gems-kernel/source/THIRDPARTY/xnu/bsd/net/pf_norm.c

3333 lines
89 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2007-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* $apfw: pf_norm.c,v 1.10 2008/08/28 19:10:53 jhw Exp $ */
/* $OpenBSD: pf_norm.c,v 1.107 2006/04/16 00:59:52 pascoe Exp $ */
/*
* Copyright 2001 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/filio.h>
#include <sys/fcntl.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/random.h>
#include <sys/mcache.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/route.h>
#include <net/if_pflog.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_fsm.h>
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <net/pfvar.h>
struct pf_frent {
LIST_ENTRY(pf_frent) fr_next;
struct mbuf *fr_m;
#define fr_ip fr_u.fru_ipv4
#define fr_ip6 fr_u.fru_ipv6
union {
struct ip *fru_ipv4;
struct ip6_hdr *fru_ipv6;
} fr_u;
struct ip6_frag fr_ip6f_opt;
uint16_t fr_ip6f_hlen; /* total header length */
uint16_t fr_ip6f_extoff; /* last extension header offset or 0 */
};
struct pf_frcache {
LIST_ENTRY(pf_frcache) fr_next;
uint16_t fr_off;
uint16_t fr_end;
};
#define PFFRAG_SEENLAST 0x0001 /* Seen the last fragment for this */
#define PFFRAG_NOBUFFER 0x0002 /* Non-buffering fragment cache */
#define PFFRAG_DROP 0x0004 /* Drop all fragments */
#define BUFFER_FRAGMENTS(fr) (!((fr)->fr_flags & PFFRAG_NOBUFFER))
struct pf_fragment {
RB_ENTRY(pf_fragment) fr_entry;
TAILQ_ENTRY(pf_fragment) frag_next;
struct pf_addr fr_srcx;
struct pf_addr fr_dstx;
u_int8_t fr_p; /* protocol of this fragment */
u_int8_t fr_flags; /* status flags */
u_int16_t fr_max; /* fragment data max */
#define fr_id fr_uid.fru_id4
#define fr_id6 fr_uid.fru_id6
union {
u_int16_t fru_id4;
u_int32_t fru_id6;
} fr_uid;
int fr_af;
u_int32_t fr_timeout;
#define fr_queue fr_u.fru_queue
#define fr_cache fr_u.fru_cache
union {
LIST_HEAD(pf_fragq, pf_frent) fru_queue; /* buffering */
LIST_HEAD(pf_cacheq, pf_frcache) fru_cache; /* non-buf */
} fr_u;
uint32_t fr_csum_flags; /* checksum flags */
uint32_t fr_csum; /* partial checksum value */
uint16_t fr_ip6_maxlen; /* maximum length of a single fragment in IPv6 */
};
static TAILQ_HEAD(pf_fragqueue, pf_fragment) pf_fragqueue;
static TAILQ_HEAD(pf_cachequeue, pf_fragment) pf_cachequeue;
static __inline int pf_frag_compare(struct pf_fragment *,
struct pf_fragment *);
static RB_HEAD(pf_frag_tree, pf_fragment) pf_frag_tree, pf_cache_tree;
RB_PROTOTYPE_SC(__private_extern__, pf_frag_tree, pf_fragment, fr_entry,
pf_frag_compare);
RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
/* Private prototypes */
static void pf_ip6hdr2key(struct pf_fragment *, struct ip6_hdr *,
struct ip6_frag *);
static void pf_ip2key(struct pf_fragment *, struct ip *);
static void pf_remove_fragment(struct pf_fragment *);
static void pf_flush_fragments(void);
static void pf_free_fragment(struct pf_fragment *);
static struct pf_fragment *pf_find_fragment_by_key(struct pf_fragment *,
struct pf_frag_tree *);
static __inline struct pf_fragment *
pf_find_fragment_by_ipv4_header(struct ip *, struct pf_frag_tree *);
static struct mbuf *pf_reassemble(struct mbuf *, struct pf_fragment **,
struct pf_frent *, int);
static struct mbuf *pf_fragcache(struct mbuf **, struct ip *,
struct pf_fragment **, int, int, int *);
static int pf_normalize_tcpopt(struct pf_rule *, int, struct pfi_kif *,
struct pf_pdesc *, pbuf_t *, struct tcphdr *, int, int *);
static __inline struct pf_fragment *
pf_find_fragment_by_ipv6_header(struct ip6_hdr *, struct ip6_frag *,
struct pf_frag_tree *);
static struct mbuf *pf_reassemble6(struct mbuf **, struct pf_fragment **,
struct pf_frent *, int);
static struct mbuf *pf_frag6cache(struct mbuf **, struct ip6_hdr*,
struct ip6_frag *, struct pf_fragment **, int, int, int, int *);
#define DPFPRINTF(x) do { \
if (pf_status.debug >= PF_DEBUG_MISC) { \
printf("%s: ", __func__); \
printf x ; \
} \
} while (0)
/* Globals */
struct pool pf_frent_pl, pf_frag_pl;
static struct pool pf_cache_pl, pf_cent_pl;
struct pool pf_state_scrub_pl;
static int pf_nfrents, pf_ncache;
void
pf_normalize_init(void)
{
pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
NULL);
pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
NULL);
pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
"pffrcache", NULL);
pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
NULL);
pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
"pfstscr", NULL);
pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
TAILQ_INIT(&pf_fragqueue);
TAILQ_INIT(&pf_cachequeue);
}
#if 0
void
pf_normalize_destroy(void)
{
pool_destroy(&pf_state_scrub_pl);
pool_destroy(&pf_cent_pl);
pool_destroy(&pf_cache_pl);
pool_destroy(&pf_frag_pl);
pool_destroy(&pf_frent_pl);
}
#endif
int
pf_normalize_isempty(void)
{
return TAILQ_EMPTY(&pf_fragqueue) && TAILQ_EMPTY(&pf_cachequeue);
}
static __inline int
pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
{
int diff;
if ((diff = a->fr_af - b->fr_af)) {
return diff;
} else if ((diff = a->fr_p - b->fr_p)) {
return diff;
} else {
struct pf_addr *sa = &a->fr_srcx;
struct pf_addr *sb = &b->fr_srcx;
struct pf_addr *da = &a->fr_dstx;
struct pf_addr *db = &b->fr_dstx;
switch (a->fr_af) {
#ifdef INET
case AF_INET:
if ((diff = a->fr_id - b->fr_id)) {
return diff;
} else if (sa->v4addr.s_addr < sb->v4addr.s_addr) {
return -1;
} else if (sa->v4addr.s_addr > sb->v4addr.s_addr) {
return 1;
} else if (da->v4addr.s_addr < db->v4addr.s_addr) {
return -1;
} else if (da->v4addr.s_addr > db->v4addr.s_addr) {
return 1;
}
break;
#endif
case AF_INET6:
if ((diff = a->fr_id6 - b->fr_id6)) {
return diff;
} else if (sa->addr32[3] < sb->addr32[3]) {
return -1;
} else if (sa->addr32[3] > sb->addr32[3]) {
return 1;
} else if (sa->addr32[2] < sb->addr32[2]) {
return -1;
} else if (sa->addr32[2] > sb->addr32[2]) {
return 1;
} else if (sa->addr32[1] < sb->addr32[1]) {
return -1;
} else if (sa->addr32[1] > sb->addr32[1]) {
return 1;
} else if (sa->addr32[0] < sb->addr32[0]) {
return -1;
} else if (sa->addr32[0] > sb->addr32[0]) {
return 1;
} else if (da->addr32[3] < db->addr32[3]) {
return -1;
} else if (da->addr32[3] > db->addr32[3]) {
return 1;
} else if (da->addr32[2] < db->addr32[2]) {
return -1;
} else if (da->addr32[2] > db->addr32[2]) {
return 1;
} else if (da->addr32[1] < db->addr32[1]) {
return -1;
} else if (da->addr32[1] > db->addr32[1]) {
return 1;
} else if (da->addr32[0] < db->addr32[0]) {
return -1;
} else if (da->addr32[0] > db->addr32[0]) {
return 1;
}
break;
default:
VERIFY(!0 && "only IPv4 and IPv6 supported!");
break;
}
}
return 0;
}
void
pf_purge_expired_fragments(void)
{
struct pf_fragment *frag;
u_int32_t expire = pf_time_second() -
pf_default_rule.timeout[PFTM_FRAG];
while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) {
VERIFY(BUFFER_FRAGMENTS(frag));
if (frag->fr_timeout > expire) {
break;
}
switch (frag->fr_af) {
case AF_INET:
DPFPRINTF(("expiring IPv4 %d(0x%llx) from queue.\n",
ntohs(frag->fr_id),
(uint64_t)VM_KERNEL_ADDRPERM(frag)));
break;
case AF_INET6:
DPFPRINTF(("expiring IPv6 %d(0x%llx) from queue.\n",
ntohl(frag->fr_id6),
(uint64_t)VM_KERNEL_ADDRPERM(frag)));
break;
default:
VERIFY(0 && "only IPv4 and IPv6 supported");
break;
}
pf_free_fragment(frag);
}
while ((frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue)) != NULL) {
VERIFY(!BUFFER_FRAGMENTS(frag));
if (frag->fr_timeout > expire) {
break;
}
switch (frag->fr_af) {
case AF_INET:
DPFPRINTF(("expiring IPv4 %d(0x%llx) from cache.\n",
ntohs(frag->fr_id),
(uint64_t)VM_KERNEL_ADDRPERM(frag)));
break;
case AF_INET6:
DPFPRINTF(("expiring IPv6 %d(0x%llx) from cache.\n",
ntohl(frag->fr_id6),
(uint64_t)VM_KERNEL_ADDRPERM(frag)));
break;
default:
VERIFY(0 && "only IPv4 and IPv6 supported");
break;
}
pf_free_fragment(frag);
VERIFY(TAILQ_EMPTY(&pf_cachequeue) ||
TAILQ_LAST(&pf_cachequeue, pf_cachequeue) != frag);
}
}
/*
* Try to flush old fragments to make space for new ones
*/
static void
pf_flush_fragments(void)
{
struct pf_fragment *frag;
int goal;
goal = pf_nfrents * 9 / 10;
DPFPRINTF(("trying to free > %d frents\n",
pf_nfrents - goal));
while (goal < pf_nfrents) {
frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue);
if (frag == NULL) {
break;
}
pf_free_fragment(frag);
}
goal = pf_ncache * 9 / 10;
DPFPRINTF(("trying to free > %d cache entries\n",
pf_ncache - goal));
while (goal < pf_ncache) {
frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue);
if (frag == NULL) {
break;
}
pf_free_fragment(frag);
}
}
/* Frees the fragments and all associated entries */
static void
pf_free_fragment(struct pf_fragment *frag)
{
struct pf_frent *frent;
struct pf_frcache *frcache;
/* Free all fragments */
if (BUFFER_FRAGMENTS(frag)) {
for (frent = LIST_FIRST(&frag->fr_queue); frent;
frent = LIST_FIRST(&frag->fr_queue)) {
LIST_REMOVE(frent, fr_next);
m_freem(frent->fr_m);
pool_put(&pf_frent_pl, frent);
pf_nfrents--;
}
} else {
for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
frcache = LIST_FIRST(&frag->fr_cache)) {
LIST_REMOVE(frcache, fr_next);
VERIFY(LIST_EMPTY(&frag->fr_cache) ||
LIST_FIRST(&frag->fr_cache)->fr_off >
frcache->fr_end);
pool_put(&pf_cent_pl, frcache);
pf_ncache--;
}
}
pf_remove_fragment(frag);
}
static void
pf_ip6hdr2key(struct pf_fragment *key, struct ip6_hdr *ip6,
struct ip6_frag *fh)
{
key->fr_p = fh->ip6f_nxt;
key->fr_id6 = fh->ip6f_ident;
key->fr_af = AF_INET6;
key->fr_srcx.v6addr = ip6->ip6_src;
key->fr_dstx.v6addr = ip6->ip6_dst;
}
static void
pf_ip2key(struct pf_fragment *key, struct ip *ip)
{
key->fr_p = ip->ip_p;
key->fr_id = ip->ip_id;
key->fr_af = AF_INET;
key->fr_srcx.v4addr.s_addr = ip->ip_src.s_addr;
key->fr_dstx.v4addr.s_addr = ip->ip_dst.s_addr;
}
static struct pf_fragment *
pf_find_fragment_by_key(struct pf_fragment *key, struct pf_frag_tree *tree)
{
struct pf_fragment *frag;
frag = RB_FIND(pf_frag_tree, tree, key);
if (frag != NULL) {
/* XXX Are we sure we want to update the timeout? */
frag->fr_timeout = pf_time_second();
if (BUFFER_FRAGMENTS(frag)) {
TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next);
} else {
TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
TAILQ_INSERT_HEAD(&pf_cachequeue, frag, frag_next);
}
}
return frag;
}
static __attribute__((noinline)) struct pf_fragment *
pf_find_fragment_by_ipv4_header(struct ip *ip, struct pf_frag_tree *tree)
{
struct pf_fragment key;
pf_ip2key(&key, ip);
return pf_find_fragment_by_key(&key, tree);
}
/* Removes a fragment from the fragment queue and frees the fragment */
static void
pf_remove_fragment(struct pf_fragment *frag)
{
if (BUFFER_FRAGMENTS(frag)) {
RB_REMOVE(pf_frag_tree, &pf_frag_tree, frag);
TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
pool_put(&pf_frag_pl, frag);
} else {
RB_REMOVE(pf_frag_tree, &pf_cache_tree, frag);
TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
pool_put(&pf_cache_pl, frag);
}
}
#define FR_IP_OFF(fr) ((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
static struct mbuf *
pf_reassemble(struct mbuf *m0, struct pf_fragment **frag,
struct pf_frent *frent, int mff)
{
struct mbuf *m = m0, *m2;
struct pf_frent *frea, *next;
struct pf_frent *frep = NULL;
struct ip *ip = frent->fr_ip;
uint32_t hlen = ip->ip_hl << 2;
u_int16_t off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
u_int16_t ip_len = ntohs(ip->ip_len) - ip->ip_hl * 4;
u_int16_t fr_max = ip_len + off;
uint32_t csum, csum_flags;
VERIFY(*frag == NULL || BUFFER_FRAGMENTS(*frag));
/*
* Leverage partial checksum offload for IP fragments. Narrow down
* the scope to cover only UDP without IP options, as that is the
* most common case.
*
* Perform 1's complement adjustment of octets that got included/
* excluded in the hardware-calculated checksum value. Ignore cases
* where the value includes the entire IPv4 header span, as the sum
* for those octets would already be 0 by the time we get here; IP
* has already performed its header checksum validation. Also take
* care of any trailing bytes and subtract out their partial sum.
*/
if (ip->ip_p == IPPROTO_UDP && hlen == sizeof(struct ip) &&
(m->m_pkthdr.csum_flags &
(CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
uint32_t start = m->m_pkthdr.csum_rx_start;
int32_t trailer = (m_pktlen(m) - ntohs(ip->ip_len));
uint32_t swbytes = (uint32_t)trailer;
csum = m->m_pkthdr.csum_rx_val;
ASSERT(trailer >= 0);
if ((start != 0 && start != hlen) || trailer != 0) {
#if BYTE_ORDER != BIG_ENDIAN
if (start < hlen) {
HTONS(ip->ip_len);
HTONS(ip->ip_off);
}
#endif /* BYTE_ORDER != BIG_ENDIAN */
/* callee folds in sum */
csum = m_adj_sum16(m, start, hlen,
(ip->ip_len - hlen), csum);
if (hlen > start) {
swbytes += (hlen - start);
} else {
swbytes += (start - hlen);
}
#if BYTE_ORDER != BIG_ENDIAN
if (start < hlen) {
NTOHS(ip->ip_off);
NTOHS(ip->ip_len);
}
#endif /* BYTE_ORDER != BIG_ENDIAN */
}
csum_flags = m->m_pkthdr.csum_flags;
if (swbytes != 0) {
udp_in_cksum_stats(swbytes);
}
if (trailer != 0) {
m_adj(m, -trailer);
}
} else {
csum = 0;
csum_flags = 0;
}
/* Invalidate checksum */
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
/* Strip off ip header */
m->m_data += hlen;
m->m_len -= hlen;
/* Create a new reassembly queue for this packet */
if (*frag == NULL) {
*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
if (*frag == NULL) {
pf_flush_fragments();
*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
if (*frag == NULL) {
goto drop_fragment;
}
}
(*frag)->fr_flags = 0;
(*frag)->fr_max = 0;
(*frag)->fr_af = AF_INET;
(*frag)->fr_srcx.v4addr = frent->fr_ip->ip_src;
(*frag)->fr_dstx.v4addr = frent->fr_ip->ip_dst;
(*frag)->fr_p = frent->fr_ip->ip_p;
(*frag)->fr_id = frent->fr_ip->ip_id;
(*frag)->fr_timeout = pf_time_second();
if (csum_flags != 0) {
(*frag)->fr_csum_flags = csum_flags;
(*frag)->fr_csum = csum;
}
LIST_INIT(&(*frag)->fr_queue);
RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
/* We do not have a previous fragment */
frep = NULL;
goto insert;
}
/*
* If this fragment contains similar checksum offload info
* as that of the existing ones, accumulate checksum. Otherwise,
* invalidate checksum offload info for the entire datagram.
*/
if (csum_flags != 0 && csum_flags == (*frag)->fr_csum_flags) {
(*frag)->fr_csum += csum;
} else if ((*frag)->fr_csum_flags != 0) {
(*frag)->fr_csum_flags = 0;
}
/*
* Find a fragment after the current one:
* - off contains the real shifted offset.
*/
LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
if (FR_IP_OFF(frea) > off) {
break;
}
frep = frea;
}
VERIFY(frep != NULL || frea != NULL);
if (frep != NULL &&
FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl *
4 > off) {
u_int16_t precut;
precut = FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) -
frep->fr_ip->ip_hl * 4 - off;
if (precut >= ip_len) {
goto drop_fragment;
}
m_adj(frent->fr_m, precut);
DPFPRINTF(("overlap -%d\n", precut));
/* Enforce 8 byte boundaries */
ip->ip_off = htons(ntohs(ip->ip_off) + (precut >> 3));
off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
ip_len -= precut;
ip->ip_len = htons(ip_len);
}
for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
frea = next) {
u_int16_t aftercut;
aftercut = ip_len + off - FR_IP_OFF(frea);
DPFPRINTF(("adjust overlap %d\n", aftercut));
if (aftercut < ntohs(frea->fr_ip->ip_len) - frea->fr_ip->ip_hl
* 4) {
frea->fr_ip->ip_len =
htons(ntohs(frea->fr_ip->ip_len) - aftercut);
frea->fr_ip->ip_off = htons(ntohs(frea->fr_ip->ip_off) +
(aftercut >> 3));
m_adj(frea->fr_m, aftercut);
break;
}
/* This fragment is completely overlapped, lose it */
next = LIST_NEXT(frea, fr_next);
m_freem(frea->fr_m);
LIST_REMOVE(frea, fr_next);
pool_put(&pf_frent_pl, frea);
pf_nfrents--;
}
insert:
/* Update maximum data size */
if ((*frag)->fr_max < fr_max) {
(*frag)->fr_max = fr_max;
}
/* This is the last segment */
if (!mff) {
(*frag)->fr_flags |= PFFRAG_SEENLAST;
}
if (frep == NULL) {
LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
} else {
LIST_INSERT_AFTER(frep, frent, fr_next);
}
/* Check if we are completely reassembled */
if (!((*frag)->fr_flags & PFFRAG_SEENLAST)) {
return NULL;
}
/* Check if we have all the data */
off = 0;
for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
next = LIST_NEXT(frep, fr_next);
off += ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl * 4;
if (off < (*frag)->fr_max &&
(next == NULL || FR_IP_OFF(next) != off)) {
DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
off, next == NULL ? -1 : FR_IP_OFF(next),
(*frag)->fr_max));
return NULL;
}
}
DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
if (off < (*frag)->fr_max) {
return NULL;
}
/* We have all the data */
frent = LIST_FIRST(&(*frag)->fr_queue);
VERIFY(frent != NULL);
if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
DPFPRINTF(("drop: too big: %d\n", off));
pf_free_fragment(*frag);
*frag = NULL;
return NULL;
}
next = LIST_NEXT(frent, fr_next);
/* Magic from ip_input */
ip = frent->fr_ip;
m = frent->fr_m;
m2 = m->m_next;
m->m_next = NULL;
m_cat(m, m2);
pool_put(&pf_frent_pl, frent);
pf_nfrents--;
for (frent = next; frent != NULL; frent = next) {
next = LIST_NEXT(frent, fr_next);
m2 = frent->fr_m;
pool_put(&pf_frent_pl, frent);
pf_nfrents--;
m_cat(m, m2);
}
ip->ip_src = (*frag)->fr_srcx.v4addr;
ip->ip_dst = (*frag)->fr_dstx.v4addr;
if ((*frag)->fr_csum_flags != 0) {
csum = (*frag)->fr_csum;
ADDCARRY(csum);
m->m_pkthdr.csum_rx_val = csum;
m->m_pkthdr.csum_rx_start = sizeof(struct ip);
m->m_pkthdr.csum_flags = (*frag)->fr_csum_flags;
} else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
/* loopback checksums are always OK */
m->m_pkthdr.csum_data = 0xffff;
m->m_pkthdr.csum_flags =
CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
CSUM_IP_CHECKED | CSUM_IP_VALID;
}
/* Remove from fragment queue */
pf_remove_fragment(*frag);
*frag = NULL;
hlen = ip->ip_hl << 2;
ip->ip_len = htons(off + hlen);
m->m_len += hlen;
m->m_data -= hlen;
/* some debugging cruft by sklower, below, will go away soon */
/* XXX this should be done elsewhere */
if (m->m_flags & M_PKTHDR) {
int plen = 0;
for (m2 = m; m2; m2 = m2->m_next) {
plen += m2->m_len;
}
m->m_pkthdr.len = plen;
}
DPFPRINTF(("complete: 0x%llx(%d)\n",
(uint64_t)VM_KERNEL_ADDRPERM(m), ntohs(ip->ip_len)));
return m;
drop_fragment:
/* Oops - fail safe - drop packet */
pool_put(&pf_frent_pl, frent);
pf_nfrents--;
m_freem(m);
return NULL;
}
static __attribute__((noinline)) struct mbuf *
pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
int drop, int *nomem)
{
struct mbuf *m = *m0;
struct pf_frcache *frp, *fra, *cur = NULL;
int ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
u_int16_t off = ntohs(h->ip_off) << 3;
u_int16_t fr_max = ip_len + off;
int hosed = 0;
VERIFY(*frag == NULL || !BUFFER_FRAGMENTS(*frag));
/* Create a new range queue for this packet */
if (*frag == NULL) {
*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
if (*frag == NULL) {
pf_flush_fragments();
*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
if (*frag == NULL) {
goto no_mem;
}
}
/* Get an entry for the queue */
cur = pool_get(&pf_cent_pl, PR_NOWAIT);
if (cur == NULL) {
pool_put(&pf_cache_pl, *frag);
*frag = NULL;
goto no_mem;
}
pf_ncache++;
(*frag)->fr_flags = PFFRAG_NOBUFFER;
(*frag)->fr_max = 0;
(*frag)->fr_af = AF_INET;
(*frag)->fr_srcx.v4addr = h->ip_src;
(*frag)->fr_dstx.v4addr = h->ip_dst;
(*frag)->fr_p = h->ip_p;
(*frag)->fr_id = h->ip_id;
(*frag)->fr_timeout = pf_time_second();
cur->fr_off = off;
cur->fr_end = fr_max;
LIST_INIT(&(*frag)->fr_cache);
LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off,
fr_max));
goto pass;
}
/*
* Find a fragment after the current one:
* - off contains the real shifted offset.
*/
frp = NULL;
LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
if (fra->fr_off > off) {
break;
}
frp = fra;
}
VERIFY(frp != NULL || fra != NULL);
if (frp != NULL) {
int precut;
precut = frp->fr_end - off;
if (precut >= ip_len) {
/* Fragment is entirely a duplicate */
DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
h->ip_id, frp->fr_off, frp->fr_end, off, fr_max));
goto drop_fragment;
}
if (precut == 0) {
/* They are adjacent. Fixup cache entry */
DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
h->ip_id, frp->fr_off, frp->fr_end, off, fr_max));
frp->fr_end = fr_max;
} else if (precut > 0) {
/*
* The first part of this payload overlaps with a
* fragment that has already been passed.
* Need to trim off the first part of the payload.
* But to do so easily, we need to create another
* mbuf to throw the original header into.
*/
DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
h->ip_id, precut, frp->fr_off, frp->fr_end, off,
fr_max));
off += precut;
fr_max -= precut;
/* Update the previous frag to encompass this one */
frp->fr_end = fr_max;
if (!drop) {
/*
* XXX Optimization opportunity
* This is a very heavy way to trim the payload.
* we could do it much faster by diddling mbuf
* internals but that would be even less legible
* than this mbuf magic. For my next trick,
* I'll pull a rabbit out of my laptop.
*/
*m0 = m_copym(m, 0, h->ip_hl << 2, M_NOWAIT);
if (*m0 == NULL) {
goto no_mem;
}
VERIFY((*m0)->m_next == NULL);
m_adj(m, precut + (h->ip_hl << 2));
m_cat(*m0, m);
m = *m0;
if (m->m_flags & M_PKTHDR) {
int plen = 0;
struct mbuf *t;
for (t = m; t; t = t->m_next) {
plen += t->m_len;
}
m->m_pkthdr.len = plen;
}
h = mtod(m, struct ip *);
VERIFY((int)m->m_len ==
ntohs(h->ip_len) - precut);
h->ip_off = htons(ntohs(h->ip_off) +
(precut >> 3));
h->ip_len = htons(ntohs(h->ip_len) - precut);
} else {
hosed++;
}
} else {
/* There is a gap between fragments */
DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
fr_max));
cur = pool_get(&pf_cent_pl, PR_NOWAIT);
if (cur == NULL) {
goto no_mem;
}
pf_ncache++;
cur->fr_off = off;
cur->fr_end = fr_max;
LIST_INSERT_AFTER(frp, cur, fr_next);
}
}
if (fra != NULL) {
int aftercut;
int merge = 0;
aftercut = fr_max - fra->fr_off;
if (aftercut == 0) {
/* Adjacent fragments */
DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
h->ip_id, off, fr_max, fra->fr_off, fra->fr_end));
fra->fr_off = off;
merge = 1;
} else if (aftercut > 0) {
/* Need to chop off the tail of this fragment */
DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
h->ip_id, aftercut, off, fr_max, fra->fr_off,
fra->fr_end));
fra->fr_off = off;
fr_max -= aftercut;
merge = 1;
if (!drop) {
m_adj(m, -aftercut);
if (m->m_flags & M_PKTHDR) {
int plen = 0;
struct mbuf *t;
for (t = m; t; t = t->m_next) {
plen += t->m_len;
}
m->m_pkthdr.len = plen;
}
h = mtod(m, struct ip *);
VERIFY((int)m->m_len ==
ntohs(h->ip_len) - aftercut);
h->ip_len = htons(ntohs(h->ip_len) - aftercut);
} else {
hosed++;
}
} else if (frp == NULL) {
/* There is a gap between fragments */
DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
h->ip_id, -aftercut, off, fr_max, fra->fr_off,
fra->fr_end));
cur = pool_get(&pf_cent_pl, PR_NOWAIT);
if (cur == NULL) {
goto no_mem;
}
pf_ncache++;
cur->fr_off = off;
cur->fr_end = fr_max;
LIST_INSERT_BEFORE(fra, cur, fr_next);
}
/* Need to glue together two separate fragment descriptors */
if (merge) {
if (cur && fra->fr_off <= cur->fr_end) {
/* Need to merge in a previous 'cur' */
DPFPRINTF(("fragcache[%d]: adjacent(merge "
"%d-%d) %d-%d (%d-%d)\n",
h->ip_id, cur->fr_off, cur->fr_end, off,
fr_max, fra->fr_off, fra->fr_end));
fra->fr_off = cur->fr_off;
LIST_REMOVE(cur, fr_next);
pool_put(&pf_cent_pl, cur);
pf_ncache--;
cur = NULL;
} else if (frp && fra->fr_off <= frp->fr_end) {
/* Need to merge in a modified 'frp' */
VERIFY(cur == NULL);
DPFPRINTF(("fragcache[%d]: adjacent(merge "
"%d-%d) %d-%d (%d-%d)\n",
h->ip_id, frp->fr_off, frp->fr_end, off,
fr_max, fra->fr_off, fra->fr_end));
fra->fr_off = frp->fr_off;
LIST_REMOVE(frp, fr_next);
pool_put(&pf_cent_pl, frp);
pf_ncache--;
frp = NULL;
}
}
}
if (hosed) {
/*
* We must keep tracking the overall fragment even when
* we're going to drop it anyway so that we know when to
* free the overall descriptor. Thus we drop the frag late.
*/
goto drop_fragment;
}
pass:
/* Update maximum data size */
if ((*frag)->fr_max < fr_max) {
(*frag)->fr_max = fr_max;
}
/* This is the last segment */
if (!mff) {
(*frag)->fr_flags |= PFFRAG_SEENLAST;
}
/* Check if we are completely reassembled */
if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
/* Remove from fragment queue */
DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
(*frag)->fr_max));
pf_free_fragment(*frag);
*frag = NULL;
}
return m;
no_mem:
*nomem = 1;
/* Still need to pay attention to !IP_MF */
if (!mff && *frag != NULL) {
(*frag)->fr_flags |= PFFRAG_SEENLAST;
}
m_freem(m);
return NULL;
drop_fragment:
/* Still need to pay attention to !IP_MF */
if (!mff && *frag != NULL) {
(*frag)->fr_flags |= PFFRAG_SEENLAST;
}
if (drop) {
/* This fragment has been deemed bad. Don't reass */
if (((*frag)->fr_flags & PFFRAG_DROP) == 0) {
DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
h->ip_id));
}
(*frag)->fr_flags |= PFFRAG_DROP;
}
m_freem(m);
return NULL;
}
#define FR_IP6_OFF(fr) \
(ntohs((fr)->fr_ip6f_opt.ip6f_offlg & IP6F_OFF_MASK))
#define FR_IP6_PLEN(fr) (ntohs((fr)->fr_ip6->ip6_plen))
struct mbuf *
pf_reassemble6(struct mbuf **m0, struct pf_fragment **frag,
struct pf_frent *frent, int mff)
{
struct mbuf *m, *m2;
struct pf_frent *frea, *frep, *next;
struct ip6_hdr *ip6;
struct ip6_frag *ip6f;
int plen, off, fr_max, pktlen;
uint32_t uoff, csum, csum_flags;
VERIFY(*frag == NULL || BUFFER_FRAGMENTS(*frag));
m = *m0;
frep = NULL;
ip6 = frent->fr_ip6;
ip6f = &frent->fr_ip6f_opt;
off = FR_IP6_OFF(frent);
uoff = frent->fr_ip6f_hlen;
plen = FR_IP6_PLEN(frent);
fr_max = off + plen - (frent->fr_ip6f_hlen - sizeof(*ip6));
pktlen = plen + sizeof(*ip6);
DPFPRINTF(("0x%llx IPv6 frag plen %u off %u fr_ip6f_hlen %u "
"fr_max %u m_len %u\n", (uint64_t)VM_KERNEL_ADDRPERM(m), plen, off,
frent->fr_ip6f_hlen, fr_max, m->m_len));
/*
* Leverage partial checksum offload for simple UDP/IP fragments,
* as that is the most common case.
*
* Perform 1's complement adjustment of octets that got included/
* excluded in the hardware-calculated checksum value. Also take
* care of any trailing bytes and subtract out their partial sum.
*/
if (ip6f->ip6f_nxt == IPPROTO_UDP &&
uoff == (sizeof(*ip6) + sizeof(*ip6f)) &&
(m->m_pkthdr.csum_flags &
(CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
uint32_t start = m->m_pkthdr.csum_rx_start;
uint32_t ip_len = (sizeof(*ip6) + ntohs(ip6->ip6_plen));
int32_t trailer = (m_pktlen(m) - ip_len);
uint32_t swbytes = (uint32_t)trailer;
csum = m->m_pkthdr.csum_rx_val;
ASSERT(trailer >= 0);
if (start != uoff || trailer != 0) {
uint16_t s = 0, d = 0;
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
s = ip6->ip6_src.s6_addr16[1];
ip6->ip6_src.s6_addr16[1] = 0;
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
d = ip6->ip6_dst.s6_addr16[1];
ip6->ip6_dst.s6_addr16[1] = 0;
}
/* callee folds in sum */
csum = m_adj_sum16(m, start, uoff,
(ip_len - uoff), csum);
if (uoff > start) {
swbytes += (uoff - start);
} else {
swbytes += (start - uoff);
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
ip6->ip6_src.s6_addr16[1] = s;
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
ip6->ip6_dst.s6_addr16[1] = d;
}
}
csum_flags = m->m_pkthdr.csum_flags;
if (swbytes != 0) {
udp_in6_cksum_stats(swbytes);
}
if (trailer != 0) {
m_adj(m, -trailer);
}
} else {
csum = 0;
csum_flags = 0;
}
/* Invalidate checksum */
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
/* strip off headers up to the fragment payload */
m->m_data += frent->fr_ip6f_hlen;
m->m_len -= frent->fr_ip6f_hlen;
/* Create a new reassembly queue for this packet */
if (*frag == NULL) {
*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
if (*frag == NULL) {
pf_flush_fragments();
*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
if (*frag == NULL) {
goto drop_fragment;
}
}
(*frag)->fr_flags = 0;
(*frag)->fr_max = 0;
(*frag)->fr_ip6_maxlen = pktlen;
(*frag)->fr_af = AF_INET6;
(*frag)->fr_srcx.v6addr = frent->fr_ip6->ip6_src;
(*frag)->fr_dstx.v6addr = frent->fr_ip6->ip6_dst;
(*frag)->fr_p = frent->fr_ip6f_opt.ip6f_nxt;
(*frag)->fr_id6 = frent->fr_ip6f_opt.ip6f_ident;
(*frag)->fr_timeout = pf_time_second();
if (csum_flags != 0) {
(*frag)->fr_csum_flags = csum_flags;
(*frag)->fr_csum = csum;
}
LIST_INIT(&(*frag)->fr_queue);
RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
/* We do not have a previous fragment */
frep = NULL;
goto insert;
}
/* Remember maximum fragment len for refragmentation */
if (pktlen > (*frag)->fr_ip6_maxlen) {
(*frag)->fr_ip6_maxlen = pktlen;
}
/*
* If this fragment contains similar checksum offload info
* as that of the existing ones, accumulate checksum. Otherwise,
* invalidate checksum offload info for the entire datagram.
*/
if (csum_flags != 0 && csum_flags == (*frag)->fr_csum_flags) {
(*frag)->fr_csum += csum;
} else if ((*frag)->fr_csum_flags != 0) {
(*frag)->fr_csum_flags = 0;
}
/*
* Find a fragment after the current one:
* - off contains the real shifted offset.
*/
LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
if (FR_IP6_OFF(frea) > off) {
break;
}
frep = frea;
}
VERIFY(frep != NULL || frea != NULL);
if (frep != NULL &&
FR_IP6_OFF(frep) + FR_IP6_PLEN(frep) - frep->fr_ip6f_hlen > off) {
u_int16_t precut;
precut = FR_IP6_OFF(frep) + FR_IP6_PLEN(frep) -
frep->fr_ip6f_hlen - off;
if (precut >= plen) {
goto drop_fragment;
}
m_adj(frent->fr_m, precut);
DPFPRINTF(("overlap -%d\n", precut));
/* Enforce 8 byte boundaries */
frent->fr_ip6f_opt.ip6f_offlg =
htons(ntohs(frent->fr_ip6f_opt.ip6f_offlg) +
(precut >> 3));
off = FR_IP6_OFF(frent);
plen -= precut;
ip6->ip6_plen = htons(plen);
}
for (; frea != NULL && plen + off > FR_IP6_OFF(frea); frea = next) {
u_int16_t aftercut;
aftercut = plen + off - FR_IP6_OFF(frea);
DPFPRINTF(("adjust overlap %d\n", aftercut));
if (aftercut < FR_IP6_PLEN(frea) - frea->fr_ip6f_hlen) {
frea->fr_ip6->ip6_plen = htons(FR_IP6_PLEN(frea) -
aftercut);
frea->fr_ip6f_opt.ip6f_offlg =
htons(ntohs(frea->fr_ip6f_opt.ip6f_offlg) +
(aftercut >> 3));
m_adj(frea->fr_m, aftercut);
break;
}
/* This fragment is completely overlapped, lose it */
next = LIST_NEXT(frea, fr_next);
m_freem(frea->fr_m);
LIST_REMOVE(frea, fr_next);
pool_put(&pf_frent_pl, frea);
pf_nfrents--;
}
insert:
/* Update maximum data size */
if ((*frag)->fr_max < fr_max) {
(*frag)->fr_max = fr_max;
}
/* This is the last segment */
if (!mff) {
(*frag)->fr_flags |= PFFRAG_SEENLAST;
}
if (frep == NULL) {
LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
} else {
LIST_INSERT_AFTER(frep, frent, fr_next);
}
/* Check if we are completely reassembled */
if (!((*frag)->fr_flags & PFFRAG_SEENLAST)) {
return NULL;
}
/* Check if we have all the data */
off = 0;
for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
next = LIST_NEXT(frep, fr_next);
off += FR_IP6_PLEN(frep) - (frent->fr_ip6f_hlen - sizeof *ip6);
DPFPRINTF(("frep at %d, next %d, max %d\n",
off, next == NULL ? -1 : FR_IP6_OFF(next),
(*frag)->fr_max));
if (off < (*frag)->fr_max &&
(next == NULL || FR_IP6_OFF(next) != off)) {
DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
off, next == NULL ? -1 : FR_IP6_OFF(next),
(*frag)->fr_max));
return NULL;
}
}
DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
if (off < (*frag)->fr_max) {
return NULL;
}
/* We have all the data */
frent = LIST_FIRST(&(*frag)->fr_queue);
VERIFY(frent != NULL);
if (frent->fr_ip6f_hlen + off > IP_MAXPACKET) {
DPFPRINTF(("drop: too big: %d\n", off));
pf_free_fragment(*frag);
*frag = NULL;
return NULL;
}
ASSERT(*frag != NULL);
ASSERT(frent != NULL);
next = LIST_NEXT(frent, fr_next);
if (next == NULL) {
DPFPRINTF(("drop: atomic fragment\n"));
pf_free_fragment(*frag);
*frag = NULL;
return NULL;
}
/* retrieve the values to be filled in to reassembled tag */
uint16_t hdrlen, unfragpartlen, extoff, maxlen;
uint32_t id;
/* Get total extension header length from the first fragment */
hdrlen = frent->fr_ip6f_hlen - sizeof(struct ip6_frag);
/*
* Get total extension header length of per-fragment headers from the
* subsequent fragment.
*/
unfragpartlen = next->fr_ip6f_hlen - sizeof(struct ip6_frag);
extoff = frent->fr_ip6f_extoff;
maxlen = (*frag)->fr_ip6_maxlen;
id = (*frag)->fr_id6;
ip6 = frent->fr_ip6;
ip6->ip6_nxt = (*frag)->fr_p;
ip6->ip6_plen = htons(off);
ip6->ip6_src = (*frag)->fr_srcx.v6addr;
ip6->ip6_dst = (*frag)->fr_dstx.v6addr;
if ((*frag)->fr_csum_flags != 0) {
csum = (*frag)->fr_csum;
ADDCARRY(csum);
m->m_pkthdr.csum_rx_val = csum;
m->m_pkthdr.csum_rx_start = sizeof(struct ip6_hdr);
m->m_pkthdr.csum_flags = (*frag)->fr_csum_flags;
} else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
/* loopback checksums are always OK */
m->m_pkthdr.csum_data = 0xffff;
m->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
}
/* Remove from fragment queue */
pf_remove_fragment(*frag);
*frag = NULL;
m = frent->fr_m;
m->m_len += sizeof(struct ip6_hdr);
m->m_data -= sizeof(struct ip6_hdr);
memmove(m_mtod_current(m), ip6, sizeof(struct ip6_hdr));
next = LIST_NEXT(frent, fr_next);
pool_put(&pf_frent_pl, frent);
pf_nfrents--;
for (frent = next; next != NULL; frent = next) {
m2 = frent->fr_m;
m_cat(m, m2);
next = LIST_NEXT(frent, fr_next);
pool_put(&pf_frent_pl, frent);
pf_nfrents--;
}
/* XXX this should be done elsewhere */
if (m->m_flags & M_PKTHDR) {
int len = 0;
for (m2 = m; m2; m2 = m2->m_next) {
len += m2->m_len;
}
m->m_pkthdr.len = len;
}
DPFPRINTF(("complete: 0x%llx ip6_plen %d m_pkthdr.len %d\n",
(uint64_t)VM_KERNEL_ADDRPERM(m), ntohs(ip6->ip6_plen),
m->m_pkthdr.len));
/* Add the reassembled tag */
struct m_tag *mtag;
struct pf_fragment_tag *ftag;
mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_PF_REASS,
sizeof(*ftag), M_NOWAIT, m);
if (mtag == NULL) {
/* XXX: add stats */
m_freem(m);
return NULL;
}
ftag = (struct pf_fragment_tag *)mtag->m_tag_data;
ftag->ft_hdrlen = hdrlen;
ftag->ft_unfragpartlen = unfragpartlen;
ftag->ft_extoff = extoff;
ftag->ft_maxlen = maxlen;
ftag->ft_id = id;
m_tag_prepend(m, mtag);
struct pf_mtag *pftag = pf_get_mtag(m);
ASSERT(pftag != NULL);
pftag->pftag_flags |= PF_TAG_REASSEMBLED;
return m;
drop_fragment:
/* Oops - fail safe - drop packet */
pool_put(&pf_frent_pl, frent);
--pf_nfrents;
m_freem(m);
return NULL;
}
static __attribute__((noinline)) struct mbuf *
pf_frag6cache(struct mbuf **m0, struct ip6_hdr *h, struct ip6_frag *fh,
struct pf_fragment **frag, int hlen, int mff, int drop, int *nomem)
{
struct mbuf *m = *m0;
u_int16_t plen, off, fr_max;
struct pf_frcache *frp, *fra, *cur = NULL;
int hosed = 0;
VERIFY(*frag == NULL || !BUFFER_FRAGMENTS(*frag));
m = *m0;
off = ntohs(fh->ip6f_offlg & IP6F_OFF_MASK);
plen = ntohs(h->ip6_plen) - (hlen - sizeof *h);
/*
* Apple Modification: dimambro@apple.com. The hlen, being passed
* into this function Includes all the headers associated with
* the packet, and may include routing headers, so to get to
* the data payload as stored in the original IPv6 header we need
* to subtract al those headers and the IP header.
*
* The 'max' local variable should also contain the offset from the start
* of the reassembled packet to the octet just past the end of the octets
* in the current fragment where:
* - 'off' is the offset from the start of the reassembled packet to the
* first octet in the fragment,
* - 'plen' is the length of the "payload data length" Excluding all the
* IPv6 headers of the fragment.
* - 'hlen' is computed in pf_normalize_ip6() as the offset from the start
* of the IPv6 packet to the beginning of the data.
*/
fr_max = off + plen;
DPFPRINTF(("0x%llx plen %u off %u fr_max %u\n",
(uint64_t)VM_KERNEL_ADDRPERM(m), plen, off, fr_max));
/* Create a new range queue for this packet */
if (*frag == NULL) {
*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
if (*frag == NULL) {
pf_flush_fragments();
*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
if (*frag == NULL) {
goto no_mem;
}
}
/* Get an entry for the queue */
cur = pool_get(&pf_cent_pl, PR_NOWAIT);
if (cur == NULL) {
pool_put(&pf_cache_pl, *frag);
*frag = NULL;
goto no_mem;
}
pf_ncache++;
(*frag)->fr_flags = PFFRAG_NOBUFFER;
(*frag)->fr_max = 0;
(*frag)->fr_af = AF_INET6;
(*frag)->fr_srcx.v6addr = h->ip6_src;
(*frag)->fr_dstx.v6addr = h->ip6_dst;
(*frag)->fr_p = fh->ip6f_nxt;
(*frag)->fr_id6 = fh->ip6f_ident;
(*frag)->fr_timeout = pf_time_second();
cur->fr_off = off;
cur->fr_end = fr_max;
LIST_INIT(&(*frag)->fr_cache);
LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
DPFPRINTF(("frag6cache[%d]: new %d-%d\n", ntohl(fh->ip6f_ident),
off, fr_max));
goto pass;
}
/*
* Find a fragment after the current one:
* - off contains the real shifted offset.
*/
frp = NULL;
LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
if (fra->fr_off > off) {
break;
}
frp = fra;
}
VERIFY(frp != NULL || fra != NULL);
if (frp != NULL) {
int precut;
precut = frp->fr_end - off;
if (precut >= plen) {
/* Fragment is entirely a duplicate */
DPFPRINTF(("frag6cache[%u]: dead (%d-%d) %d-%d\n",
ntohl(fh->ip6f_ident), frp->fr_off, frp->fr_end,
off, fr_max));
goto drop_fragment;
}
if (precut == 0) {
/* They are adjacent. Fixup cache entry */
DPFPRINTF(("frag6cache[%u]: adjacent (%d-%d) %d-%d\n",
ntohl(fh->ip6f_ident), frp->fr_off, frp->fr_end,
off, fr_max));
frp->fr_end = fr_max;
} else if (precut > 0) {
/* The first part of this payload overlaps with a
* fragment that has already been passed.
* Need to trim off the first part of the payload.
* But to do so easily, we need to create another
* mbuf to throw the original header into.
*/
DPFPRINTF(("frag6cache[%u]: chop %d (%d-%d) %d-%d\n",
ntohl(fh->ip6f_ident), precut, frp->fr_off,
frp->fr_end, off, fr_max));
off += precut;
fr_max -= precut;
/* Update the previous frag to encompass this one */
frp->fr_end = fr_max;
if (!drop) {
/* XXX Optimization opportunity
* This is a very heavy way to trim the payload.
* we could do it much faster by diddling mbuf
* internals but that would be even less legible
* than this mbuf magic. For my next trick,
* I'll pull a rabbit out of my laptop.
*/
*m0 = m_copym(m, 0, hlen, M_NOWAIT);
if (*m0 == NULL) {
goto no_mem;
}
VERIFY((*m0)->m_next == NULL);
m_adj(m, precut + hlen);
m_cat(*m0, m);
m = *m0;
if (m->m_flags & M_PKTHDR) {
int pktlen = 0;
struct mbuf *t;
for (t = m; t; t = t->m_next) {
pktlen += t->m_len;
}
m->m_pkthdr.len = pktlen;
}
h = mtod(m, struct ip6_hdr *);
VERIFY((int)m->m_len ==
ntohs(h->ip6_plen) - precut);
fh->ip6f_offlg &= ~IP6F_OFF_MASK;
fh->ip6f_offlg |=
htons(ntohs(fh->ip6f_offlg & IP6F_OFF_MASK)
+ (precut >> 3));
h->ip6_plen = htons(ntohs(h->ip6_plen) -
precut);
} else {
hosed++;
}
} else {
/* There is a gap between fragments */
DPFPRINTF(("frag6cache[%u]: gap %d (%d-%d) %d-%d\n",
ntohl(fh->ip6f_ident), -precut, frp->fr_off,
frp->fr_end, off, fr_max));
cur = pool_get(&pf_cent_pl, PR_NOWAIT);
if (cur == NULL) {
goto no_mem;
}
pf_ncache++;
cur->fr_off = off;
cur->fr_end = fr_max;
LIST_INSERT_AFTER(frp, cur, fr_next);
}
}
if (fra != NULL) {
int aftercut;
int merge = 0;
aftercut = fr_max - fra->fr_off;
if (aftercut == 0) {
/* Adjacent fragments */
DPFPRINTF(("frag6cache[%u]: adjacent %d-%d (%d-%d)\n",
ntohl(fh->ip6f_ident), off, fr_max, fra->fr_off,
fra->fr_end));
fra->fr_off = off;
merge = 1;
} else if (aftercut > 0) {
/* Need to chop off the tail of this fragment */
DPFPRINTF(("frag6cache[%u]: chop %d %d-%d (%d-%d)\n",
ntohl(fh->ip6f_ident), aftercut, off, fr_max,
fra->fr_off, fra->fr_end));
fra->fr_off = off;
fr_max -= aftercut;
merge = 1;
if (!drop) {
m_adj(m, -aftercut);
if (m->m_flags & M_PKTHDR) {
int pktlen = 0;
struct mbuf *t;
for (t = m; t; t = t->m_next) {
pktlen += t->m_len;
}
m->m_pkthdr.len = pktlen;
}
h = mtod(m, struct ip6_hdr *);
VERIFY((int)m->m_len ==
ntohs(h->ip6_plen) - aftercut);
h->ip6_plen =
htons(ntohs(h->ip6_plen) - aftercut);
} else {
hosed++;
}
} else if (frp == NULL) {
/* There is a gap between fragments */
DPFPRINTF(("frag6cache[%u]: gap %d %d-%d (%d-%d)\n",
ntohl(fh->ip6f_ident), -aftercut, off, fr_max,
fra->fr_off, fra->fr_end));
cur = pool_get(&pf_cent_pl, PR_NOWAIT);
if (cur == NULL) {
goto no_mem;
}
pf_ncache++;
cur->fr_off = off;
cur->fr_end = fr_max;
LIST_INSERT_BEFORE(fra, cur, fr_next);
}
/* Need to glue together two separate fragment descriptors */
if (merge) {
if (cur && fra->fr_off <= cur->fr_end) {
/* Need to merge in a previous 'cur' */
DPFPRINTF(("frag6cache[%u]: adjacent(merge "
"%d-%d) %d-%d (%d-%d)\n",
ntohl(fh->ip6f_ident), cur->fr_off,
cur->fr_end, off, fr_max, fra->fr_off,
fra->fr_end));
fra->fr_off = cur->fr_off;
LIST_REMOVE(cur, fr_next);
pool_put(&pf_cent_pl, cur);
pf_ncache--;
cur = NULL;
} else if (frp && fra->fr_off <= frp->fr_end) {
/* Need to merge in a modified 'frp' */
VERIFY(cur == NULL);
DPFPRINTF(("frag6cache[%u]: adjacent(merge "
"%d-%d) %d-%d (%d-%d)\n",
ntohl(fh->ip6f_ident), frp->fr_off,
frp->fr_end, off, fr_max, fra->fr_off,
fra->fr_end));
fra->fr_off = frp->fr_off;
LIST_REMOVE(frp, fr_next);
pool_put(&pf_cent_pl, frp);
pf_ncache--;
frp = NULL;
}
}
}
if (hosed) {
/*
* We must keep tracking the overall fragment even when
* we're going to drop it anyway so that we know when to
* free the overall descriptor. Thus we drop the frag late.
*/
goto drop_fragment;
}
pass:
/* Update maximum data size */
if ((*frag)->fr_max < fr_max) {
(*frag)->fr_max = fr_max;
}
/* This is the last segment */
if (!mff) {
(*frag)->fr_flags |= PFFRAG_SEENLAST;
}
/* Check if we are completely reassembled */
if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
/* Remove from fragment queue */
DPFPRINTF(("frag6cache[%u]: done 0-%d\n",
ntohl(fh->ip6f_ident), (*frag)->fr_max));
pf_free_fragment(*frag);
*frag = NULL;
}
return m;
no_mem:
*nomem = 1;
/* Still need to pay attention to !IP_MF */
if (!mff && *frag != NULL) {
(*frag)->fr_flags |= PFFRAG_SEENLAST;
}
m_freem(m);
return NULL;
drop_fragment:
/* Still need to pay attention to !IP_MF */
if (!mff && *frag != NULL) {
(*frag)->fr_flags |= PFFRAG_SEENLAST;
}
if (drop) {
/* This fragment has been deemed bad. Don't reass */
if (((*frag)->fr_flags & PFFRAG_DROP) == 0) {
DPFPRINTF(("frag6cache[%u]: dropping overall fragment\n",
ntohl(fh->ip6f_ident)));
}
(*frag)->fr_flags |= PFFRAG_DROP;
}
m_freem(m);
return NULL;
}
int
pf_refragment6(struct ifnet *ifp, pbuf_t **pbufp, struct pf_fragment_tag *ftag)
{
struct mbuf *m;
uint32_t frag_id;
uint16_t hdrlen, extoff, maxlen, unfragpartlen;
uint8_t proto;
int error, action;
uint8_t *lexthdrsp;
struct route_in6 ip6route;
struct route_in6 *ro;
struct sockaddr_in6 *dst;
struct ip6_hdr *hdr;
struct pf_mtag *mtag;
struct m_tag *tag;
if (pbufp == NULL || !pbuf_is_valid(*pbufp) || ftag == NULL) {
panic("pf_route6: invalid parameters");
/* NOT REACHED */
}
m = pbuf_to_mbuf(*pbufp, FALSE);
hdr = mtod(m, struct ip6_hdr *);
mtag = pf_find_mtag(m);
hdrlen = ftag->ft_hdrlen - sizeof(struct ip6_hdr);
extoff = ftag->ft_extoff;
maxlen = ftag->ft_maxlen;
frag_id = ftag->ft_id;
unfragpartlen = ftag->ft_unfragpartlen;
tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_PF_REASS);
m_tag_delete(m, tag);
ftag = NULL;
tag = NULL;
mtag->pftag_flags &= ~PF_TAG_REASSEMBLED;
ro = &ip6route;
bzero((caddr_t)ro, sizeof(*ro));
dst = (struct sockaddr_in6 *)&ro->ro_dst;
dst->sin6_family = AF_INET6;
dst->sin6_len = sizeof(*dst);
dst->sin6_addr = hdr->ip6_dst;
if (extoff) {
int off;
struct mbuf *mexthdr;
/* Use protocol from next field of last extension header */
mexthdr = m_getptr(m, extoff +
offsetof(struct ip6_ext, ip6e_nxt), &off);
ASSERT(mexthdr != NULL);
lexthdrsp = (mtod(mexthdr, uint8_t *) + off);
proto = *lexthdrsp;
if (proto == IPPROTO_DSTOPTS) {
struct ip6_ext ext;
if (!pf_pull_hdr(*pbufp, off, &ext, sizeof(ext), NULL,
NULL, AF_INET6)) {
DPFPRINTF(("pkt too short"));
action = PF_DROP;
goto done;
}
proto = ext.ip6e_nxt;
}
} else {
lexthdrsp = NULL;
proto = hdr->ip6_nxt;
}
/*
* The MTU must be a multiple of 8 bytes, or we risk doing the
* fragmentation wrong.
*/
maxlen = maxlen & ~7;
error = ip6_do_fragmentation(&m, hdrlen, NULL, unfragpartlen,
hdr, lexthdrsp, maxlen, proto, frag_id);
if (error == 0) {
/*
* PF_TAG_REFRAGMENTED flag set to indicate ip6_forward()
* and pf_route6() that the mbuf contains a chain of fragments.
*/
mtag->pftag_flags |= PF_TAG_REFRAGMENTED;
action = PF_PASS;
pbuf_init_mbuf(*pbufp, m, ifp);
} else {
DPFPRINTF(("refragment error %d", error));
action = PF_DROP;
goto done;
}
done:
return action;
}
int
pf_normalize_ip(pbuf_t *pbuf, int dir, struct pfi_kif *kif, u_short *reason,
struct pf_pdesc *pd)
{
struct mbuf *m;
struct pf_rule *r;
struct pf_frent *frent;
struct pf_fragment *frag = NULL;
struct ip *h = pbuf->pb_data;
int mff = (ntohs(h->ip_off) & IP_MF);
int hlen = h->ip_hl << 2;
u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
u_int16_t fr_max;
int ip_len;
int ip_off;
int asd = 0;
struct pf_ruleset *ruleset = NULL;
struct ifnet *ifp = pbuf->pb_ifp;
uint64_t ipid_salt = (uint64_t)pbuf_get_packet_buffer_address(pbuf);
r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
while (r != NULL) {
r->evaluations++;
if (pfi_kif_match(r->kif, kif) == r->ifnot) {
r = r->skip[PF_SKIP_IFP].ptr;
} else if (r->direction && r->direction != dir) {
r = r->skip[PF_SKIP_DIR].ptr;
} else if (r->af && r->af != AF_INET) {
r = r->skip[PF_SKIP_AF].ptr;
} else if (r->proto && r->proto != h->ip_p) {
r = r->skip[PF_SKIP_PROTO].ptr;
} else if (PF_MISMATCHAW(&r->src.addr,
(struct pf_addr *)&h->ip_src.s_addr, AF_INET,
r->src.neg, kif)) {
r = r->skip[PF_SKIP_SRC_ADDR].ptr;
} else if (PF_MISMATCHAW(&r->dst.addr,
(struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
r->dst.neg, NULL)) {
r = r->skip[PF_SKIP_DST_ADDR].ptr;
} else {
if (r->anchor == NULL) {
break;
} else {
pf_step_into_anchor(&asd, &ruleset,
PF_RULESET_SCRUB, &r, NULL, NULL);
}
}
if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset,
PF_RULESET_SCRUB, &r, NULL, NULL)) {
break;
}
}
if (r == NULL || r->action == PF_NOSCRUB) {
return PF_PASS;
} else {
r->packets[dir == PF_OUT]++;
r->bytes[dir == PF_OUT] += pd->tot_len;
}
/* Check for illegal packets */
if (hlen < (int)sizeof(struct ip)) {
goto drop;
}
if (hlen > ntohs(h->ip_len)) {
goto drop;
}
/* Clear IP_DF if the rule uses the no-df option */
if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
u_int16_t ipoff = h->ip_off;
h->ip_off &= htons(~IP_DF);
h->ip_sum = pf_cksum_fixup(h->ip_sum, ipoff, h->ip_off, 0);
}
/* We will need other tests here */
if (!fragoff && !mff) {
goto no_fragment;
}
/*
* We're dealing with a fragment now. Don't allow fragments
* with IP_DF to enter the cache. If the flag was cleared by
* no-df above, fine. Otherwise drop it.
*/
if (h->ip_off & htons(IP_DF)) {
DPFPRINTF(("IP_DF\n"));
goto bad;
}
ip_len = ntohs(h->ip_len) - hlen;
ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
/* All fragments are 8 byte aligned */
if (mff && (ip_len & 0x7)) {
DPFPRINTF(("mff and %d\n", ip_len));
goto bad;
}
/* Respect maximum length */
if (fragoff + ip_len > IP_MAXPACKET) {
DPFPRINTF(("max packet %d\n", fragoff + ip_len));
goto bad;
}
fr_max = fragoff + ip_len;
if ((r->rule_flag & (PFRULE_FRAGCROP | PFRULE_FRAGDROP)) == 0) {
/* Fully buffer all of the fragments */
frag = pf_find_fragment_by_ipv4_header(h, &pf_frag_tree);
/* Check if we saw the last fragment already */
if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
fr_max > frag->fr_max) {
goto bad;
}
if ((m = pbuf_to_mbuf(pbuf, TRUE)) == NULL) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
VERIFY(!pbuf_is_valid(pbuf));
/* Restore iph pointer after pbuf_to_mbuf() */
h = mtod(m, struct ip *);
/* Get an entry for the fragment queue */
frent = pool_get(&pf_frent_pl, PR_NOWAIT);
if (frent == NULL) {
REASON_SET(reason, PFRES_MEMORY);
m_freem(m);
return PF_DROP;
}
pf_nfrents++;
frent->fr_ip = h;
frent->fr_m = m;
/* Might return a completely reassembled mbuf, or NULL */
DPFPRINTF(("reass IPv4 frag %d @ %d-%d\n", ntohs(h->ip_id),
fragoff, fr_max));
m = pf_reassemble(m, &frag, frent, mff);
if (m == NULL) {
return PF_DROP;
}
VERIFY(m->m_flags & M_PKTHDR);
pbuf_init_mbuf(pbuf, m, ifp);
/* use mtag from concatenated mbuf chain */
pd->pf_mtag = pf_find_mtag_pbuf(pbuf);
#if 0
// SCW: This check is superfluous
#if DIAGNOSTIC
if (pd->pf_mtag == NULL) {
printf("%s: pf_find_mtag returned NULL(1)\n", __func__);
if ((pd->pf_mtag = pf_get_mtag(m)) == NULL) {
m_freem(m);
m = NULL;
goto no_mem;
}
}
#endif
#endif
h = mtod(m, struct ip *);
if (frag != NULL && (frag->fr_flags & PFFRAG_DROP)) {
goto drop;
}
} else {
/* non-buffering fragment cache (drops or masks overlaps) */
int nomem = 0;
if (dir == PF_OUT && (pd->pf_mtag->pftag_flags & PF_TAG_FRAGCACHE)) {
/*
* Already passed the fragment cache in the
* input direction. If we continued, it would
* appear to be a dup and would be dropped.
*/
goto fragment_pass;
}
frag = pf_find_fragment_by_ipv4_header(h, &pf_cache_tree);
/* Check if we saw the last fragment already */
if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
fr_max > frag->fr_max) {
if (r->rule_flag & PFRULE_FRAGDROP) {
frag->fr_flags |= PFFRAG_DROP;
}
goto bad;
}
if ((m = pbuf_to_mbuf(pbuf, TRUE)) == NULL) {
REASON_SET(reason, PFRES_MEMORY);
goto bad;
}
VERIFY(!pbuf_is_valid(pbuf));
/* Restore iph pointer after pbuf_to_mbuf() */
h = mtod(m, struct ip *);
m = pf_fragcache(&m, h, &frag, mff,
(r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
if (m == NULL) {
// Note: pf_fragcache() has already m_freem'd the mbuf
if (nomem) {
goto no_mem;
}
goto drop;
}
VERIFY(m->m_flags & M_PKTHDR);
pbuf_init_mbuf(pbuf, m, ifp);
/* use mtag from copied and trimmed mbuf chain */
pd->pf_mtag = pf_find_mtag_pbuf(pbuf);
#if 0
// SCW: This check is superfluous
#if DIAGNOSTIC
if (pd->pf_mtag == NULL) {
printf("%s: pf_find_mtag returned NULL(2)\n", __func__);
if ((pd->pf_mtag = pf_get_mtag(m)) == NULL) {
m_freem(m);
m = NULL;
goto no_mem;
}
}
#endif
#endif
if (dir == PF_IN) {
pd->pf_mtag->pftag_flags |= PF_TAG_FRAGCACHE;
}
if (frag != NULL && (frag->fr_flags & PFFRAG_DROP)) {
goto drop;
}
goto fragment_pass;
}
no_fragment:
/* At this point, only IP_DF is allowed in ip_off */
if (h->ip_off & ~htons(IP_DF)) {
u_int16_t ipoff = h->ip_off;
h->ip_off &= htons(IP_DF);
h->ip_sum = pf_cksum_fixup(h->ip_sum, ipoff, h->ip_off, 0);
}
/* Enforce a minimum ttl, may cause endless packet loops */
if (r->min_ttl && h->ip_ttl < r->min_ttl) {
u_int16_t ip_ttl = h->ip_ttl;
h->ip_ttl = r->min_ttl;
h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
}
if (r->rule_flag & PFRULE_RANDOMID) {
u_int16_t oip_id = h->ip_id;
if (rfc6864 && IP_OFF_IS_ATOMIC(ntohs(h->ip_off))) {
h->ip_id = 0;
} else {
h->ip_id = ip_randomid(ipid_salt);
}
h->ip_sum = pf_cksum_fixup(h->ip_sum, oip_id, h->ip_id, 0);
}
if ((r->rule_flag & (PFRULE_FRAGCROP | PFRULE_FRAGDROP)) == 0) {
pd->flags |= PFDESC_IP_REAS;
}
return PF_PASS;
fragment_pass:
/* Enforce a minimum ttl, may cause endless packet loops */
if (r->min_ttl && h->ip_ttl < r->min_ttl) {
u_int16_t ip_ttl = h->ip_ttl;
h->ip_ttl = r->min_ttl;
h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
}
if ((r->rule_flag & (PFRULE_FRAGCROP | PFRULE_FRAGDROP)) == 0) {
pd->flags |= PFDESC_IP_REAS;
}
return PF_PASS;
no_mem:
REASON_SET(reason, PFRES_MEMORY);
if (r != NULL && r->log && pbuf_is_valid(pbuf)) {
PFLOG_PACKET(kif, h, pbuf, AF_INET, dir, *reason, r,
NULL, NULL, pd);
}
return PF_DROP;
drop:
REASON_SET(reason, PFRES_NORM);
if (r != NULL && r->log && pbuf_is_valid(pbuf)) {
PFLOG_PACKET(kif, h, pbuf, AF_INET, dir, *reason, r,
NULL, NULL, pd);
}
return PF_DROP;
bad:
DPFPRINTF(("dropping bad IPv4 fragment\n"));
/* Free associated fragments */
if (frag != NULL) {
pf_free_fragment(frag);
}
REASON_SET(reason, PFRES_FRAG);
if (r != NULL && r->log && pbuf_is_valid(pbuf)) {
PFLOG_PACKET(kif, h, pbuf, AF_INET, dir, *reason, r, NULL, NULL, pd);
}
return PF_DROP;
}
static __attribute__((noinline)) struct pf_fragment *
pf_find_fragment_by_ipv6_header(struct ip6_hdr *ip6, struct ip6_frag *fh,
struct pf_frag_tree *tree)
{
struct pf_fragment key;
pf_ip6hdr2key(&key, ip6, fh);
return pf_find_fragment_by_key(&key, tree);
}
int
pf_normalize_ip6(pbuf_t *pbuf, int dir, struct pfi_kif *kif,
u_short *reason, struct pf_pdesc *pd)
{
struct mbuf *m = NULL;
struct pf_rule *r;
struct ip6_hdr *h = pbuf->pb_data;
int extoff;
int off;
struct ip6_ext ext;
struct ip6_opt opt;
struct ip6_opt_jumbo jumbo;
int optend;
int ooff;
struct ip6_frag frag;
u_int32_t jumbolen = 0, plen;
u_int16_t fragoff = 0;
u_int8_t proto;
int terminal;
struct pf_frent *frent;
struct pf_fragment *pff = NULL;
int mff = 0, rh_cnt = 0;
u_int16_t fr_max;
int asd = 0;
struct pf_ruleset *ruleset = NULL;
struct ifnet *ifp = pbuf->pb_ifp;
r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
while (r != NULL) {
r->evaluations++;
if (pfi_kif_match(r->kif, kif) == r->ifnot) {
r = r->skip[PF_SKIP_IFP].ptr;
} else if (r->direction && r->direction != dir) {
r = r->skip[PF_SKIP_DIR].ptr;
} else if (r->af && r->af != AF_INET6) {
r = r->skip[PF_SKIP_AF].ptr;
}
#if 0 /* header chain! */
else if (r->proto && r->proto != h->ip6_nxt) {
r = r->skip[PF_SKIP_PROTO].ptr;
}
#endif
else if (PF_MISMATCHAW(&r->src.addr,
(struct pf_addr *)(uintptr_t)&h->ip6_src, AF_INET6,
r->src.neg, kif)) {
r = r->skip[PF_SKIP_SRC_ADDR].ptr;
} else if (PF_MISMATCHAW(&r->dst.addr,
(struct pf_addr *)(uintptr_t)&h->ip6_dst, AF_INET6,
r->dst.neg, NULL)) {
r = r->skip[PF_SKIP_DST_ADDR].ptr;
} else {
if (r->anchor == NULL) {
break;
} else {
pf_step_into_anchor(&asd, &ruleset,
PF_RULESET_SCRUB, &r, NULL, NULL);
}
}
if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset,
PF_RULESET_SCRUB, &r, NULL, NULL)) {
break;
}
}
if (r == NULL || r->action == PF_NOSCRUB) {
return PF_PASS;
} else {
r->packets[dir == PF_OUT]++;
r->bytes[dir == PF_OUT] += pd->tot_len;
}
/* Check for illegal packets */
if ((uint32_t)(sizeof(struct ip6_hdr) + IPV6_MAXPACKET) <
pbuf->pb_packet_len) {
goto drop;
}
extoff = 0;
off = sizeof(struct ip6_hdr);
proto = h->ip6_nxt;
terminal = 0;
do {
pd->proto = proto;
switch (proto) {
case IPPROTO_FRAGMENT:
goto fragment;
case IPPROTO_AH:
case IPPROTO_ROUTING:
case IPPROTO_DSTOPTS:
if (!pf_pull_hdr(pbuf, off, &ext, sizeof(ext), NULL,
NULL, AF_INET6)) {
goto shortpkt;
}
extoff = off;
/*
* <jhw@apple.com>
* Multiple routing headers not allowed.
* Routing header type zero considered harmful.
*/
if (proto == IPPROTO_ROUTING) {
const struct ip6_rthdr *rh =
(const struct ip6_rthdr *)&ext;
if (rh_cnt++) {
goto drop;
}
if (rh->ip6r_type == IPV6_RTHDR_TYPE_0) {
goto drop;
}
} else if (proto == IPPROTO_AH) {
off += (ext.ip6e_len + 2) * 4;
} else {
off += (ext.ip6e_len + 1) * 8;
}
proto = ext.ip6e_nxt;
break;
case IPPROTO_HOPOPTS:
if (!pf_pull_hdr(pbuf, off, &ext, sizeof(ext), NULL,
NULL, AF_INET6)) {
goto shortpkt;
}
extoff = off;
optend = off + (ext.ip6e_len + 1) * 8;
ooff = off + sizeof(ext);
do {
if (!pf_pull_hdr(pbuf, ooff, &opt.ip6o_type,
sizeof(opt.ip6o_type), NULL, NULL,
AF_INET6)) {
goto shortpkt;
}
if (opt.ip6o_type == IP6OPT_PAD1) {
ooff++;
continue;
}
if (!pf_pull_hdr(pbuf, ooff, &opt, sizeof(opt),
NULL, NULL, AF_INET6)) {
goto shortpkt;
}
if ((ooff + (int) sizeof(opt) + opt.ip6o_len) >
optend) {
goto drop;
}
switch (opt.ip6o_type) {
case IP6OPT_JUMBO:
if (h->ip6_plen != 0) {
goto drop;
}
if (!pf_pull_hdr(pbuf, ooff, &jumbo,
sizeof(jumbo), NULL, NULL,
AF_INET6)) {
goto shortpkt;
}
memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
sizeof(jumbolen));
jumbolen = ntohl(jumbolen);
if (jumbolen <= IPV6_MAXPACKET) {
goto drop;
}
if ((sizeof(struct ip6_hdr) +
jumbolen) != pbuf->pb_packet_len) {
goto drop;
}
break;
default:
break;
}
ooff += sizeof(opt) + opt.ip6o_len;
} while (ooff < optend);
off = optend;
proto = ext.ip6e_nxt;
break;
default:
terminal = 1;
break;
}
} while (!terminal);
/* jumbo payload option must be present, or plen > 0 */
if (ntohs(h->ip6_plen) == 0) {
plen = jumbolen;
} else {
plen = ntohs(h->ip6_plen);
}
if (plen == 0) {
goto drop;
}
if ((uint32_t)(sizeof(struct ip6_hdr) + plen) > pbuf->pb_packet_len) {
goto shortpkt;
}
/* Enforce a minimum ttl, may cause endless packet loops */
if (r->min_ttl && h->ip6_hlim < r->min_ttl) {
h->ip6_hlim = r->min_ttl;
}
return PF_PASS;
fragment:
plen = ntohs(h->ip6_plen);
/* Jumbo payload packets cannot be fragmented */
if (plen == 0 || jumbolen) {
goto drop;
}
if (!pf_pull_hdr(pbuf, off, &frag, sizeof(frag), NULL, NULL, AF_INET6)) {
goto shortpkt;
}
fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
pd->proto = frag.ip6f_nxt;
mff = ntohs(frag.ip6f_offlg & IP6F_MORE_FRAG);
off += sizeof(frag);
if (fragoff + (plen - off) > IPV6_MAXPACKET) {
goto badfrag;
}
fr_max = fragoff + plen - (off - sizeof(struct ip6_hdr));
// XXX SCW: mbuf-specific
// DPFPRINTF(("0x%llx IPv6 frag plen %u mff %d off %u fragoff %u "
// "fr_max %u\n", (uint64_t)VM_KERNEL_ADDRPERM(m), plen, mff, off,
// fragoff, fr_max));
if ((r->rule_flag & (PFRULE_FRAGCROP | PFRULE_FRAGDROP)) == 0) {
/* Fully buffer all of the fragments */
pd->flags |= PFDESC_IP_REAS;
pff = pf_find_fragment_by_ipv6_header(h, &frag,
&pf_frag_tree);
/* Check if we saw the last fragment already */
if (pff != NULL && (pff->fr_flags & PFFRAG_SEENLAST) &&
fr_max > pff->fr_max) {
goto badfrag;
}
if ((m = pbuf_to_mbuf(pbuf, TRUE)) == NULL) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
/* Restore iph pointer after pbuf_to_mbuf() */
h = mtod(m, struct ip6_hdr *);
/* Get an entry for the fragment queue */
frent = pool_get(&pf_frent_pl, PR_NOWAIT);
if (frent == NULL) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
pf_nfrents++;
frent->fr_ip6 = h;
frent->fr_m = m;
frent->fr_ip6f_opt = frag;
frent->fr_ip6f_extoff = extoff;
frent->fr_ip6f_hlen = off;
/* account for 2nd Destination Options header if present */
if (pd->proto == IPPROTO_DSTOPTS) {
if (!pf_pull_hdr(pbuf, off, &ext, sizeof(ext), NULL,
NULL, AF_INET6)) {
goto shortpkt;
}
frent->fr_ip6f_hlen += (ext.ip6e_len + 1) * 8;
}
/* Might return a completely reassembled mbuf, or NULL */
DPFPRINTF(("reass IPv6 frag %d @ %d-%d\n",
ntohl(frag.ip6f_ident), fragoff, fr_max));
m = pf_reassemble6(&m, &pff, frent, mff);
if (m == NULL) {
return PF_DROP;
}
pbuf_init_mbuf(pbuf, m, ifp);
h = pbuf->pb_data;
if (pff != NULL && (pff->fr_flags & PFFRAG_DROP)) {
goto drop;
}
} else if (dir == PF_IN ||
!(pd->pf_mtag->pftag_flags & PF_TAG_FRAGCACHE)) {
/* non-buffering fragment cache (overlaps: see RFC 5722) */
int nomem = 0;
pff = pf_find_fragment_by_ipv6_header(h, &frag,
&pf_cache_tree);
/* Check if we saw the last fragment already */
if (pff != NULL && (pff->fr_flags & PFFRAG_SEENLAST) &&
fr_max > pff->fr_max) {
if (r->rule_flag & PFRULE_FRAGDROP) {
pff->fr_flags |= PFFRAG_DROP;
}
goto badfrag;
}
if ((m = pbuf_to_mbuf(pbuf, TRUE)) == NULL) {
goto no_mem;
}
/* Restore iph pointer after pbuf_to_mbuf() */
h = mtod(m, struct ip6_hdr *);
m = pf_frag6cache(&m, h, &frag, &pff, off, mff,
(r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
if (m == NULL) {
// Note: pf_frag6cache() has already m_freem'd the mbuf
if (nomem) {
goto no_mem;
}
goto drop;
}
pbuf_init_mbuf(pbuf, m, ifp);
pd->pf_mtag = pf_find_mtag_pbuf(pbuf);
h = pbuf->pb_data;
if (dir == PF_IN) {
pd->pf_mtag->pftag_flags |= PF_TAG_FRAGCACHE;
}
if (pff != NULL && (pff->fr_flags & PFFRAG_DROP)) {
goto drop;
}
}
/* Enforce a minimum ttl, may cause endless packet loops */
if (r->min_ttl && h->ip6_hlim < r->min_ttl) {
h->ip6_hlim = r->min_ttl;
}
return PF_PASS;
no_mem:
REASON_SET(reason, PFRES_MEMORY);
goto dropout;
shortpkt:
REASON_SET(reason, PFRES_SHORT);
goto dropout;
drop:
REASON_SET(reason, PFRES_NORM);
goto dropout;
badfrag:
DPFPRINTF(("dropping bad IPv6 fragment\n"));
REASON_SET(reason, PFRES_FRAG);
goto dropout;
dropout:
if (pff != NULL) {
pf_free_fragment(pff);
}
if (r != NULL && r->log && pbuf_is_valid(pbuf)) {
PFLOG_PACKET(kif, h, pbuf, AF_INET6, dir, *reason, r, NULL, NULL, pd);
}
return PF_DROP;
}
int
pf_normalize_tcp(int dir, struct pfi_kif *kif, pbuf_t *pbuf, int ipoff,
int off, void *h, struct pf_pdesc *pd)
{
#pragma unused(ipoff, h)
struct pf_rule *r, *rm = NULL;
struct tcphdr *th = pd->hdr.tcp;
int rewrite = 0;
int asd = 0;
u_short reason;
u_int8_t flags;
sa_family_t af = pd->af;
struct pf_ruleset *ruleset = NULL;
union pf_state_xport sxport, dxport;
sxport.port = th->th_sport;
dxport.port = th->th_dport;
r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
while (r != NULL) {
r->evaluations++;
if (pfi_kif_match(r->kif, kif) == r->ifnot) {
r = r->skip[PF_SKIP_IFP].ptr;
} else if (r->direction && r->direction != dir) {
r = r->skip[PF_SKIP_DIR].ptr;
} else if (r->af && r->af != af) {
r = r->skip[PF_SKIP_AF].ptr;
} else if (r->proto && r->proto != pd->proto) {
r = r->skip[PF_SKIP_PROTO].ptr;
} else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
r->src.neg, kif)) {
r = r->skip[PF_SKIP_SRC_ADDR].ptr;
} else if (r->src.xport.range.op &&
!pf_match_xport(r->src.xport.range.op, r->proto_variant,
&r->src.xport, &sxport)) {
r = r->skip[PF_SKIP_SRC_PORT].ptr;
} else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
r->dst.neg, NULL)) {
r = r->skip[PF_SKIP_DST_ADDR].ptr;
} else if (r->dst.xport.range.op &&
!pf_match_xport(r->dst.xport.range.op, r->proto_variant,
&r->dst.xport, &dxport)) {
r = r->skip[PF_SKIP_DST_PORT].ptr;
} else if (r->os_fingerprint != PF_OSFP_ANY &&
!pf_osfp_match(pf_osfp_fingerprint(pd, pbuf, off, th),
r->os_fingerprint)) {
r = TAILQ_NEXT(r, entries);
} else {
if (r->anchor == NULL) {
rm = r;
break;
} else {
pf_step_into_anchor(&asd, &ruleset,
PF_RULESET_SCRUB, &r, NULL, NULL);
}
}
if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset,
PF_RULESET_SCRUB, &r, NULL, NULL)) {
break;
}
}
if (rm == NULL || rm->action == PF_NOSCRUB) {
return PF_PASS;
} else {
r->packets[dir == PF_OUT]++;
r->bytes[dir == PF_OUT] += pd->tot_len;
}
if (rm->rule_flag & PFRULE_REASSEMBLE_TCP) {
pd->flags |= PFDESC_TCP_NORM;
}
flags = th->th_flags;
if (flags & TH_SYN) {
/* Illegal packet */
if (flags & TH_RST) {
goto tcp_drop;
}
if (flags & TH_FIN) {
flags &= ~TH_FIN;
}
} else {
/* Illegal packet */
if (!(flags & (TH_ACK | TH_RST))) {
goto tcp_drop;
}
}
if (!(flags & TH_ACK)) {
/* These flags are only valid if ACK is set */
if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG)) {
goto tcp_drop;
}
}
/* Check for illegal header length */
if (th->th_off < (sizeof(struct tcphdr) >> 2)) {
goto tcp_drop;
}
/* If flags changed, or reserved data set, then adjust */
if (flags != th->th_flags || th->th_x2 != 0) {
u_int16_t ov, nv;
ov = *(u_int16_t *)(&th->th_ack + 1);
th->th_flags = flags;
th->th_x2 = 0;
nv = *(u_int16_t *)(&th->th_ack + 1);
th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
rewrite = 1;
}
/* Remove urgent pointer, if TH_URG is not set */
if (!(flags & TH_URG) && th->th_urp) {
th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
th->th_urp = 0;
rewrite = 1;
}
/* copy back packet headers if we sanitized */
/* Process options */
if (r->max_mss) {
int rv = pf_normalize_tcpopt(r, dir, kif, pd, pbuf, th, off,
&rewrite);
if (rv == PF_DROP) {
return rv;
}
pbuf = pd->mp;
}
if (rewrite) {
if (pf_lazy_makewritable(pd, pbuf,
off + sizeof(*th)) == NULL) {
REASON_SET(&reason, PFRES_MEMORY);
if (r->log) {
PFLOG_PACKET(kif, h, pbuf, AF_INET, dir, reason,
r, 0, 0, pd);
}
return PF_DROP;
}
pbuf_copy_back(pbuf, off, sizeof(*th), th);
}
return PF_PASS;
tcp_drop:
REASON_SET(&reason, PFRES_NORM);
if (rm != NULL && r->log) {
PFLOG_PACKET(kif, h, pbuf, AF_INET, dir, reason, r, NULL, NULL, pd);
}
return PF_DROP;
}
int
pf_normalize_tcp_init(pbuf_t *pbuf, int off, struct pf_pdesc *pd,
struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
{
#pragma unused(dst)
u_int32_t tsval, tsecr;
u_int8_t hdr[60];
u_int8_t *opt;
VERIFY(src->scrub == NULL);
src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT);
if (src->scrub == NULL) {
return 1;
}
bzero(src->scrub, sizeof(*src->scrub));
switch (pd->af) {
#if INET
case AF_INET: {
struct ip *h = pbuf->pb_data;
src->scrub->pfss_ttl = h->ip_ttl;
break;
}
#endif /* INET */
case AF_INET6: {
struct ip6_hdr *h = pbuf->pb_data;
src->scrub->pfss_ttl = h->ip6_hlim;
break;
}
}
/*
* All normalizations below are only begun if we see the start of
* the connections. They must all set an enabled bit in pfss_flags
*/
if ((th->th_flags & TH_SYN) == 0) {
return 0;
}
if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
pf_pull_hdr(pbuf, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
/* Diddle with TCP options */
int hlen;
opt = hdr + sizeof(struct tcphdr);
hlen = (th->th_off << 2) - sizeof(struct tcphdr);
while (hlen >= TCPOLEN_TIMESTAMP) {
switch (*opt) {
case TCPOPT_EOL: /* FALLTHROUGH */
case TCPOPT_NOP:
opt++;
hlen--;
break;
case TCPOPT_TIMESTAMP:
if (opt[1] >= TCPOLEN_TIMESTAMP) {
src->scrub->pfss_flags |=
PFSS_TIMESTAMP;
src->scrub->pfss_ts_mod =
htonl(random());
/* note PFSS_PAWS not set yet */
memcpy(&tsval, &opt[2],
sizeof(u_int32_t));
memcpy(&tsecr, &opt[6],
sizeof(u_int32_t));
src->scrub->pfss_tsval0 = ntohl(tsval);
src->scrub->pfss_tsval = ntohl(tsval);
src->scrub->pfss_tsecr = ntohl(tsecr);
getmicrouptime(&src->scrub->pfss_last);
}
OS_FALLTHROUGH;
default:
hlen -= MAX(opt[1], 2);
opt += MAX(opt[1], 2);
break;
}
}
}
return 0;
}
void
pf_normalize_tcp_cleanup(struct pf_state *state)
{
if (state->src.scrub) {
pool_put(&pf_state_scrub_pl, state->src.scrub);
}
if (state->dst.scrub) {
pool_put(&pf_state_scrub_pl, state->dst.scrub);
}
/* Someday... flush the TCP segment reassembly descriptors. */
}
int
pf_normalize_tcp_stateful(pbuf_t *pbuf, int off, struct pf_pdesc *pd,
u_short *reason, struct tcphdr *th, struct pf_state *state,
struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
{
struct timeval uptime;
u_int32_t tsval = 0, tsecr = 0;
u_int tsval_from_last;
u_int8_t hdr[60];
u_int8_t *opt;
int copyback = 0;
int got_ts = 0;
VERIFY(src->scrub || dst->scrub);
/*
* Enforce the minimum TTL seen for this connection. Negate a common
* technique to evade an intrusion detection system and confuse
* firewall state code.
*/
switch (pd->af) {
#if INET
case AF_INET: {
if (src->scrub) {
struct ip *h = pbuf->pb_data;
if (h->ip_ttl > src->scrub->pfss_ttl) {
src->scrub->pfss_ttl = h->ip_ttl;
}
h->ip_ttl = src->scrub->pfss_ttl;
}
break;
}
#endif /* INET */
case AF_INET6: {
if (src->scrub) {
struct ip6_hdr *h = pbuf->pb_data;
if (h->ip6_hlim > src->scrub->pfss_ttl) {
src->scrub->pfss_ttl = h->ip6_hlim;
}
h->ip6_hlim = src->scrub->pfss_ttl;
}
break;
}
}
if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
(dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
pf_pull_hdr(pbuf, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
/* Diddle with TCP options */
int hlen;
opt = hdr + sizeof(struct tcphdr);
hlen = (th->th_off << 2) - sizeof(struct tcphdr);
while (hlen >= TCPOLEN_TIMESTAMP) {
switch (*opt) {
case TCPOPT_EOL: /* FALLTHROUGH */
case TCPOPT_NOP:
opt++;
hlen--;
break;
case TCPOPT_TIMESTAMP:
/*
* Modulate the timestamps. Can be used for
* NAT detection, OS uptime determination or
* reboot detection.
*/
if (got_ts) {
/* Huh? Multiple timestamps!? */
if (pf_status.debug >= PF_DEBUG_MISC) {
DPFPRINTF(("multiple TS??"));
pf_print_state(state);
printf("\n");
}
REASON_SET(reason, PFRES_TS);
return PF_DROP;
}
if (opt[1] >= TCPOLEN_TIMESTAMP) {
memcpy(&tsval, &opt[2],
sizeof(u_int32_t));
if (tsval && src->scrub &&
(src->scrub->pfss_flags &
PFSS_TIMESTAMP)) {
tsval = ntohl(tsval);
pf_change_a(&opt[2],
&th->th_sum,
htonl(tsval +
src->scrub->pfss_ts_mod),
0);
copyback = 1;
}
/* Modulate TS reply iff valid (!0) */
memcpy(&tsecr, &opt[6],
sizeof(u_int32_t));
if (tsecr && dst->scrub &&
(dst->scrub->pfss_flags &
PFSS_TIMESTAMP)) {
tsecr = ntohl(tsecr)
- dst->scrub->pfss_ts_mod;
pf_change_a(&opt[6],
&th->th_sum, htonl(tsecr),
0);
copyback = 1;
}
got_ts = 1;
}
OS_FALLTHROUGH;
default:
hlen -= MAX(opt[1], 2);
opt += MAX(opt[1], 2);
break;
}
}
if (copyback) {
/* Copyback the options, caller copys back header */
int optoff = off + sizeof(*th);
int optlen = (th->th_off << 2) - sizeof(*th);
if (pf_lazy_makewritable(pd, pbuf, optoff + optlen) ==
NULL) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
*writeback = optoff + optlen;
pbuf_copy_back(pbuf, optoff, optlen, hdr + sizeof(*th));
}
}
/*
* Must invalidate PAWS checks on connections idle for too long.
* The fastest allowed timestamp clock is 1ms. That turns out to
* be about 24 days before it wraps. XXX Right now our lowerbound
* TS echo check only works for the first 12 days of a connection
* when the TS has exhausted half its 32bit space
*/
#define TS_MAX_IDLE (24*24*60*60)
#define TS_MAX_CONN (12*24*60*60) /* XXX remove when better tsecr check */
getmicrouptime(&uptime);
if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
(uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
pf_time_second() - state->creation > TS_MAX_CONN)) {
if (pf_status.debug >= PF_DEBUG_MISC) {
DPFPRINTF(("src idled out of PAWS\n"));
pf_print_state(state);
printf("\n");
}
src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
| PFSS_PAWS_IDLED;
}
if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
if (pf_status.debug >= PF_DEBUG_MISC) {
DPFPRINTF(("dst idled out of PAWS\n"));
pf_print_state(state);
printf("\n");
}
dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
| PFSS_PAWS_IDLED;
}
if (got_ts && src->scrub && dst->scrub &&
(src->scrub->pfss_flags & PFSS_PAWS) &&
(dst->scrub->pfss_flags & PFSS_PAWS)) {
/*
* Validate that the timestamps are "in-window".
* RFC1323 describes TCP Timestamp options that allow
* measurement of RTT (round trip time) and PAWS
* (protection against wrapped sequence numbers). PAWS
* gives us a set of rules for rejecting packets on
* long fat pipes (packets that were somehow delayed
* in transit longer than the time it took to send the
* full TCP sequence space of 4Gb). We can use these
* rules and infer a few others that will let us treat
* the 32bit timestamp and the 32bit echoed timestamp
* as sequence numbers to prevent a blind attacker from
* inserting packets into a connection.
*
* RFC1323 tells us:
* - The timestamp on this packet must be greater than
* or equal to the last value echoed by the other
* endpoint. The RFC says those will be discarded
* since it is a dup that has already been acked.
* This gives us a lowerbound on the timestamp.
* timestamp >= other last echoed timestamp
* - The timestamp will be less than or equal to
* the last timestamp plus the time between the
* last packet and now. The RFC defines the max
* clock rate as 1ms. We will allow clocks to be
* up to 10% fast and will allow a total difference
* or 30 seconds due to a route change. And this
* gives us an upperbound on the timestamp.
* timestamp <= last timestamp + max ticks
* We have to be careful here. Windows will send an
* initial timestamp of zero and then initialize it
* to a random value after the 3whs; presumably to
* avoid a DoS by having to call an expensive RNG
* during a SYN flood. Proof MS has at least one
* good security geek.
*
* - The TCP timestamp option must also echo the other
* endpoints timestamp. The timestamp echoed is the
* one carried on the earliest unacknowledged segment
* on the left edge of the sequence window. The RFC
* states that the host will reject any echoed
* timestamps that were larger than any ever sent.
* This gives us an upperbound on the TS echo.
* tescr <= largest_tsval
* - The lowerbound on the TS echo is a little more
* tricky to determine. The other endpoint's echoed
* values will not decrease. But there may be
* network conditions that re-order packets and
* cause our view of them to decrease. For now the
* only lowerbound we can safely determine is that
* the TS echo will never be less than the original
* TS. XXX There is probably a better lowerbound.
* Remove TS_MAX_CONN with better lowerbound check.
* tescr >= other original TS
*
* It is also important to note that the fastest
* timestamp clock of 1ms will wrap its 32bit space in
* 24 days. So we just disable TS checking after 24
* days of idle time. We actually must use a 12d
* connection limit until we can come up with a better
* lowerbound to the TS echo check.
*/
struct timeval delta_ts;
int ts_fudge;
/*
* PFTM_TS_DIFF is how many seconds of leeway to allow
* a host's timestamp. This can happen if the previous
* packet got delayed in transit for much longer than
* this packet.
*/
if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0) {
ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
}
/* Calculate max ticks since the last timestamp */
#define TS_MAXFREQ 1100 /* RFC max TS freq of 1Khz + 10% skew */
#define TS_MICROSECS 1000000 /* microseconds per second */
timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS / TS_MAXFREQ);
if ((src->state >= TCPS_ESTABLISHED &&
dst->state >= TCPS_ESTABLISHED) &&
(SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
(tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
/*
* Bad RFC1323 implementation or an insertion attack.
*
* - Solaris 2.6 and 2.7 are known to send another ACK
* after the FIN,FIN|ACK,ACK closing that carries
* an old timestamp.
*/
DPFPRINTF(("Timestamp failed %c%c%c%c\n",
SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
SEQ_GT(tsval, src->scrub->pfss_tsval +
tsval_from_last) ? '1' : ' ',
SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
DPFPRINTF((" tsval: %u tsecr: %u +ticks: %u "
"idle: %lus %ums\n",
tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
delta_ts.tv_usec / 1000));
DPFPRINTF((" src->tsval: %u tsecr: %u\n",
src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
DPFPRINTF((" dst->tsval: %u tsecr: %u tsval0: %u\n",
dst->scrub->pfss_tsval, dst->scrub->pfss_tsecr,
dst->scrub->pfss_tsval0));
if (pf_status.debug >= PF_DEBUG_MISC) {
pf_print_state(state);
pf_print_flags(th->th_flags);
printf("\n");
}
REASON_SET(reason, PFRES_TS);
return PF_DROP;
}
/* XXX I'd really like to require tsecr but it's optional */
} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
|| pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
src->scrub && dst->scrub &&
(src->scrub->pfss_flags & PFSS_PAWS) &&
(dst->scrub->pfss_flags & PFSS_PAWS)) {
/*
* Didn't send a timestamp. Timestamps aren't really useful
* when:
* - connection opening or closing (often not even sent).
* but we must not let an attacker to put a FIN on a
* data packet to sneak it through our ESTABLISHED check.
* - on a TCP reset. RFC suggests not even looking at TS.
* - on an empty ACK. The TS will not be echoed so it will
* probably not help keep the RTT calculation in sync and
* there isn't as much danger when the sequence numbers
* got wrapped. So some stacks don't include TS on empty
* ACKs :-(
*
* To minimize the disruption to mostly RFC1323 conformant
* stacks, we will only require timestamps on data packets.
*
* And what do ya know, we cannot require timestamps on data
* packets. There appear to be devices that do legitimate
* TCP connection hijacking. There are HTTP devices that allow
* a 3whs (with timestamps) and then buffer the HTTP request.
* If the intermediate device has the HTTP response cache, it
* will spoof the response but not bother timestamping its
* packets. So we can look for the presence of a timestamp in
* the first data packet and if there, require it in all future
* packets.
*/
if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
/*
* Hey! Someone tried to sneak a packet in. Or the
* stack changed its RFC1323 behavior?!?!
*/
if (pf_status.debug >= PF_DEBUG_MISC) {
DPFPRINTF(("Did not receive expected RFC1323 "
"timestamp\n"));
pf_print_state(state);
pf_print_flags(th->th_flags);
printf("\n");
}
REASON_SET(reason, PFRES_TS);
return PF_DROP;
}
}
/*
* We will note if a host sends his data packets with or without
* timestamps. And require all data packets to contain a timestamp
* if the first does. PAWS implicitly requires that all data packets be
* timestamped. But I think there are middle-man devices that hijack
* TCP streams immediately after the 3whs and don't timestamp their
* packets (seen in a WWW accelerator or cache).
*/
if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
(PFSS_TIMESTAMP | PFSS_DATA_TS | PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
if (got_ts) {
src->scrub->pfss_flags |= PFSS_DATA_TS;
} else {
src->scrub->pfss_flags |= PFSS_DATA_NOTS;
if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
(dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
/* Don't warn if other host rejected RFC1323 */
DPFPRINTF(("Broken RFC1323 stack did not "
"timestamp data packet. Disabled PAWS "
"security.\n"));
pf_print_state(state);
pf_print_flags(th->th_flags);
printf("\n");
}
}
}
/*
* Update PAWS values
*/
if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
(PFSS_PAWS_IDLED | PFSS_TIMESTAMP))) {
getmicrouptime(&src->scrub->pfss_last);
if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
(src->scrub->pfss_flags & PFSS_PAWS) == 0) {
src->scrub->pfss_tsval = tsval;
}
if (tsecr) {
if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
(src->scrub->pfss_flags & PFSS_PAWS) == 0) {
src->scrub->pfss_tsecr = tsecr;
}
if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
(SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
src->scrub->pfss_tsval0 == 0)) {
/* tsval0 MUST be the lowest timestamp */
src->scrub->pfss_tsval0 = tsval;
}
/* Only fully initialized after a TS gets echoed */
if ((src->scrub->pfss_flags & PFSS_PAWS) == 0) {
src->scrub->pfss_flags |= PFSS_PAWS;
}
}
}
/* I have a dream.... TCP segment reassembly.... */
return 0;
}
static __attribute__((noinline)) int
pf_normalize_tcpopt(struct pf_rule *r, int dir, struct pfi_kif *kif,
struct pf_pdesc *pd, pbuf_t *pbuf, struct tcphdr *th, int off,
int *rewrptr)
{
#pragma unused(dir, kif)
sa_family_t af = pd->af;
u_int16_t *mss;
int thoff;
int opt, cnt, optlen = 0;
int rewrite = 0;
u_char opts[MAX_TCPOPTLEN];
u_char *optp = opts;
thoff = th->th_off << 2;
cnt = thoff - sizeof(struct tcphdr);
if (cnt > 0 && !pf_pull_hdr(pbuf, off + sizeof(*th), opts, cnt,
NULL, NULL, af)) {
return PF_DROP;
}
for (; cnt > 0; cnt -= optlen, optp += optlen) {
opt = optp[0];
if (opt == TCPOPT_EOL) {
break;
}
if (opt == TCPOPT_NOP) {
optlen = 1;
} else {
if (cnt < 2) {
break;
}
optlen = optp[1];
if (optlen < 2 || optlen > cnt) {
break;
}
}
switch (opt) {
case TCPOPT_MAXSEG:
mss = (u_int16_t *)(void *)(optp + 2);
if ((ntohs(*mss)) > r->max_mss) {
/*
* <jhw@apple.com>
* Only do the TCP checksum fixup if delayed
* checksum calculation will not be performed.
*/
if (pbuf->pb_ifp ||
!(*pbuf->pb_csum_flags & CSUM_TCP)) {
th->th_sum = pf_cksum_fixup(th->th_sum,
*mss, htons(r->max_mss), 0);
}
*mss = htons(r->max_mss);
rewrite = 1;
}
break;
default:
break;
}
}
if (rewrite) {
u_short reason;
VERIFY(pbuf == pd->mp);
if (pf_lazy_makewritable(pd, pd->mp,
off + sizeof(*th) + thoff) == NULL) {
REASON_SET(&reason, PFRES_MEMORY);
if (r->log) {
PFLOG_PACKET(kif, h, pbuf, AF_INET, dir, reason,
r, 0, 0, pd);
}
return PF_DROP;
}
*rewrptr = 1;
pbuf_copy_back(pd->mp, off + sizeof(*th), thoff - sizeof(*th), opts);
}
return PF_PASS;
}