ipsec_flowswitch_attach(pcb);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_ctl_connect - ipsec_flowswitch_attach failed: %d\n", result);
// Do not call ipsec_free_pcb(). We will be attached already, and will be freed later
// in ipsec_detached().
*unitinfo = NULL;
return result;
}
/* Attach to bpf */
bpfattach(pcb->ipsec_ifp, DLT_RAW, 0);
} else
#endif // IPSEC_NEXUS
{
result = ifnet_allocate_extended(&ipsec_init, &pcb->ipsec_ifp);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_ctl_connect - ifnet_allocate failed: %d\n", result);
ipsec_free_pcb(pcb, false);
*unitinfo = NULL;
return result;
}
ipsec_ifnet_set_attrs(pcb->ipsec_ifp);
/* Attach the interface */
result = ifnet_attach(pcb->ipsec_ifp, NULL);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_ctl_connect - ifnet_attach failed: %d\n", result);
ifnet_release(pcb->ipsec_ifp);
ipsec_free_pcb(pcb, false);
*unitinfo = NULL;
return result;
}
/* Attach to bpf */
bpfattach(pcb->ipsec_ifp, DLT_NULL, 0);
}
#if IPSEC_NEXUS
/*
* Mark the data path as ready.
* If kpipe nexus is being used then the data path is marked ready only when a kpipe channel is connected.
*/
if (pcb->ipsec_kpipe_count == 0) {
lck_mtx_lock(&pcb->ipsec_pcb_data_move_lock);
IPSEC_SET_DATA_PATH_READY(pcb);
lck_mtx_unlock(&pcb->ipsec_pcb_data_move_lock);
}
#endif
/* The interfaces resoures allocated, mark it as running */
ifnet_set_flags(pcb->ipsec_ifp, IFF_RUNNING, IFF_RUNNING);
return 0;
}
static errno_t
ipsec_detach_ip(ifnet_t interface,
protocol_family_t protocol,
socket_t pf_socket)
{
errno_t result = EPROTONOSUPPORT;
/* Attempt a detach */
if (protocol == PF_INET) {
struct ifreq ifr;
bzero(&ifr, sizeof(ifr));
snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s%d",
ifnet_name(interface), ifnet_unit(interface));
result = sock_ioctl(pf_socket, SIOCPROTODETACH, &ifr);
} else if (protocol == PF_INET6) {
struct in6_ifreq ifr6;
bzero(&ifr6, sizeof(ifr6));
snprintf(ifr6.ifr_name, sizeof(ifr6.ifr_name), "%s%d",
ifnet_name(interface), ifnet_unit(interface));
result = sock_ioctl(pf_socket, SIOCPROTODETACH_IN6, &ifr6);
}
return result;
}
static void
ipsec_remove_address(ifnet_t interface,
protocol_family_t protocol,
ifaddr_t address,
socket_t pf_socket)
{
errno_t result = 0;
/* Attempt a detach */
if (protocol == PF_INET) {
struct ifreq ifr;
bzero(&ifr, sizeof(ifr));
snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s%d",
ifnet_name(interface), ifnet_unit(interface));
result = ifaddr_address(address, &ifr.ifr_addr, sizeof(ifr.ifr_addr));
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_remove_address - ifaddr_address failed: %d", result);
} else {
result = sock_ioctl(pf_socket, SIOCDIFADDR, &ifr);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_remove_address - SIOCDIFADDR failed: %d", result);
}
}
} else if (protocol == PF_INET6) {
struct in6_ifreq ifr6;
bzero(&ifr6, sizeof(ifr6));
snprintf(ifr6.ifr_name, sizeof(ifr6.ifr_name), "%s%d",
ifnet_name(interface), ifnet_unit(interface));
result = ifaddr_address(address, (struct sockaddr*)&ifr6.ifr_addr,
sizeof(ifr6.ifr_addr));
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_remove_address - ifaddr_address failed (v6): %d",
result);
} else {
result = sock_ioctl(pf_socket, SIOCDIFADDR_IN6, &ifr6);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_remove_address - SIOCDIFADDR_IN6 failed: %d",
result);
}
}
}
}
static void
ipsec_cleanup_family(ifnet_t interface,
protocol_family_t protocol)
{
errno_t result = 0;
socket_t pf_socket = NULL;
ifaddr_t *addresses = NULL;
int i;
if (protocol != PF_INET && protocol != PF_INET6) {
os_log_error(OS_LOG_DEFAULT, "ipsec_cleanup_family - invalid protocol family %d\n", protocol);
return;
}
/* Create a socket for removing addresses and detaching the protocol */
result = sock_socket(protocol, SOCK_DGRAM, 0, NULL, NULL, &pf_socket);
if (result != 0) {
if (result != EAFNOSUPPORT) {
os_log_error(OS_LOG_DEFAULT, "ipsec_cleanup_family - failed to create %s socket: %d\n",
protocol == PF_INET ? "IP" : "IPv6", result);
}
goto cleanup;
}
/* always set SS_PRIV, we want to close and detach regardless */
sock_setpriv(pf_socket, 1);
result = ipsec_detach_ip(interface, protocol, pf_socket);
if (result == 0 || result == ENXIO) {
/* We are done! We either detached or weren't attached. */
goto cleanup;
} else if (result != EBUSY) {
/* Uh, not really sure what happened here... */
os_log_error(OS_LOG_DEFAULT, "ipsec_cleanup_family - ipsec_detach_ip failed: %d\n", result);
goto cleanup;
}
/*
* At this point, we received an EBUSY error. This means there are
* addresses attached. We should detach them and then try again.
*/
result = ifnet_get_address_list_family(interface, &addresses, (sa_family_t)protocol);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "fnet_get_address_list_family(%s%d, 0xblah, %s) - failed: %d\n",
ifnet_name(interface), ifnet_unit(interface),
protocol == PF_INET ? "PF_INET" : "PF_INET6", result);
goto cleanup;
}
for (i = 0; addresses[i] != 0; i++) {
ipsec_remove_address(interface, protocol, addresses[i], pf_socket);
}
ifnet_free_address_list(addresses);
addresses = NULL;
/*
* The addresses should be gone, we should try the remove again.
*/
result = ipsec_detach_ip(interface, protocol, pf_socket);
if (result != 0 && result != ENXIO) {
os_log_error(OS_LOG_DEFAULT, "ipsec_cleanup_family - ipsec_detach_ip failed: %d\n", result);
}
cleanup:
if (pf_socket != NULL) {
sock_close(pf_socket);
}
if (addresses != NULL) {
ifnet_free_address_list(addresses);
}
}
static errno_t
ipsec_ctl_disconnect(__unused kern_ctl_ref kctlref,
__unused u_int32_t unit,
void *unitinfo)
{
struct ipsec_pcb *pcb = unitinfo;
ifnet_t ifp = NULL;
errno_t result = 0;
if (pcb == NULL) {
return EINVAL;
}
/* Wait until all threads in the data paths are done. */
ipsec_wait_data_move_drain(pcb);
#if IPSEC_NEXUS
// Tell the nexus to stop all rings
if (pcb->ipsec_netif_nexus != NULL) {
kern_nexus_stop(pcb->ipsec_netif_nexus);
}
#endif // IPSEC_NEXUS
lck_rw_lock_exclusive(&pcb->ipsec_pcb_lock);
#if IPSEC_NEXUS
if (if_ipsec_debug != 0) {
printf("ipsec_ctl_disconnect: detaching interface %s (id %s)\n",
pcb->ipsec_if_xname, pcb->ipsec_unique_name);
}
struct ipsec_detached_channels dc;
ipsec_detach_channels(pcb, &dc);
#endif // IPSEC_NEXUS
pcb->ipsec_ctlref = NULL;
ifp = pcb->ipsec_ifp;
if (ifp != NULL) {
#if IPSEC_NEXUS
if (pcb->ipsec_netif_nexus != NULL) {
/*
* Quiesce the interface and flush any pending outbound packets.
*/
if_down(ifp);
/*
* Suspend data movement and wait for IO threads to exit.
* We can't rely on the logic in dlil_quiesce_and_detach_nexuses() to
* do this because ipsec nexuses are attached/detached separately.
*/
ifnet_datamov_suspend_and_drain(ifp);
if ((result = ifnet_detach(ifp)) != 0) {
panic("ipsec_ctl_disconnect - ifnet_detach failed: %d", result);
/* NOT REACHED */
}
/*
* We want to do everything in our power to ensure that the interface
* really goes away when the socket is closed. We must remove IP/IPv6
* addresses and detach the protocols. Finally, we can remove and
* release the interface.
*/
key_delsp_for_ipsec_if(ifp);
ipsec_cleanup_family(ifp, AF_INET);
ipsec_cleanup_family(ifp, AF_INET6);
lck_rw_unlock_exclusive(&pcb->ipsec_pcb_lock);
ipsec_free_channels(&dc);
ipsec_nexus_detach(pcb);
/* Decrement refcnt added by ifnet_datamov_suspend_and_drain(). */
ifnet_datamov_resume(ifp);
} else
#endif // IPSEC_NEXUS
{
lck_rw_unlock_exclusive(&pcb->ipsec_pcb_lock);
#if IPSEC_NEXUS
ipsec_free_channels(&dc);
#endif // IPSEC_NEXUS
/*
* We want to do everything in our power to ensure that the interface
* really goes away when the socket is closed. We must remove IP/IPv6
* addresses and detach the protocols. Finally, we can remove and
* release the interface.
*/
key_delsp_for_ipsec_if(ifp);
ipsec_cleanup_family(ifp, AF_INET);
ipsec_cleanup_family(ifp, AF_INET6);
/*
* Detach now; ipsec_detach() will be called asynchronously once
* the I/O reference count drops to 0. There we will invoke
* ifnet_release().
*/
if ((result = ifnet_detach(ifp)) != 0) {
os_log_error(OS_LOG_DEFAULT, "ipsec_ctl_disconnect - ifnet_detach failed: %d\n", result);
}
}
} else {
// Bound, but not connected
lck_rw_unlock_exclusive(&pcb->ipsec_pcb_lock);
ipsec_free_pcb(pcb, false);
}
return 0;
}
static errno_t
ipsec_ctl_send(__unused kern_ctl_ref kctlref,
__unused u_int32_t unit,
__unused void *unitinfo,
mbuf_t m,
__unused int flags)
{
/* Receive messages from the control socket. Currently unused. */
mbuf_freem(m);
return 0;
}
static errno_t
ipsec_ctl_setopt(__unused kern_ctl_ref kctlref,
__unused u_int32_t unit,
void *unitinfo,
int opt,
void *data,
size_t len)
{
errno_t result = 0;
struct ipsec_pcb *pcb = unitinfo;
if (pcb == NULL) {
return EINVAL;
}
/* check for privileges for privileged options */
switch (opt) {
case IPSEC_OPT_FLAGS:
case IPSEC_OPT_EXT_IFDATA_STATS:
case IPSEC_OPT_SET_DELEGATE_INTERFACE:
case IPSEC_OPT_OUTPUT_TRAFFIC_CLASS:
case IPSEC_OPT_OUTPUT_DSCP_MAPPING:
if (kauth_cred_issuser(kauth_cred_get()) == 0) {
return EPERM;
}
break;
}
switch (opt) {
case IPSEC_OPT_FLAGS: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
pcb->ipsec_external_flags = *(u_int32_t *)data;
}
break;
}
case IPSEC_OPT_EXT_IFDATA_STATS: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
pcb->ipsec_ext_ifdata_stats = (*(int *)data) ? 1 : 0;
break;
}
case IPSEC_OPT_INC_IFDATA_STATS_IN:
case IPSEC_OPT_INC_IFDATA_STATS_OUT: {
struct ipsec_stats_param *utsp = (struct ipsec_stats_param *)data;
if (utsp == NULL || len < sizeof(struct ipsec_stats_param)) {
result = EINVAL;
break;
}
if (pcb->ipsec_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
if (!pcb->ipsec_ext_ifdata_stats) {
result = EINVAL;
break;
}
if (opt == IPSEC_OPT_INC_IFDATA_STATS_IN) {
ifnet_stat_increment_in(pcb->ipsec_ifp, (uint32_t)utsp->utsp_packets,
(uint32_t)utsp->utsp_bytes, (uint32_t)utsp->utsp_errors);
} else {
ifnet_stat_increment_out(pcb->ipsec_ifp, (uint32_t)utsp->utsp_packets,
(uint32_t)utsp->utsp_bytes, (uint32_t)utsp->utsp_errors);
}
break;
}
case IPSEC_OPT_SET_DELEGATE_INTERFACE: {
ifnet_t del_ifp = NULL;
char name[IFNAMSIZ];
if (len > IFNAMSIZ - 1) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
if (len != 0) { /* if len==0, del_ifp will be NULL causing the delegate to be removed */
bcopy(data, name, len);
name[len] = 0;
result = ifnet_find_by_name(name, &del_ifp);
}
if (result == 0) {
os_log_error(OS_LOG_DEFAULT, "%s IPSEC_OPT_SET_DELEGATE_INTERFACE %s to %s\n",
__func__, pcb->ipsec_ifp->if_xname,
del_ifp ? del_ifp->if_xname : "NULL");
result = ifnet_set_delegate(pcb->ipsec_ifp, del_ifp);
if (del_ifp) {
ifnet_release(del_ifp);
}
}
break;
}
case IPSEC_OPT_OUTPUT_TRAFFIC_CLASS: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
mbuf_svc_class_t output_service_class = so_tc2msc(*(int *)data);
if (output_service_class == MBUF_SC_UNSPEC) {
pcb->ipsec_output_service_class = MBUF_SC_OAM;
} else {
pcb->ipsec_output_service_class = output_service_class;
}
os_log_error(OS_LOG_DEFAULT, "%s IPSEC_OPT_OUTPUT_TRAFFIC_CLASS %s svc %d\n",
__func__, pcb->ipsec_ifp->if_xname,
pcb->ipsec_output_service_class);
break;
}
#if IPSEC_NEXUS
case IPSEC_OPT_ENABLE_CHANNEL: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
if ((*(int *)data) != 0 &&
(*(int *)data) != 1 &&
(*(int *)data) != IPSEC_IF_WMM_RING_COUNT) {
result = EINVAL;
break;
}
lck_rw_lock_exclusive(&pcb->ipsec_pcb_lock);
pcb->ipsec_kpipe_count = *(int *)data;
lck_rw_unlock_exclusive(&pcb->ipsec_pcb_lock);
break;
}
case IPSEC_OPT_CHANNEL_BIND_PID: {
if (len != sizeof(pid_t)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
lck_rw_lock_exclusive(&pcb->ipsec_pcb_lock);
pcb->ipsec_kpipe_pid = *(pid_t *)data;
lck_rw_unlock_exclusive(&pcb->ipsec_pcb_lock);
break;
}
case IPSEC_OPT_CHANNEL_BIND_UUID: {
if (len != sizeof(uuid_t)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
lck_rw_lock_exclusive(&pcb->ipsec_pcb_lock);
uuid_copy(pcb->ipsec_kpipe_proc_uuid, *((uuid_t *)data));
lck_rw_unlock_exclusive(&pcb->ipsec_pcb_lock);
break;
}
case IPSEC_OPT_ENABLE_FLOWSWITCH: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
if (!if_is_fsw_transport_netagent_enabled()) {
result = ENOTSUP;
break;
}
if (uuid_is_null(pcb->ipsec_nx.fsw_agent)) {
result = ENOENT;
break;
}
uint32_t flags = netagent_get_flags(pcb->ipsec_nx.fsw_agent);
if (*(int *)data) {
flags |= (NETAGENT_FLAG_NEXUS_PROVIDER |
NETAGENT_FLAG_NEXUS_LISTENER);
result = netagent_set_flags(pcb->ipsec_nx.fsw_agent, flags);
pcb->ipsec_needs_netagent = true;
} else {
pcb->ipsec_needs_netagent = false;
flags &= ~(NETAGENT_FLAG_NEXUS_PROVIDER |
NETAGENT_FLAG_NEXUS_LISTENER);
result = netagent_set_flags(pcb->ipsec_nx.fsw_agent, flags);
}
break;
}
case IPSEC_OPT_INPUT_FRAG_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
u_int32_t input_frag_size = *(u_int32_t *)data;
if (input_frag_size <= sizeof(struct ip6_hdr)) {
pcb->ipsec_frag_size_set = FALSE;
pcb->ipsec_input_frag_size = 0;
} else {
pcb->ipsec_frag_size_set = TRUE;
pcb->ipsec_input_frag_size = input_frag_size;
}
break;
}
case IPSEC_OPT_ENABLE_NETIF: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
lck_rw_lock_exclusive(&pcb->ipsec_pcb_lock);
pcb->ipsec_use_netif = !!(*(int *)data);
lck_rw_unlock_exclusive(&pcb->ipsec_pcb_lock);
break;
}
case IPSEC_OPT_SLOT_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t slot_size = *(u_int32_t *)data;
if (slot_size < IPSEC_IF_MIN_SLOT_SIZE ||
slot_size > IPSEC_IF_MAX_SLOT_SIZE) {
return EINVAL;
}
pcb->ipsec_slot_size = slot_size;
if (if_ipsec_debug != 0) {
printf("%s: IPSEC_OPT_SLOT_SIZE %u\n", __func__, slot_size);
}
break;
}
case IPSEC_OPT_NETIF_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < IPSEC_IF_MIN_RING_SIZE ||
ring_size > IPSEC_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->ipsec_netif_ring_size = ring_size;
if (if_ipsec_debug != 0) {
printf("%s: IPSEC_OPT_NETIF_RING_SIZE %u\n", __func__, ring_size);
}
break;
}
case IPSEC_OPT_TX_FSW_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < IPSEC_IF_MIN_RING_SIZE ||
ring_size > IPSEC_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->ipsec_tx_fsw_ring_size = ring_size;
if (if_ipsec_debug != 0) {
printf("%s: IPSEC_OPT_TX_FSW_RING_SIZE %u\n", __func__, ring_size);
}
break;
}
case IPSEC_OPT_RX_FSW_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < IPSEC_IF_MIN_RING_SIZE ||
ring_size > IPSEC_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->ipsec_rx_fsw_ring_size = ring_size;
if (if_ipsec_debug != 0) {
printf("%s: IPSEC_OPT_TX_FSW_RING_SIZE %u\n", __func__, ring_size);
}
break;
}
case IPSEC_OPT_KPIPE_TX_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < IPSEC_IF_MIN_RING_SIZE ||
ring_size > IPSEC_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->ipsec_kpipe_tx_ring_size = ring_size;
if (if_ipsec_debug != 0) {
printf("%s: IPSEC_OPT_KPIPE_TX_RING_SIZE %u\n", __func__, ring_size);
}
break;
}
case IPSEC_OPT_KPIPE_RX_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < IPSEC_IF_MIN_RING_SIZE ||
ring_size > IPSEC_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->ipsec_kpipe_rx_ring_size = ring_size;
if (if_ipsec_debug != 0) {
printf("%s: IPSEC_OPT_KPIPE_RX_RING_SIZE %u\n", __func__, ring_size);
}
break;
}
case IPSEC_OPT_OUTPUT_DSCP_MAPPING: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->ipsec_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
ipsec_dscp_mapping_t output_dscp_mapping = (ipsec_dscp_mapping_t)(*(int *)data);
if (output_dscp_mapping > IPSEC_DSCP_MAPPING_LEGACY) {
return EINVAL;
}
pcb->ipsec_output_dscp_mapping = output_dscp_mapping;
os_log(OS_LOG_DEFAULT, "%s IPSEC_OPT_OUTPUT_DSCP_MAPPING %s DSCP %d\n",
__func__, pcb->ipsec_ifp->if_xname,
pcb->ipsec_output_dscp_mapping);
break;
}
#endif // IPSEC_NEXUS
default: {
result = ENOPROTOOPT;
break;
}
}
return result;
}
static errno_t
ipsec_ctl_getopt(__unused kern_ctl_ref kctlref,
__unused u_int32_t unit,
void *unitinfo,
int opt,
void *data,
size_t *len)
{
errno_t result = 0;
struct ipsec_pcb *pcb = unitinfo;
if (pcb == NULL) {
return EINVAL;
}
switch (opt) {
case IPSEC_OPT_FLAGS: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->ipsec_external_flags;
}
break;
}
case IPSEC_OPT_EXT_IFDATA_STATS: {
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
*(int *)data = (pcb->ipsec_ext_ifdata_stats) ? 1 : 0;
}
break;
}
case IPSEC_OPT_IFNAME: {
if (*len < MIN(strlen(pcb->ipsec_if_xname) + 1, sizeof(pcb->ipsec_if_xname))) {
result = EMSGSIZE;
} else {
if (pcb->ipsec_ifp == NULL) {
// Only can get after connecting
result = EINVAL;
break;
}
*len = scnprintf(data, *len, "%s", pcb->ipsec_if_xname) + 1;
}
break;
}
case IPSEC_OPT_OUTPUT_TRAFFIC_CLASS: {
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
*(int *)data = so_svc2tc(pcb->ipsec_output_service_class);
}
break;
}
#if IPSEC_NEXUS
case IPSEC_OPT_ENABLE_CHANNEL: {
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
*(int *)data = pcb->ipsec_kpipe_count;
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
}
break;
}
case IPSEC_OPT_CHANNEL_BIND_PID: {
if (*len != sizeof(pid_t)) {
result = EMSGSIZE;
} else {
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
*(pid_t *)data = pcb->ipsec_kpipe_pid;
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
}
break;
}
case IPSEC_OPT_CHANNEL_BIND_UUID: {
if (*len != sizeof(uuid_t)) {
result = EMSGSIZE;
} else {
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
uuid_copy(*((uuid_t *)data), pcb->ipsec_kpipe_proc_uuid);
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
}
break;
}
case IPSEC_OPT_ENABLE_FLOWSWITCH: {
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
*(int *)data = if_check_netagent(pcb->ipsec_ifp, pcb->ipsec_nx.fsw_agent);
}
break;
}
case IPSEC_OPT_ENABLE_NETIF: {
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
*(int *)data = !!pcb->ipsec_use_netif;
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
}
break;
}
case IPSEC_OPT_GET_CHANNEL_UUID: {
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
if (!ipsec_flag_isset(pcb, IPSEC_FLAGS_KPIPE_ALLOCATED)) {
result = ENXIO;
} else if (*len != sizeof(uuid_t) * pcb->ipsec_kpipe_count) {
result = EMSGSIZE;
} else {
for (unsigned int i = 0; i < pcb->ipsec_kpipe_count; i++) {
uuid_copy(((uuid_t *)data)[i], pcb->ipsec_kpipe_uuid[i]);
}
}
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
break;
}
case IPSEC_OPT_INPUT_FRAG_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->ipsec_input_frag_size;
}
break;
}
case IPSEC_OPT_SLOT_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->ipsec_slot_size;
}
break;
}
case IPSEC_OPT_NETIF_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->ipsec_netif_ring_size;
}
break;
}
case IPSEC_OPT_TX_FSW_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->ipsec_tx_fsw_ring_size;
}
break;
}
case IPSEC_OPT_RX_FSW_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->ipsec_rx_fsw_ring_size;
}
break;
}
case IPSEC_OPT_KPIPE_TX_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->ipsec_kpipe_tx_ring_size;
}
break;
}
case IPSEC_OPT_KPIPE_RX_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->ipsec_kpipe_rx_ring_size;
}
break;
}
#endif // IPSEC_NEXUS
default: {
result = ENOPROTOOPT;
break;
}
}
return result;
}
/* Network Interface functions */
static errno_t
ipsec_output(ifnet_t interface,
mbuf_t data)
{
struct ipsec_pcb *pcb = ifnet_softc(interface);
struct ipsec_output_state ipsec_state;
struct route ro;
struct route_in6 ro6;
size_t length;
struct ip *ip = NULL;
struct ip6_hdr *ip6 = NULL;
struct ip_out_args ipoa;
struct ip6_out_args ip6oa;
int error = 0;
u_int ip_version = 0;
int flags = 0;
struct flowadv *adv = NULL;
// Make sure this packet isn't looping through the interface
if (necp_get_last_interface_index_from_packet(data) == interface->if_index) {
error = EINVAL;
goto ipsec_output_err;
}
// Mark the interface so NECP can evaluate tunnel policy
necp_mark_packet_from_interface(data, interface);
if (data->m_len < sizeof(*ip)) {
os_log_error(OS_LOG_DEFAULT, "ipsec_output: first mbuf length shorter than IP header length: %d.\n", data->m_len);
IPSEC_STAT_INCREMENT(ipsecstat.out_inval);
error = EINVAL;
goto ipsec_output_err;
}
ip = mtod(data, struct ip *);
ip_version = ip->ip_v;
switch (ip_version) {
case 4: {
u_int8_t ip_hlen = 0;
#ifdef _IP_VHL
ip_hlen = _IP_VHL_HL(ip->ip_vhl) << 2;
#else
ip_hlen = (uint8_t)(ip->ip_hl << 2);
#endif
if (ip_hlen < sizeof(*ip)) {
os_log_error(OS_LOG_DEFAULT, "ipsec_output: Bad ip header length %d.\n", ip_hlen);
IPSEC_STAT_INCREMENT(ipsecstat.out_inval);
error = EINVAL;
goto ipsec_output_err;
}
#if IPSEC_NEXUS
if (!pcb->ipsec_use_netif)
#endif // IPSEC_NEXUS
{
int af = AF_INET;
bpf_tap_out(pcb->ipsec_ifp, DLT_NULL, data, &af, sizeof(af));
}
/* Apply encryption */
memset(&ipsec_state, 0, sizeof(ipsec_state));
ipsec_state.m = data;
ipsec_state.dst = (struct sockaddr *)&ip->ip_dst;
memset(&ipsec_state.ro, 0, sizeof(ipsec_state.ro));
ipsec_state.dscp_mapping = pcb->ipsec_output_dscp_mapping;
error = ipsec4_interface_output(&ipsec_state, interface);
/* Tunneled in IPv6 - packet is gone */
if (error == 0 && ipsec_state.tunneled == 6) {
goto done;
}
data = ipsec_state.m;
if (error || data == NULL) {
if (error) {
os_log_error(OS_LOG_DEFAULT, "ipsec_output: ipsec4_output error %d.\n", error);
}
goto ipsec_output_err;
}
/* Set traffic class, set flow */
m_set_service_class(data, pcb->ipsec_output_service_class);
data->m_pkthdr.pkt_flowsrc = FLOWSRC_IFNET;
#if SKYWALK
data->m_pkthdr.pkt_mpriv_srcid = interface->if_flowhash;
#else /* !SKYWALK */
data->m_pkthdr.pkt_flowid = interface->if_flowhash;
#endif /* !SKYWALK */
data->m_pkthdr.pkt_proto = ip->ip_p;
data->m_pkthdr.pkt_flags = (PKTF_FLOW_ID | PKTF_FLOW_ADV | PKTF_FLOW_LOCALSRC);
/* Flip endian-ness for ip_output */
ip = mtod(data, struct ip *);
NTOHS(ip->ip_len);
NTOHS(ip->ip_off);
/* Increment statistics */
length = mbuf_pkthdr_len(data);
ifnet_stat_increment_out(interface, 1, (uint16_t)length, 0);
/* Send to ip_output */
memset(&ro, 0, sizeof(ro));
flags = (IP_OUTARGS | /* Passing out args to specify interface */
IP_NOIPSEC); /* To ensure the packet doesn't go through ipsec twice */
memset(&ipoa, 0, sizeof(ipoa));
ipoa.ipoa_flowadv.code = 0;
ipoa.ipoa_flags = IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR;
if (ipsec_state.outgoing_if) {
ipoa.ipoa_boundif = ipsec_state.outgoing_if;
ipoa.ipoa_flags |= IPOAF_BOUND_IF;
}
ipsec_set_ipoa_for_interface(pcb->ipsec_ifp, &ipoa);
adv = &ipoa.ipoa_flowadv;
(void)ip_output(data, NULL, &ro, flags, NULL, &ipoa);
data = NULL;
if (adv->code == FADV_FLOW_CONTROLLED || adv->code == FADV_SUSPENDED) {
error = ENOBUFS;
ifnet_disable_output(interface);
}
goto done;
}
case 6: {
if (data->m_len < sizeof(*ip6)) {
os_log_error(OS_LOG_DEFAULT, "ipsec_output: first mbuf length shorter than IPv6 header length: %d.\n", data->m_len);
IPSEC_STAT_INCREMENT(ipsec6stat.out_inval);
error = EINVAL;
goto ipsec_output_err;
}
#if IPSEC_NEXUS
if (!pcb->ipsec_use_netif)
#endif // IPSEC_NEXUS
{
int af = AF_INET6;
bpf_tap_out(pcb->ipsec_ifp, DLT_NULL, data, &af, sizeof(af));
}
data = ipsec6_splithdr(data);
if (data == NULL) {
os_log_error(OS_LOG_DEFAULT, "ipsec_output: ipsec6_splithdr returned NULL\n");
goto ipsec_output_err;
}
ip6 = mtod(data, struct ip6_hdr *);
memset(&ipsec_state, 0, sizeof(ipsec_state));
ipsec_state.m = data;
ipsec_state.dst = (struct sockaddr *)&ip6->ip6_dst;
memset(&ipsec_state.ro, 0, sizeof(ipsec_state.ro));
ipsec_state.dscp_mapping = pcb->ipsec_output_dscp_mapping;
error = ipsec6_interface_output(&ipsec_state, interface, &ip6->ip6_nxt, ipsec_state.m);
if (error == 0 && ipsec_state.tunneled == 4) { /* tunneled in IPv4 - packet is gone */
goto done;
}
data = ipsec_state.m;
if (error || data == NULL) {
if (error) {
os_log_error(OS_LOG_DEFAULT, "ipsec_output: ipsec6_output error %d\n", error);
}
goto ipsec_output_err;
}
/* Set traffic class, set flow */
m_set_service_class(data, pcb->ipsec_output_service_class);
data->m_pkthdr.pkt_flowsrc = FLOWSRC_IFNET;
#if SKYWALK
data->m_pkthdr.pkt_mpriv_srcid = interface->if_flowhash;
#else /* !SKYWALK */
data->m_pkthdr.pkt_flowid = interface->if_flowhash;
#endif /* !SKYWALK */
data->m_pkthdr.pkt_proto = ip6->ip6_nxt;
data->m_pkthdr.pkt_flags = (PKTF_FLOW_ID | PKTF_FLOW_ADV | PKTF_FLOW_LOCALSRC);
/* Increment statistics */
length = mbuf_pkthdr_len(data);
ifnet_stat_increment_out(interface, 1, (uint16_t)length, 0);
/* Send to ip6_output */
memset(&ro6, 0, sizeof(ro6));
flags = IPV6_OUTARGS;
memset(&ip6oa, 0, sizeof(ip6oa));
ip6oa.ip6oa_flowadv.code = 0;
ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR;
if (ipsec_state.outgoing_if) {
ip6oa.ip6oa_boundif = ipsec_state.outgoing_if;
ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
ip6_output_setsrcifscope(data, ipsec_state.outgoing_if, NULL);
ip6_output_setdstifscope(data, ipsec_state.outgoing_if, NULL);
} else {
ip6_output_setsrcifscope(data, IFSCOPE_UNKNOWN, NULL);
ip6_output_setdstifscope(data, IFSCOPE_UNKNOWN, NULL);
}
ipsec_set_ip6oa_for_interface(pcb->ipsec_ifp, &ip6oa);
adv = &ip6oa.ip6oa_flowadv;
(void) ip6_output(data, NULL, &ro6, flags, NULL, NULL, &ip6oa);
data = NULL;
if (adv->code == FADV_FLOW_CONTROLLED || adv->code == FADV_SUSPENDED) {
error = ENOBUFS;
ifnet_disable_output(interface);
}
goto done;
}
default: {
os_log_error(OS_LOG_DEFAULT, "ipsec_output: Received unknown packet version %d.\n", ip_version);
error = EINVAL;
goto ipsec_output_err;
}
}
done:
return error;
ipsec_output_err:
if (data) {
mbuf_freem(data);
}
goto done;
}
static void
ipsec_start(ifnet_t interface)
{
mbuf_t data;
struct ipsec_pcb *pcb = ifnet_softc(interface);
VERIFY(pcb != NULL);
for (;;) {
if (ifnet_dequeue(interface, &data) != 0) {
break;
}
if (ipsec_output(interface, data) != 0) {
break;
}
}
}
/* Network Interface functions */
static errno_t
ipsec_demux(__unused ifnet_t interface,
mbuf_t data,
__unused char *frame_header,
protocol_family_t *protocol)
{
struct ip *ip;
u_int ip_version;
while (data != NULL && mbuf_len(data) < 1) {
data = mbuf_next(data);
}
if (data == NULL) {
return ENOENT;
}
ip = mtod(data, struct ip *);
ip_version = ip->ip_v;
switch (ip_version) {
case 4:
*protocol = PF_INET;
return 0;
case 6:
*protocol = PF_INET6;
return 0;
default:
*protocol = PF_UNSPEC;
break;
}
return 0;
}
static errno_t
ipsec_add_proto(__unused ifnet_t interface,
protocol_family_t protocol,
__unused const struct ifnet_demux_desc *demux_array,
__unused u_int32_t demux_count)
{
switch (protocol) {
case PF_INET:
return 0;
case PF_INET6:
return 0;
default:
break;
}
return ENOPROTOOPT;
}
static errno_t
ipsec_del_proto(__unused ifnet_t interface,
__unused protocol_family_t protocol)
{
return 0;
}
static errno_t
ipsec_ioctl(ifnet_t interface,
u_long command,
void *data)
{
#if IPSEC_NEXUS
struct ipsec_pcb *pcb = ifnet_softc(interface);
#endif
errno_t result = 0;
switch (command) {
case SIOCSIFMTU: {
#if IPSEC_NEXUS
if (pcb->ipsec_use_netif) {
// Make sure we can fit packets in the channel buffers
if (((uint64_t)((struct ifreq*)data)->ifr_mtu) > pcb->ipsec_slot_size) {
result = EINVAL;
} else {
ifnet_set_mtu(interface, (uint32_t)((struct ifreq*)data)->ifr_mtu);
}
} else
#endif // IPSEC_NEXUS
{
ifnet_set_mtu(interface, ((struct ifreq*)data)->ifr_mtu);
}
break;
}
case SIOCSIFFLAGS:
/* ifioctl() takes care of it */
break;
case SIOCSIFSUBFAMILY: {
uint32_t subfamily;
subfamily = ((struct ifreq*)data)->ifr_type.ift_subfamily;
switch (subfamily) {
case IFRTYPE_SUBFAMILY_BLUETOOTH:
interface->if_subfamily = IFNET_SUBFAMILY_BLUETOOTH;
break;
case IFRTYPE_SUBFAMILY_WIFI:
interface->if_subfamily = IFNET_SUBFAMILY_WIFI;
break;
case IFRTYPE_SUBFAMILY_QUICKRELAY:
interface->if_subfamily = IFNET_SUBFAMILY_QUICKRELAY;
break;
case IFRTYPE_SUBFAMILY_DEFAULT:
interface->if_subfamily = IFNET_SUBFAMILY_DEFAULT;
break;
default:
result = EINVAL;
break;
}
break;
}
default:
result = EOPNOTSUPP;
}
return result;
}
static void
ipsec_detached(ifnet_t interface)
{
struct ipsec_pcb *pcb = ifnet_softc(interface);
(void)ifnet_release(interface);
lck_mtx_lock(&ipsec_lock);
ipsec_free_pcb(pcb, true);
(void)ifnet_dispose(interface);
lck_mtx_unlock(&ipsec_lock);
}
/* Protocol Handlers */
static errno_t
ipsec_proto_input(ifnet_t interface,
protocol_family_t protocol,
mbuf_t m,
__unused char *frame_header)
{
mbuf_pkthdr_setrcvif(m, interface);
#if IPSEC_NEXUS
struct ipsec_pcb *pcb = ifnet_softc(interface);
if (!pcb->ipsec_use_netif)
#endif // IPSEC_NEXUS
{
uint32_t af = 0;
struct ip *ip = mtod(m, struct ip *);
if (ip->ip_v == 4) {
af = AF_INET;
} else if (ip->ip_v == 6) {
af = AF_INET6;
}
bpf_tap_in(interface, DLT_NULL, m, &af, sizeof(af));
pktap_input(interface, protocol, m, NULL);
}
int32_t pktlen = m->m_pkthdr.len;
if (proto_input(protocol, m) != 0) {
ifnet_stat_increment_in(interface, 0, 0, 1);
m_freem(m);
} else {
ifnet_stat_increment_in(interface, 1, pktlen, 0);
}
return 0;
}
static errno_t
ipsec_proto_pre_output(__unused ifnet_t interface,
protocol_family_t protocol,
__unused mbuf_t *packet,
__unused const struct sockaddr *dest,
__unused void *route,
__unused char *frame_type,
__unused char *link_layer_dest)
{
*(protocol_family_t *)(void *)frame_type = protocol;
return 0;
}
static errno_t
ipsec_attach_proto(ifnet_t interface,
protocol_family_t protocol)
{
struct ifnet_attach_proto_param proto;
errno_t result;
bzero(&proto, sizeof(proto));
proto.input = ipsec_proto_input;
proto.pre_output = ipsec_proto_pre_output;
result = ifnet_attach_protocol(interface, protocol, &proto);
if (result != 0 && result != EEXIST) {
os_log_error(OS_LOG_DEFAULT, "ipsec_attach_inet - ifnet_attach_protocol %d failed: %d\n",
protocol, result);
}
return result;
}
errno_t
ipsec_inject_inbound_packet(ifnet_t interface,
mbuf_t packet)
{
#if IPSEC_NEXUS
struct ipsec_pcb *pcb = ifnet_softc(interface);
if (pcb->ipsec_use_netif) {
if (!ipsec_data_move_begin(pcb)) {
os_log_info(OS_LOG_DEFAULT, "%s: data path stopped for %s\n", __func__,
if_name(pcb->ipsec_ifp));
return ENXIO;
}
lck_rw_lock_shared(&pcb->ipsec_pcb_lock);
lck_mtx_lock(&pcb->ipsec_input_chain_lock);
if (pcb->ipsec_input_chain_count > (u_int32_t)if_ipsec_max_pending_input) {
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
ipsec_data_move_end(pcb);
return ENOSPC;
}
if (pcb->ipsec_input_chain != NULL) {
pcb->ipsec_input_chain_last->m_nextpkt = packet;
} else {
pcb->ipsec_input_chain = packet;
}
pcb->ipsec_input_chain_count++;
while (packet->m_nextpkt) {
VERIFY(packet != packet->m_nextpkt);
packet = packet->m_nextpkt;
pcb->ipsec_input_chain_count++;
}
pcb->ipsec_input_chain_last = packet;
lck_mtx_unlock(&pcb->ipsec_input_chain_lock);
kern_channel_ring_t rx_ring = pcb->ipsec_netif_rxring[0];
lck_rw_unlock_shared(&pcb->ipsec_pcb_lock);
if (rx_ring != NULL) {
kern_channel_notify(rx_ring, 0);
}
ipsec_data_move_end(pcb);
return 0;
} else
#endif // IPSEC_NEXUS
{
errno_t error;
protocol_family_t protocol;
if ((error = ipsec_demux(interface, packet, NULL, &protocol)) != 0) {
return error;
}
return ipsec_proto_input(interface, protocol, packet, NULL);
}
}
void
ipsec_set_pkthdr_for_interface(ifnet_t interface, mbuf_t packet, int family,
uint32_t flowid)
{
#pragma unused (flowid)
if (packet != NULL && interface != NULL) {
struct ipsec_pcb *pcb = ifnet_softc(interface);
if (pcb != NULL) {
/* Set traffic class, set flow */
m_set_service_class(packet, pcb->ipsec_output_service_class);
packet->m_pkthdr.pkt_flowsrc = FLOWSRC_IFNET;
#if SKYWALK
packet->m_pkthdr.pkt_mpriv_srcid = interface->if_flowhash;
packet->m_pkthdr.pkt_flowid = flowid;
#else /* !SKYWALK */
packet->m_pkthdr.pkt_flowid = interface->if_flowhash;
#endif /* !SKYWALK */
if (family == AF_INET) {
struct ip *ip = mtod(packet, struct ip *);
packet->m_pkthdr.pkt_proto = ip->ip_p;
} else if (family == AF_INET6) {
struct ip6_hdr *ip6 = mtod(packet, struct ip6_hdr *);
packet->m_pkthdr.pkt_proto = ip6->ip6_nxt;
}
packet->m_pkthdr.pkt_flags = (PKTF_FLOW_ID | PKTF_FLOW_ADV | PKTF_FLOW_LOCALSRC);
}
}
}
void
ipsec_set_ipoa_for_interface(ifnet_t interface, struct ip_out_args *ipoa)
{
struct ipsec_pcb *pcb;
if (interface == NULL || ipoa == NULL) {
return;
}
pcb = ifnet_softc(interface);
if (net_qos_policy_restricted == 0) {
ipoa->ipoa_flags |= IPOAF_QOSMARKING_ALLOWED;
ipoa->ipoa_sotc = so_svc2tc(pcb->ipsec_output_service_class);
} else if (pcb->ipsec_output_service_class != MBUF_SC_VO ||
net_qos_policy_restrict_avapps != 0) {
ipoa->ipoa_flags &= ~IPOAF_QOSMARKING_ALLOWED;
} else {
ipoa->ipoa_flags |= IP6OAF_QOSMARKING_ALLOWED;
ipoa->ipoa_sotc = SO_TC_VO;
}
}
void
ipsec_set_ip6oa_for_interface(ifnet_t interface, struct ip6_out_args *ip6oa)
{
struct ipsec_pcb *pcb;
if (interface == NULL || ip6oa == NULL) {
return;
}
pcb = ifnet_softc(interface);
if (net_qos_policy_restricted == 0) {
ip6oa->ip6oa_flags |= IPOAF_QOSMARKING_ALLOWED;
ip6oa->ip6oa_sotc = so_svc2tc(pcb->ipsec_output_service_class);
} else if (pcb->ipsec_output_service_class != MBUF_SC_VO ||
net_qos_policy_restrict_avapps != 0) {
ip6oa->ip6oa_flags &= ~IPOAF_QOSMARKING_ALLOWED;
} else {
ip6oa->ip6oa_flags |= IP6OAF_QOSMARKING_ALLOWED;
ip6oa->ip6oa_sotc = SO_TC_VO;
}
}
static boolean_t
ipsec_data_move_begin(struct ipsec_pcb *pcb)
{
boolean_t ret = 0;
lck_mtx_lock_spin(&pcb->ipsec_pcb_data_move_lock);
if ((ret = IPSEC_IS_DATA_PATH_READY(pcb))) {
pcb->ipsec_pcb_data_move++;
}
lck_mtx_unlock(&pcb->ipsec_pcb_data_move_lock);
return ret;
}
static void
ipsec_data_move_end(struct ipsec_pcb *pcb)
{
lck_mtx_lock_spin(&pcb->ipsec_pcb_data_move_lock);
VERIFY(pcb->ipsec_pcb_data_move > 0);
/*
* if there's no more thread moving data, wakeup any
* drainers that's blocked waiting for this.
*/
if (--pcb->ipsec_pcb_data_move == 0 && pcb->ipsec_pcb_drainers > 0) {
wakeup(&(pcb->ipsec_pcb_data_move));
}
lck_mtx_unlock(&pcb->ipsec_pcb_data_move_lock);
}
static void
ipsec_data_move_drain(struct ipsec_pcb *pcb)
{
lck_mtx_lock(&pcb->ipsec_pcb_data_move_lock);
/* data path must already be marked as not ready */
VERIFY(!IPSEC_IS_DATA_PATH_READY(pcb));
pcb->ipsec_pcb_drainers++;
while (pcb->ipsec_pcb_data_move != 0) {
(void)msleep(&(pcb->ipsec_pcb_data_move), &pcb->ipsec_pcb_data_move_lock,
(PZERO - 1), __func__, NULL);
}
VERIFY(!IPSEC_IS_DATA_PATH_READY(pcb));
VERIFY(pcb->ipsec_pcb_drainers > 0);
pcb->ipsec_pcb_drainers--;
lck_mtx_unlock(&pcb->ipsec_pcb_data_move_lock);
}
static void
ipsec_wait_data_move_drain(struct ipsec_pcb *pcb)
{
/*
* Mark the data path as not usable.
*/
lck_mtx_lock(&pcb->ipsec_pcb_data_move_lock);
IPSEC_CLR_DATA_PATH_READY(pcb);
lck_mtx_unlock(&pcb->ipsec_pcb_data_move_lock);
/* Wait until all threads in the data paths are done. */
ipsec_data_move_drain(pcb);
}