gems-kernel/source/THIRDPARTY/xnu/bsd/net/if_vlan.c

2209 lines
54 KiB
C
Raw Normal View History

2024-06-03 11:29:39 -05:00
/*
* Copyright (c) 2003-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright 1998 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/net/if_vlan.c,v 1.54 2003/10/31 18:32:08 brooks Exp $
*/
/*
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
* Might be extended some day to also handle IEEE 802.1p priority
* tagging. This is sort of sneaky in the implementation, since
* we need to pretend to be enough of an Ethernet implementation
* to make arp work. The way we do this is by telling everyone
* that we are an Ethernet, and then catch the packets that
* ether_output() left on our output queue when it calls
* if_start(), rewrite them for use by the real outgoing interface,
* and ask it to send them.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/kern_event.h>
#include <sys/mcache.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <libkern/OSAtomic.h>
#include <net/dlil.h>
#include <net/kpi_interface.h>
#include <net/kpi_protocol.h>
#include <kern/locks.h>
#include <kern/zalloc.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <net/if_media.h>
#include <net/multicast_list.h>
#include <net/ether_if_module.h>
#if !XNU_TARGET_OS_OSX
#if (DEVELOPMENT || DEBUG)
#include <pexpert/pexpert.h>
#endif
#endif /* !XNU_TARGET_OS_OSX */
#define VLANNAME "vlan"
/**
** vlan locks
**/
static LCK_GRP_DECLARE(vlan_lck_grp, "if_vlan");
static LCK_MTX_DECLARE(vlan_lck_mtx, &vlan_lck_grp);
static __inline__ void
vlan_assert_lock_held(void)
{
LCK_MTX_ASSERT(&vlan_lck_mtx, LCK_MTX_ASSERT_OWNED);
}
static __inline__ void
vlan_assert_lock_not_held(void)
{
LCK_MTX_ASSERT(&vlan_lck_mtx, LCK_MTX_ASSERT_NOTOWNED);
}
static __inline__ void
vlan_lock(void)
{
lck_mtx_lock(&vlan_lck_mtx);
}
static __inline__ void
vlan_unlock(void)
{
lck_mtx_unlock(&vlan_lck_mtx);
}
/**
** vlan structures, types
**/
struct vlan_parent;
LIST_HEAD(vlan_parent_list, vlan_parent);
struct ifvlan;
LIST_HEAD(ifvlan_list, ifvlan);
typedef LIST_ENTRY(vlan_parent)
vlan_parent_entry;
typedef LIST_ENTRY(ifvlan)
ifvlan_entry;
#define VLP_SIGNATURE 0xfaceface
typedef struct vlan_parent {
vlan_parent_entry vlp_parent_list;/* list of parents */
struct ifnet * vlp_ifp; /* interface */
struct ifvlan_list vlp_vlan_list;/* list of VLAN's */
#define VLPF_SUPPORTS_VLAN_MTU 0x00000001
#define VLPF_CHANGE_IN_PROGRESS 0x00000002
#define VLPF_DETACHING 0x00000004
#define VLPF_LINK_EVENT_REQUIRED 0x00000008
u_int32_t vlp_flags;
u_int32_t vlp_event_code;
struct ifdevmtu vlp_devmtu;
int32_t vlp_retain_count;
u_int32_t vlp_signature;/* VLP_SIGNATURE */
} vlan_parent, * vlan_parent_ref;
#define IFV_SIGNATURE 0xbeefbeef
struct ifvlan {
ifvlan_entry ifv_vlan_list;
char ifv_name[IFNAMSIZ];/* our unique id */
struct ifnet * ifv_ifp; /* our interface */
vlan_parent_ref ifv_vlp; /* parent information */
struct ifv_linkmib {
u_int16_t ifvm_encaplen;/* encapsulation length */
u_int16_t ifvm_mtufudge;/* MTU fudged by this much */
u_int16_t ifvm_proto; /* encapsulation ethertype */
u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
} ifv_mib;
struct multicast_list ifv_multicast;
#define IFVF_PROMISC 0x1 /* promiscuous mode enabled */
#define IFVF_DETACHING 0x2 /* interface is detaching */
#define IFVF_READY 0x4 /* interface is ready */
u_int32_t ifv_flags;
int32_t ifv_retain_count;
u_int32_t ifv_signature;/* IFV_SIGNATURE */
};
typedef struct ifvlan * ifvlan_ref;
typedef struct vlan_globals_s {
struct vlan_parent_list parent_list;
} * vlan_globals_ref;
static vlan_globals_ref g_vlan;
#define ifv_tag ifv_mib.ifvm_tag
#define ifv_encaplen ifv_mib.ifvm_encaplen
#define ifv_mtufudge ifv_mib.ifvm_mtufudge
static void
vlan_parent_retain(vlan_parent_ref vlp);
static void
vlan_parent_release(vlan_parent_ref vlp);
/**
** vlan_parent_ref vlp_flags in-lines
**/
static __inline__ bool
vlan_parent_flags_supports_vlan_mtu(vlan_parent_ref vlp)
{
return (vlp->vlp_flags & VLPF_SUPPORTS_VLAN_MTU) != 0;
}
static __inline__ void
vlan_parent_flags_set_supports_vlan_mtu(vlan_parent_ref vlp)
{
vlp->vlp_flags |= VLPF_SUPPORTS_VLAN_MTU;
return;
}
static __inline__ bool
vlan_parent_flags_change_in_progress(vlan_parent_ref vlp)
{
return (vlp->vlp_flags & VLPF_CHANGE_IN_PROGRESS) != 0;
}
static __inline__ void
vlan_parent_flags_set_change_in_progress(vlan_parent_ref vlp)
{
vlp->vlp_flags |= VLPF_CHANGE_IN_PROGRESS;
return;
}
static __inline__ void
vlan_parent_flags_clear_change_in_progress(vlan_parent_ref vlp)
{
vlp->vlp_flags &= ~VLPF_CHANGE_IN_PROGRESS;
return;
}
static __inline__ bool
vlan_parent_flags_detaching(struct vlan_parent * vlp)
{
return (vlp->vlp_flags & VLPF_DETACHING) != 0;
}
static __inline__ void
vlan_parent_flags_set_detaching(struct vlan_parent * vlp)
{
vlp->vlp_flags |= VLPF_DETACHING;
return;
}
static __inline__ bool
vlan_parent_flags_link_event_required(vlan_parent_ref vlp)
{
return (vlp->vlp_flags & VLPF_LINK_EVENT_REQUIRED) != 0;
}
static __inline__ void
vlan_parent_flags_set_link_event_required(vlan_parent_ref vlp)
{
vlp->vlp_flags |= VLPF_LINK_EVENT_REQUIRED;
return;
}
static __inline__ void
vlan_parent_flags_clear_link_event_required(vlan_parent_ref vlp)
{
vlp->vlp_flags &= ~VLPF_LINK_EVENT_REQUIRED;
return;
}
/**
** ifvlan_flags in-lines routines
**/
static __inline__ bool
ifvlan_flags_promisc(ifvlan_ref ifv)
{
return (ifv->ifv_flags & IFVF_PROMISC) != 0;
}
static __inline__ void
ifvlan_flags_set_promisc(ifvlan_ref ifv)
{
ifv->ifv_flags |= IFVF_PROMISC;
return;
}
static __inline__ void
ifvlan_flags_clear_promisc(ifvlan_ref ifv)
{
ifv->ifv_flags &= ~IFVF_PROMISC;
return;
}
static __inline__ int
ifvlan_flags_ready(ifvlan_ref ifv)
{
return (ifv->ifv_flags & IFVF_READY) != 0;
}
static __inline__ void
ifvlan_flags_set_ready(ifvlan_ref ifv)
{
ifv->ifv_flags |= IFVF_READY;
return;
}
static __inline__ int
ifvlan_flags_detaching(ifvlan_ref ifv)
{
return (ifv->ifv_flags & IFVF_DETACHING) != 0;
}
static __inline__ void
ifvlan_flags_set_detaching(ifvlan_ref ifv)
{
ifv->ifv_flags |= IFVF_DETACHING;
return;
}
SYSCTL_DECL(_net_link);
SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
"IEEE 802.1Q VLAN");
static unsigned int vlan_debug;
SYSCTL_UINT(_net_link_vlan, OID_AUTO, debug,
CTLFLAG_RW | CTLFLAG_LOCKED,
&vlan_debug, 0,
"Enable VLAN debug mode");
#if !XNU_TARGET_OS_OSX
static unsigned int vlan_enabled;
#if (DEVELOPMENT || DEBUG)
SYSCTL_UINT(_net_link_vlan, OID_AUTO, enabled,
CTLFLAG_RD | CTLFLAG_LOCKED,
&vlan_enabled, 0,
"VLAN interface support enabled");
#endif /* DEVELOPMENT || DEBUG */
#endif /* !XNU_TARGET_OS_OSX */
#if 0
SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "for consistency");
#endif
#define VLAN_UNITMAX IF_MAXUNIT
#define VLAN_ZONE_MAX_ELEM MIN(IFNETS_MAX, VLAN_UNITMAX)
static int vlan_clone_create(struct if_clone *, u_int32_t, void *);
static int vlan_clone_destroy(struct ifnet *);
static int vlan_input(ifnet_t ifp, protocol_family_t protocol,
mbuf_t m, char *frame_header);
static int vlan_output(struct ifnet *ifp, struct mbuf *m);
static int vlan_ioctl(ifnet_t ifp, u_long cmd, void * addr);
static int vlan_attach_protocol(struct ifnet *ifp);
static int vlan_detach_protocol(struct ifnet *ifp);
static int vlan_setmulti(struct ifnet *ifp);
static int vlan_unconfig(ifvlan_ref ifv, int need_to_wait);
static int vlan_config(struct ifnet * ifp, struct ifnet * p, int tag);
static void vlan_if_free(struct ifnet * ifp);
static int vlan_remove(ifvlan_ref ifv, int need_to_wait);
static struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME,
vlan_clone_create,
vlan_clone_destroy,
0,
VLAN_UNITMAX);
static void interface_link_event(struct ifnet * ifp, u_int32_t event_code);
static void vlan_parent_link_event(struct ifnet * p,
u_int32_t event_code);
static int ifvlan_new_mtu(ifvlan_ref ifv, int mtu);
/**
** ifvlan_ref routines
**/
static void
ifvlan_retain(ifvlan_ref ifv)
{
if (ifv->ifv_signature != IFV_SIGNATURE) {
panic("ifvlan_retain: bad signature");
}
if (ifv->ifv_retain_count == 0) {
panic("ifvlan_retain: retain count is 0");
}
OSIncrementAtomic(&ifv->ifv_retain_count);
}
static void
ifvlan_release(ifvlan_ref ifv)
{
u_int32_t old_retain_count;
if (ifv->ifv_signature != IFV_SIGNATURE) {
panic("ifvlan_release: bad signature");
}
old_retain_count = OSDecrementAtomic(&ifv->ifv_retain_count);
switch (old_retain_count) {
case 0:
panic("ifvlan_release: retain count is 0");
break;
case 1:
if (vlan_debug != 0) {
printf("ifvlan_release(%s)\n", ifv->ifv_name);
}
ifv->ifv_signature = 0;
kfree_type(struct ifvlan, ifv);
break;
default:
break;
}
return;
}
static vlan_parent_ref
ifvlan_get_vlan_parent_retained(ifvlan_ref ifv)
{
vlan_parent_ref vlp = ifv->ifv_vlp;
if (vlp == NULL || vlan_parent_flags_detaching(vlp)) {
return NULL;
}
vlan_parent_retain(vlp);
return vlp;
}
/**
** ifnet_* routines
**/
static ifvlan_ref
ifnet_get_ifvlan(struct ifnet * ifp)
{
ifvlan_ref ifv;
ifv = (ifvlan_ref)ifnet_softc(ifp);
return ifv;
}
static ifvlan_ref
ifnet_get_ifvlan_retained(struct ifnet * ifp)
{
ifvlan_ref ifv;
ifv = ifnet_get_ifvlan(ifp);
if (ifv == NULL) {
return NULL;
}
if (ifvlan_flags_detaching(ifv)) {
return NULL;
}
ifvlan_retain(ifv);
return ifv;
}
static int
ifnet_ifvlan_vlan_parent_ok(struct ifnet * ifp, ifvlan_ref ifv,
vlan_parent_ref vlp)
{
ifvlan_ref check_ifv;
check_ifv = ifnet_get_ifvlan(ifp);
if (check_ifv != ifv || ifvlan_flags_detaching(ifv)) {
/* ifvlan_ref no longer valid */
return FALSE;
}
if (ifv->ifv_vlp != vlp) {
/* vlan_parent no longer valid */
return FALSE;
}
if (vlan_parent_flags_detaching(vlp)) {
/* parent is detaching */
return FALSE;
}
return TRUE;
}
/**
** vlan, etc. routines
**/
static int
vlan_globals_init(void)
{
vlan_globals_ref v;
vlan_assert_lock_not_held();
if (g_vlan != NULL) {
return 0;
}
v = kalloc_type(struct vlan_globals_s, Z_WAITOK | Z_NOFAIL);
LIST_INIT(&v->parent_list);
vlan_lock();
if (g_vlan != NULL) {
vlan_unlock();
if (v != NULL) {
kfree_type(struct vlan_globals_s, v);
}
return 0;
}
g_vlan = v;
vlan_unlock();
if (v == NULL) {
return ENOMEM;
}
return 0;
}
static int
siocgifdevmtu(struct ifnet * ifp, struct ifdevmtu * ifdm_p)
{
struct ifreq ifr;
int error;
bzero(&ifr, sizeof(ifr));
error = ifnet_ioctl(ifp, 0, SIOCGIFDEVMTU, &ifr);
if (error == 0) {
*ifdm_p = ifr.ifr_devmtu;
}
return error;
}
static int
siocsifaltmtu(struct ifnet * ifp, int mtu)
{
struct ifreq ifr;
bzero(&ifr, sizeof(ifr));
ifr.ifr_mtu = mtu;
return ifnet_ioctl(ifp, 0, SIOCSIFALTMTU, &ifr);
}
/**
** vlan_parent synchronization routines
**/
static void
vlan_parent_retain(vlan_parent_ref vlp)
{
if (vlp->vlp_signature != VLP_SIGNATURE) {
panic("vlan_parent_retain: signature is bad");
}
if (vlp->vlp_retain_count == 0) {
panic("vlan_parent_retain: retain count is 0");
}
OSIncrementAtomic(&vlp->vlp_retain_count);
}
static void
vlan_parent_release(vlan_parent_ref vlp)
{
u_int32_t old_retain_count;
if (vlp->vlp_signature != VLP_SIGNATURE) {
panic("vlan_parent_release: signature is bad");
}
old_retain_count = OSDecrementAtomic(&vlp->vlp_retain_count);
switch (old_retain_count) {
case 0:
panic("vlan_parent_release: retain count is 0");
break;
case 1:
if (vlan_debug != 0) {
struct ifnet * ifp = vlp->vlp_ifp;
printf("vlan_parent_release(%s%d)\n", ifnet_name(ifp),
ifnet_unit(ifp));
}
vlp->vlp_signature = 0;
kfree_type(struct vlan_parent, vlp);
break;
default:
break;
}
return;
}
/*
* Function: vlan_parent_wait
* Purpose:
* Allows a single thread to gain exclusive access to the vlan_parent
* data structure. Some operations take a long time to complete,
* and some have side-effects that we can't predict. Holding the
* vlan_lock() across such operations is not possible.
*
* Notes:
* Before calling, you must be holding the vlan_lock and have taken
* a reference on the vlan_parent_ref.
*/
static void
vlan_parent_wait(vlan_parent_ref vlp, const char * msg)
{
int waited = 0;
/* other add/remove/multicast-change in progress */
while (vlan_parent_flags_change_in_progress(vlp)) {
if (vlan_debug != 0) {
struct ifnet * ifp = vlp->vlp_ifp;
printf("%s%d: %s msleep\n", ifnet_name(ifp), ifnet_unit(ifp), msg);
}
waited = 1;
(void)msleep(vlp, &vlan_lck_mtx, PZERO, msg, 0);
}
/* prevent other vlan parent remove/add from taking place */
vlan_parent_flags_set_change_in_progress(vlp);
if (vlan_debug != 0 && waited) {
struct ifnet * ifp = vlp->vlp_ifp;
printf("%s%d: %s woke up\n", ifnet_name(ifp), ifnet_unit(ifp), msg);
}
return;
}
/*
* Function: vlan_parent_signal
* Purpose:
* Allows the thread that previously invoked vlan_parent_wait() to
* give up exclusive access to the vlan_parent data structure, and wake up
* any other threads waiting to access
* Notes:
* Before calling, you must be holding the vlan_lock and have taken
* a reference on the vlan_parent_ref.
*/
static void
vlan_parent_signal(vlan_parent_ref vlp, const char * msg)
{
struct ifnet * vlp_ifp = vlp->vlp_ifp;
if (vlan_parent_flags_link_event_required(vlp)) {
vlan_parent_flags_clear_link_event_required(vlp);
if (!vlan_parent_flags_detaching(vlp)) {
u_int32_t event_code = vlp->vlp_event_code;
ifvlan_ref ifv;
vlan_unlock();
/* we can safely walk the list unlocked */
LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
struct ifnet * ifp = ifv->ifv_ifp;
interface_link_event(ifp, event_code);
}
if (vlan_debug != 0) {
printf("%s%d: propagated link event to vlans\n",
ifnet_name(vlp_ifp), ifnet_unit(vlp_ifp));
}
vlan_lock();
}
}
vlan_parent_flags_clear_change_in_progress(vlp);
wakeup((caddr_t)vlp);
if (vlan_debug != 0) {
printf("%s%d: %s wakeup\n",
ifnet_name(vlp_ifp), ifnet_unit(vlp_ifp), msg);
}
return;
}
/*
* Program our multicast filter. What we're actually doing is
* programming the multicast filter of the parent. This has the
* side effect of causing the parent interface to receive multicast
* traffic that it doesn't really want, which ends up being discarded
* later by the upper protocol layers. Unfortunately, there's no way
* to avoid this: there really is only one physical interface.
*/
static int
vlan_setmulti(struct ifnet * ifp)
{
int error = 0;
ifvlan_ref ifv;
struct ifnet * p;
vlan_parent_ref vlp = NULL;
vlan_lock();
ifv = ifnet_get_ifvlan_retained(ifp);
if (ifv == NULL) {
goto unlock_done;
}
vlp = ifvlan_get_vlan_parent_retained(ifv);
if (vlp == NULL) {
/* no parent, no need to program the multicast filter */
goto unlock_done;
}
vlan_parent_wait(vlp, "vlan_setmulti");
/* check again, things could have changed */
if (ifnet_ifvlan_vlan_parent_ok(ifp, ifv, vlp) == FALSE) {
goto signal_done;
}
p = vlp->vlp_ifp;
vlan_unlock();
/* update parent interface with our multicast addresses */
error = multicast_list_program(&ifv->ifv_multicast, ifp, p);
vlan_lock();
signal_done:
vlan_parent_signal(vlp, "vlan_setmulti");
unlock_done:
vlan_unlock();
if (ifv != NULL) {
ifvlan_release(ifv);
}
if (vlp != NULL) {
vlan_parent_release(vlp);
}
return error;
}
/**
** vlan_parent list manipulation/lookup routines
**/
static vlan_parent_ref
parent_list_lookup(struct ifnet * p)
{
vlan_parent_ref vlp;
LIST_FOREACH(vlp, &g_vlan->parent_list, vlp_parent_list) {
if (vlp->vlp_ifp == p) {
return vlp;
}
}
return NULL;
}
static ifvlan_ref
vlan_parent_lookup_tag(vlan_parent_ref vlp, int tag)
{
ifvlan_ref ifv;
LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
if (tag == ifv->ifv_tag) {
return ifv;
}
}
return NULL;
}
static ifvlan_ref
vlan_lookup_parent_and_tag(struct ifnet * p, int tag)
{
vlan_parent_ref vlp;
vlp = parent_list_lookup(p);
if (vlp != NULL) {
return vlan_parent_lookup_tag(vlp, tag);
}
return NULL;
}
static int
vlan_parent_find_max_mtu(vlan_parent_ref vlp, ifvlan_ref exclude_ifv)
{
int max_mtu = 0;
ifvlan_ref ifv;
LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
int req_mtu;
if (exclude_ifv == ifv) {
continue;
}
req_mtu = ifnet_mtu(ifv->ifv_ifp) + ifv->ifv_mtufudge;
if (req_mtu > max_mtu) {
max_mtu = req_mtu;
}
}
return max_mtu;
}
/*
* Function: vlan_parent_create
* Purpose:
* Create a vlan_parent structure to hold the VLAN's for the given
* interface. Add it to the list of VLAN parents.
*/
static int
vlan_parent_create(struct ifnet * p, vlan_parent_ref * ret_vlp)
{
int error;
vlan_parent_ref vlp;
*ret_vlp = NULL;
vlp = kalloc_type(struct vlan_parent, Z_WAITOK | Z_ZERO | Z_NOFAIL);
error = siocgifdevmtu(p, &vlp->vlp_devmtu);
if (error != 0) {
printf("vlan_parent_create (%s%d): siocgifdevmtu failed, %d\n",
ifnet_name(p), ifnet_unit(p), error);
kfree_type(struct vlan_parent, vlp);
return error;
}
LIST_INIT(&vlp->vlp_vlan_list);
vlp->vlp_ifp = p;
vlp->vlp_retain_count = 1;
vlp->vlp_signature = VLP_SIGNATURE;
if (ifnet_offload(p)
& (IF_HWASSIST_VLAN_MTU | IF_HWASSIST_VLAN_TAGGING)) {
vlan_parent_flags_set_supports_vlan_mtu(vlp);
}
*ret_vlp = vlp;
return 0;
}
static void
vlan_parent_remove_all_vlans(struct ifnet * p)
{
ifvlan_ref ifv;
int need_vlp_release = 0;
ifvlan_ref next;
vlan_parent_ref vlp;
vlan_lock();
vlp = parent_list_lookup(p);
if (vlp == NULL || vlan_parent_flags_detaching(vlp)) {
/* no VLAN's */
vlan_unlock();
return;
}
vlan_parent_flags_set_detaching(vlp);
vlan_parent_retain(vlp);
vlan_parent_wait(vlp, "vlan_parent_remove_all_vlans");
need_vlp_release++;
/* check again */
if (parent_list_lookup(p) != vlp) {
goto signal_done;
}
for (ifv = LIST_FIRST(&vlp->vlp_vlan_list); ifv != NULL; ifv = next) {
struct ifnet * ifp = ifv->ifv_ifp;
int removed;
next = LIST_NEXT(ifv, ifv_vlan_list);
removed = vlan_remove(ifv, FALSE);
if (removed) {
vlan_unlock();
ifnet_detach(ifp);
vlan_lock();
}
}
/* the vlan parent has no more VLAN's */
if_clear_eflags(p, IFEF_VLAN); /* clear IFEF_VLAN */
LIST_REMOVE(vlp, vlp_parent_list);
need_vlp_release++; /* one for being in the list */
need_vlp_release++; /* final reference */
signal_done:
vlan_parent_signal(vlp, "vlan_parent_remove_all_vlans");
vlan_unlock();
while (need_vlp_release--) {
vlan_parent_release(vlp);
}
return;
}
static __inline__ int
vlan_parent_no_vlans(vlan_parent_ref vlp)
{
return LIST_EMPTY(&vlp->vlp_vlan_list);
}
static void
vlan_parent_add_vlan(vlan_parent_ref vlp, ifvlan_ref ifv, int tag)
{
LIST_INSERT_HEAD(&vlp->vlp_vlan_list, ifv, ifv_vlan_list);
ifv->ifv_vlp = vlp;
ifv->ifv_tag = tag;
return;
}
static void
vlan_parent_remove_vlan(__unused vlan_parent_ref vlp, ifvlan_ref ifv)
{
ifv->ifv_vlp = NULL;
LIST_REMOVE(ifv, ifv_vlan_list);
return;
}
static int
vlan_clone_attach(void)
{
return if_clone_attach(&vlan_cloner);
}
#if !XNU_TARGET_OS_OSX
static const char *
findsubstr(const char * haystack, const char * needle, size_t needle_len)
{
const char * scan;
for (scan = haystack; *scan != '\0'; scan++) {
if (strncmp(scan, needle, needle_len) == 0) {
return scan;
}
}
return NULL;
}
static inline bool
my_os_release_type_matches(const char *variant, size_t variant_len)
{
const char *found;
extern char osreleasetype[];
found = findsubstr(osreleasetype,
variant,
variant_len);
return found != NULL;
}
static inline bool
vlan_is_enabled(void)
{
const char darwin_osreleasetype[] = "Darwin";
const char restore_osreleasetype[] = "Restore";
const char nonui_osreleasetype[] = "NonUI";
if (vlan_enabled != 0) {
return true;
}
if (my_os_release_type_matches(darwin_osreleasetype, sizeof(darwin_osreleasetype) - 1) ||
my_os_release_type_matches(restore_osreleasetype, sizeof(restore_osreleasetype) - 1) ||
my_os_release_type_matches(nonui_osreleasetype, sizeof(nonui_osreleasetype) - 1)) {
vlan_enabled = 1;
}
return vlan_enabled != 0;
}
#endif /* !XNU_TARGET_OS_OSX */
static int
vlan_clone_create(struct if_clone *ifc, u_int32_t unit, __unused void *params)
{
int error;
ifvlan_ref ifv;
ifnet_t ifp;
struct ifnet_init_eparams vlan_init;
#if !XNU_TARGET_OS_OSX
if (!vlan_is_enabled()) {
return EOPNOTSUPP;
}
#endif /* !XNU_TARGET_OS_OSX */
error = vlan_globals_init();
if (error != 0) {
return error;
}
ifv = kalloc_type(struct ifvlan, Z_WAITOK_ZERO_NOFAIL);
ifv->ifv_retain_count = 1;
ifv->ifv_signature = IFV_SIGNATURE;
multicast_list_init(&ifv->ifv_multicast);
/* use the interface name as the unique id for ifp recycle */
if ((unsigned int)
snprintf(ifv->ifv_name, sizeof(ifv->ifv_name), "%s%d",
ifc->ifc_name, unit) >= sizeof(ifv->ifv_name)) {
ifvlan_release(ifv);
return EINVAL;
}
bzero(&vlan_init, sizeof(vlan_init));
vlan_init.ver = IFNET_INIT_CURRENT_VERSION;
vlan_init.len = sizeof(vlan_init);
vlan_init.flags = IFNET_INIT_LEGACY;
vlan_init.uniqueid = ifv->ifv_name;
vlan_init.uniqueid_len = strlen(ifv->ifv_name);
vlan_init.name = ifc->ifc_name;
vlan_init.unit = unit;
vlan_init.family = IFNET_FAMILY_VLAN;
vlan_init.type = IFT_L2VLAN;
vlan_init.output = vlan_output;
vlan_init.demux = ether_demux;
vlan_init.add_proto = ether_add_proto;
vlan_init.del_proto = ether_del_proto;
vlan_init.check_multi = ether_check_multi;
vlan_init.framer_extended = ether_frameout_extended;
vlan_init.softc = ifv;
vlan_init.ioctl = vlan_ioctl;
vlan_init.set_bpf_tap = NULL;
vlan_init.detach = vlan_if_free;
vlan_init.broadcast_addr = etherbroadcastaddr;
vlan_init.broadcast_len = ETHER_ADDR_LEN;
error = ifnet_allocate_extended(&vlan_init, &ifp);
if (error) {
ifvlan_release(ifv);
return error;
}
ifnet_set_offload(ifp, 0);
ifnet_set_addrlen(ifp, ETHER_ADDR_LEN); /* XXX ethernet specific */
ifnet_set_baudrate(ifp, 0);
ifnet_set_hdrlen(ifp, ETHER_VLAN_ENCAP_LEN);
ifnet_set_mtu(ifp, ETHERMTU);
error = ifnet_attach(ifp, NULL);
if (error) {
ifnet_release(ifp);
ifvlan_release(ifv);
return error;
}
ifv->ifv_ifp = ifp;
/* attach as ethernet */
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
return 0;
}
static int
vlan_remove(ifvlan_ref ifv, int need_to_wait)
{
vlan_assert_lock_held();
if (ifvlan_flags_detaching(ifv)) {
return 0;
}
ifvlan_flags_set_detaching(ifv);
vlan_unconfig(ifv, need_to_wait);
return 1;
}
static int
vlan_clone_destroy(struct ifnet *ifp)
{
ifvlan_ref ifv;
vlan_lock();
ifv = ifnet_get_ifvlan_retained(ifp);
if (ifv == NULL) {
vlan_unlock();
return 0;
}
if (vlan_remove(ifv, TRUE) == 0) {
vlan_unlock();
ifvlan_release(ifv);
return 0;
}
vlan_unlock();
ifvlan_release(ifv);
ifnet_detach(ifp);
return 0;
}
static int
vlan_output(struct ifnet * ifp, struct mbuf * m)
{
struct ether_vlan_header * evl;
int encaplen;
ifvlan_ref ifv;
struct ifnet * p;
int soft_vlan;
u_short tag;
vlan_parent_ref vlp = NULL;
int err;
struct flowadv adv = { .code = FADV_SUCCESS };
if (m == 0) {
return 0;
}
if ((m->m_flags & M_PKTHDR) == 0) {
m_freem_list(m);
return 0;
}
vlan_lock();
ifv = ifnet_get_ifvlan_retained(ifp);
if (ifv == NULL || ifvlan_flags_ready(ifv) == 0) {
goto unlock_done;
}
vlp = ifvlan_get_vlan_parent_retained(ifv);
if (vlp == NULL) {
goto unlock_done;
}
p = vlp->vlp_ifp;
(void)ifnet_stat_increment_out(ifp, 1, m->m_pkthdr.len, 0);
soft_vlan = (ifnet_offload(p) & IF_HWASSIST_VLAN_TAGGING) == 0;
tag = ifv->ifv_tag;
encaplen = ifv->ifv_encaplen;
vlan_unlock();
ifvlan_release(ifv);
vlan_parent_release(vlp);
bpf_tap_out(ifp, DLT_EN10MB, m, NULL, 0);
/* do not run parent's if_output() if the parent is not up */
if ((ifnet_flags(p) & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) {
m_freem(m);
os_atomic_inc(&ifp->if_collisions, relaxed);
return 0;
}
/*
* If underlying interface can do VLAN tag insertion itself,
* just pass the packet along. However, we need some way to
* tell the interface where the packet came from so that it
* knows how to find the VLAN tag to use. We use a field in
* the mbuf header to store the VLAN tag, and a bit in the
* csum_flags field to mark the field as valid.
*/
if (soft_vlan == 0) {
m->m_pkthdr.csum_flags |= CSUM_VLAN_TAG_VALID;
m->m_pkthdr.vlan_tag = tag;
} else {
M_PREPEND(m, encaplen, M_DONTWAIT, 1);
if (m == NULL) {
printf("%s%d: unable to prepend VLAN header\n", ifnet_name(ifp),
ifnet_unit(ifp));
os_atomic_inc(&ifp->if_oerrors, relaxed);
return 0;
}
/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
if (m->m_len < (int)sizeof(*evl)) {
m = m_pullup(m, sizeof(*evl));
if (m == NULL) {
printf("%s%d: unable to pullup VLAN header\n", ifnet_name(ifp),
ifnet_unit(ifp));
os_atomic_inc(&ifp->if_oerrors, relaxed);
return 0;
}
}
/*
* Transform the Ethernet header into an Ethernet header
* with 802.1Q encapsulation.
*/
bcopy(mtod(m, char *) + encaplen,
mtod(m, char *), ETHER_HDR_LEN);
evl = mtod(m, struct ether_vlan_header *);
evl->evl_proto = evl->evl_encap_proto;
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
evl->evl_tag = htons(tag);
/* adjust partial checksum offload offsets */
if ((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID |
CSUM_PARTIAL)) == (CSUM_DATA_VALID | CSUM_PARTIAL)) {
m->m_pkthdr.csum_tx_start += ETHER_VLAN_ENCAP_LEN;
m->m_pkthdr.csum_tx_stuff += ETHER_VLAN_ENCAP_LEN;
}
m->m_pkthdr.csum_flags |= CSUM_VLAN_ENCAP_PRESENT;
}
err = dlil_output(p, PF_VLAN, m, NULL, NULL, 1, &adv);
if (err == 0) {
if (adv.code == FADV_FLOW_CONTROLLED) {
err = EQFULL;
} else if (adv.code == FADV_SUSPENDED) {
err = EQSUSPENDED;
}
}
return err;
unlock_done:
vlan_unlock();
if (ifv != NULL) {
ifvlan_release(ifv);
}
if (vlp != NULL) {
vlan_parent_release(vlp);
}
m_freem_list(m);
return 0;
}
static int
vlan_input(ifnet_t p, __unused protocol_family_t protocol,
mbuf_t m, char *frame_header)
{
struct ether_vlan_header * evl;
struct ifnet * ifp = NULL;
int soft_vlan = 0;
u_int tag = 0;
if (m->m_pkthdr.csum_flags & CSUM_VLAN_TAG_VALID) {
/*
* Packet is tagged, m contains a normal
* Ethernet frame; the tag is stored out-of-band.
*/
m->m_pkthdr.csum_flags &= ~CSUM_VLAN_TAG_VALID;
tag = EVL_VLANOFTAG(m->m_pkthdr.vlan_tag);
m->m_pkthdr.vlan_tag = 0;
} else {
soft_vlan = 1;
switch (ifnet_type(p)) {
case IFT_ETHER:
case IFT_IEEE8023ADLAG:
if (m->m_len < sizeof(struct ether_vlan_header)) {
goto done;
}
evl = (struct ether_vlan_header *)(void *)frame_header;
if (ntohs(evl->evl_proto) == ETHERTYPE_VLAN) {
/* don't allow VLAN within VLAN */
goto done;
}
tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
break;
default:
printf("vlan_demux: unsupported if type %u",
ifnet_type(p));
goto done;
}
}
if (tag != 0) {
ifvlan_ref ifv;
if ((ifnet_eflags(p) & IFEF_VLAN) == 0) {
/* don't bother looking through the VLAN list */
goto done;
}
vlan_lock();
ifv = vlan_lookup_parent_and_tag(p, tag);
if (ifv != NULL) {
ifp = ifv->ifv_ifp;
}
if (ifv == NULL
|| ifvlan_flags_ready(ifv) == 0
|| (ifnet_flags(ifp) & IFF_UP) == 0) {
vlan_unlock();
goto done;
}
vlan_unlock();
}
if (soft_vlan) {
/*
* Remove the VLAN encapsulation header by shifting the
* ethernet destination and source addresses over by the
* encapsulation header length (4 bytes).
*/
struct {
uint8_t dhost[ETHER_ADDR_LEN];
uint8_t shost[ETHER_ADDR_LEN];
} save_ether;
assert(((char *)evl) == frame_header);
bcopy(evl, &save_ether, sizeof(save_ether));
bcopy(&save_ether, ((char *)evl) + ETHER_VLAN_ENCAP_LEN,
sizeof(save_ether));
frame_header += ETHER_VLAN_ENCAP_LEN;
m->m_len -= ETHER_VLAN_ENCAP_LEN;
m->m_data += ETHER_VLAN_ENCAP_LEN;
m->m_pkthdr.len -= ETHER_VLAN_ENCAP_LEN;
m->m_pkthdr.csum_flags = 0; /* can't trust hardware checksum */
}
m->m_pkthdr.pkt_hdr = frame_header;
if (tag != 0) {
m->m_pkthdr.rcvif = ifp;
(void)ifnet_stat_increment_in(ifp, 1,
m->m_pkthdr.len + ETHER_HDR_LEN, 0);
bpf_tap_in(ifp, DLT_EN10MB, m, frame_header, ETHER_HDR_LEN);
/* We found a vlan interface, inject on that interface. */
dlil_input_packet_list(ifp, m);
} else {
/* Send priority-tagged packet up through the parent */
dlil_input_packet_list(p, m);
}
m = NULL;
done:
if (m != NULL) {
m_freem(m);
}
return 0;
}
static int
vlan_config(struct ifnet * ifp, struct ifnet * p, int tag)
{
u_int32_t eflags;
int error;
int first_vlan = FALSE;
ifvlan_ref ifv = NULL;
int ifv_added = FALSE;
int need_vlp_release = 0;
vlan_parent_ref new_vlp = NULL;
ifnet_offload_t offload;
u_int16_t parent_flags;
vlan_parent_ref vlp = NULL;
/* pre-allocate space for vlan_parent, in case we're first */
error = vlan_parent_create(p, &new_vlp);
if (error != 0) {
return error;
}
vlan_lock();
ifv = ifnet_get_ifvlan_retained(ifp);
if (ifv == NULL || ifv->ifv_vlp != NULL) {
vlan_unlock();
if (ifv != NULL) {
ifvlan_release(ifv);
}
vlan_parent_release(new_vlp);
return EBUSY;
}
vlp = parent_list_lookup(p);
if (vlp != NULL) {
vlan_parent_retain(vlp);
need_vlp_release++;
if (vlan_parent_lookup_tag(vlp, tag) != NULL) {
/* already a VLAN with that tag on this interface */
error = EADDRINUSE;
goto unlock_done;
}
} else {
/* one for being in the list */
vlan_parent_retain(new_vlp);
/* we're the first VLAN on this interface */
LIST_INSERT_HEAD(&g_vlan->parent_list, new_vlp, vlp_parent_list);
vlp = new_vlp;
vlan_parent_retain(vlp);
need_vlp_release++;
}
/* need to wait to ensure no one else is trying to add/remove */
vlan_parent_wait(vlp, "vlan_config");
if (ifnet_get_ifvlan(ifp) != ifv) {
error = EINVAL;
goto signal_done;
}
/* check again because someone might have gotten in */
if (parent_list_lookup(p) != vlp) {
error = EBUSY;
goto signal_done;
}
if (vlan_parent_flags_detaching(vlp)
|| ifvlan_flags_detaching(ifv) || ifv->ifv_vlp != NULL) {
error = EBUSY;
goto signal_done;
}
/* check again because someone might have gotten the tag */
if (vlan_parent_lookup_tag(vlp, tag) != NULL) {
/* already a VLAN with that tag on this interface */
error = EADDRINUSE;
goto signal_done;
}
if (vlan_parent_no_vlans(vlp)) {
first_vlan = TRUE;
}
vlan_parent_add_vlan(vlp, ifv, tag);
ifvlan_retain(ifv); /* parent references ifv */
ifv_added = TRUE;
/* don't allow VLAN on interface that's part of a bond */
if ((ifnet_eflags(p) & IFEF_BOND) != 0) {
error = EBUSY;
goto signal_done;
}
/* mark it as in use by VLAN */
eflags = if_set_eflags(p, IFEF_VLAN);
if ((eflags & IFEF_BOND) != 0) {
/* bond got in ahead of us */
if_clear_eflags(p, IFEF_VLAN);
error = EBUSY;
goto signal_done;
}
vlan_unlock();
if (first_vlan) {
/* attach our VLAN "protocol" to the interface */
error = vlan_attach_protocol(p);
if (error) {
vlan_lock();
goto signal_done;
}
}
/* inherit management restriction from parent by default */
if (IFNET_IS_MANAGEMENT(p)) {
ifnet_set_management(ifp, true);
}
/* configure parent to receive our multicast addresses */
error = multicast_list_program(&ifv->ifv_multicast, ifp, p);
if (error != 0) {
if (first_vlan) {
(void)vlan_detach_protocol(p);
}
vlan_lock();
goto signal_done;
}
/* set our ethernet address to that of the parent */
ifnet_set_lladdr_and_type(ifp, IF_LLADDR(p), ETHER_ADDR_LEN, IFT_ETHER);
/* no failures past this point */
vlan_lock();
ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
ifv->ifv_flags = 0;
if (vlan_parent_flags_supports_vlan_mtu(vlp)) {
ifv->ifv_mtufudge = 0;
} else {
/*
* Fudge the MTU by the encapsulation size. This
* makes us incompatible with strictly compliant
* 802.1Q implementations, but allows us to use
* the feature with other NetBSD implementations,
* which might still be useful.
*/
ifv->ifv_mtufudge = ifv->ifv_encaplen;
}
ifnet_set_mtu(ifp, ETHERMTU - ifv->ifv_mtufudge);
/*
* Copy only a selected subset of flags from the parent.
* Other flags are none of our business.
*/
parent_flags = ifnet_flags(p)
& (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX);
ifnet_set_flags(ifp, parent_flags,
IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX);
/* use hwassist bits from parent interface, but exclude VLAN bits */
offload = ifnet_offload(p) & ~(IFNET_VLAN_TAGGING | IFNET_VLAN_MTU);
ifnet_set_offload(ifp, offload);
ifnet_set_flags(ifp, IFF_RUNNING, IFF_RUNNING);
ifvlan_flags_set_ready(ifv);
vlan_parent_signal(vlp, "vlan_config");
vlan_unlock();
if (new_vlp != vlp) {
/* throw it away, it wasn't needed */
vlan_parent_release(new_vlp);
}
if (ifv != NULL) {
ifvlan_release(ifv);
}
if (first_vlan) {
/* mark the parent interface up */
ifnet_set_flags(p, IFF_UP, IFF_UP);
(void)ifnet_ioctl(p, 0, SIOCSIFFLAGS, (caddr_t)NULL);
}
return 0;
signal_done:
vlan_assert_lock_held();
if (ifv_added) {
vlan_parent_remove_vlan(vlp, ifv);
if (!vlan_parent_flags_detaching(vlp) && vlan_parent_no_vlans(vlp)) {
/* the vlan parent has no more VLAN's */
if_clear_eflags(p, IFEF_VLAN);
LIST_REMOVE(vlp, vlp_parent_list);
/* release outside of the lock below */
need_vlp_release++;
/* one for being in the list */
need_vlp_release++;
}
}
vlan_parent_signal(vlp, "vlan_config");
unlock_done:
vlan_unlock();
while (need_vlp_release--) {
vlan_parent_release(vlp);
}
if (new_vlp != vlp) {
vlan_parent_release(new_vlp);
}
if (ifv != NULL) {
if (ifv_added) {
ifvlan_release(ifv);
}
ifvlan_release(ifv);
}
return error;
}
static void
vlan_link_event(struct ifnet * ifp, struct ifnet * p)
{
struct ifmediareq ifmr;
/* generate a link event based on the state of the underlying interface */
bzero(&ifmr, sizeof(ifmr));
snprintf(ifmr.ifm_name, sizeof(ifmr.ifm_name),
"%s%d", ifnet_name(p), ifnet_unit(p));
if (ifnet_ioctl(p, 0, SIOCGIFMEDIA, &ifmr) == 0
&& ifmr.ifm_count > 0 && ifmr.ifm_status & IFM_AVALID) {
u_int32_t event;
event = (ifmr.ifm_status & IFM_ACTIVE)
? KEV_DL_LINK_ON : KEV_DL_LINK_OFF;
interface_link_event(ifp, event);
}
return;
}
static int
vlan_unconfig(ifvlan_ref ifv, int need_to_wait)
{
struct ifnet * ifp = ifv->ifv_ifp;
int last_vlan = FALSE;
int need_ifv_release = 0;
int need_vlp_release = 0;
struct ifnet * p;
vlan_parent_ref vlp;
vlan_assert_lock_held();
vlp = ifv->ifv_vlp;
if (vlp == NULL) {
return 0;
}
if (need_to_wait) {
need_vlp_release++;
vlan_parent_retain(vlp);
vlan_parent_wait(vlp, "vlan_unconfig");
/* check again because another thread could be in vlan_unconfig */
if (ifv != ifnet_get_ifvlan(ifp)) {
goto signal_done;
}
if (ifv->ifv_vlp != vlp) {
/* vlan parent changed */
goto signal_done;
}
}
/* ifv has a reference on vlp, need to remove it */
need_vlp_release++;
p = vlp->vlp_ifp;
/* remember whether we're the last VLAN on the parent */
if (LIST_NEXT(LIST_FIRST(&vlp->vlp_vlan_list), ifv_vlan_list) == NULL) {
if (vlan_debug != 0) {
printf("vlan_unconfig: last vlan on %s%d\n",
ifnet_name(p), ifnet_unit(p));
}
last_vlan = TRUE;
}
/* back-out any effect our mtu might have had on the parent */
(void)ifvlan_new_mtu(ifv, ETHERMTU - ifv->ifv_mtufudge);
vlan_unlock();
/* un-join multicast on parent interface */
(void)multicast_list_remove(&ifv->ifv_multicast);
/* Clear our MAC address. */
ifnet_set_lladdr_and_type(ifp, NULL, 0, IFT_L2VLAN);
/* if we enabled promiscuous mode, disable it */
if (ifvlan_flags_promisc(ifv)) {
(void)ifnet_set_promiscuous(p, 0);
}
/* detach VLAN "protocol" */
if (last_vlan) {
(void)vlan_detach_protocol(p);
}
vlan_lock();
/* return to the state we were in before SIFVLAN */
ifnet_set_mtu(ifp, ETHERMTU);
ifnet_set_flags(ifp, 0,
IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_RUNNING);
ifnet_set_offload(ifp, 0);
ifv->ifv_mtufudge = 0;
/* Disconnect from parent. */
vlan_parent_remove_vlan(vlp, ifv);
ifv->ifv_flags = 0;
/* vlan_parent has reference to ifv, remove it */
need_ifv_release++;
/* from this point on, no more referencing ifv */
if (last_vlan && !vlan_parent_flags_detaching(vlp)) {
/* the vlan parent has no more VLAN's */
if_clear_eflags(p, IFEF_VLAN);
LIST_REMOVE(vlp, vlp_parent_list);
/* one for being in the list */
need_vlp_release++;
/* release outside of the lock below */
need_vlp_release++;
}
signal_done:
if (need_to_wait) {
vlan_parent_signal(vlp, "vlan_unconfig");
}
vlan_unlock();
while (need_ifv_release--) {
ifvlan_release(ifv);
}
while (need_vlp_release--) { /* references to vlp */
vlan_parent_release(vlp);
}
vlan_lock();
return 0;
}
static int
vlan_set_promisc(struct ifnet * ifp)
{
int error = 0;
ifvlan_ref ifv;
bool is_promisc;
int val;
vlan_parent_ref vlp;
struct ifnet * vlp_ifp = NULL;
is_promisc = (ifnet_flags(ifp) & IFF_PROMISC) != 0;
/* determine whether promiscuous state needs to be changed */
vlan_lock();
ifv = ifnet_get_ifvlan_retained(ifp);
if (ifv == NULL) {
error = EBUSY;
goto done;
}
vlp = ifv->ifv_vlp;
if (vlp != NULL) {
vlp_ifp = vlp->vlp_ifp;
}
if (vlp_ifp == NULL) {
goto done;
}
if (is_promisc == ifvlan_flags_promisc(ifv)) {
/* already in the right state */
goto done;
}
vlan_unlock();
/* state needs to be changed, set promiscuous state on parent */
val = is_promisc ? 1 : 0;
error = ifnet_set_promiscuous(vlp_ifp, val);
if (error != 0) {
printf("%s: ifnet_set_promiscuous(%s, %d) failed %d\n",
ifp->if_xname, vlp_ifp->if_xname, val, error);
goto unlocked_done;
}
printf("%s: ifnet_set_promiscuous(%s, %d) succeeded\n",
ifp->if_xname, vlp_ifp->if_xname, val);
/* update our internal state */
vlan_lock();
if (is_promisc) {
ifvlan_flags_set_promisc(ifv);
} else {
ifvlan_flags_clear_promisc(ifv);
}
done:
vlan_unlock();
unlocked_done:
if (ifv != NULL) {
ifvlan_release(ifv);
}
return error;
}
static int
ifvlan_new_mtu(ifvlan_ref ifv, int mtu)
{
struct ifdevmtu * devmtu_p;
int error = 0;
struct ifnet * ifp = ifv->ifv_ifp;
int max_mtu;
int new_mtu = 0;
int req_mtu;
vlan_parent_ref vlp;
vlan_assert_lock_held();
vlp = ifv->ifv_vlp;
devmtu_p = &vlp->vlp_devmtu;
req_mtu = mtu + ifv->ifv_mtufudge;
if (req_mtu > devmtu_p->ifdm_max || req_mtu < devmtu_p->ifdm_min) {
return EINVAL;
}
max_mtu = vlan_parent_find_max_mtu(vlp, ifv);
if (req_mtu > max_mtu) {
new_mtu = req_mtu;
} else if (max_mtu < devmtu_p->ifdm_current) {
new_mtu = max_mtu;
}
if (new_mtu != 0) {
struct ifnet * p = vlp->vlp_ifp;
vlan_unlock();
error = siocsifaltmtu(p, new_mtu);
vlan_lock();
}
if (error == 0) {
if (new_mtu != 0) {
devmtu_p->ifdm_current = new_mtu;
}
ifnet_set_mtu(ifp, mtu);
}
return error;
}
static int
vlan_set_mtu(struct ifnet * ifp, int mtu)
{
int error = 0;
ifvlan_ref ifv;
vlan_parent_ref vlp;
if (mtu < IF_MINMTU) {
return EINVAL;
}
vlan_lock();
ifv = ifnet_get_ifvlan_retained(ifp);
if (ifv == NULL) {
vlan_unlock();
return EBUSY;
}
vlp = ifvlan_get_vlan_parent_retained(ifv);
if (vlp == NULL) {
vlan_unlock();
ifvlan_release(ifv);
if (mtu != 0) {
return EINVAL;
}
return 0;
}
vlan_parent_wait(vlp, "vlan_set_mtu");
/* check again, something might have changed */
if (ifnet_get_ifvlan(ifp) != ifv
|| ifvlan_flags_detaching(ifv)) {
error = EBUSY;
goto signal_done;
}
if (ifv->ifv_vlp != vlp) {
/* vlan parent changed */
goto signal_done;
}
if (vlan_parent_flags_detaching(vlp)) {
if (mtu != 0) {
error = EINVAL;
}
goto signal_done;
}
error = ifvlan_new_mtu(ifv, mtu);
signal_done:
vlan_parent_signal(vlp, "vlan_set_mtu");
vlan_unlock();
vlan_parent_release(vlp);
ifvlan_release(ifv);
return error;
}
static int
vlan_ioctl(ifnet_t ifp, u_long cmd, void * data)
{
struct ifdevmtu * devmtu_p;
int error = 0;
struct ifaddr * ifa;
struct ifmediareq *ifmr;
struct ifreq * ifr;
ifvlan_ref ifv;
struct ifnet * p;
u_short tag;
user_addr_t user_addr;
vlan_parent_ref vlp;
struct vlanreq vlr;
if (ifnet_type(ifp) != IFT_L2VLAN) {
return EOPNOTSUPP;
}
ifr = (struct ifreq *)data;
ifa = (struct ifaddr *)data;
switch (cmd) {
case SIOCSIFADDR:
ifnet_set_flags(ifp, IFF_UP, IFF_UP);
break;
case SIOCGIFMEDIA32:
case SIOCGIFMEDIA64:
vlan_lock();
ifv = (ifvlan_ref)ifnet_softc(ifp);
if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
vlan_unlock();
return ifv == NULL ? EOPNOTSUPP : EBUSY;
}
p = (ifv->ifv_vlp == NULL) ? NULL : ifv->ifv_vlp->vlp_ifp;
vlan_unlock();
ifmr = (struct ifmediareq *)data;
user_addr = (cmd == SIOCGIFMEDIA64) ?
((struct ifmediareq64 *)ifmr)->ifmu_ulist :
CAST_USER_ADDR_T(((struct ifmediareq32 *)ifmr)->ifmu_ulist);
if (p != NULL) {
struct ifmediareq p_ifmr;
bzero(&p_ifmr, sizeof(p_ifmr));
error = ifnet_ioctl(p, 0, SIOCGIFMEDIA, &p_ifmr);
if (error == 0) {
ifmr->ifm_active = p_ifmr.ifm_active;
ifmr->ifm_current = p_ifmr.ifm_current;
ifmr->ifm_mask = p_ifmr.ifm_mask;
ifmr->ifm_status = p_ifmr.ifm_status;
ifmr->ifm_count = p_ifmr.ifm_count;
/* Limit the result to the parent's current config. */
if (ifmr->ifm_count >= 1 && user_addr != USER_ADDR_NULL) {
ifmr->ifm_count = 1;
error = copyout(&ifmr->ifm_current, user_addr,
sizeof(int));
}
}
} else {
ifmr->ifm_active = ifmr->ifm_current = IFM_NONE;
ifmr->ifm_mask = 0;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_count = 1;
if (user_addr != USER_ADDR_NULL) {
error = copyout(&ifmr->ifm_current, user_addr, sizeof(int));
}
}
break;
case SIOCSIFMEDIA:
error = EOPNOTSUPP;
break;
case SIOCGIFDEVMTU:
vlan_lock();
ifv = (ifvlan_ref)ifnet_softc(ifp);
if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
vlan_unlock();
return ifv == NULL ? EOPNOTSUPP : EBUSY;
}
vlp = ifv->ifv_vlp;
if (vlp != NULL) {
int min_mtu = vlp->vlp_devmtu.ifdm_min - ifv->ifv_mtufudge;
devmtu_p = &ifr->ifr_devmtu;
devmtu_p->ifdm_current = ifnet_mtu(ifp);
devmtu_p->ifdm_min = max(min_mtu, IF_MINMTU);
devmtu_p->ifdm_max = vlp->vlp_devmtu.ifdm_max - ifv->ifv_mtufudge;
} else {
devmtu_p = &ifr->ifr_devmtu;
devmtu_p->ifdm_current = 0;
devmtu_p->ifdm_min = 0;
devmtu_p->ifdm_max = 0;
}
vlan_unlock();
break;
case SIOCSIFMTU:
error = vlan_set_mtu(ifp, ifr->ifr_mtu);
break;
case SIOCSIFVLAN:
user_addr = proc_is64bit(current_proc())
? ifr->ifr_data64 : CAST_USER_ADDR_T(ifr->ifr_data);
error = copyin(user_addr, &vlr, sizeof(vlr));
if (error) {
break;
}
p = NULL;
/* ensure nul termination */
vlr.vlr_parent[IFNAMSIZ - 1] = '\0';
if (vlr.vlr_parent[0] != '\0') {
if (vlr.vlr_tag & ~EVL_VLID_MASK) {
/*
* Don't let the caller set up a VLAN tag with
* anything except VLID bits.
*/
error = EINVAL;
break;
}
p = ifunit(vlr.vlr_parent);
if (p == NULL) {
error = ENXIO;
break;
}
if (IFNET_IS_INTCOPROC(p)) {
error = EINVAL;
break;
}
/* can't do VLAN over anything but ethernet or ethernet aggregate */
if (ifnet_type(p) != IFT_ETHER
&& ifnet_type(p) != IFT_IEEE8023ADLAG) {
error = EPROTONOSUPPORT;
break;
}
error = vlan_config(ifp, p, vlr.vlr_tag);
if (error) {
break;
}
/* Update promiscuous mode, if necessary. */
(void)vlan_set_promisc(ifp);
/* generate a link event based on the state of the parent */
vlan_link_event(ifp, p);
} else {
int need_link_event = FALSE;
vlan_lock();
ifv = (ifvlan_ref)ifnet_softc(ifp);
if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
vlan_unlock();
error = (ifv == NULL ? EOPNOTSUPP : EBUSY);
break;
}
need_link_event = (ifv->ifv_vlp != NULL);
vlan_unconfig(ifv, TRUE);
vlan_unlock();
if (need_link_event) {
interface_link_event(ifp, KEV_DL_LINK_OFF);
}
}
break;
case SIOCGIFVLAN:
bzero(&vlr, sizeof vlr);
vlan_lock();
ifv = (ifvlan_ref)ifnet_softc(ifp);
if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
vlan_unlock();
return ifv == NULL ? EOPNOTSUPP : EBUSY;
}
p = (ifv->ifv_vlp == NULL) ? NULL : ifv->ifv_vlp->vlp_ifp;
tag = ifv->ifv_tag;
vlan_unlock();
if (p != NULL) {
snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent),
"%s%d", ifnet_name(p), ifnet_unit(p));
vlr.vlr_tag = tag;
}
user_addr = proc_is64bit(current_proc())
? ifr->ifr_data64 : CAST_USER_ADDR_T(ifr->ifr_data);
error = copyout(&vlr, user_addr, sizeof(vlr));
break;
case SIOCSIFFLAGS:
/*
* For promiscuous mode, we enable promiscuous mode on
* the parent if we need promiscuous on the VLAN interface.
*/
error = vlan_set_promisc(ifp);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = vlan_setmulti(ifp);
break;
default:
error = EOPNOTSUPP;
}
return error;
}
static void
vlan_if_free(struct ifnet * ifp)
{
ifvlan_ref ifv;
if (ifp == NULL) {
return;
}
ifv = (ifvlan_ref)ifnet_softc(ifp);
if (ifv == NULL) {
return;
}
ifvlan_release(ifv);
ifnet_release(ifp);
return;
}
static void
vlan_event(struct ifnet * p, __unused protocol_family_t protocol,
const struct kev_msg * event)
{
int event_code;
/* Check if the interface we are attached to is being detached */
if (event->vendor_code != KEV_VENDOR_APPLE
|| event->kev_class != KEV_NETWORK_CLASS
|| event->kev_subclass != KEV_DL_SUBCLASS) {
return;
}
event_code = event->event_code;
switch (event_code) {
case KEV_DL_LINK_OFF:
case KEV_DL_LINK_ON:
vlan_parent_link_event(p, event_code);
break;
default:
return;
}
return;
}
static errno_t
vlan_detached(ifnet_t p, __unused protocol_family_t protocol)
{
if (ifnet_is_attached(p, 0) == 0) {
/* if the parent isn't attached, remove all VLANs */
vlan_parent_remove_all_vlans(p);
}
return 0;
}
static void
interface_link_event(struct ifnet * ifp, u_int32_t event_code)
{
struct event {
u_int32_t ifnet_family;
u_int32_t unit;
char if_name[IFNAMSIZ];
};
_Alignas(struct kern_event_msg) char message[sizeof(struct kern_event_msg) + sizeof(struct event)] = { 0 };
struct kern_event_msg *header = (struct kern_event_msg*)message;
struct event *data = (struct event *)(header + 1);
header->total_size = sizeof(message);
header->vendor_code = KEV_VENDOR_APPLE;
header->kev_class = KEV_NETWORK_CLASS;
header->kev_subclass = KEV_DL_SUBCLASS;
header->event_code = event_code;
data->ifnet_family = ifnet_family(ifp);
data->unit = (u_int32_t)ifnet_unit(ifp);
strlcpy(data->if_name, ifnet_name(ifp), IFNAMSIZ);
ifnet_event(ifp, header);
}
static void
vlan_parent_link_event(struct ifnet * p, u_int32_t event_code)
{
vlan_parent_ref vlp;
vlan_lock();
if ((ifnet_eflags(p) & IFEF_VLAN) == 0) {
vlan_unlock();
/* no VLAN's */
return;
}
vlp = parent_list_lookup(p);
if (vlp == NULL) {
/* no VLAN's */
vlan_unlock();
return;
}
vlan_parent_flags_set_link_event_required(vlp);
vlp->vlp_event_code = event_code;
if (vlan_parent_flags_change_in_progress(vlp)) {
/* don't block waiting to generate an event */
vlan_unlock();
return;
}
vlan_parent_retain(vlp);
vlan_parent_wait(vlp, "vlan_parent_link_event");
vlan_parent_signal(vlp, "vlan_parent_link_event");
vlan_unlock();
vlan_parent_release(vlp);
return;
}
/*
* Function: vlan_attach_protocol
* Purpose:
* Attach a DLIL protocol to the interface, using the ETHERTYPE_VLAN
* demux ether type.
*
* The ethernet demux actually special cases VLAN to support hardware.
* The demux here isn't used. The demux will return PF_VLAN for the
* appropriate packets and our vlan_input function will be called.
*/
static int
vlan_attach_protocol(struct ifnet *ifp)
{
int error;
struct ifnet_attach_proto_param reg;
bzero(&reg, sizeof(reg));
reg.input = vlan_input;
reg.event = vlan_event;
reg.detached = vlan_detached;
error = ifnet_attach_protocol(ifp, PF_VLAN, &reg);
if (error) {
printf("vlan_proto_attach(%s%d) ifnet_attach_protocol failed, %d\n",
ifnet_name(ifp), ifnet_unit(ifp), error);
}
return error;
}
/*
* Function: vlan_detach_protocol
* Purpose:
* Detach our DLIL protocol from an interface
*/
static int
vlan_detach_protocol(struct ifnet *ifp)
{
int error;
error = ifnet_detach_protocol(ifp, PF_VLAN);
if (error) {
printf("vlan_proto_detach(%s%d) ifnet_detach_protocol failed, %d\n",
ifnet_name(ifp), ifnet_unit(ifp), error);
}
return error;
}
/*
* DLIL interface family functions
* We use the ethernet plumb functions, since that's all we support.
* If we wanted to handle multiple LAN types (tokenring, etc.), we'd
* call the appropriate routines for that LAN type instead of hard-coding
* ethernet.
*/
static errno_t
vlan_attach_inet(struct ifnet *ifp, protocol_family_t protocol_family)
{
return ether_attach_inet(ifp, protocol_family);
}
static void
vlan_detach_inet(struct ifnet *ifp, protocol_family_t protocol_family)
{
ether_detach_inet(ifp, protocol_family);
}
static errno_t
vlan_attach_inet6(struct ifnet *ifp, protocol_family_t protocol_family)
{
return ether_attach_inet6(ifp, protocol_family);
}
static void
vlan_detach_inet6(struct ifnet *ifp, protocol_family_t protocol_family)
{
ether_detach_inet6(ifp, protocol_family);
}
__private_extern__ int
vlan_family_init(void)
{
int error = 0;
#if !XNU_TARGET_OS_OSX
#if (DEVELOPMENT || DEBUG)
/* check whether "vlan" boot-arg is enabled */
(void)PE_parse_boot_argn("vlan", &vlan_enabled, sizeof(vlan_enabled));
#endif /* DEVELOPMENT || DEBUG */
#endif /* !XNU_TARGET_OS_OSX */
error = proto_register_plumber(PF_INET, IFNET_FAMILY_VLAN,
vlan_attach_inet, vlan_detach_inet);
if (error != 0) {
printf("proto_register_plumber failed for AF_INET error=%d\n",
error);
goto done;
}
error = proto_register_plumber(PF_INET6, IFNET_FAMILY_VLAN,
vlan_attach_inet6, vlan_detach_inet6);
if (error != 0) {
printf("proto_register_plumber failed for AF_INET6 error=%d\n",
error);
goto done;
}
error = vlan_clone_attach();
if (error != 0) {
printf("proto_register_plumber failed vlan_clone_attach error=%d\n",
error);
goto done;
}
done:
return error;
}