gems-kernel/source/THIRDPARTY/xnu/bsd/netinet/raw_ip.c

1443 lines
36 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2000-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)raw_ip.c 8.7 (Berkeley) 5/15/95
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mcache.h>
#include <sys/proc.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <libkern/OSAtomic.h>
#include <kern/zalloc.h>
#include <pexpert/pexpert.h>
#include <net/if.h>
#include <net/net_api_stats.h>
#include <net/route.h>
#include <net/content_filter.h>
#define _IP_VHL
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_tclass.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet6/in6_pcb.h>
#if IPSEC
#include <netinet6/ipsec.h>
#endif /*IPSEC*/
#if DUMMYNET
#include <netinet/ip_dummynet.h>
#endif /* DUMMYNET */
int rip_detach(struct socket *);
int rip_abort(struct socket *);
int rip_disconnect(struct socket *);
int rip_bind(struct socket *, struct sockaddr *, struct proc *);
int rip_connect(struct socket *, struct sockaddr *, struct proc *);
int rip_shutdown(struct socket *);
struct inpcbhead ripcb;
struct inpcbinfo ripcbinfo;
/* control hooks for dummynet */
#if DUMMYNET
ip_dn_ctl_t *ip_dn_ctl_ptr;
#endif /* DUMMYNET */
/*
* Nominal space allocated to a raw ip socket.
*/
#define RIPSNDQ 8192
#define RIPRCVQ 8192
static KALLOC_TYPE_DEFINE(ripzone, struct inpcb, NET_KT_DEFAULT);
/*
* Raw interface to IP protocol.
*/
/*
* Initialize raw connection block q.
*/
void
rip_init(struct protosw *pp, struct domain *dp)
{
#pragma unused(dp)
static int rip_initialized = 0;
struct inpcbinfo *pcbinfo;
VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED);
if (rip_initialized) {
return;
}
rip_initialized = 1;
LIST_INIT(&ripcb);
ripcbinfo.ipi_listhead = &ripcb;
/*
* XXX We don't use the hash list for raw IP, but it's easier
* to allocate a one entry hash list than it is to check all
* over the place for ipi_hashbase == NULL.
*/
ripcbinfo.ipi_hashbase = hashinit(1, M_PCB, &ripcbinfo.ipi_hashmask);
ripcbinfo.ipi_porthashbase = hashinit(1, M_PCB, &ripcbinfo.ipi_porthashmask);
ripcbinfo.ipi_zone = ripzone;
pcbinfo = &ripcbinfo;
/*
* allocate lock group attribute and group for udp pcb mutexes
*/
pcbinfo->ipi_lock_grp = lck_grp_alloc_init("ripcb", LCK_GRP_ATTR_NULL);
/*
* allocate the lock attribute for udp pcb mutexes
*/
lck_attr_setdefault(&pcbinfo->ipi_lock_attr);
lck_rw_init(&pcbinfo->ipi_lock, pcbinfo->ipi_lock_grp,
&pcbinfo->ipi_lock_attr);
in_pcbinfo_attach(&ripcbinfo);
}
static uint32_t
rip_inp_input(struct inpcb *inp, struct mbuf *m, int iphlen)
{
struct ip *ip = mtod(m, struct ip *);
struct ifnet *ifp = m->m_pkthdr.rcvif;
struct sockaddr_in ripsrc = {
.sin_len = sizeof(ripsrc),
.sin_family = AF_INET,
.sin_port = 0,
.sin_addr = { .s_addr = 0 },
.sin_zero = {0, 0, 0, 0, 0, 0, 0, 0, }
};
struct mbuf *opts = NULL;
boolean_t is_wake_pkt = false;
uint32_t num_delivered = 0;
#if NECP
if (!necp_socket_is_allowed_to_send_recv_v4(inp, 0, 0,
&ip->ip_dst, &ip->ip_src, ifp, 0, NULL, NULL, NULL, NULL)) {
/* do not inject data to pcb */
goto done;
}
#endif /* NECP */
ripsrc.sin_addr = ip->ip_src;
if ((m->m_flags & M_PKTHDR) && (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) {
is_wake_pkt = true;
}
if ((inp->inp_flags & INP_CONTROLOPTS) != 0 ||
SOFLOW_ENABLED(inp->inp_socket) ||
SO_RECV_CONTROL_OPTS(inp->inp_socket)) {
if (ip_savecontrol(inp, &opts, ip, m) != 0) {
m_freem(opts);
goto done;
}
}
if (inp->inp_flags & INP_STRIPHDR
#if CONTENT_FILTER
/*
* If socket is subject to Content Filter, delay stripping until reinject
*/
&& (!CFIL_DGRAM_FILTERED(inp->inp_socket))
#endif
) {
m->m_len -= iphlen;
m->m_pkthdr.len -= iphlen;
m->m_data += iphlen;
}
so_recv_data_stat(inp->inp_socket, m, 0);
if (sbappendaddr(&inp->inp_socket->so_rcv,
(struct sockaddr *)&ripsrc, m, opts, NULL) != 0) {
num_delivered = 1;
sorwakeup(inp->inp_socket);
if (is_wake_pkt) {
soevent(inp->in6p_socket,
SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT);
}
} else {
ipstat.ips_raw_sappend_fail++;
}
done:
return num_delivered;
}
/*
* The first pass is for IPv4 socket and the second pass for IPv6
*/
static bool
rip_input_inner(struct mbuf *m, int iphlen, bool is_ipv4_pass, uint32_t *total_delivered)
{
struct inpcb *inp;
struct inpcb *last = NULL;
struct ip *ip = mtod(m, struct ip *);
struct ifnet *ifp = m->m_pkthdr.rcvif;
bool need_ipv6_pass = false;
uint32_t num_delivered = 0;
lck_rw_lock_shared(&ripcbinfo.ipi_lock);
LIST_FOREACH(inp, &ripcb, inp_list) {
if (is_ipv4_pass) {
if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) != INP_IPV4) {
/* Tell if we need to an IPv6 pass */
need_ipv6_pass = true;
continue;
}
} else {
if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) != (INP_IPV4 | INP_IPV6)) {
continue;
}
}
if (inp->inp_ip_p && (inp->inp_ip_p != ip->ip_p)) {
continue;
}
if (inp->inp_laddr.s_addr &&
inp->inp_laddr.s_addr != ip->ip_dst.s_addr) {
continue;
}
if (inp->inp_faddr.s_addr &&
inp->inp_faddr.s_addr != ip->ip_src.s_addr) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
if (last != NULL) {
struct mbuf *n = m_copym_mode(m, 0, (int)M_COPYALL, M_DONTWAIT, NULL, NULL, M_COPYM_MUST_COPY_HDR);
if (n == NULL) {
continue;
}
num_delivered += rip_inp_input(last, n, iphlen);
}
last = inp;
}
/*
* Consume the orignal mbuf 'm' if:
* - it is the first pass and there is no IPv6 raw socket
* - it is the second pass for IPv6
*/
if (need_ipv6_pass == false || is_ipv4_pass == false) {
if (last != NULL) {
num_delivered += rip_inp_input(last, m, iphlen);
} else {
m_freem(m);
}
} else {
if (last != NULL) {
struct mbuf *n = m_copym_mode(m, 0, (int)M_COPYALL, M_DONTWAIT, NULL, NULL, M_COPYM_MUST_COPY_HDR);
if (n != NULL) {
num_delivered += rip_inp_input(last, n, iphlen);
}
}
}
/*
* Keep the list locked because socket filter may force the socket lock
* to be released when calling sbappendaddr() -- see rdar://7627704
*/
lck_rw_done(&ripcbinfo.ipi_lock);
*total_delivered += num_delivered;
return need_ipv6_pass;
}
/*
* Setup generic address and protocol structures
* for raw_input routine, then pass them along with
* mbuf chain.
*/
void
rip_input(struct mbuf *m, int iphlen)
{
uint32_t num_delivered = 0;
bool need_v6_pass = false;
/* Expect 32-bit aligned data pointer on strict-align platforms */
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
/*
* First pass for raw IPv4 sockets that are protected by the inet_domain_mutex lock
*/
need_v6_pass = rip_input_inner(m, iphlen, true, &num_delivered);
/*
* For the IPv6 pass we need to switch to the inet6_domain_mutex lock
* to protect the raw IPv6 sockets
*/
if (need_v6_pass) {
lck_mtx_unlock(inet_domain_mutex);
lck_mtx_lock(inet6_domain_mutex);
rip_input_inner(m, iphlen, false, &num_delivered);
lck_mtx_unlock(inet6_domain_mutex);
lck_mtx_lock(inet_domain_mutex);
}
if (num_delivered > 0) {
OSAddAtomic(1, &ipstat.ips_delivered);
} else {
OSAddAtomic(1, &ipstat.ips_noproto);
}
}
/*
* Generate IP header and pass packet to ip_output.
* Tack on options user may have setup with control call.
*/
int
rip_output(
struct mbuf *m,
struct socket *so,
u_int32_t dst,
struct mbuf *control)
{
struct ip *ip;
struct inpcb *inp = sotoinpcb(so);
int flags = (so->so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST;
int inp_flags = inp ? inp->inp_flags : 0;
struct ip_out_args ipoa;
struct ip_moptions *imo;
int tos = IPTOS_UNSPEC;
int error = 0;
#if CONTENT_FILTER
struct m_tag *cfil_tag = NULL;
bool cfil_faddr_use = false;
uint32_t cfil_so_state_change_cnt = 0;
uint32_t cfil_so_options = 0;
int cfil_inp_flags = 0;
struct sockaddr *cfil_faddr = NULL;
struct sockaddr_in *cfil_sin;
u_int32_t cfil_dst = 0;
#endif
#if CONTENT_FILTER
/*
* If socket is subject to Content Filter and no addr is passed in,
* retrieve CFIL saved state from mbuf and use it if necessary.
*/
if (CFIL_DGRAM_FILTERED(so) && dst == INADDR_ANY) {
cfil_tag = cfil_dgram_get_socket_state(m, &cfil_so_state_change_cnt, &cfil_so_options, &cfil_faddr, &cfil_inp_flags);
if (cfil_tag) {
cfil_sin = SIN(cfil_faddr);
flags = (cfil_so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST;
inp_flags = cfil_inp_flags;
if (inp && inp->inp_faddr.s_addr == INADDR_ANY) {
/*
* Socket is unconnected, simply use the saved faddr as 'addr' to go through
* the connect/disconnect logic.
*/
dst = cfil_sin->sin_addr.s_addr;
} else if ((so->so_state_change_cnt != cfil_so_state_change_cnt) &&
(inp->inp_fport != cfil_sin->sin_port ||
inp->inp_faddr.s_addr != cfil_sin->sin_addr.s_addr)) {
/*
* Socket is connected but socket state and dest addr/port changed.
* We need to use the saved faddr and socket options.
*/
cfil_faddr_use = true;
cfil_dst = cfil_sin->sin_addr.s_addr;
}
m_tag_free(cfil_tag);
}
}
#endif
if (so->so_state & SS_ISCONNECTED) {
if (dst != INADDR_ANY) {
if (m != NULL) {
m_freem(m);
}
if (control != NULL) {
m_freem(control);
}
return EISCONN;
}
dst = cfil_faddr_use ? cfil_dst : inp->inp_faddr.s_addr;
} else {
if (dst == INADDR_ANY) {
if (m != NULL) {
m_freem(m);
}
if (control != NULL) {
m_freem(control);
}
return ENOTCONN;
}
}
bzero(&ipoa, sizeof(ipoa));
ipoa.ipoa_boundif = IFSCOPE_NONE;
ipoa.ipoa_flags = IPOAF_SELECT_SRCIF;
int sotc = SO_TC_UNSPEC;
int netsvctype = _NET_SERVICE_TYPE_UNSPEC;
if (control != NULL) {
tos = so_tos_from_control(control);
sotc = so_tc_from_control(control, &netsvctype);
m_freem(control);
control = NULL;
}
if (sotc == SO_TC_UNSPEC) {
sotc = so->so_traffic_class;
netsvctype = so->so_netsvctype;
}
if (inp == NULL
#if NECP
|| (necp_socket_should_use_flow_divert(inp))
#endif /* NECP */
) {
if (m != NULL) {
m_freem(m);
}
VERIFY(control == NULL);
return inp == NULL ? EINVAL : EPROTOTYPE;
}
flags |= IP_OUTARGS;
/* If socket was bound to an ifindex, tell ip_output about it */
if (inp->inp_flags & INP_BOUND_IF) {
ipoa.ipoa_boundif = inp->inp_boundifp->if_index;
ipoa.ipoa_flags |= IPOAF_BOUND_IF;
}
if (INP_NO_CELLULAR(inp)) {
ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
}
if (INP_NO_EXPENSIVE(inp)) {
ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE;
}
if (INP_NO_CONSTRAINED(inp)) {
ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED;
}
if (INP_AWDL_UNRESTRICTED(inp)) {
ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED;
}
if (INP_MANAGEMENT_ALLOWED(inp)) {
ipoa.ipoa_flags |= IPOAF_MANAGEMENT_ALLOWED;
}
ipoa.ipoa_sotc = sotc;
ipoa.ipoa_netsvctype = netsvctype;
if (inp->inp_flowhash == 0) {
inp_calc_flowhash(inp);
ASSERT(inp->inp_flowhash != 0);
}
/*
* If the user handed us a complete IP packet, use it.
* Otherwise, allocate an mbuf for a header and fill it in.
*/
if ((inp_flags & INP_HDRINCL) == 0) {
if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) {
m_freem(m);
return EMSGSIZE;
}
M_PREPEND(m, sizeof(struct ip), M_WAIT, 1);
if (m == NULL) {
return ENOBUFS;
}
ip = mtod(m, struct ip *);
if (tos != IPTOS_UNSPEC) {
ip->ip_tos = (uint8_t)(tos & IPTOS_MASK);
} else {
ip->ip_tos = inp->inp_ip_tos;
}
if (inp->inp_flags2 & INP2_DONTFRAG) {
ip->ip_off = IP_DF;
} else {
ip->ip_off = 0;
}
ip->ip_p = inp->inp_ip_p;
ip->ip_len = (uint16_t)m->m_pkthdr.len;
ip->ip_src = inp->inp_laddr;
ip->ip_dst.s_addr = dst;
ip->ip_ttl = inp->inp_ip_ttl;
} else {
if (m->m_pkthdr.len > IP_MAXPACKET) {
m_freem(m);
return EMSGSIZE;
}
ip = mtod(m, struct ip *);
/*
* don't allow both user specified and setsockopt options,
* and don't allow packet length sizes that will crash
*/
if (m->m_pkthdr.len < sizeof(struct ip) ||
((IP_VHL_HL(ip->ip_vhl) != (sizeof(*ip) >> 2)) && inp->inp_options) ||
(ip->ip_len > m->m_pkthdr.len) ||
(ip->ip_len < (IP_VHL_HL(ip->ip_vhl) << 2))) {
m_freem(m);
return EINVAL;
}
if (ip->ip_id == 0 && !(rfc6864 && IP_OFF_IS_ATOMIC(ntohs(ip->ip_off)))) {
ip->ip_id = ip_randomid((uint64_t)m);
}
/* XXX prevent ip_output from overwriting header fields */
flags |= IP_RAWOUTPUT;
OSAddAtomic(1, &ipstat.ips_rawout);
}
if (inp->inp_laddr.s_addr != INADDR_ANY) {
ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR;
}
#if NECP
{
necp_kernel_policy_id policy_id;
necp_kernel_policy_id skip_policy_id;
u_int32_t route_rule_id;
u_int32_t pass_flags;
/*
* We need a route to perform NECP route rule checks
*/
if ((net_qos_policy_restricted != 0 &&
ROUTE_UNUSABLE(&inp->inp_route))
#if CONTENT_FILTER
|| cfil_faddr_use
#endif
) {
struct sockaddr_in to;
struct sockaddr_in from;
struct in_addr laddr = ip->ip_src;
ROUTE_RELEASE(&inp->inp_route);
bzero(&from, sizeof(struct sockaddr_in));
from.sin_family = AF_INET;
from.sin_len = sizeof(struct sockaddr_in);
from.sin_addr = laddr;
bzero(&to, sizeof(struct sockaddr_in));
to.sin_family = AF_INET;
to.sin_len = sizeof(struct sockaddr_in);
to.sin_addr.s_addr = ip->ip_dst.s_addr;
if ((error = in_pcbladdr(inp, (struct sockaddr *)&to,
&laddr, ipoa.ipoa_boundif, NULL, 1)) != 0) {
printf("%s in_pcbladdr(%p) error %d\n",
__func__, inp, error);
m_freem(m);
return error;
}
inp_update_necp_policy(inp, (struct sockaddr *)&from,
(struct sockaddr *)&to, ipoa.ipoa_boundif);
inp->inp_policyresult.results.qos_marking_gencount = 0;
}
if (!necp_socket_is_allowed_to_send_recv_v4(inp, 0, 0,
&ip->ip_src, &ip->ip_dst, NULL, 0, &policy_id, &route_rule_id, &skip_policy_id, &pass_flags)) {
m_freem(m);
return EHOSTUNREACH;
}
necp_mark_packet_from_socket(m, inp, policy_id, route_rule_id, skip_policy_id, pass_flags);
if (net_qos_policy_restricted != 0) {
struct ifnet *rt_ifp = NULL;
if (inp->inp_route.ro_rt != NULL) {
rt_ifp = inp->inp_route.ro_rt->rt_ifp;
}
necp_socket_update_qos_marking(inp, inp->inp_route.ro_rt, route_rule_id);
}
}
#endif /* NECP */
if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) {
ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED;
}
#if IPSEC
if (inp->inp_sp != NULL && ipsec_setsocket(m, so) != 0) {
m_freem(m);
return ENOBUFS;
}
#endif /*IPSEC*/
if (ROUTE_UNUSABLE(&inp->inp_route)) {
ROUTE_RELEASE(&inp->inp_route);
}
set_packet_service_class(m, so, sotc, 0);
m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
m->m_pkthdr.pkt_flowid = inp->inp_flowhash;
m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC |
PKTF_FLOW_RAWSOCK);
m->m_pkthdr.pkt_proto = inp->inp_ip_p;
m->m_pkthdr.tx_rawip_pid = so->last_pid;
m->m_pkthdr.tx_rawip_e_pid = so->e_pid;
if (so->so_flags & SOF_DELEGATED) {
m->m_pkthdr.tx_rawip_e_pid = so->e_pid;
} else {
m->m_pkthdr.tx_rawip_e_pid = 0;
}
#if (DEBUG || DEVELOPMENT)
if (so->so_flags & SOF_MARK_WAKE_PKT) {
so->so_flags &= ~SOF_MARK_WAKE_PKT;
m->m_pkthdr.pkt_flags |= PKTF_WAKE_PKT;
}
#endif /* (DEBUG || DEVELOPMENT) */
imo = inp->inp_moptions;
if (imo != NULL) {
IMO_ADDREF(imo);
}
/*
* The domain lock is held across ip_output, so it is okay
* to pass the PCB cached route pointer directly to IP and
* the modules beneath it.
*/
// TODO: PASS DOWN ROUTE RULE ID
error = ip_output(m, inp->inp_options, &inp->inp_route, flags,
imo, &ipoa);
if (imo != NULL) {
IMO_REMREF(imo);
}
if (inp->inp_route.ro_rt != NULL) {
struct rtentry *rt = inp->inp_route.ro_rt;
struct ifnet *outif;
if ((rt->rt_flags & (RTF_MULTICAST | RTF_BROADCAST)) ||
inp->inp_socket == NULL ||
#if CONTENT_FILTER
/* Discard temporary route for cfil case */
cfil_faddr_use ||
#endif
!(inp->inp_socket->so_state & SS_ISCONNECTED)) {
rt = NULL; /* unusable */
}
/*
* Always discard the cached route for unconnected
* socket or if it is a multicast route.
*/
if (rt == NULL) {
ROUTE_RELEASE(&inp->inp_route);
}
/*
* If this is a connected socket and the destination
* route is unicast, update outif with that of the
* route interface used by IP.
*/
if (rt != NULL &&
(outif = rt->rt_ifp) != inp->inp_last_outifp) {
inp->inp_last_outifp = outif;
}
} else {
ROUTE_RELEASE(&inp->inp_route);
}
/*
* If output interface was cellular/expensive/constrained, and this socket is
* denied access to it, generate an event.
*/
if (error != 0 && (ipoa.ipoa_flags & IPOAF_R_IFDENIED) &&
(INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp) || INP_NO_CONSTRAINED(inp))) {
soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED));
}
return error;
}
/*
* Raw IP socket option processing.
*/
int
rip_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp = sotoinpcb(so);
int error, optval;
/* Allow <SOL_SOCKET,SO_FLUSH> at this level */
if (sopt->sopt_level != IPPROTO_IP &&
!(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) {
return EINVAL;
}
error = 0;
switch (sopt->sopt_dir) {
case SOPT_GET:
switch (sopt->sopt_name) {
case IP_HDRINCL:
optval = inp->inp_flags & INP_HDRINCL;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case IP_STRIPHDR:
optval = inp->inp_flags & INP_STRIPHDR;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
#if DUMMYNET
case IP_DUMMYNET_GET:
if (!DUMMYNET_LOADED) {
ip_dn_init();
}
if (DUMMYNET_LOADED) {
error = ip_dn_ctl_ptr(sopt);
} else {
error = ENOPROTOOPT;
}
break;
#endif /* DUMMYNET */
default:
error = ip_ctloutput(so, sopt);
break;
}
break;
case SOPT_SET:
switch (sopt->sopt_name) {
case IP_HDRINCL:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval) {
inp->inp_flags |= INP_HDRINCL;
} else {
inp->inp_flags &= ~INP_HDRINCL;
}
break;
case IP_STRIPHDR:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error) {
break;
}
if (optval) {
inp->inp_flags |= INP_STRIPHDR;
} else {
inp->inp_flags &= ~INP_STRIPHDR;
}
break;
#if DUMMYNET
case IP_DUMMYNET_CONFIGURE:
case IP_DUMMYNET_DEL:
case IP_DUMMYNET_FLUSH:
if (!DUMMYNET_LOADED) {
ip_dn_init();
}
if (DUMMYNET_LOADED) {
error = ip_dn_ctl_ptr(sopt);
} else {
error = ENOPROTOOPT;
}
break;
#endif /* DUMMYNET */
case SO_FLUSH:
if ((error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval))) != 0) {
break;
}
error = inp_flush(inp, optval);
break;
default:
error = ip_ctloutput(so, sopt);
break;
}
break;
}
return error;
}
/*
* This function exists solely to receive the PRC_IFDOWN messages which
* are sent by if_down(). It looks for an ifaddr whose ifa_addr is sa,
* and calls in_ifadown() to remove all routes corresponding to that address.
* It also receives the PRC_IFUP messages from if_up() and reinstalls the
* interface routes.
*/
void
rip_ctlinput(
int cmd,
struct sockaddr *sa,
__unused void *vip,
__unused struct ifnet *ifp)
{
struct in_ifaddr *ia = NULL;
struct ifnet *iaifp = NULL;
int err = 0;
int flags, done = 0;
switch (cmd) {
case PRC_IFDOWN:
lck_rw_lock_shared(&in_ifaddr_rwlock);
for (ia = in_ifaddrhead.tqh_first; ia;
ia = ia->ia_link.tqe_next) {
IFA_LOCK(&ia->ia_ifa);
if (ia->ia_ifa.ifa_addr == sa &&
(ia->ia_flags & IFA_ROUTE)) {
done = 1;
ifa_addref(&ia->ia_ifa);
IFA_UNLOCK(&ia->ia_ifa);
lck_rw_done(&in_ifaddr_rwlock);
lck_mtx_lock(rnh_lock);
/*
* in_ifscrub kills the interface route.
*/
in_ifscrub(ia->ia_ifp, ia, 1);
/*
* in_ifadown gets rid of all the rest of
* the routes. This is not quite the right
* thing to do, but at least if we are running
* a routing process they will come back.
*/
in_ifadown(&ia->ia_ifa, 1);
lck_mtx_unlock(rnh_lock);
ifa_remref(&ia->ia_ifa);
break;
}
IFA_UNLOCK(&ia->ia_ifa);
}
if (!done) {
lck_rw_done(&in_ifaddr_rwlock);
}
break;
case PRC_IFUP:
lck_rw_lock_shared(&in_ifaddr_rwlock);
for (ia = in_ifaddrhead.tqh_first; ia;
ia = ia->ia_link.tqe_next) {
IFA_LOCK(&ia->ia_ifa);
if (ia->ia_ifa.ifa_addr == sa) {
/* keep it locked */
break;
}
IFA_UNLOCK(&ia->ia_ifa);
}
if (ia == NULL || (ia->ia_flags & IFA_ROUTE) ||
(ia->ia_ifa.ifa_debug & IFD_NOTREADY)) {
if (ia != NULL) {
IFA_UNLOCK(&ia->ia_ifa);
}
lck_rw_done(&in_ifaddr_rwlock);
return;
}
ifa_addref(&ia->ia_ifa);
IFA_UNLOCK(&ia->ia_ifa);
lck_rw_done(&in_ifaddr_rwlock);
flags = RTF_UP;
iaifp = ia->ia_ifa.ifa_ifp;
if ((iaifp->if_flags & IFF_LOOPBACK)
|| (iaifp->if_flags & IFF_POINTOPOINT)) {
flags |= RTF_HOST;
}
err = rtinit(&ia->ia_ifa, RTM_ADD, flags);
if (err == 0) {
IFA_LOCK_SPIN(&ia->ia_ifa);
ia->ia_flags |= IFA_ROUTE;
IFA_UNLOCK(&ia->ia_ifa);
}
ifa_remref(&ia->ia_ifa);
break;
}
}
u_int32_t rip_sendspace = RIPSNDQ;
u_int32_t rip_recvspace = RIPRCVQ;
SYSCTL_INT(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW | CTLFLAG_LOCKED,
&rip_sendspace, 0, "Maximum outgoing raw IP datagram size");
SYSCTL_INT(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED,
&rip_recvspace, 0, "Maximum incoming raw IP datagram size");
SYSCTL_UINT(_net_inet_raw, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
&ripcbinfo.ipi_count, 0, "Number of active PCBs");
static int
rip_attach(struct socket *so, int proto, struct proc *p)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
if (inp) {
panic("rip_attach");
}
if ((so->so_state & SS_PRIV) == 0) {
return EPERM;
}
if (proto > UINT8_MAX) {
return EINVAL;
}
error = soreserve(so, rip_sendspace, rip_recvspace);
if (error) {
return error;
}
error = in_pcballoc(so, &ripcbinfo, p);
if (error) {
return error;
}
inp = (struct inpcb *)so->so_pcb;
inp->inp_vflag |= INP_IPV4;
VERIFY(proto <= UINT8_MAX);
inp->inp_ip_p = (u_char)proto;
inp->inp_ip_ttl = (u_char)ip_defttl;
return 0;
}
__private_extern__ int
rip_detach(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == 0) {
panic("rip_detach");
}
in_pcbdetach(inp);
return 0;
}
__private_extern__ int
rip_abort(struct socket *so)
{
soisdisconnected(so);
return rip_detach(so);
}
__private_extern__ int
rip_disconnect(struct socket *so)
{
if ((so->so_state & SS_ISCONNECTED) == 0) {
return ENOTCONN;
}
return rip_abort(so);
}
__private_extern__ int
rip_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
{
#pragma unused(p)
struct inpcb *inp = sotoinpcb(so);
struct sockaddr_in sin;
struct ifaddr *ifa = NULL;
struct ifnet *outif = NULL;
if (inp == NULL
#if NECP
|| (necp_socket_should_use_flow_divert(inp))
#endif /* NECP */
) {
return inp == NULL ? EINVAL : EPROTOTYPE;
}
if (nam->sa_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
/* Sanitized local copy for interface address searches */
bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(struct sockaddr_in);
sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr;
if (TAILQ_EMPTY(&ifnet_head) ||
(sin.sin_family != AF_INET && sin.sin_family != AF_IMPLINK) ||
(sin.sin_addr.s_addr && (ifa = ifa_ifwithaddr(SA(&sin))) == 0)) {
return EADDRNOTAVAIL;
} else if (ifa) {
/*
* Opportunistically determine the outbound
* interface that may be used; this may not
* hold true if we end up using a route
* going over a different interface, e.g.
* when sending to a local address. This
* will get updated again after sending.
*/
IFA_LOCK(ifa);
outif = ifa->ifa_ifp;
IFA_UNLOCK(ifa);
ifa_remref(ifa);
}
inp->inp_laddr = sin.sin_addr;
inp->inp_last_outifp = outif;
return 0;
}
__private_extern__ int
rip_connect(struct socket *so, struct sockaddr *nam, __unused struct proc *p)
{
struct inpcb *inp = sotoinpcb(so);
struct sockaddr_in *addr = (struct sockaddr_in *)(void *)nam;
if (inp == NULL
#if NECP
|| (necp_socket_should_use_flow_divert(inp))
#endif /* NECP */
) {
return inp == NULL ? EINVAL : EPROTOTYPE;
}
if (nam->sa_len != sizeof(*addr)) {
return EINVAL;
}
if (TAILQ_EMPTY(&ifnet_head)) {
return EADDRNOTAVAIL;
}
if ((addr->sin_family != AF_INET) &&
(addr->sin_family != AF_IMPLINK)) {
return EAFNOSUPPORT;
}
if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) {
so->so_flags1 |= SOF1_CONNECT_COUNTED;
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected);
}
inp->inp_faddr = addr->sin_addr;
soisconnected(so);
return 0;
}
__private_extern__ int
rip_shutdown(struct socket *so)
{
socantsendmore(so);
return 0;
}
__private_extern__ int
rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct proc *p)
{
#pragma unused(flags, p)
struct inpcb *inp = sotoinpcb(so);
u_int32_t dst = INADDR_ANY;
int error = 0;
if (inp == NULL
#if NECP
|| (necp_socket_should_use_flow_divert(inp) && (error = EPROTOTYPE))
#endif /* NECP */
) {
if (inp == NULL) {
error = EINVAL;
} else {
error = EPROTOTYPE;
}
goto bad;
}
if (nam != NULL) {
dst = ((struct sockaddr_in *)(void *)nam)->sin_addr.s_addr;
}
return rip_output(m, so, dst, control);
bad:
VERIFY(error != 0);
if (m != NULL) {
m_freem(m);
}
if (control != NULL) {
m_freem(control);
}
return error;
}
/* note: rip_unlock is called from different protos instead of the generic socket_unlock,
* it will handle the socket dealloc on last reference
* */
int
rip_unlock(struct socket *so, int refcount, void *debug)
{
void *lr_saved;
struct inpcb *inp = sotoinpcb(so);
if (debug == NULL) {
lr_saved = __builtin_return_address(0);
} else {
lr_saved = debug;
}
if (refcount) {
if (so->so_usecount <= 0) {
panic("rip_unlock: bad refoucnt so=%p val=%x lrh= %s",
so, so->so_usecount, solockhistory_nr(so));
/* NOTREACHED */
}
so->so_usecount--;
if (so->so_usecount == 0 && (inp->inp_wantcnt == WNT_STOPUSING)) {
/* cleanup after last reference */
lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx);
lck_rw_lock_exclusive(&ripcbinfo.ipi_lock);
if (inp->inp_state != INPCB_STATE_DEAD) {
if (SOCK_CHECK_DOM(so, PF_INET6)) {
in6_pcbdetach(inp);
} else {
in_pcbdetach(inp);
}
}
in_pcbdispose(inp);
lck_rw_done(&ripcbinfo.ipi_lock);
return 0;
}
}
so->unlock_lr[so->next_unlock_lr] = lr_saved;
so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx);
return 0;
}
static int
rip_pcblist SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error, i, n, sz;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
lck_rw_lock_exclusive(&ripcbinfo.ipi_lock);
if (req->oldptr == USER_ADDR_NULL) {
n = ripcbinfo.ipi_count;
req->oldidx = 2 * (sizeof xig)
+ (n + n / 8) * sizeof(struct xinpcb);
lck_rw_done(&ripcbinfo.ipi_lock);
return 0;
}
if (req->newptr != USER_ADDR_NULL) {
lck_rw_done(&ripcbinfo.ipi_lock);
return EPERM;
}
/*
* OK, now we're committed to doing something.
*/
gencnt = ripcbinfo.ipi_gencnt;
sz = n = ripcbinfo.ipi_count;
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error) {
lck_rw_done(&ripcbinfo.ipi_lock);
return error;
}
/*
* We are done if there is no pcb
*/
if (n == 0) {
lck_rw_done(&ripcbinfo.ipi_lock);
return 0;
}
inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK);
if (inp_list == NULL) {
lck_rw_done(&ripcbinfo.ipi_lock);
return ENOMEM;
}
for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n;
inp = inp->inp_list.le_next) {
if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
inp_list[i++] = inp;
}
}
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
struct xinpcb xi;
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof xi;
/* XXX should avoid extra copy */
inpcb_to_compat(inp, &xi.xi_inp);
if (inp->inp_socket) {
sotoxsocket(inp->inp_socket, &xi.xi_socket);
}
error = SYSCTL_OUT(req, &xi, sizeof xi);
}
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof xig;
xig.xig_gen = ripcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = ripcbinfo.ipi_count;
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
lck_rw_done(&ripcbinfo.ipi_lock);
kfree_type(struct inpcb *, sz, inp_list);
return error;
}
SYSCTL_PROC(_net_inet_raw, OID_AUTO /*XXX*/, pcblist,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
rip_pcblist, "S,xinpcb", "List of active raw IP sockets");
#if XNU_TARGET_OS_OSX
static int
rip_pcblist64 SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error, i, n, sz;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
lck_rw_lock_exclusive(&ripcbinfo.ipi_lock);
if (req->oldptr == USER_ADDR_NULL) {
n = ripcbinfo.ipi_count;
req->oldidx = 2 * (sizeof xig)
+ (n + n / 8) * sizeof(struct xinpcb64);
lck_rw_done(&ripcbinfo.ipi_lock);
return 0;
}
if (req->newptr != USER_ADDR_NULL) {
lck_rw_done(&ripcbinfo.ipi_lock);
return EPERM;
}
/*
* OK, now we're committed to doing something.
*/
gencnt = ripcbinfo.ipi_gencnt;
sz = n = ripcbinfo.ipi_count;
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error) {
lck_rw_done(&ripcbinfo.ipi_lock);
return error;
}
/*
* We are done if there is no pcb
*/
if (n == 0) {
lck_rw_done(&ripcbinfo.ipi_lock);
return 0;
}
inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK);
if (inp_list == NULL) {
lck_rw_done(&ripcbinfo.ipi_lock);
return ENOMEM;
}
for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n;
inp = inp->inp_list.le_next) {
if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
inp_list[i++] = inp;
}
}
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
struct xinpcb64 xi;
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof xi;
inpcb_to_xinpcb64(inp, &xi);
if (inp->inp_socket) {
sotoxsocket64(inp->inp_socket, &xi.xi_socket);
}
error = SYSCTL_OUT(req, &xi, sizeof xi);
}
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof xig;
xig.xig_gen = ripcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = ripcbinfo.ipi_count;
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
lck_rw_done(&ripcbinfo.ipi_lock);
kfree_type(struct inpcb *, sz, inp_list);
return error;
}
SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist64,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
rip_pcblist64, "S,xinpcb64", "List of active raw IP sockets");
#endif /* XNU_TARGET_OS_OSX */
static int
rip_pcblist_n SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error = 0;
error = get_pcblist_n(IPPROTO_IP, req, &ripcbinfo);
return error;
}
SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist_n,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
rip_pcblist_n, "S,xinpcb_n", "List of active raw IP sockets");
struct pr_usrreqs rip_usrreqs = {
.pru_abort = rip_abort,
.pru_attach = rip_attach,
.pru_bind = rip_bind,
.pru_connect = rip_connect,
.pru_control = in_control,
.pru_detach = rip_detach,
.pru_disconnect = rip_disconnect,
.pru_peeraddr = in_getpeeraddr,
.pru_send = rip_send,
.pru_shutdown = rip_shutdown,
.pru_sockaddr = in_getsockaddr,
.pru_sosend = sosend,
.pru_soreceive = soreceive,
};
/* DSEP Review Done pl-20051213-v02 @3253 */