gems-kernel/source/THIRDPARTY/xnu/bsd/netinet/ip_output.c

3483 lines
92 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2000-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_output.c 8.3 (Berkeley) 1/21/94
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#define _IP_VHL
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <kern/locks.h>
#include <sys/sysctl.h>
#include <sys/mcache.h>
#include <sys/kdebug.h>
#include <machine/endian.h>
#include <pexpert/pexpert.h>
#include <mach/sdt.h>
#include <libkern/OSAtomic.h>
#include <libkern/OSByteOrder.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/ntstat.h>
#include <net/net_osdep.h>
#include <net/dlil.h>
#include <net/net_perf.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/kpi_ipfilter_var.h>
#include <netinet/in_tclass.h>
#include <netinet/udp.h>
#include <netinet6/nd6.h>
#define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
#define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
#define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
#define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
#if IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#if IPSEC_DEBUG
#include <netkey/key_debug.h>
#else
#define KEYDEBUG(lev, arg)
#endif
#endif /* IPSEC */
#if NECP
#include <net/necp.h>
#endif /* NECP */
#if DUMMYNET
#include <netinet/ip_dummynet.h>
#endif
#if PF
#include <net/pfvar.h>
#endif /* PF */
#include <net/sockaddr_utils.h>
u_short ip_id;
static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS;
static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS;
static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS;
static void ip_out_cksum_stats(int, u_int32_t);
static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
static int ip_optcopy(struct ip *, struct ip *);
static int ip_pcbopts(int, struct mbuf **, struct mbuf *);
static void imo_trace(struct ip_moptions *, int);
static void ip_mloopback(struct ifnet *, struct ifnet *, struct mbuf *,
struct sockaddr_in *, int);
static struct ifaddr *in_selectsrcif(struct ip *, struct route *, unsigned int);
extern struct ip_linklocal_stat ip_linklocal_stat;
/* temporary: for testing */
#if IPSEC
extern int ipsec_bypass;
#endif
static int force_ipsum = 0;
static int ip_maxchainsent = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, maxchainsent,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip_maxchainsent, 0,
"use dlil_output_list");
SYSCTL_INT(_net_inet_ip, OID_AUTO, force_ipsum,
CTLFLAG_RW | CTLFLAG_LOCKED, &force_ipsum, 0,
"force IP checksum");
#if DEBUG
static int forge_ce = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, forge_ce,
CTLFLAG_RW | CTLFLAG_LOCKED, &forge_ce, 0,
"Forge ECN CE");
#endif /* DEBUG */
static int ip_select_srcif_debug = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, select_srcif_debug,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip_select_srcif_debug, 0,
"log source interface selection debug info");
static int ip_output_measure = 0;
SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&ip_output_measure, 0, sysctl_reset_ip_output_stats, "I",
"Do time measurement");
static uint64_t ip_output_measure_bins = 0;
SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_bins,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_output_measure_bins, 0,
sysctl_ip_output_measure_bins, "I",
"bins for chaining performance data histogram");
static net_perf_t net_perf;
SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_data,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_ip_output_getperf, "S,net_perf",
"IP output performance data (struct net_perf, net/net_perf.h)");
__private_extern__ int rfc6864 = 1;
SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_RW | CTLFLAG_LOCKED,
&rfc6864, 0, "updated ip id field behavior");
#define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
/* For gdb */
__private_extern__ unsigned int imo_trace_hist_size = IMO_TRACE_HIST_SIZE;
struct ip_moptions_dbg {
struct ip_moptions imo; /* ip_moptions */
u_int16_t imo_refhold_cnt; /* # of IMO_ADDREF */
u_int16_t imo_refrele_cnt; /* # of IMO_REMREF */
/*
* Alloc and free callers.
*/
ctrace_t imo_alloc;
ctrace_t imo_free;
/*
* Circular lists of IMO_ADDREF and IMO_REMREF callers.
*/
ctrace_t imo_refhold[IMO_TRACE_HIST_SIZE];
ctrace_t imo_refrele[IMO_TRACE_HIST_SIZE];
};
#if DEBUG
static unsigned int imo_debug = 1; /* debugging (enabled) */
#else
static unsigned int imo_debug; /* debugging (disabled) */
#endif /* !DEBUG */
static struct zone *imo_zone; /* zone for ip_moptions */
#define IMO_ZONE_NAME "ip_moptions" /* zone name */
#if PF
__attribute__((noinline))
static int
ip_output_pf_dn_hook(struct ifnet *ifp, struct mbuf **mppn, struct mbuf **mp,
struct pf_rule *dn_pf_rule, struct route *ro, struct sockaddr_in *dst, int flags,
struct ip_out_args *ipoa)
{
int rc;
struct ip_fw_args args = {};
args.fwa_pf_rule = dn_pf_rule;
args.fwa_oif = ifp;
args.fwa_ro = ro;
args.fwa_dst = dst;
args.fwa_oflags = flags;
if (flags & IP_OUTARGS) {
args.fwa_ipoa = ipoa;
}
rc = pf_af_hook(ifp, mppn, mp, AF_INET, FALSE, &args);
return rc;
}
#endif /* PF */
/*
* IP output. The packet in mbuf chain m contains a skeletal IP
* header (with len, off, ttl, proto, tos, src, dst).
* The mbuf chain containing the packet will be freed.
* The mbuf opt, if present, will not be freed.
*/
int
ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
struct ip_moptions *imo, struct ip_out_args *ipoa)
{
return ip_output_list(m0, 0, opt, ro, flags, imo, ipoa);
}
/*
* IP output. The packet in mbuf chain m contains a skeletal IP
* header (with len, off, ttl, proto, tos, src, dst).
* The mbuf chain containing the packet will be freed.
* The mbuf opt, if present, will not be freed.
*
* Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
* skipped and ro->ro_rt would be used. Otherwise the result of route
* lookup is stored in ro->ro_rt.
*
* In the IP forwarding case, the packet will arrive with options already
* inserted, so must have a NULL opt pointer.
*/
int
ip_output_list(struct mbuf *m0, int packetchain, struct mbuf *opt,
struct route *ro, int flags, struct ip_moptions *imo,
struct ip_out_args *ipoa)
{
struct ip *ip;
struct ifnet *ifp = NULL; /* not refcnt'd */
struct mbuf *m = m0, *prevnxt = NULL, **mppn = &prevnxt;
int hlen = sizeof(struct ip);
int len = 0, error = 0;
struct sockaddr_in *dst = NULL;
struct in_ifaddr *ia = NULL, *src_ia = NULL;
struct in_addr pkt_dst;
struct ipf_pktopts *ippo = NULL;
ipfilter_t inject_filter_ref = NULL;
struct mbuf *packetlist;
uint32_t sw_csum, pktcnt = 0, scnt = 0, bytecnt = 0;
uint32_t packets_processed = 0;
unsigned int ifscope = IFSCOPE_NONE;
struct flowadv *adv = NULL;
struct timeval start_tv;
#if IPSEC
struct socket *so = NULL;
struct secpolicy *sp = NULL;
#endif /* IPSEC */
#if NECP
necp_kernel_policy_result necp_result = 0;
necp_kernel_policy_result_parameter necp_result_parameter;
necp_kernel_policy_id necp_matched_policy_id = 0;
#endif /* NECP */
#if DUMMYNET
struct m_tag *tag;
struct ip_out_args saved_ipoa;
struct sockaddr_in dst_buf;
#endif /* DUMMYNET */
struct {
#if IPSEC
struct ipsec_output_state ipsec_state;
#endif /* IPSEC */
#if NECP
struct route necp_route;
#endif /* NECP */
#if DUMMYNET
struct route saved_route;
#endif /* DUMMYNET */
struct ipf_pktopts ipf_pktopts;
} ipobz;
#define ipsec_state ipobz.ipsec_state
#define necp_route ipobz.necp_route
#define sro_fwd ipobz.sro_fwd
#define saved_route ipobz.saved_route
#define ipf_pktopts ipobz.ipf_pktopts
union {
struct {
boolean_t select_srcif : 1; /* set once */
boolean_t srcbound : 1; /* set once */
boolean_t nocell : 1; /* set once */
boolean_t isbroadcast : 1;
boolean_t didfilter : 1;
boolean_t noexpensive : 1; /* set once */
boolean_t noconstrained : 1; /* set once */
boolean_t awdl_unrestricted : 1; /* set once */
boolean_t management_allowed : 1; /* set once */
};
uint32_t raw;
} ipobf = { .raw = 0 };
int interface_mtu = 0;
struct pf_rule *dn_pf_rule = NULL;
/*
* Here we check for restrictions when sending frames.
* N.B.: IPv4 over internal co-processor interfaces is not allowed.
*/
#define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \
(((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \
((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \
((_ipobf).noconstrained && IFNET_IS_CONSTRAINED(_ifp)) || \
(IFNET_IS_INTCOPROC(_ifp)) || \
(!(_ipobf).management_allowed && IFNET_IS_MANAGEMENT(_ifp)) || \
(!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp)))
if (ip_output_measure) {
net_perf_start_time(&net_perf, &start_tv);
}
KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
VERIFY(m0->m_flags & M_PKTHDR);
packetlist = m0;
/* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
bzero(&ipobz, sizeof(ipobz));
ippo = &ipf_pktopts;
#if DUMMYNET
if (SLIST_EMPTY(&m0->m_pkthdr.tags)) {
goto ipfw_tags_done;
}
/* Grab info from mtags prepended to the chain */
if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID,
KERNEL_TAG_TYPE_DUMMYNET)) != NULL) {
struct dn_pkt_tag *dn_tag;
dn_tag = (struct dn_pkt_tag *)(tag->m_tag_data);
dn_pf_rule = dn_tag->dn_pf_rule;
opt = NULL;
saved_route = dn_tag->dn_ro;
ro = &saved_route;
imo = NULL;
SOCKADDR_COPY(&dn_tag->dn_dst, &dst_buf, sizeof(dst_buf));
dst = &dst_buf;
ifp = dn_tag->dn_ifp;
flags = dn_tag->dn_flags;
if ((dn_tag->dn_flags & IP_OUTARGS)) {
saved_ipoa = dn_tag->dn_ipoa;
ipoa = &saved_ipoa;
}
m_tag_delete(m0, tag);
}
ipfw_tags_done:
#endif /* DUMMYNET */
m = m0;
m->m_pkthdr.pkt_flags &= ~(PKTF_LOOP | PKTF_IFAINFO);
#if IPSEC
if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
/* If packet is bound to an interface, check bound policies */
if ((flags & IP_OUTARGS) && (ipoa != NULL) &&
(ipoa->ipoa_flags & IPOAF_BOUND_IF) &&
ipoa->ipoa_boundif != IFSCOPE_NONE) {
if (ipsec4_getpolicybyinterface(m, IPSEC_DIR_OUTBOUND,
&flags, ipoa, &sp) != 0) {
goto bad;
}
}
}
#endif /* IPSEC */
VERIFY(ro != NULL);
if (flags & IP_OUTARGS) {
/*
* In the forwarding case, only the ifscope value is used,
* as source interface selection doesn't take place.
*/
if ((ipobf.select_srcif = (!(flags & IP_FORWARDING) &&
(ipoa->ipoa_flags & IPOAF_SELECT_SRCIF)))) {
ipf_pktopts.ippo_flags |= IPPOF_SELECT_SRCIF;
}
if ((ipoa->ipoa_flags & IPOAF_BOUND_IF) &&
ipoa->ipoa_boundif != IFSCOPE_NONE) {
ifscope = ipoa->ipoa_boundif;
ipf_pktopts.ippo_flags |=
(IPPOF_BOUND_IF | (ifscope << IPPOF_SHIFT_IFSCOPE));
}
/* double negation needed for bool bit field */
ipobf.srcbound = !!(ipoa->ipoa_flags & IPOAF_BOUND_SRCADDR);
if (ipobf.srcbound) {
ipf_pktopts.ippo_flags |= IPPOF_BOUND_SRCADDR;
}
} else {
ipobf.select_srcif = FALSE;
ipobf.srcbound = FALSE;
ifscope = IFSCOPE_NONE;
if (flags & IP_OUTARGS) {
ipoa->ipoa_boundif = IFSCOPE_NONE;
ipoa->ipoa_flags &= ~(IPOAF_SELECT_SRCIF |
IPOAF_BOUND_IF | IPOAF_BOUND_SRCADDR);
}
}
if (flags & IP_OUTARGS) {
if (ipoa->ipoa_flags & IPOAF_NO_CELLULAR) {
ipobf.nocell = true;
ipf_pktopts.ippo_flags |= IPPOF_NO_IFT_CELLULAR;
}
if (ipoa->ipoa_flags & IPOAF_NO_EXPENSIVE) {
ipobf.noexpensive = true;
ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_EXPENSIVE;
}
if (ipoa->ipoa_flags & IPOAF_NO_CONSTRAINED) {
ipobf.noconstrained = true;
ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_CONSTRAINED;
}
if (ipoa->ipoa_flags & IPOAF_AWDL_UNRESTRICTED) {
ipobf.awdl_unrestricted = true;
}
if (ipoa->ipoa_flags & IPOAF_MANAGEMENT_ALLOWED) {
ipobf.management_allowed = true;
}
adv = &ipoa->ipoa_flowadv;
adv->code = FADV_SUCCESS;
ipoa->ipoa_flags &= ~IPOAF_RET_MASK;
}
#if IPSEC
if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
so = ipsec_getsocket(m);
if (so != NULL) {
(void) ipsec_setsocket(m, NULL);
}
}
#endif /* IPSEC */
#if DUMMYNET
if (dn_pf_rule != NULL) {
/* dummynet already saw us */
ip = mtod(m, struct ip *);
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
pkt_dst = ip->ip_dst;
if (ro->ro_rt != NULL) {
RT_LOCK_SPIN(ro->ro_rt);
ia = (struct in_ifaddr *)ro->ro_rt->rt_ifa;
if (ia) {
/* Become a regular mutex */
RT_CONVERT_LOCK(ro->ro_rt);
ifa_addref(&ia->ia_ifa);
}
RT_UNLOCK(ro->ro_rt);
}
goto sendit;
}
#endif /* DUMMYNET */
loopit:
packets_processed++;
ipobf.isbroadcast = FALSE;
ipobf.didfilter = FALSE;
VERIFY(m->m_flags & M_PKTHDR);
/*
* No need to proccess packet twice if we've already seen it.
*/
if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
inject_filter_ref = ipf_get_inject_filter(m);
} else {
inject_filter_ref = NULL;
}
if (opt) {
m = ip_insertoptions(m, opt, &len);
hlen = len;
/* Update the chain */
if (m != m0) {
if (m0 == packetlist) {
packetlist = m;
}
m0 = m;
}
}
ip = mtod(m, struct ip *);
pkt_dst = ip->ip_dst;
/*
* We must not send if the packet is destined to network zero.
* RFC1122 3.2.1.3 (a) and (b).
*/
if (IN_ZERONET(ntohl(pkt_dst.s_addr))) {
error = EHOSTUNREACH;
goto bad;
}
/*
* Fill in IP header.
*/
if (!(flags & (IP_FORWARDING | IP_RAWOUTPUT))) {
ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
ip->ip_off &= IP_DF;
if (rfc6864 && IP_OFF_IS_ATOMIC(ip->ip_off)) {
// Per RFC6864, value of ip_id is undefined for atomic ip packets
ip->ip_id = 0;
} else {
ip->ip_id = ip_randomid((uint64_t)m);
}
OSAddAtomic(1, &ipstat.ips_localout);
} else {
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
}
#if DEBUG
/* For debugging, we let the stack forge congestion */
if (forge_ce != 0 &&
((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1 ||
(ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT0)) {
ip->ip_tos = (ip->ip_tos & ~IPTOS_ECN_MASK) | IPTOS_ECN_CE;
forge_ce--;
}
#endif /* DEBUG */
if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1) {
m->m_pkthdr.pkt_ext_flags |= PKTF_EXT_L4S;
}
KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
ip->ip_p, ip->ip_off, ip->ip_len);
dst = SIN(&ro->ro_dst);
/*
* If there is a cached route,
* check that it is to the same destination
* and is still up. If not, free it and try again.
* The address family should also be checked in case of sharing the
* cache with IPv6.
*/
if (ro->ro_rt != NULL) {
if (ROUTE_UNUSABLE(ro) && ip->ip_src.s_addr != INADDR_ANY &&
!(flags & (IP_ROUTETOIF | IP_FORWARDING))) {
src_ia = ifa_foraddr(ip->ip_src.s_addr);
if (src_ia == NULL) {
error = EADDRNOTAVAIL;
goto bad;
}
ifa_remref(&src_ia->ia_ifa);
src_ia = NULL;
}
/*
* Test rt_flags without holding rt_lock for performance
* reasons; if the route is down it will hopefully be
* caught by the layer below (since it uses this route
* as a hint) or during the next transmit.
*/
if (ROUTE_UNUSABLE(ro) || dst->sin_family != AF_INET ||
dst->sin_addr.s_addr != pkt_dst.s_addr) {
ROUTE_RELEASE(ro);
}
/*
* If we're doing source interface selection, we may not
* want to use this route; only synch up the generation
* count otherwise.
*/
if (!ipobf.select_srcif && ro->ro_rt != NULL &&
RT_GENID_OUTOFSYNC(ro->ro_rt)) {
RT_GENID_SYNC(ro->ro_rt);
}
}
if (ro->ro_rt == NULL) {
SOCKADDR_ZERO(dst, sizeof(*dst));
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = pkt_dst;
}
/*
* If routing to interface only,
* short circuit routing lookup.
*/
if (flags & IP_ROUTETOIF) {
if (ia != NULL) {
ifa_remref(&ia->ia_ifa);
}
if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
ia = ifatoia(ifa_ifwithnet(sintosa(dst)));
if (ia == NULL) {
OSAddAtomic(1, &ipstat.ips_noroute);
error = ENETUNREACH;
/* XXX IPv6 APN fallback notification?? */
goto bad;
}
}
ifp = ia->ia_ifp;
ip->ip_ttl = 1;
ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp);
/*
* For consistency with other cases below. Loopback
* multicast case is handled separately by ip_mloopback().
*/
if ((ifp->if_flags & IFF_LOOPBACK) &&
!IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
m->m_pkthdr.rcvif = ifp;
ip_setsrcifaddr_info(m, ifp->if_index, NULL);
ip_setdstifaddr_info(m, ifp->if_index, NULL);
}
} else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
imo != NULL && (ifp = imo->imo_multicast_ifp) != NULL) {
/*
* Bypass the normal routing lookup for multicast
* packets if the interface is specified.
*/
ipobf.isbroadcast = FALSE;
if (ia != NULL) {
ifa_remref(&ia->ia_ifa);
}
/* Macro takes reference on ia */
IFP_TO_IA(ifp, ia);
} else {
struct ifaddr *ia0 = NULL;
boolean_t cloneok = FALSE;
/*
* Perform source interface selection; the source IP address
* must belong to one of the addresses of the interface used
* by the route. For performance reasons, do this only if
* there is no route, or if the routing table has changed,
* or if we haven't done source interface selection on this
* route (for this PCB instance) before.
*/
if (ipobf.select_srcif &&
ip->ip_src.s_addr != INADDR_ANY && (ROUTE_UNUSABLE(ro) ||
!(ro->ro_flags & ROF_SRCIF_SELECTED))) {
/* Find the source interface */
ia0 = in_selectsrcif(ip, ro, ifscope);
/*
* If the source address belongs to a restricted
* interface and the caller forbids our using
* interfaces of such type, pretend that there is no
* route.
*/
if (ia0 != NULL &&
IP_CHECK_RESTRICTIONS(ia0->ifa_ifp, ipobf)) {
ifa_remref(ia0);
ia0 = NULL;
error = EHOSTUNREACH;
if (flags & IP_OUTARGS) {
ipoa->ipoa_flags |= IPOAF_R_IFDENIED;
}
goto bad;
}
/*
* If the source address is spoofed (in the case of
* IP_RAWOUTPUT on an unbounded socket), or if this
* is destined for local/loopback, just let it go out
* using the interface of the route. Otherwise,
* there's no interface having such an address,
* so bail out.
*/
if (ia0 == NULL && (!(flags & IP_RAWOUTPUT) ||
ipobf.srcbound) && ifscope != lo_ifp->if_index) {
error = EADDRNOTAVAIL;
goto bad;
}
/*
* If the caller didn't explicitly specify the scope,
* pick it up from the source interface. If the cached
* route was wrong and was blown away as part of source
* interface selection, don't mask out RTF_PRCLONING
* since that route may have been allocated by the ULP,
* unless the IP header was created by the caller or
* the destination is IPv4 LLA. The check for the
* latter is needed because IPv4 LLAs are never scoped
* in the current implementation, and we don't want to
* replace the resolved IPv4 LLA route with one whose
* gateway points to that of the default gateway on
* the primary interface of the system.
*/
if (ia0 != NULL) {
if (ifscope == IFSCOPE_NONE) {
ifscope = ia0->ifa_ifp->if_index;
}
cloneok = (!(flags & IP_RAWOUTPUT) &&
!(IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))));
}
}
/*
* If this is the case, we probably don't want to allocate
* a protocol-cloned route since we didn't get one from the
* ULP. This lets TCP do its thing, while not burdening
* forwarding or ICMP with the overhead of cloning a route.
* Of course, we still want to do any cloning requested by
* the link layer, as this is probably required in all cases
* for correct operation (as it is for ARP).
*/
if (ro->ro_rt == NULL) {
uint32_t ign = RTF_PRCLONING;
/*
* We make an exception here: if the destination
* address is INADDR_BROADCAST, allocate a protocol-
* cloned host route so that we end up with a route
* marked with the RTF_BROADCAST flag. Otherwise,
* we would end up referring to the default route,
* instead of creating a cloned host route entry.
* That would introduce inconsistencies between ULPs
* that allocate a route and those that don't. The
* RTF_BROADCAST route is important since we'd want
* to send out undirected IP broadcast packets using
* link-level broadcast address. Another exception
* is for ULP-created routes that got blown away by
* source interface selection (see above).
*
* These exceptions will no longer be necessary when
* the RTF_PRCLONING scheme is no longer present.
*/
if (cloneok || dst->sin_addr.s_addr == INADDR_BROADCAST) {
ign &= ~RTF_PRCLONING;
}
/*
* Loosen the route lookup criteria if the ifscope
* corresponds to the loopback interface; this is
* needed to support Application Layer Gateways
* listening on loopback, in conjunction with packet
* filter redirection rules. The final source IP
* address will be rewritten by the packet filter
* prior to the RFC1122 loopback check below.
*/
if (ifscope == lo_ifp->if_index) {
rtalloc_ign(ro, ign);
} else {
rtalloc_scoped_ign(ro, ign, ifscope);
}
/*
* If the route points to a cellular/expensive interface
* and the caller forbids our using interfaces of such type,
* pretend that there is no route.
*/
if (ro->ro_rt != NULL) {
RT_LOCK_SPIN(ro->ro_rt);
if (IP_CHECK_RESTRICTIONS(ro->ro_rt->rt_ifp,
ipobf)) {
RT_UNLOCK(ro->ro_rt);
ROUTE_RELEASE(ro);
if (flags & IP_OUTARGS) {
ipoa->ipoa_flags |=
IPOAF_R_IFDENIED;
}
} else {
RT_UNLOCK(ro->ro_rt);
}
}
}
if (ro->ro_rt == NULL) {
OSAddAtomic(1, &ipstat.ips_noroute);
error = EHOSTUNREACH;
if (ia0 != NULL) {
ifa_remref(ia0);
ia0 = NULL;
}
goto bad;
}
if (ia != NULL) {
ifa_remref(&ia->ia_ifa);
}
RT_LOCK_SPIN(ro->ro_rt);
ia = ifatoia(ro->ro_rt->rt_ifa);
if (ia != NULL) {
/* Become a regular mutex */
RT_CONVERT_LOCK(ro->ro_rt);
ifa_addref(&ia->ia_ifa);
}
/*
* Note: ia_ifp may not be the same as rt_ifp; the latter
* is what we use for determining outbound i/f, mtu, etc.
*/
ifp = ro->ro_rt->rt_ifp;
ro->ro_rt->rt_use++;
if (ro->ro_rt->rt_flags & RTF_GATEWAY) {
dst = SIN(ro->ro_rt->rt_gateway);
}
if (ro->ro_rt->rt_flags & RTF_HOST) {
/* double negation needed for bool bit field */
ipobf.isbroadcast =
!!(ro->ro_rt->rt_flags & RTF_BROADCAST);
} else {
/* Become a regular mutex */
RT_CONVERT_LOCK(ro->ro_rt);
ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp);
}
/*
* For consistency with IPv6, as well as to ensure that
* IP_RECVIF is set correctly for packets that are sent
* to one of the local addresses. ia (rt_ifa) would have
* been fixed up by rt_setif for local routes. This
* would make it appear as if the packet arrives on the
* interface which owns the local address. Loopback
* multicast case is handled separately by ip_mloopback().
*/
if (ia != NULL && (ifp->if_flags & IFF_LOOPBACK) &&
!IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
uint16_t srcidx;
m->m_pkthdr.rcvif = ia->ia_ifa.ifa_ifp;
if (ia0 != NULL) {
srcidx = ia0->ifa_ifp->if_index;
} else if ((ro->ro_flags & ROF_SRCIF_SELECTED) &&
ro->ro_srcia != NULL) {
srcidx = ro->ro_srcia->ifa_ifp->if_index;
} else {
srcidx = 0;
}
ip_setsrcifaddr_info(m, srcidx, NULL);
ip_setdstifaddr_info(m, 0, ia);
}
RT_UNLOCK(ro->ro_rt);
if (ia0 != NULL) {
ifa_remref(ia0);
ia0 = NULL;
}
}
if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
struct ifnet *srcifp = NULL;
struct in_multi *inm;
u_int32_t vif = 0;
u_int8_t ttl = IP_DEFAULT_MULTICAST_TTL;
u_int8_t loop = IP_DEFAULT_MULTICAST_LOOP;
m->m_flags |= M_MCAST;
/*
* IP destination address is multicast. Make sure "dst"
* still points to the address in "ro". (It may have been
* changed to point to a gateway address, above.)
*/
dst = SIN(&ro->ro_dst);
/*
* See if the caller provided any multicast options
*/
if (imo != NULL) {
IMO_LOCK(imo);
vif = imo->imo_multicast_vif;
ttl = imo->imo_multicast_ttl;
loop = imo->imo_multicast_loop;
if (!(flags & IP_RAWOUTPUT)) {
ip->ip_ttl = ttl;
}
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
}
IMO_UNLOCK(imo);
} else if (!(flags & IP_RAWOUTPUT)) {
vif = -1;
ip->ip_ttl = ttl;
}
/*
* Confirm that the outgoing interface supports multicast.
*/
if (imo == NULL || vif == -1) {
if (!(ifp->if_flags & IFF_MULTICAST)) {
OSAddAtomic(1, &ipstat.ips_noroute);
error = ENETUNREACH;
goto bad;
}
}
/*
* If source address not specified yet, use address
* of outgoing interface.
*/
if (ip->ip_src.s_addr == INADDR_ANY) {
struct in_ifaddr *ia1;
lck_rw_lock_shared(&in_ifaddr_rwlock);
TAILQ_FOREACH(ia1, &in_ifaddrhead, ia_link) {
IFA_LOCK_SPIN(&ia1->ia_ifa);
if (ia1->ia_ifp == ifp) {
ip->ip_src = IA_SIN(ia1)->sin_addr;
srcifp = ifp;
IFA_UNLOCK(&ia1->ia_ifa);
break;
}
IFA_UNLOCK(&ia1->ia_ifa);
}
lck_rw_done(&in_ifaddr_rwlock);
if (ip->ip_src.s_addr == INADDR_ANY) {
error = ENETUNREACH;
goto bad;
}
}
in_multihead_lock_shared();
IN_LOOKUP_MULTI(&pkt_dst, ifp, inm);
in_multihead_lock_done();
if (inm != NULL && (imo == NULL || loop)) {
/*
* If we belong to the destination multicast group
* on the outgoing interface, and the caller did not
* forbid loopback, loop back a copy.
*/
if (!TAILQ_EMPTY(&ipv4_filters)
#if NECP
&& !necp_packet_should_skip_filters(m)
#endif // NECP
) {
struct ipfilter *filter;
int seen = (inject_filter_ref == NULL);
if (imo != NULL) {
ipf_pktopts.ippo_flags |=
IPPOF_MCAST_OPTS;
ipf_pktopts.ippo_mcast_ifnet = ifp;
ipf_pktopts.ippo_mcast_ttl = ttl;
ipf_pktopts.ippo_mcast_loop = loop;
}
ipf_ref();
/*
* 4135317 - always pass network byte
* order to filter
*/
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_len);
HTONS(ip->ip_off);
#endif
TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
if (seen == 0) {
if ((struct ipfilter *)
inject_filter_ref == filter) {
seen = 1;
}
} else if (filter->ipf_filter.
ipf_output != NULL) {
errno_t result;
result = filter->ipf_filter.
ipf_output(filter->
ipf_filter.cookie,
(mbuf_t *)&m, ippo);
if (result == EJUSTRETURN) {
ipf_unref();
INM_REMREF(inm);
goto done;
}
if (result != 0) {
ipf_unref();
INM_REMREF(inm);
goto bad;
}
}
}
/* set back to host byte order */
ip = mtod(m, struct ip *);
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(ip->ip_len);
NTOHS(ip->ip_off);
#endif
ipf_unref();
ipobf.didfilter = true;
}
ip_mloopback(srcifp, ifp, m, dst, hlen);
}
if (inm != NULL) {
INM_REMREF(inm);
}
/*
* Multicasts with a time-to-live of zero may be looped-
* back, above, but must not be transmitted on a network.
* Also, multicasts addressed to the loopback interface
* are not sent -- the above call to ip_mloopback() will
* loop back a copy if this host actually belongs to the
* destination group on the loopback interface.
*/
if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
m_freem(m);
goto done;
}
goto sendit;
}
/*
* If source address not specified yet, use address
* of outgoing interface.
*/
if (ip->ip_src.s_addr == INADDR_ANY) {
IFA_LOCK_SPIN(&ia->ia_ifa);
ip->ip_src = IA_SIN(ia)->sin_addr;
IFA_UNLOCK(&ia->ia_ifa);
}
/*
* Look for broadcast address and
* and verify user is allowed to send
* such a packet.
*/
if (ipobf.isbroadcast) {
if (!(ifp->if_flags & IFF_BROADCAST)) {
error = EADDRNOTAVAIL;
goto bad;
}
if (!(flags & IP_ALLOWBROADCAST)) {
error = EACCES;
goto bad;
}
/* don't allow broadcast messages to be fragmented */
if ((u_short)ip->ip_len > ifp->if_mtu) {
error = EMSGSIZE;
goto bad;
}
m->m_flags |= M_BCAST;
} else {
m->m_flags &= ~M_BCAST;
}
sendit:
#if PF
/* Invoke outbound packet filter */
if (PF_IS_ENABLED) {
int rc;
m0 = m; /* Save for later */
#if DUMMYNET
rc = ip_output_pf_dn_hook(ifp, mppn, &m, dn_pf_rule, ro, dst, flags, ipoa);
#else /* DUMMYNET */
rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, NULL);
#endif /* DUMMYNET */
if (rc != 0 || m == NULL) {
/* Move to the next packet */
m = *mppn;
/* Skip ahead if first packet in list got dropped */
if (packetlist == m0) {
packetlist = m;
}
if (m != NULL) {
m0 = m;
/* Next packet in the chain */
goto loopit;
} else if (packetlist != NULL) {
/* No more packet; send down the chain */
goto sendchain;
}
/* Nothing left; we're done */
goto done;
}
m0 = m;
ip = mtod(m, struct ip *);
pkt_dst = ip->ip_dst;
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
}
#endif /* PF */
/*
* Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
*/
if (IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)) ||
IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
ip_linklocal_stat.iplls_out_total++;
if (ip->ip_ttl != MAXTTL) {
ip_linklocal_stat.iplls_out_badttl++;
ip->ip_ttl = MAXTTL;
}
}
if (!ipobf.didfilter &&
!TAILQ_EMPTY(&ipv4_filters)
#if NECP
&& !necp_packet_should_skip_filters(m)
#endif // NECP
) {
struct ipfilter *filter;
int seen = (inject_filter_ref == NULL);
ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS;
/*
* Check that a TSO frame isn't passed to a filter.
* This could happen if a filter is inserted while
* TCP is sending the TSO packet.
*/
if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) {
error = EMSGSIZE;
goto bad;
}
ipf_ref();
/* 4135317 - always pass network byte order to filter */
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_len);
HTONS(ip->ip_off);
#endif
TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
if (seen == 0) {
if ((struct ipfilter *)inject_filter_ref ==
filter) {
seen = 1;
}
} else if (filter->ipf_filter.ipf_output) {
errno_t result;
result = filter->ipf_filter.
ipf_output(filter->ipf_filter.cookie,
(mbuf_t *)&m, ippo);
if (result == EJUSTRETURN) {
ipf_unref();
goto done;
}
if (result != 0) {
ipf_unref();
goto bad;
}
}
}
/* set back to host byte order */
ip = mtod(m, struct ip *);
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(ip->ip_len);
NTOHS(ip->ip_off);
#endif
ipf_unref();
}
#if NECP
/* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */
necp_matched_policy_id = necp_ip_output_find_policy_match(m,
flags, (flags & IP_OUTARGS) ? ipoa : NULL, ro ? ro->ro_rt : NULL, &necp_result, &necp_result_parameter);
if (necp_matched_policy_id) {
necp_mark_packet_from_ip(m, necp_matched_policy_id);
switch (necp_result) {
case NECP_KERNEL_POLICY_RESULT_PASS:
if (necp_result_parameter.pass_flags & NECP_KERNEL_POLICY_PASS_NO_SKIP_IPSEC) {
break;
}
/* Check if the interface is allowed */
if (!necp_packet_is_allowed_over_interface(m, ifp)) {
error = EHOSTUNREACH;
OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
goto bad;
}
goto skip_ipsec;
case NECP_KERNEL_POLICY_RESULT_DROP:
case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT:
/* Flow divert packets should be blocked at the IP layer */
error = EHOSTUNREACH;
OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
goto bad;
case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL: {
/* Verify that the packet is being routed to the tunnel */
struct ifnet *policy_ifp = necp_get_ifnet_from_result_parameter(&necp_result_parameter);
if (policy_ifp == ifp) {
/* Check if the interface is allowed */
if (!necp_packet_is_allowed_over_interface(m, ifp)) {
error = EHOSTUNREACH;
OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
goto bad;
}
goto skip_ipsec;
} else {
if (necp_packet_can_rebind_to_ifnet(m, policy_ifp, &necp_route, AF_INET)) {
/* Check if the interface is allowed */
if (!necp_packet_is_allowed_over_interface(m, policy_ifp)) {
error = EHOSTUNREACH;
OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
goto bad;
}
/*
* Update the QOS marking policy if
* 1. up layer asks it to do so
* 2. net_qos_policy_restricted is not set
* 3. qos_marking_gencount doesn't match necp_kernel_socket_policies_gencount (checked in necp_lookup_current_qos_marking)
*/
if (ipoa != NULL &&
(ipoa->ipoa_flags & IPOAF_REDO_QOSMARKING_POLICY) &&
net_qos_policy_restricted != 0) {
bool qos_marking = (ipoa->ipoa_flags & IPOAF_QOSMARKING_ALLOWED) ? TRUE : FALSE;
qos_marking = necp_lookup_current_qos_marking(&ipoa->qos_marking_gencount, NULL, policy_ifp, necp_result_parameter.route_rule_id, qos_marking);
if (qos_marking) {
ipoa->ipoa_flags |= IPOAF_QOSMARKING_ALLOWED;
} else {
ipoa->ipoa_flags &= ~IPOAF_QOSMARKING_ALLOWED;
}
}
/* Set ifp to the tunnel interface, since it is compatible with the packet */
ifp = policy_ifp;
ro = &necp_route;
goto skip_ipsec;
} else {
error = ENETUNREACH;
OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
goto bad;
}
}
}
default:
break;
}
}
/* Catch-all to check if the interface is allowed */
if (!necp_packet_is_allowed_over_interface(m, ifp)) {
error = EHOSTUNREACH;
OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
goto bad;
}
#endif /* NECP */
#if IPSEC
if (ipsec_bypass != 0 || (flags & IP_NOIPSEC)) {
goto skip_ipsec;
}
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
if (sp == NULL) {
/* get SP for this packet */
if (so != NULL) {
sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND,
so, &error);
} else {
sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
flags, &error);
}
if (sp == NULL) {
IPSEC_STAT_INCREMENT(ipsecstat.out_inval);
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
0, 0, 0, 0, 0);
goto bad;
}
}
error = 0;
/* check policy */
switch (sp->policy) {
case IPSEC_POLICY_DISCARD:
case IPSEC_POLICY_GENERATE:
/*
* This packet is just discarded.
*/
IPSEC_STAT_INCREMENT(ipsecstat.out_polvio);
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1, 0, 0, 0, 0);
goto bad;
case IPSEC_POLICY_BYPASS:
case IPSEC_POLICY_NONE:
/* no need to do IPsec. */
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
2, 0, 0, 0, 0);
goto skip_ipsec;
case IPSEC_POLICY_IPSEC:
if (sp->req == NULL) {
/* acquire a policy */
error = key_spdacquire(sp);
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
3, 0, 0, 0, 0);
goto bad;
}
if (sp->ipsec_if) {
/* Verify the redirect to ipsec interface */
if (sp->ipsec_if == ifp) {
goto skip_ipsec;
}
goto bad;
}
break;
case IPSEC_POLICY_ENTRUST:
default:
printf("ip_output: Invalid policy found. %d\n", sp->policy);
}
{
ipsec_state.m = m;
if (flags & IP_ROUTETOIF) {
bzero(&ipsec_state.ro, sizeof(ipsec_state.ro));
} else {
route_copyout((struct route *)&ipsec_state.ro, ro, sizeof(struct route));
}
ipsec_state.dst = SA(dst);
ip->ip_sum = 0;
/*
* XXX
* delayed checksums are not currently compatible with IPsec
*/
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
in_delayed_cksum(m);
}
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_len);
HTONS(ip->ip_off);
#endif
DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL,
struct ip *, ip, struct ifnet *, ifp,
struct ip *, ip, struct ip6_hdr *, NULL);
error = ipsec4_output(&ipsec_state, sp, flags);
if (ipsec_state.tunneled == 6) {
m0 = m = NULL;
error = 0;
goto bad;
}
m0 = m = ipsec_state.m;
#if DUMMYNET
/*
* If we're about to use the route in ipsec_state
* and this came from dummynet, cleaup now.
*/
if (ro == &saved_route &&
(!(flags & IP_ROUTETOIF) || ipsec_state.tunneled)) {
ROUTE_RELEASE(ro);
}
#endif /* DUMMYNET */
if (flags & IP_ROUTETOIF) {
/*
* if we have tunnel mode SA, we may need to ignore
* IP_ROUTETOIF.
*/
if (ipsec_state.tunneled) {
flags &= ~IP_ROUTETOIF;
ro = (struct route *)&ipsec_state.ro;
}
} else {
ro = (struct route *)&ipsec_state.ro;
}
dst = SIN(ipsec_state.dst);
if (error) {
/* mbuf is already reclaimed in ipsec4_output. */
m0 = NULL;
switch (error) {
case EHOSTUNREACH:
case ENETUNREACH:
case EMSGSIZE:
case ENOBUFS:
case ENOMEM:
break;
default:
printf("ip4_output (ipsec): error code %d\n", error);
OS_FALLTHROUGH;
case ENOENT:
/* don't show these error codes to the user */
error = 0;
break;
}
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
4, 0, 0, 0, 0);
goto bad;
}
}
/* be sure to update variables that are affected by ipsec4_output() */
ip = mtod(m, struct ip *);
#ifdef _IP_VHL
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
#else /* !_IP_VHL */
hlen = ip->ip_hl << 2;
#endif /* !_IP_VHL */
/* Check that there wasn't a route change and src is still valid */
if (ROUTE_UNUSABLE(ro)) {
ROUTE_RELEASE(ro);
VERIFY(src_ia == NULL);
if (ip->ip_src.s_addr != INADDR_ANY &&
!(flags & (IP_ROUTETOIF | IP_FORWARDING)) &&
(src_ia = ifa_foraddr(ip->ip_src.s_addr)) == NULL) {
error = EADDRNOTAVAIL;
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
5, 0, 0, 0, 0);
goto bad;
}
if (src_ia != NULL) {
ifa_remref(&src_ia->ia_ifa);
src_ia = NULL;
}
}
if (ro->ro_rt == NULL) {
if (!(flags & IP_ROUTETOIF)) {
printf("%s: can't update route after "
"IPsec processing\n", __func__);
error = EHOSTUNREACH; /* XXX */
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
6, 0, 0, 0, 0);
goto bad;
}
} else {
if (ia != NULL) {
ifa_remref(&ia->ia_ifa);
}
RT_LOCK_SPIN(ro->ro_rt);
ia = ifatoia(ro->ro_rt->rt_ifa);
if (ia != NULL) {
/* Become a regular mutex */
RT_CONVERT_LOCK(ro->ro_rt);
ifa_addref(&ia->ia_ifa);
}
ifp = ro->ro_rt->rt_ifp;
RT_UNLOCK(ro->ro_rt);
}
/* make it flipped, again. */
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(ip->ip_len);
NTOHS(ip->ip_off);
#endif
KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
7, 0xff, 0xff, 0xff, 0xff);
/* Pass to filters again */
if (!TAILQ_EMPTY(&ipv4_filters)
#if NECP
&& !necp_packet_should_skip_filters(m)
#endif // NECP
) {
struct ipfilter *filter;
ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS;
/*
* Check that a TSO frame isn't passed to a filter.
* This could happen if a filter is inserted while
* TCP is sending the TSO packet.
*/
if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) {
error = EMSGSIZE;
goto bad;
}
ipf_ref();
/* 4135317 - always pass network byte order to filter */
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_len);
HTONS(ip->ip_off);
#endif
TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
if (filter->ipf_filter.ipf_output) {
errno_t result;
result = filter->ipf_filter.
ipf_output(filter->ipf_filter.cookie,
(mbuf_t *)&m, ippo);
if (result == EJUSTRETURN) {
ipf_unref();
goto done;
}
if (result != 0) {
ipf_unref();
goto bad;
}
}
}
/* set back to host byte order */
ip = mtod(m, struct ip *);
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(ip->ip_len);
NTOHS(ip->ip_off);
#endif
ipf_unref();
}
skip_ipsec:
#endif /* IPSEC */
/* 127/8 must not appear on wire - RFC1122 */
if (!(ifp->if_flags & IFF_LOOPBACK) &&
((ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
(ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) {
OSAddAtomic(1, &ipstat.ips_badaddr);
error = EADDRNOTAVAIL;
goto bad;
}
if (ipoa != NULL) {
u_int8_t dscp = ip->ip_tos >> IPTOS_DSCP_SHIFT;
error = set_packet_qos(m, ifp,
ipoa->ipoa_flags & IPOAF_QOSMARKING_ALLOWED ? TRUE : FALSE,
ipoa->ipoa_sotc, ipoa->ipoa_netsvctype, &dscp);
if (error == 0) {
ip->ip_tos &= IPTOS_ECN_MASK;
ip->ip_tos |= (u_char)(dscp << IPTOS_DSCP_SHIFT);
} else {
printf("%s if_dscp_for_mbuf() error %d\n", __func__, error);
error = 0;
}
}
ip_output_checksum(ifp, m, (IP_VHL_HL(ip->ip_vhl) << 2),
ip->ip_len, &sw_csum);
interface_mtu = ifp->if_mtu;
if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
interface_mtu = IN6_LINKMTU(ifp);
/* Further adjust the size for CLAT46 expansion */
interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
}
/*
* If small enough for interface, or the interface will take
* care of the fragmentation for us, can just send directly.
*/
if ((u_short)ip->ip_len <= interface_mtu || TSO_IPV4_OK(ifp, m) ||
(!(ip->ip_off & IP_DF) && (ifp->if_hwassist & CSUM_FRAGMENT))) {
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_len);
HTONS(ip->ip_off);
#endif
ip->ip_sum = 0;
if ((sw_csum & CSUM_DELAY_IP) || __improbable(force_ipsum != 0)) {
ip->ip_sum = ip_cksum_hdr_out(m, hlen);
sw_csum &= ~CSUM_DELAY_IP;
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
}
#if IPSEC
/* clean ipsec history once it goes out of the node */
if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
ipsec_delaux(m);
}
#endif /* IPSEC */
if ((m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) &&
(m->m_pkthdr.tso_segsz > 0)) {
scnt += m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
} else {
scnt++;
}
if (packetchain == 0) {
if (ro->ro_rt != NULL && nstat_collect) {
nstat_route_tx(ro->ro_rt, scnt,
m->m_pkthdr.len, 0);
}
error = dlil_output(ifp, PF_INET, m, ro->ro_rt,
SA(dst), 0, adv);
if (dlil_verbose && error) {
printf("dlil_output error on interface %s: %d\n",
ifp->if_xname, error);
}
scnt = 0;
goto done;
} else {
/*
* packet chaining allows us to reuse the
* route for all packets
*/
bytecnt += m->m_pkthdr.len;
mppn = &m->m_nextpkt;
m = m->m_nextpkt;
if (m == NULL) {
#if PF
sendchain:
#endif /* PF */
if (pktcnt > ip_maxchainsent) {
ip_maxchainsent = pktcnt;
}
if (ro->ro_rt != NULL && nstat_collect) {
nstat_route_tx(ro->ro_rt, scnt,
bytecnt, 0);
}
error = dlil_output(ifp, PF_INET, packetlist,
ro->ro_rt, SA(dst), 0, adv);
if (dlil_verbose && error) {
printf("dlil_output error on interface %s: %d\n",
ifp->if_xname, error);
}
pktcnt = 0;
scnt = 0;
bytecnt = 0;
goto done;
}
m0 = m;
pktcnt++;
goto loopit;
}
}
VERIFY(interface_mtu != 0);
/*
* Too large for interface; fragment if possible.
* Must be able to put at least 8 bytes per fragment.
* Balk when DF bit is set or the interface didn't support TSO.
*/
if ((ip->ip_off & IP_DF) || pktcnt > 0 ||
(m->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) {
error = EMSGSIZE;
/*
* This case can happen if the user changed the MTU
* of an interface after enabling IP on it. Because
* most netifs don't keep track of routes pointing to
* them, there is no way for one to update all its
* routes when the MTU is changed.
*/
if (ro->ro_rt) {
RT_LOCK_SPIN(ro->ro_rt);
if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
!(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
(ro->ro_rt->rt_rmx.rmx_mtu > interface_mtu)) {
ro->ro_rt->rt_rmx.rmx_mtu = interface_mtu;
}
RT_UNLOCK(ro->ro_rt);
}
if (pktcnt > 0) {
m0 = packetlist;
}
OSAddAtomic(1, &ipstat.ips_cantfrag);
goto bad;
}
/*
* XXX Only TCP seems to be passing a list of packets here.
* The following issue is limited to UDP datagrams with 0 checksum.
* For now limit it to the case when single packet is passed down.
*/
if (packetchain == 0 && IS_INTF_CLAT46(ifp)) {
/*
* If it is a UDP packet that has checksum set to 0
* and is also not being offloaded, compute a full checksum
* and update the UDP checksum.
*/
if (ip->ip_p == IPPROTO_UDP &&
!(m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_PARTIAL))) {
struct udphdr *uh = NULL;
if (m->m_len < hlen + sizeof(struct udphdr)) {
m = m_pullup(m, hlen + sizeof(struct udphdr));
if (m == NULL) {
error = ENOBUFS;
m0 = m;
goto bad;
}
m0 = m;
ip = mtod(m, struct ip *);
}
/*
* Get UDP header and if checksum is 0, then compute the full
* checksum.
*/
uh = (struct udphdr *)(void *)((caddr_t)ip + hlen);
if (uh->uh_sum == 0) {
uh->uh_sum = inet_cksum(m, IPPROTO_UDP, hlen,
ip->ip_len - hlen);
if (uh->uh_sum == 0) {
uh->uh_sum = 0xffff;
}
}
}
}
error = ip_fragment(m, ifp, interface_mtu, sw_csum);
if (error != 0) {
m0 = m = NULL;
goto bad;
}
KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
for (m = m0; m; m = m0) {
m0 = m->m_nextpkt;
m->m_nextpkt = 0;
#if IPSEC
/* clean ipsec history once it goes out of the node */
if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
ipsec_delaux(m);
}
#endif /* IPSEC */
if (error == 0) {
if ((packetchain != 0) && (pktcnt > 0)) {
panic("%s: mix of packet in packetlist is "
"wrong=%p", __func__, packetlist);
/* NOTREACHED */
}
if (ro->ro_rt != NULL && nstat_collect) {
nstat_route_tx(ro->ro_rt, 1,
m->m_pkthdr.len, 0);
}
error = dlil_output(ifp, PF_INET, m, ro->ro_rt,
SA(dst), 0, adv);
if (dlil_verbose && error) {
printf("dlil_output error on interface %s: %d\n",
ifp->if_xname, error);
}
} else {
m_freem(m);
}
}
if (error == 0) {
OSAddAtomic(1, &ipstat.ips_fragmented);
}
done:
if (ia != NULL) {
ifa_remref(&ia->ia_ifa);
ia = NULL;
}
#if IPSEC
ROUTE_RELEASE(&ipsec_state.ro);
if (sp != NULL) {
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ip_output call free SP:%x\n", sp));
key_freesp(sp, KEY_SADB_UNLOCKED);
}
#endif /* IPSEC */
#if NECP
ROUTE_RELEASE(&necp_route);
#endif /* NECP */
#if DUMMYNET
ROUTE_RELEASE(&saved_route);
#endif /* DUMMYNET */
KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0);
if (ip_output_measure) {
net_perf_measure_time(&net_perf, &start_tv, packets_processed);
net_perf_histogram(&net_perf, packets_processed);
}
return error;
bad:
if (pktcnt > 0) {
m0 = packetlist;
}
m_freem_list(m0);
goto done;
#undef ipsec_state
#undef args
#undef sro_fwd
#undef saved_route
#undef ipf_pktopts
#undef IP_CHECK_RESTRICTIONS
}
int
ip_fragment(struct mbuf *m, struct ifnet *ifp, uint32_t mtu, int sw_csum)
{
struct ip *ip, *mhip;
int len, hlen, mhlen, firstlen, off, error = 0;
struct mbuf **mnext = &m->m_nextpkt, *m0;
int nfrags = 1;
ip = mtod(m, struct ip *);
#ifdef _IP_VHL
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
#else /* !_IP_VHL */
hlen = ip->ip_hl << 2;
#endif /* !_IP_VHL */
/*
* We need to adjust the fragment sizes to account
* for IPv6 fragment header if it needs to be translated
* from IPv4 to IPv6.
*/
if (IS_INTF_CLAT46(ifp)) {
mtu -= sizeof(struct ip6_frag);
}
firstlen = len = (mtu - hlen) & ~7;
if (len < 8) {
m_freem(m);
return EMSGSIZE;
}
/*
* if the interface will not calculate checksums on
* fragmented packets, then do it here.
*/
if ((m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
!(ifp->if_hwassist & CSUM_IP_FRAGS)) {
in_delayed_cksum(m);
}
/*
* Loop through length of segment after first fragment,
* make new header and copy data of each part and link onto chain.
*/
m0 = m;
mhlen = sizeof(struct ip);
for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */
if (m == NULL) {
error = ENOBUFS;
OSAddAtomic(1, &ipstat.ips_odropped);
goto sendorfree;
}
m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
m->m_data += max_linkhdr;
mhip = mtod(m, struct ip *);
*mhip = *ip;
if (hlen > sizeof(struct ip)) {
mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
}
m->m_len = mhlen;
mhip->ip_off = (u_short)(((off - hlen) >> 3) + (ip->ip_off & ~IP_MF));
if (ip->ip_off & IP_MF) {
mhip->ip_off |= IP_MF;
}
if (off + len >= (u_short)ip->ip_len) {
len = (u_short)ip->ip_len - off;
} else {
mhip->ip_off |= IP_MF;
}
mhip->ip_len = htons((u_short)(len + mhlen));
m->m_next = m_copy(m0, off, len);
if (m->m_next == NULL) {
(void) m_free(m);
error = ENOBUFS; /* ??? */
OSAddAtomic(1, &ipstat.ips_odropped);
goto sendorfree;
}
m->m_pkthdr.len = mhlen + len;
m->m_pkthdr.rcvif = NULL;
m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
M_COPY_CLASSIFIER(m, m0);
M_COPY_PFTAG(m, m0);
M_COPY_NECPTAG(m, m0);
#if BYTE_ORDER != BIG_ENDIAN
HTONS(mhip->ip_off);
#endif
mhip->ip_sum = 0;
if (sw_csum & CSUM_DELAY_IP) {
mhip->ip_sum = ip_cksum_hdr_out(m, mhlen);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
}
*mnext = m;
mnext = &m->m_nextpkt;
nfrags++;
}
OSAddAtomic(nfrags, &ipstat.ips_ofragments);
/* set first/last markers for fragment chain */
m->m_flags |= M_LASTFRAG;
m0->m_flags |= M_FIRSTFRAG | M_FRAG;
m0->m_pkthdr.csum_data = nfrags;
/*
* Update first fragment by trimming what's been copied out
* and updating header, then send each fragment (in order).
*/
m = m0;
m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
m->m_pkthdr.len = hlen + firstlen;
ip->ip_len = htons((u_short)m->m_pkthdr.len);
ip->ip_off |= IP_MF;
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_off);
#endif
ip->ip_sum = 0;
if (sw_csum & CSUM_DELAY_IP) {
ip->ip_sum = ip_cksum_hdr_out(m, hlen);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
}
sendorfree:
if (error) {
m_freem_list(m0);
}
return error;
}
static void
ip_out_cksum_stats(int proto, u_int32_t len)
{
switch (proto) {
case IPPROTO_TCP:
tcp_out_cksum_stats(len);
break;
case IPPROTO_UDP:
udp_out_cksum_stats(len);
break;
default:
/* keep only TCP or UDP stats for now */
break;
}
}
/*
* Process a delayed payload checksum calculation (outbound path.)
*
* hoff is the number of bytes beyond the mbuf data pointer which
* points to the IP header.
*
* Returns a bitmask representing all the work done in software.
*/
uint32_t
in_finalize_cksum(struct mbuf *m, uint32_t hoff, uint32_t csum_flags)
{
unsigned char buf[15 << 2] __attribute__((aligned(8)));
struct ip *ip;
uint32_t offset, _hlen, mlen, hlen, len, sw_csum;
uint16_t csum, ip_len;
_CASSERT(sizeof(csum) == sizeof(uint16_t));
VERIFY(m->m_flags & M_PKTHDR);
sw_csum = (csum_flags & m->m_pkthdr.csum_flags);
if ((sw_csum &= (CSUM_DELAY_IP | CSUM_DELAY_DATA)) == 0) {
goto done;
}
mlen = m->m_pkthdr.len; /* total mbuf len */
/* sanity check (need at least simple IP header) */
if (mlen < (hoff + sizeof(*ip))) {
panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
"(%u+%u)\n", __func__, m, mlen, hoff,
(uint32_t)sizeof(*ip));
/* NOTREACHED */
}
/*
* In case the IP header is not contiguous, or not 32-bit aligned,
* or if we're computing the IP header checksum, copy it to a local
* buffer. Copy only the simple IP header here (IP options case
* is handled below.)
*/
if ((sw_csum & CSUM_DELAY_IP) || (hoff + sizeof(*ip)) > m->m_len ||
!IP_HDR_ALIGNED_P(mtod(m, caddr_t) + hoff)) {
m_copydata(m, hoff, sizeof(*ip), (caddr_t)buf);
ip = (struct ip *)(void *)buf;
_hlen = sizeof(*ip);
} else {
ip = (struct ip *)(void *)(m->m_data + hoff);
_hlen = 0;
}
hlen = IP_VHL_HL(ip->ip_vhl) << 2; /* IP header len */
/* sanity check */
if (mlen < (hoff + hlen)) {
panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
"hoff %u", __func__, m, mlen, hlen, hoff);
/* NOTREACHED */
}
/*
* We could be in the context of an IP or interface filter; in the
* former case, ip_len would be in host (correct) order while for
* the latter it would be in network order. Because of this, we
* attempt to interpret the length field by comparing it against
* the actual packet length. If the comparison fails, byte swap
* the length and check again. If it still fails, use the actual
* packet length. This also covers the trailing bytes case.
*/
ip_len = ip->ip_len;
if (ip_len != (mlen - hoff)) {
ip_len = OSSwapInt16(ip_len);
if (ip_len != (mlen - hoff)) {
printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
"[swapped %d (%x)] doesn't match actual packet "
"length; %d is used instead\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(m), ip->ip_p,
ip->ip_len, ip->ip_len, ip_len, ip_len,
(mlen - hoff));
if (mlen - hoff > UINT16_MAX) {
panic("%s: mlen %u - hoff %u > 65535",
__func__, mlen, hoff);
}
ip_len = (uint16_t)(mlen - hoff);
}
}
len = ip_len - hlen; /* csum span */
if (sw_csum & CSUM_DELAY_DATA) {
uint16_t ulpoff;
/*
* offset is added to the lower 16-bit value of csum_data,
* which is expected to contain the ULP offset; therefore
* CSUM_PARTIAL offset adjustment must be undone.
*/
if ((m->m_pkthdr.csum_flags & (CSUM_PARTIAL | CSUM_DATA_VALID)) ==
(CSUM_PARTIAL | CSUM_DATA_VALID)) {
/*
* Get back the original ULP offset (this will
* undo the CSUM_PARTIAL logic in ip_output.)
*/
m->m_pkthdr.csum_data = (m->m_pkthdr.csum_tx_stuff -
m->m_pkthdr.csum_tx_start);
}
ulpoff = (m->m_pkthdr.csum_data & 0xffff); /* ULP csum offset */
offset = hoff + hlen; /* ULP header */
if (mlen < (ulpoff + sizeof(csum))) {
panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
"cksum offset (%u) cksum flags 0x%x\n", __func__,
m, mlen, ip->ip_p, ulpoff, m->m_pkthdr.csum_flags);
/* NOTREACHED */
}
csum = inet_cksum(m, 0, offset, len);
/* Update stats */
ip_out_cksum_stats(ip->ip_p, len);
/* RFC1122 4.1.3.4 */
if (csum == 0 &&
(m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_ZERO_INVERT))) {
csum = 0xffff;
}
/* Insert the checksum in the ULP csum field */
offset += ulpoff;
if (offset + sizeof(csum) > m->m_len) {
m_copyback(m, offset, sizeof(csum), &csum);
} else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) {
*(uint16_t *)(void *)(mtod(m, char *) + offset) = csum;
} else {
bcopy(&csum, (mtod(m, char *) + offset), sizeof(csum));
}
m->m_pkthdr.csum_flags &= ~(CSUM_DELAY_DATA | CSUM_DATA_VALID |
CSUM_PARTIAL | CSUM_ZERO_INVERT);
}
if (sw_csum & CSUM_DELAY_IP) {
/* IP header must be in the local buffer */
VERIFY(_hlen == sizeof(*ip));
if (_hlen != hlen) {
VERIFY(hlen <= sizeof(buf));
m_copydata(m, hoff, hlen, (caddr_t)buf);
ip = (struct ip *)(void *)buf;
_hlen = hlen;
}
/*
* Compute the IP header checksum as if the IP length
* is the length which we believe is "correct"; see
* how ip_len gets calculated above. Note that this
* is done on the local copy and not on the real one.
*/
ip->ip_len = htons(ip_len);
ip->ip_sum = 0;
csum = in_cksum_hdr_opt(ip);
/* Update stats */
ipstat.ips_snd_swcsum++;
ipstat.ips_snd_swcsum_bytes += hlen;
/*
* Insert only the checksum in the existing IP header
* csum field; all other fields are left unchanged.
*/
offset = hoff + offsetof(struct ip, ip_sum);
if (offset + sizeof(csum) > m->m_len) {
m_copyback(m, offset, sizeof(csum), &csum);
} else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) {
*(uint16_t *)(void *)(mtod(m, char *) + offset) = csum;
} else {
bcopy(&csum, (mtod(m, char *) + offset), sizeof(csum));
}
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
}
done:
return sw_csum;
}
/*
* Insert IP options into preformed packet.
* Adjust IP destination as required for IP source routing,
* as indicated by a non-zero in_addr at the start of the options.
*
* XXX This routine assumes that the packet has no options in place.
*/
static struct mbuf *
ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
{
struct ipoption *p = mtod(opt, struct ipoption *);
struct mbuf *n;
struct ip *ip = mtod(m, struct ip *);
unsigned optlen;
optlen = opt->m_len - sizeof(p->ipopt_dst);
if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
return m; /* XXX should fail */
}
if (p->ipopt_dst.s_addr) {
ip->ip_dst = p->ipopt_dst;
}
if (m->m_flags & M_EXT || m_mtod_current(m) - optlen < m->m_pktdat) {
MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */
if (n == NULL) {
return m;
}
n->m_pkthdr.rcvif = 0;
n->m_pkthdr.len = m->m_pkthdr.len + optlen;
m->m_len -= sizeof(struct ip);
m->m_data += sizeof(struct ip);
n->m_next = m;
m = n;
m->m_len = optlen + sizeof(struct ip);
m->m_data += max_linkhdr;
(void) memcpy(mtod(m, void *), ip, sizeof(struct ip));
} else {
m->m_data -= optlen;
m->m_len += optlen;
m->m_pkthdr.len += optlen;
ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
}
ip = mtod(m, struct ip *);
bcopy(p->ipopt_list, ip + 1, optlen);
*phlen = sizeof(struct ip) + optlen;
ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
ip->ip_len += optlen;
return m;
}
/*
* Copy options from ip to jp,
* omitting those not copied during fragmentation.
*/
static int
ip_optcopy(struct ip *ip, struct ip *jp)
{
u_char *cp, *dp;
int opt, optlen, cnt;
cp = (u_char *)(ip + 1);
dp = (u_char *)(jp + 1);
cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[0];
if (opt == IPOPT_EOL) {
break;
}
if (opt == IPOPT_NOP) {
/* Preserve for IP mcast tunnel's LSRR alignment. */
*dp++ = IPOPT_NOP;
optlen = 1;
continue;
}
#if DIAGNOSTIC
if (cnt < IPOPT_OLEN + sizeof(*cp)) {
panic("malformed IPv4 option passed to ip_optcopy");
/* NOTREACHED */
}
#endif
optlen = cp[IPOPT_OLEN];
#if DIAGNOSTIC
if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
panic("malformed IPv4 option passed to ip_optcopy");
/* NOTREACHED */
}
#endif
/* bogus lengths should have been caught by ip_dooptions */
if (optlen > cnt) {
optlen = cnt;
}
if (IPOPT_COPIED(opt)) {
bcopy(cp, dp, optlen);
dp += optlen;
}
}
for (optlen = (int)(dp - (u_char *)(jp + 1)); optlen & 0x3; optlen++) {
*dp++ = IPOPT_EOL;
}
return optlen;
}
/*
* IP socket option processing.
*/
int
ip_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp = sotoinpcb(so);
int error, optval;
lck_mtx_t *mutex_held = NULL;
error = optval = 0;
if (sopt->sopt_level != IPPROTO_IP) {
return EINVAL;
}
switch (sopt->sopt_dir) {
case SOPT_SET:
mutex_held = socket_getlock(so, PR_F_WILLUNLOCK);
/*
* Wait if we are in the middle of ip_output
* as we unlocked the socket there and don't
* want to overwrite the IP options
*/
if (inp->inp_sndinprog_cnt > 0) {
inp->inp_sndingprog_waiters++;
while (inp->inp_sndinprog_cnt > 0) {
msleep(&inp->inp_sndinprog_cnt, mutex_held,
PSOCK | PCATCH, "inp_sndinprog_cnt", NULL);
}
inp->inp_sndingprog_waiters--;
}
switch (sopt->sopt_name) {
#ifdef notyet
case IP_RETOPTS:
#endif
case IP_OPTIONS: {
struct mbuf *m;
if (sopt->sopt_valsize > MLEN) {
error = EMSGSIZE;
break;
}
MGET(m, sopt->sopt_p != kernproc ? M_WAIT : M_DONTWAIT,
MT_HEADER);
if (m == NULL) {
error = ENOBUFS;
break;
}
m->m_len = (int32_t)sopt->sopt_valsize;
error = sooptcopyin(sopt, mtod(m, char *),
m->m_len, m->m_len);
if (error) {
m_freem(m);
break;
}
return ip_pcbopts(sopt->sopt_name,
&inp->inp_options, m);
}
case IP_TOS:
case IP_TTL:
case IP_RECVOPTS:
case IP_RECVRETOPTS:
case IP_RECVDSTADDR:
case IP_RECVIF:
case IP_RECVTTL:
case IP_RECVPKTINFO:
case IP_RECVTOS:
case IP_DONTFRAG:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
switch (sopt->sopt_name) {
case IP_TOS:
if (optval > UINT8_MAX) {
error = EINVAL;
break;
}
inp->inp_ip_tos = (uint8_t)optval;
break;
case IP_TTL:
if (optval > UINT8_MAX) {
error = EINVAL;
break;
}
inp->inp_ip_ttl = (uint8_t)optval;
break;
#define OPTSET(bit) do { \
if (optval) { \
inp->inp_flags |= bit; \
} else { \
inp->inp_flags &= ~bit; \
} \
} while (0)
#define OPTSET2(bit) do { \
if (optval) { \
inp->inp_flags2 |= bit; \
} else { \
inp->inp_flags2 &= ~bit; \
} \
} while (0)
case IP_RECVOPTS:
OPTSET(INP_RECVOPTS);
break;
case IP_RECVRETOPTS:
OPTSET(INP_RECVRETOPTS);
break;
case IP_RECVDSTADDR:
OPTSET(INP_RECVDSTADDR);
break;
case IP_RECVIF:
OPTSET(INP_RECVIF);
break;
case IP_RECVTTL:
OPTSET(INP_RECVTTL);
break;
case IP_RECVPKTINFO:
OPTSET(INP_PKTINFO);
break;
case IP_RECVTOS:
OPTSET(INP_RECVTOS);
break;
case IP_DONTFRAG:
/* This option is settable only for IPv4 */
if (!(inp->inp_vflag & INP_IPV4)) {
error = EINVAL;
break;
}
OPTSET2(INP2_DONTFRAG);
break;
#undef OPTSET
#undef OPTSET2
}
break;
/*
* Multicast socket options are processed by the in_mcast
* module.
*/
case IP_MULTICAST_IF:
case IP_MULTICAST_IFINDEX:
case IP_MULTICAST_VIF:
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
case IP_ADD_SOURCE_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case IP_MSFILTER:
case MCAST_JOIN_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
error = inp_setmoptions(inp, sopt);
break;
case IP_PORTRANGE:
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
switch (optval) {
case IP_PORTRANGE_DEFAULT:
inp->inp_flags &= ~(INP_LOWPORT);
inp->inp_flags &= ~(INP_HIGHPORT);
break;
case IP_PORTRANGE_HIGH:
inp->inp_flags &= ~(INP_LOWPORT);
inp->inp_flags |= INP_HIGHPORT;
break;
case IP_PORTRANGE_LOW:
inp->inp_flags &= ~(INP_HIGHPORT);
inp->inp_flags |= INP_LOWPORT;
break;
default:
error = EINVAL;
break;
}
break;
#if IPSEC
case IP_IPSEC_POLICY: {
caddr_t req = NULL;
size_t len = 0;
int priv;
struct mbuf *m;
int optname;
if ((error = soopt_getm(sopt, &m)) != 0) { /* XXX */
break;
}
if ((error = soopt_mcopyin(sopt, m)) != 0) { /* XXX */
break;
}
priv = (proc_suser(sopt->sopt_p) == 0);
if (m) {
req = mtod(m, caddr_t);
len = m->m_len;
}
optname = sopt->sopt_name;
error = ipsec4_set_policy(inp, optname, req, len, priv);
m_freem(m);
break;
}
#endif /* IPSEC */
#if TRAFFIC_MGT
case IP_TRAFFIC_MGT_BACKGROUND: {
unsigned background = 0;
error = sooptcopyin(sopt, &background,
sizeof(background), sizeof(background));
if (error) {
break;
}
if (background) {
socket_set_traffic_mgt_flags_locked(so,
TRAFFIC_MGT_SO_BACKGROUND);
} else {
socket_clear_traffic_mgt_flags_locked(so,
TRAFFIC_MGT_SO_BACKGROUND);
}
break;
}
#endif /* TRAFFIC_MGT */
/*
* On a multihomed system, scoped routing can be used to
* restrict the source interface used for sending packets.
* The socket option IP_BOUND_IF binds a particular AF_INET
* socket to an interface such that data sent on the socket
* is restricted to that interface. This is unlike the
* SO_DONTROUTE option where the routing table is bypassed;
* therefore it allows for a greater flexibility and control
* over the system behavior, and does not place any restriction
* on the destination address type (e.g. unicast, multicast,
* or broadcast if applicable) or whether or not the host is
* directly reachable. Note that in the multicast transmit
* case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
* IP_BOUND_IF, since the former practically bypasses the
* routing table; in this case, IP_BOUND_IF sets the default
* interface used for sending multicast packets in the absence
* of an explicit multicast transmit interface.
*/
case IP_BOUND_IF:
/* This option is settable only for IPv4 */
if (!(inp->inp_vflag & INP_IPV4)) {
error = EINVAL;
break;
}
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
error = inp_bindif(inp, optval, NULL);
break;
case IP_NO_IFT_CELLULAR:
/* This option is settable only for IPv4 */
if (!(inp->inp_vflag & INP_IPV4)) {
error = EINVAL;
break;
}
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error) {
break;
}
/* once set, it cannot be unset */
if (!optval && INP_NO_CELLULAR(inp)) {
error = EINVAL;
break;
}
error = so_set_restrictions(so,
SO_RESTRICT_DENY_CELLULAR);
break;
case IP_OUT_IF:
/* This option is not settable */
error = EINVAL;
break;
default:
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
case IP_OPTIONS:
case IP_RETOPTS:
if (inp->inp_options) {
error = sooptcopyout(sopt,
mtod(inp->inp_options, char *),
inp->inp_options->m_len);
} else {
sopt->sopt_valsize = 0;
}
break;
case IP_TOS:
case IP_TTL:
case IP_RECVOPTS:
case IP_RECVRETOPTS:
case IP_RECVDSTADDR:
case IP_RECVIF:
case IP_RECVTTL:
case IP_PORTRANGE:
case IP_RECVPKTINFO:
case IP_RECVTOS:
case IP_DONTFRAG:
switch (sopt->sopt_name) {
case IP_TOS:
optval = inp->inp_ip_tos;
break;
case IP_TTL:
optval = inp->inp_ip_ttl;
break;
#define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
#define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0)
case IP_RECVOPTS:
optval = OPTBIT(INP_RECVOPTS);
break;
case IP_RECVRETOPTS:
optval = OPTBIT(INP_RECVRETOPTS);
break;
case IP_RECVDSTADDR:
optval = OPTBIT(INP_RECVDSTADDR);
break;
case IP_RECVIF:
optval = OPTBIT(INP_RECVIF);
break;
case IP_RECVTTL:
optval = OPTBIT(INP_RECVTTL);
break;
case IP_PORTRANGE:
if (inp->inp_flags & INP_HIGHPORT) {
optval = IP_PORTRANGE_HIGH;
} else if (inp->inp_flags & INP_LOWPORT) {
optval = IP_PORTRANGE_LOW;
} else {
optval = 0;
}
break;
case IP_RECVPKTINFO:
optval = OPTBIT(INP_PKTINFO);
break;
case IP_RECVTOS:
optval = OPTBIT(INP_RECVTOS);
break;
case IP_DONTFRAG:
optval = OPTBIT2(INP2_DONTFRAG);
break;
}
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
case IP_MULTICAST_IF:
case IP_MULTICAST_IFINDEX:
case IP_MULTICAST_VIF:
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
case IP_MSFILTER:
error = inp_getmoptions(inp, sopt);
break;
#if IPSEC
case IP_IPSEC_POLICY: {
error = 0; /* This option is no longer supported */
break;
}
#endif /* IPSEC */
#if TRAFFIC_MGT
case IP_TRAFFIC_MGT_BACKGROUND: {
unsigned background = (so->so_flags1 &
SOF1_TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0;
return sooptcopyout(sopt, &background,
sizeof(background));
}
#endif /* TRAFFIC_MGT */
case IP_BOUND_IF:
if (inp->inp_flags & INP_BOUND_IF) {
optval = inp->inp_boundifp->if_index;
}
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
case IP_NO_IFT_CELLULAR:
optval = INP_NO_CELLULAR(inp) ? 1 : 0;
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
case IP_OUT_IF:
optval = (inp->inp_last_outifp != NULL) ?
inp->inp_last_outifp->if_index : 0;
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
default:
error = ENOPROTOOPT;
break;
}
break;
}
return error;
}
/*
* Set up IP options in pcb for insertion in output packets.
* Store in mbuf with pointer in pcbopt, adding pseudo-option
* with destination address if source routed.
*/
static int
ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
{
#pragma unused(optname)
int cnt, optlen;
u_char *cp;
u_char opt;
/* turn off any old options */
if (*pcbopt) {
(void) m_free(*pcbopt);
}
*pcbopt = 0;
if (m == (struct mbuf *)0 || m->m_len == 0) {
/*
* Only turning off any previous options.
*/
if (m) {
(void) m_free(m);
}
return 0;
}
if (m->m_len % sizeof(int32_t)) {
goto bad;
}
/*
* IP first-hop destination address will be stored before
* actual options; move other options back
* and clear it when none present.
*/
if (m_mtod_upper_bound(m) - m_mtod_end(m) < sizeof(struct in_addr)) {
goto bad;
}
cnt = m->m_len;
m->m_len += sizeof(struct in_addr);
cp = mtod(m, u_char *) + sizeof(struct in_addr);
ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
bzero(mtod(m, caddr_t), sizeof(struct in_addr));
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[IPOPT_OPTVAL];
if (opt == IPOPT_EOL) {
break;
}
if (opt == IPOPT_NOP) {
optlen = 1;
} else {
if (cnt < IPOPT_OLEN + sizeof(*cp)) {
goto bad;
}
optlen = cp[IPOPT_OLEN];
if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
goto bad;
}
}
switch (opt) {
default:
break;
case IPOPT_LSRR:
case IPOPT_SSRR:
/*
* user process specifies route as:
* ->A->B->C->D
* D must be our final destination (but we can't
* check that since we may not have connected yet).
* A is first hop destination, which doesn't appear in
* actual IP option, but is stored before the options.
*/
if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr)) {
goto bad;
}
if (optlen > UINT8_MAX) {
goto bad;
}
m->m_len -= sizeof(struct in_addr);
cnt -= sizeof(struct in_addr);
optlen -= sizeof(struct in_addr);
cp[IPOPT_OLEN] = (uint8_t)optlen;
/*
* Move first hop before start of options.
*/
bcopy((caddr_t)&cp[IPOPT_OFFSET + 1], mtod(m, caddr_t),
sizeof(struct in_addr));
/*
* Then copy rest of options back
* to close up the deleted entry.
*/
ovbcopy((caddr_t)(&cp[IPOPT_OFFSET + 1] +
sizeof(struct in_addr)),
(caddr_t)&cp[IPOPT_OFFSET + 1],
(unsigned)cnt - (IPOPT_MINOFF - 1));
break;
}
}
if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr)) {
goto bad;
}
*pcbopt = m;
return 0;
bad:
(void) m_free(m);
return EINVAL;
}
void
ip_moptions_init(void)
{
PE_parse_boot_argn("ifa_debug", &imo_debug, sizeof(imo_debug));
vm_size_t imo_size = (imo_debug == 0) ? sizeof(struct ip_moptions) :
sizeof(struct ip_moptions_dbg);
imo_zone = zone_create(IMO_ZONE_NAME, imo_size, ZC_ZFREE_CLEARMEM);
}
void
imo_addref(struct ip_moptions *imo, int locked)
{
if (!locked) {
IMO_LOCK(imo);
} else {
IMO_LOCK_ASSERT_HELD(imo);
}
if (++imo->imo_refcnt == 0) {
panic("%s: imo %p wraparound refcnt", __func__, imo);
/* NOTREACHED */
} else if (imo->imo_trace != NULL) {
(*imo->imo_trace)(imo, TRUE);
}
if (!locked) {
IMO_UNLOCK(imo);
}
}
void
imo_remref(struct ip_moptions *imo)
{
IMO_LOCK(imo);
if (imo->imo_refcnt == 0) {
panic("%s: imo %p negative refcnt", __func__, imo);
/* NOTREACHED */
} else if (imo->imo_trace != NULL) {
(*imo->imo_trace)(imo, FALSE);
}
--imo->imo_refcnt;
if (imo->imo_refcnt > 0) {
IMO_UNLOCK(imo);
return;
}
IMO_PURGE_LOCKED(imo);
IMO_UNLOCK(imo);
kfree_type(struct in_multi *, imo->imo_max_memberships, imo->imo_membership);
kfree_type(struct in_mfilter, imo->imo_max_memberships, imo->imo_mfilters);
lck_mtx_destroy(&imo->imo_lock, &ifa_mtx_grp);
if (!(imo->imo_debug & IFD_ALLOC)) {
panic("%s: imo %p cannot be freed", __func__, imo);
/* NOTREACHED */
}
zfree(imo_zone, imo);
}
static void
imo_trace(struct ip_moptions *imo, int refhold)
{
struct ip_moptions_dbg *imo_dbg = (struct ip_moptions_dbg *)imo;
ctrace_t *tr;
u_int32_t idx;
u_int16_t *cnt;
if (!(imo->imo_debug & IFD_DEBUG)) {
panic("%s: imo %p has no debug structure", __func__, imo);
/* NOTREACHED */
}
if (refhold) {
cnt = &imo_dbg->imo_refhold_cnt;
tr = imo_dbg->imo_refhold;
} else {
cnt = &imo_dbg->imo_refrele_cnt;
tr = imo_dbg->imo_refrele;
}
idx = os_atomic_inc_orig(cnt, relaxed) % IMO_TRACE_HIST_SIZE;
ctrace_record(&tr[idx]);
}
struct ip_moptions *
ip_allocmoptions(zalloc_flags_t how)
{
struct ip_moptions *imo;
imo = zalloc_flags(imo_zone, how | Z_ZERO);
if (imo != NULL) {
lck_mtx_init(&imo->imo_lock, &ifa_mtx_grp, &ifa_mtx_attr);
imo->imo_debug |= IFD_ALLOC;
if (imo_debug != 0) {
imo->imo_debug |= IFD_DEBUG;
imo->imo_trace = imo_trace;
}
IMO_ADDREF(imo);
}
return imo;
}
/*
* Routine called from ip_output() to loop back a copy of an IP multicast
* packet to the input queue of a specified interface. Note that this
* calls the output routine of the loopback "driver", but with an interface
* pointer that might NOT be a loopback interface -- evil, but easier than
* replicating that code here.
*/
static void
ip_mloopback(struct ifnet *srcifp, struct ifnet *origifp, struct mbuf *m,
struct sockaddr_in *dst, int hlen)
{
struct mbuf *copym;
struct ip *ip;
if (lo_ifp == NULL) {
return;
}
/*
* Copy the packet header as it's needed for the checksum
* Make sure to deep-copy IP header portion in case the data
* is in an mbuf cluster, so that we can safely override the IP
* header portion later.
*/
copym = m_copym_mode(m, 0, M_COPYALL, M_DONTWAIT, NULL, NULL, M_COPYM_COPY_HDR);
if (copym != NULL && ((copym->m_flags & M_EXT) || copym->m_len < hlen)) {
copym = m_pullup(copym, hlen);
}
if (copym == NULL) {
return;
}
/*
* We don't bother to fragment if the IP length is greater
* than the interface's MTU. Can this possibly matter?
*/
ip = mtod(copym, struct ip *);
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_len);
HTONS(ip->ip_off);
#endif
ip->ip_sum = 0;
ip->ip_sum = ip_cksum_hdr_out(copym, hlen);
/*
* Mark checksum as valid unless receive checksum offload is
* disabled; if so, compute checksum in software. If the
* interface itself is lo0, this will be overridden by if_loop.
*/
if (hwcksum_rx) {
copym->m_pkthdr.csum_flags &= ~(CSUM_PARTIAL | CSUM_ZERO_INVERT);
copym->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
copym->m_pkthdr.csum_data = 0xffff;
} else if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(ip->ip_len);
#endif
in_delayed_cksum(copym);
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_len);
#endif
}
/*
* Stuff the 'real' ifp into the pkthdr, to be used in matching
* in ip_input(); we need the loopback ifp/dl_tag passed as args
* to make the loopback driver compliant with the data link
* requirements.
*/
copym->m_pkthdr.rcvif = origifp;
/*
* Also record the source interface (which owns the source address).
* This is basically a stripped down version of ifa_foraddr().
*/
if (srcifp == NULL) {
struct in_ifaddr *ia;
lck_rw_lock_shared(&in_ifaddr_rwlock);
TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_src.s_addr), ia_hash) {
IFA_LOCK_SPIN(&ia->ia_ifa);
if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_src.s_addr) {
srcifp = ia->ia_ifp;
IFA_UNLOCK(&ia->ia_ifa);
break;
}
IFA_UNLOCK(&ia->ia_ifa);
}
lck_rw_done(&in_ifaddr_rwlock);
}
if (srcifp != NULL) {
ip_setsrcifaddr_info(copym, srcifp->if_index, NULL);
}
ip_setdstifaddr_info(copym, origifp->if_index, NULL);
dlil_output(lo_ifp, PF_INET, copym, NULL, SA(dst), 0, NULL);
}
/*
* Given a source IP address (and route, if available), determine the best
* interface to send the packet from. Checking for (and updating) the
* ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
* without any locks based on the assumption that ip_output() is single-
* threaded per-pcb, i.e. for any given pcb there can only be one thread
* performing output at the IP layer.
*
* This routine is analogous to in6_selectroute() for IPv6.
*/
static struct ifaddr *
in_selectsrcif(struct ip *ip, struct route *ro, unsigned int ifscope)
{
struct ifaddr *ifa = NULL;
struct in_addr src = ip->ip_src;
struct in_addr dst = ip->ip_dst;
struct ifnet *rt_ifp;
char s_src[MAX_IPv4_STR_LEN], s_dst[MAX_IPv4_STR_LEN];
VERIFY(src.s_addr != INADDR_ANY);
if (ip_select_srcif_debug) {
(void) inet_ntop(AF_INET, &src.s_addr, s_src, sizeof(s_src));
(void) inet_ntop(AF_INET, &dst.s_addr, s_dst, sizeof(s_dst));
}
if (ro->ro_rt != NULL) {
RT_LOCK(ro->ro_rt);
}
rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL;
/*
* Given the source IP address, find a suitable source interface
* to use for transmission; if the caller has specified a scope,
* optimize the search by looking at the addresses only for that
* interface. This is still suboptimal, however, as we need to
* traverse the per-interface list.
*/
if (ifscope != IFSCOPE_NONE || ro->ro_rt != NULL) {
unsigned int scope = ifscope;
/*
* If no scope is specified and the route is stale (pointing
* to a defunct interface) use the current primary interface;
* this happens when switching between interfaces configured
* with the same IP address. Otherwise pick up the scope
* information from the route; the ULP may have looked up a
* correct route and we just need to verify it here and mark
* it with the ROF_SRCIF_SELECTED flag below.
*/
if (scope == IFSCOPE_NONE) {
scope = rt_ifp->if_index;
if (scope != get_primary_ifscope(AF_INET) &&
ROUTE_UNUSABLE(ro)) {
scope = get_primary_ifscope(AF_INET);
}
}
ifa = (struct ifaddr *)ifa_foraddr_scoped(src.s_addr, scope);
if (ifa == NULL && ip->ip_p != IPPROTO_UDP &&
ip->ip_p != IPPROTO_TCP && ipforwarding) {
/*
* If forwarding is enabled, and if the packet isn't
* TCP or UDP, check if the source address belongs
* to one of our own interfaces; if so, demote the
* interface scope and do a route lookup right below.
*/
ifa = (struct ifaddr *)ifa_foraddr(src.s_addr);
if (ifa != NULL) {
ifa_remref(ifa);
ifa = NULL;
ifscope = IFSCOPE_NONE;
}
}
if (ip_select_srcif_debug && ifa != NULL) {
if (ro->ro_rt != NULL) {
printf("%s->%s ifscope %d->%d ifa_if %s "
"ro_if %s\n", s_src, s_dst, ifscope,
scope, if_name(ifa->ifa_ifp),
if_name(rt_ifp));
} else {
printf("%s->%s ifscope %d->%d ifa_if %s\n",
s_src, s_dst, ifscope, scope,
if_name(ifa->ifa_ifp));
}
}
}
/*
* Slow path; search for an interface having the corresponding source
* IP address if the scope was not specified by the caller, and:
*
* 1) There currently isn't any route, or,
* 2) The interface used by the route does not own that source
* IP address; in this case, the route will get blown away
* and we'll do a more specific scoped search using the newly
* found interface.
*/
if (ifa == NULL && ifscope == IFSCOPE_NONE) {
ifa = (struct ifaddr *)ifa_foraddr(src.s_addr);
/*
* If we have the IP address, but not the route, we don't
* really know whether or not it belongs to the correct
* interface (it could be shared across multiple interfaces.)
* The only way to find out is to do a route lookup.
*/
if (ifa != NULL && ro->ro_rt == NULL) {
struct rtentry *rt;
struct sockaddr_in sin;
struct ifaddr *oifa = NULL;
SOCKADDR_ZERO(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(sin);
sin.sin_addr = dst;
lck_mtx_lock(rnh_lock);
if ((rt = rt_lookup(TRUE, SA(&sin), NULL,
rt_tables[AF_INET], IFSCOPE_NONE)) != NULL) {
RT_LOCK(rt);
/*
* If the route uses a different interface,
* use that one instead. The IP address of
* the ifaddr that we pick up here is not
* relevant.
*/
if (ifa->ifa_ifp != rt->rt_ifp) {
oifa = ifa;
ifa = rt->rt_ifa;
ifa_addref(ifa);
RT_UNLOCK(rt);
} else {
RT_UNLOCK(rt);
}
rtfree_locked(rt);
}
lck_mtx_unlock(rnh_lock);
if (oifa != NULL) {
struct ifaddr *iifa;
/*
* See if the interface pointed to by the
* route is configured with the source IP
* address of the packet.
*/
iifa = (struct ifaddr *)ifa_foraddr_scoped(
src.s_addr, ifa->ifa_ifp->if_index);
if (iifa != NULL) {
/*
* Found it; drop the original one
* as well as the route interface
* address, and use this instead.
*/
ifa_remref(oifa);
ifa_remref(ifa);
ifa = iifa;
} else if (!ipforwarding ||
(rt->rt_flags & RTF_GATEWAY)) {
/*
* This interface doesn't have that
* source IP address; drop the route
* interface address and just use the
* original one, and let the caller
* do a scoped route lookup.
*/
ifa_remref(ifa);
ifa = oifa;
} else {
/*
* Forwarding is enabled and the source
* address belongs to one of our own
* interfaces which isn't the outgoing
* interface, and we have a route, and
* the destination is on a network that
* is directly attached (onlink); drop
* the original one and use the route
* interface address instead.
*/
ifa_remref(oifa);
}
}
} else if (ifa != NULL && ro->ro_rt != NULL &&
!(ro->ro_rt->rt_flags & RTF_GATEWAY) &&
ifa->ifa_ifp != ro->ro_rt->rt_ifp && ipforwarding) {
/*
* Forwarding is enabled and the source address belongs
* to one of our own interfaces which isn't the same
* as the interface used by the known route; drop the
* original one and use the route interface address.
*/
ifa_remref(ifa);
ifa = ro->ro_rt->rt_ifa;
ifa_addref(ifa);
}
if (ip_select_srcif_debug && ifa != NULL) {
printf("%s->%s ifscope %d ifa_if %s\n",
s_src, s_dst, ifscope, if_name(ifa->ifa_ifp));
}
}
if (ro->ro_rt != NULL) {
RT_LOCK_ASSERT_HELD(ro->ro_rt);
}
/*
* If there is a non-loopback route with the wrong interface, or if
* there is no interface configured with such an address, blow it
* away. Except for local/loopback, we look for one with a matching
* interface scope/index.
*/
if (ro->ro_rt != NULL &&
(ifa == NULL || (ifa->ifa_ifp != rt_ifp && rt_ifp != lo_ifp) ||
!(ro->ro_rt->rt_flags & RTF_UP))) {
if (ip_select_srcif_debug) {
if (ifa != NULL) {
printf("%s->%s ifscope %d ro_if %s != "
"ifa_if %s (cached route cleared)\n",
s_src, s_dst, ifscope, if_name(rt_ifp),
if_name(ifa->ifa_ifp));
} else {
printf("%s->%s ifscope %d ro_if %s "
"(no ifa_if found)\n",
s_src, s_dst, ifscope, if_name(rt_ifp));
}
}
RT_UNLOCK(ro->ro_rt);
ROUTE_RELEASE(ro);
/*
* If the destination is IPv4 LLA and the route's interface
* doesn't match the source interface, then the source IP
* address is wrong; it most likely belongs to the primary
* interface associated with the IPv4 LL subnet. Drop the
* packet rather than letting it go out and return an error
* to the ULP. This actually applies not only to IPv4 LL
* but other shared subnets; for now we explicitly test only
* for the former case and save the latter for future.
*/
if (IN_LINKLOCAL(ntohl(dst.s_addr)) &&
!IN_LINKLOCAL(ntohl(src.s_addr)) && ifa != NULL) {
ifa_remref(ifa);
ifa = NULL;
}
}
if (ip_select_srcif_debug && ifa == NULL) {
printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
s_src, s_dst, ifscope);
}
/*
* If there is a route, mark it accordingly. If there isn't one,
* we'll get here again during the next transmit (possibly with a
* route) and the flag will get set at that point. For IPv4 LLA
* destination, mark it only if the route has been fully resolved;
* otherwise we want to come back here again when the route points
* to the interface over which the ARP reply arrives on.
*/
if (ro->ro_rt != NULL && (!IN_LINKLOCAL(ntohl(dst.s_addr)) ||
(ro->ro_rt->rt_gateway->sa_family == AF_LINK &&
SDL(ro->ro_rt->rt_gateway)->sdl_alen != 0))) {
if (ifa != NULL) {
ifa_addref(ifa); /* for route */
}
if (ro->ro_srcia != NULL) {
ifa_remref(ro->ro_srcia);
}
ro->ro_srcia = ifa;
ro->ro_flags |= ROF_SRCIF_SELECTED;
RT_GENID_SYNC(ro->ro_rt);
}
if (ro->ro_rt != NULL) {
RT_UNLOCK(ro->ro_rt);
}
return ifa;
}
/*
* @brief Given outgoing interface it determines what checksum needs
* to be computed in software and what needs to be offloaded to the
* interface.
*
* @param ifp Pointer to the outgoing interface
* @param m Pointer to the packet
* @param hlen IP header length
* @param ip_len Total packet size i.e. headers + data payload
* @param sw_csum Pointer to a software checksum flag set
*
* @return void
*/
void
ip_output_checksum(struct ifnet *ifp, struct mbuf *m, int hlen, int ip_len,
uint32_t *sw_csum)
{
uint32_t hwcap = ifp->if_hwassist;
m->m_pkthdr.csum_flags |= CSUM_IP;
if (!hwcksum_tx) {
/* do all in software; hardware checksum offload is disabled */
*sw_csum = (CSUM_DELAY_DATA | CSUM_DELAY_IP) &
m->m_pkthdr.csum_flags;
} else {
/* do in software what the hardware cannot */
*sw_csum = m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_FLAGS(hwcap);
}
if (hlen != sizeof(struct ip)) {
*sw_csum |= ((CSUM_DELAY_DATA | CSUM_DELAY_IP) &
m->m_pkthdr.csum_flags);
} else if ((*sw_csum & CSUM_DELAY_DATA) && (hwcap & CSUM_PARTIAL)) {
/*
* If the explicitly required data csum offload is not supported by hardware,
* do it by partial checksum. Here we assume TSO implies support for IP
* and data sum.
*/
int interface_mtu = ifp->if_mtu;
if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
interface_mtu = IN6_LINKMTU(ifp);
/* Further adjust the size for CLAT46 expansion */
interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
}
/*
* Partial checksum offload, if non-IP fragment, and TCP only
* (no UDP support, as the hardware may not be able to convert
* +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface
* supports "invert zero" capability.)
*/
if (hwcksum_tx &&
((m->m_pkthdr.csum_flags & CSUM_TCP) ||
((hwcap & CSUM_ZERO_INVERT) &&
(m->m_pkthdr.csum_flags & CSUM_ZERO_INVERT))) &&
ip_len <= interface_mtu) {
uint16_t start = sizeof(struct ip);
uint16_t ulpoff = m->m_pkthdr.csum_data & 0xffff;
m->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PARTIAL);
m->m_pkthdr.csum_tx_stuff = (ulpoff + start);
m->m_pkthdr.csum_tx_start = start;
/* do IP hdr chksum in software */
*sw_csum = CSUM_DELAY_IP;
} else {
*sw_csum |= (CSUM_DELAY_DATA & m->m_pkthdr.csum_flags);
}
}
if (*sw_csum & CSUM_DELAY_DATA) {
in_delayed_cksum(m);
*sw_csum &= ~CSUM_DELAY_DATA;
}
if (hwcksum_tx) {
uint32_t delay_data = m->m_pkthdr.csum_flags & CSUM_DELAY_DATA;
uint32_t hw_csum = IF_HWASSIST_CSUM_FLAGS(hwcap);
/*
* Drop off bits that aren't supported by hardware;
* also make sure to preserve non-checksum related bits.
*/
m->m_pkthdr.csum_flags =
((m->m_pkthdr.csum_flags & (hw_csum | CSUM_DATA_VALID)) |
(m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_MASK));
/*
* If hardware supports partial checksum but not delay_data,
* add back delay_data.
*/
if ((hw_csum & CSUM_PARTIAL) != 0 &&
(hw_csum & delay_data) == 0) {
m->m_pkthdr.csum_flags |= delay_data;
}
} else {
/* drop all bits; hardware checksum offload is disabled */
m->m_pkthdr.csum_flags = 0;
}
}
/*
* GRE protocol output for PPP/PPTP
*/
int
ip_gre_output(struct mbuf *m)
{
struct route ro;
int error;
bzero(&ro, sizeof(ro));
error = ip_output(m, NULL, &ro, 0, NULL, NULL);
ROUTE_RELEASE(&ro);
return error;
}
static int
sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, i;
i = ip_output_measure;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error || req->newptr == USER_ADDR_NULL) {
goto done;
}
/* impose bounds */
if (i < 0 || i > 1) {
error = EINVAL;
goto done;
}
if (ip_output_measure != i && i == 1) {
net_perf_initialize(&net_perf, ip_output_measure_bins);
}
ip_output_measure = i;
done:
return error;
}
static int
sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error;
uint64_t i;
i = ip_output_measure_bins;
error = sysctl_handle_quad(oidp, &i, 0, req);
if (error || req->newptr == USER_ADDR_NULL) {
goto done;
}
/* validate data */
if (!net_perf_validate_bins(i)) {
error = EINVAL;
goto done;
}
ip_output_measure_bins = i;
done:
return error;
}
static int
sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
if (req->oldptr == USER_ADDR_NULL) {
req->oldlen = (size_t)sizeof(struct ipstat);
}
return SYSCTL_OUT(req, &net_perf, MIN(sizeof(net_perf), req->oldlen));
}