gems-kernel/source/THIRDPARTY/xnu/bsd/netinet6/esp_rijndael.c

1258 lines
34 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2008-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* $FreeBSD: src/sys/netinet6/esp_rijndael.c,v 1.1.2.1 2001/07/03 11:01:50 ume Exp $ */
/* $KAME: esp_rijndael.c,v 1.4 2001/03/02 05:53:05 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/syslog.h>
#include <sys/mbuf.h>
#include <sys/mcache.h>
#include <kern/locks.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet6/ipsec.h>
#include <netinet6/esp.h>
#include <netinet6/esp_rijndael.h>
#include <libkern/crypto/aes.h>
#include <netkey/key.h>
#include <net/net_osdep.h>
#define MAX_REALIGN_LEN 2000
#define AES_BLOCKLEN 16
#define ESP_GCM_SALT_LEN 4 // RFC 4106 Section 4
#define ESP_GCM_IVLEN 8
#define ESP_GCM_ALIGN 16
typedef struct {
ccgcm_ctx *decrypt;
ccgcm_ctx *encrypt;
ccgcm_ctx ctxt[0];
} aes_gcm_ctx;
size_t
esp_aes_schedlen(
__unused const struct esp_algorithm *algo)
{
return sizeof(aes_ctx);
}
int
esp_aes_schedule(
__unused const struct esp_algorithm *algo,
struct secasvar *sav)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
aes_ctx *ctx = (aes_ctx*)sav->sched_enc;
aes_decrypt_key((const unsigned char *) _KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc), &ctx->decrypt);
aes_encrypt_key((const unsigned char *) _KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc), &ctx->encrypt);
return 0;
}
/* The following 2 functions decrypt or encrypt the contents of
* the mbuf chain passed in keeping the IP and ESP header's in place,
* along with the IV.
* The code attempts to call the crypto code with the largest chunk
* of data it can based on the amount of source data in
* the current source mbuf and the space remaining in the current
* destination mbuf. The crypto code requires data to be a multiples
* of 16 bytes. A separate buffer is used when a 16 byte block spans
* mbufs.
*
* m = mbuf chain
* off = offset to ESP header
*
* local vars for source:
* soff = offset from beginning of the chain to the head of the
* current mbuf.
* scut = last mbuf that contains headers to be retained
* scutoff = offset to end of the headers in scut
* s = the current mbuf
* sn = current offset to data in s (next source data to process)
*
* local vars for dest:
* d0 = head of chain
* d = current mbuf
* dn = current offset in d (next location to store result)
*/
int
esp_cbc_decrypt_aes(
struct mbuf *m,
size_t off,
struct secasvar *sav,
const struct esp_algorithm *algo,
int ivlen)
{
struct mbuf *s;
struct mbuf *d, *d0, *dp;
int soff; /* offset from the head of chain, to head of this mbuf */
int sn, dn; /* offset from the head of the mbuf, to meat */
size_t ivoff, bodyoff;
u_int8_t iv[AES_BLOCKLEN] __attribute__((aligned(4))), *dptr;
u_int8_t sbuf[AES_BLOCKLEN] __attribute__((aligned(4))), *sp, *sp_unaligned, *sp_aligned = NULL;
struct mbuf *scut;
int scutoff;
int i, len;
if (ivlen != AES_BLOCKLEN) {
ipseclog((LOG_ERR, "esp_cbc_decrypt %s: "
"unsupported ivlen %d\n", algo->name, ivlen));
m_freem(m);
return EINVAL;
}
if (sav->flags & SADB_X_EXT_OLD) {
/* RFC 1827 */
ivoff = off + sizeof(struct esp);
bodyoff = off + sizeof(struct esp) + ivlen;
} else {
ivoff = off + sizeof(struct newesp);
bodyoff = off + sizeof(struct newesp) + ivlen;
}
if (m->m_pkthdr.len < bodyoff) {
ipseclog((LOG_ERR, "esp_cbc_decrypt %s: bad len %d/%u\n",
algo->name, m->m_pkthdr.len, (u_int32_t)bodyoff));
m_freem(m);
return EINVAL;
}
if ((m->m_pkthdr.len - bodyoff) % AES_BLOCKLEN) {
ipseclog((LOG_ERR, "esp_cbc_decrypt %s: "
"payload length must be multiple of %d\n",
algo->name, AES_BLOCKLEN));
m_freem(m);
return EINVAL;
}
VERIFY(ivoff <= INT_MAX);
/* grab iv */
m_copydata(m, (int)ivoff, ivlen, (caddr_t) iv);
s = m;
soff = sn = dn = 0;
d = d0 = dp = NULL;
sp = dptr = NULL;
/* skip header/IV offset */
while (soff < bodyoff) {
if (soff + s->m_len > bodyoff) {
sn = (int)(bodyoff - soff);
break;
}
soff += s->m_len;
s = s->m_next;
}
scut = s;
scutoff = sn;
/* skip over empty mbuf */
while (s && s->m_len == 0) {
s = s->m_next;
}
while (soff < m->m_pkthdr.len) {
/* source */
if (sn + AES_BLOCKLEN <= s->m_len) {
/* body is continuous */
sp = mtod(s, u_int8_t *) + sn;
len = s->m_len - sn;
len -= len % AES_BLOCKLEN; // full blocks only
} else {
/* body is non-continuous */
m_copydata(s, sn, AES_BLOCKLEN, (caddr_t) sbuf);
sp = sbuf;
len = AES_BLOCKLEN; // 1 block only in sbuf
}
/* destination */
if (!d || dn + AES_BLOCKLEN > d->m_len) {
if (d) {
dp = d;
}
MGET(d, M_DONTWAIT, MT_DATA);
i = m->m_pkthdr.len - (soff + sn);
if (d && i > MLEN) {
MCLGET(d, M_DONTWAIT);
if ((d->m_flags & M_EXT) == 0) {
d = m_mbigget(d, M_DONTWAIT);
if ((d->m_flags & M_EXT) == 0) {
m_free(d);
d = NULL;
}
}
}
if (!d) {
m_freem(m);
if (d0) {
m_freem(d0);
}
return ENOBUFS;
}
if (!d0) {
d0 = d;
}
if (dp) {
dp->m_next = d;
}
// try to make mbuf data aligned
if (!IPSEC_IS_P2ALIGNED(d->m_data)) {
m_adj(d, IPSEC_GET_P2UNALIGNED_OFS(d->m_data));
}
d->m_len = (int)M_TRAILINGSPACE(d);
d->m_len -= d->m_len % AES_BLOCKLEN;
if (d->m_len > i) {
d->m_len = i;
}
dptr = mtod(d, u_int8_t *);
dn = 0;
}
/* adjust len if greater than space available in dest */
if (len > d->m_len - dn) {
len = d->m_len - dn;
}
/* decrypt */
// check input pointer alignment and use a separate aligned buffer (if sp is unaligned on 4-byte boundary).
if (IPSEC_IS_P2ALIGNED(sp)) {
sp_unaligned = NULL;
} else {
sp_unaligned = sp;
if (len > MAX_REALIGN_LEN) {
m_freem(m);
if (d0 != NULL) {
m_freem(d0);
}
if (sp_aligned != NULL) {
kfree_data(sp_aligned, MAX_REALIGN_LEN);
sp_aligned = NULL;
}
return ENOBUFS;
}
if (sp_aligned == NULL) {
sp_aligned = (u_int8_t *)kalloc_data(MAX_REALIGN_LEN, Z_NOWAIT);
if (sp_aligned == NULL) {
m_freem(m);
if (d0 != NULL) {
m_freem(d0);
}
return ENOMEM;
}
}
sp = sp_aligned;
memcpy(sp, sp_unaligned, len);
}
// no need to check output pointer alignment
aes_decrypt_cbc(sp, iv, len >> 4, dptr + dn,
(aes_decrypt_ctx*)(&(((aes_ctx*)sav->sched_enc)->decrypt)));
// update unaligned pointers
if (!IPSEC_IS_P2ALIGNED(sp_unaligned)) {
sp = sp_unaligned;
}
/* udpate offsets */
sn += len;
dn += len;
// next iv
memcpy(iv, sp + len - AES_BLOCKLEN, AES_BLOCKLEN);
/* find the next source block */
while (s && sn >= s->m_len) {
sn -= s->m_len;
soff += s->m_len;
s = s->m_next;
}
}
/* free un-needed source mbufs and add dest mbufs to chain */
m_freem(scut->m_next);
scut->m_len = scutoff;
scut->m_next = d0;
// free memory
if (sp_aligned != NULL) {
kfree_data(sp_aligned, MAX_REALIGN_LEN);
sp_aligned = NULL;
}
/* just in case */
cc_clear(sizeof(iv), iv);
cc_clear(sizeof(sbuf), sbuf);
return 0;
}
int
esp_cbc_encrypt_aes(
struct mbuf *m,
size_t off,
__unused size_t plen,
struct secasvar *sav,
const struct esp_algorithm *algo,
int ivlen)
{
struct mbuf *s;
struct mbuf *d, *d0, *dp;
int soff; /* offset from the head of chain, to head of this mbuf */
int sn, dn; /* offset from the head of the mbuf, to meat */
size_t ivoff, bodyoff;
u_int8_t *ivp, *dptr, *ivp_unaligned;
u_int8_t sbuf[AES_BLOCKLEN] __attribute__((aligned(4))), *sp, *sp_unaligned, *sp_aligned = NULL;
u_int8_t ivp_aligned_buf[AES_BLOCKLEN] __attribute__((aligned(4)));
struct mbuf *scut;
int scutoff;
int i, len;
if (ivlen != AES_BLOCKLEN) {
ipseclog((LOG_ERR, "esp_cbc_encrypt %s: "
"unsupported ivlen %d\n", algo->name, ivlen));
m_freem(m);
return EINVAL;
}
if (sav->flags & SADB_X_EXT_OLD) {
/* RFC 1827 */
ivoff = off + sizeof(struct esp);
bodyoff = off + sizeof(struct esp) + ivlen;
} else {
ivoff = off + sizeof(struct newesp);
bodyoff = off + sizeof(struct newesp) + ivlen;
}
VERIFY(ivoff <= INT_MAX);
/* put iv into the packet */
m_copyback(m, (int)ivoff, ivlen, sav->iv);
ivp = (u_int8_t *) sav->iv;
if (m->m_pkthdr.len < bodyoff) {
ipseclog((LOG_ERR, "esp_cbc_encrypt %s: bad len %d/%u\n",
algo->name, m->m_pkthdr.len, (u_int32_t)bodyoff));
m_freem(m);
return EINVAL;
}
if ((m->m_pkthdr.len - bodyoff) % AES_BLOCKLEN) {
ipseclog((LOG_ERR, "esp_cbc_encrypt %s: "
"payload length must be multiple of %d\n",
algo->name, AES_BLOCKLEN));
m_freem(m);
return EINVAL;
}
s = m;
soff = sn = dn = 0;
d = d0 = dp = NULL;
sp = dptr = NULL;
/* skip headers/IV */
while (soff < bodyoff) {
if (soff + s->m_len > bodyoff) {
sn = (int)(bodyoff - soff);
break;
}
soff += s->m_len;
s = s->m_next;
}
scut = s;
scutoff = sn;
/* skip over empty mbuf */
while (s && s->m_len == 0) {
s = s->m_next;
}
while (soff < m->m_pkthdr.len) {
/* source */
if (sn + AES_BLOCKLEN <= s->m_len) {
/* body is continuous */
sp = mtod(s, u_int8_t *) + sn;
len = s->m_len - sn;
len -= len % AES_BLOCKLEN; // full blocks only
} else {
/* body is non-continuous */
m_copydata(s, sn, AES_BLOCKLEN, (caddr_t) sbuf);
sp = sbuf;
len = AES_BLOCKLEN; // 1 block only in sbuf
}
/* destination */
if (!d || dn + AES_BLOCKLEN > d->m_len) {
if (d) {
dp = d;
}
MGET(d, M_DONTWAIT, MT_DATA);
i = m->m_pkthdr.len - (soff + sn);
if (d && i > MLEN) {
MCLGET(d, M_DONTWAIT);
if ((d->m_flags & M_EXT) == 0) {
d = m_mbigget(d, M_DONTWAIT);
if ((d->m_flags & M_EXT) == 0) {
m_free(d);
d = NULL;
}
}
}
if (!d) {
m_freem(m);
if (d0) {
m_freem(d0);
}
return ENOBUFS;
}
if (!d0) {
d0 = d;
}
if (dp) {
dp->m_next = d;
}
// try to make mbuf data aligned
if (!IPSEC_IS_P2ALIGNED(d->m_data)) {
m_adj(d, IPSEC_GET_P2UNALIGNED_OFS(d->m_data));
}
d->m_len = (int)M_TRAILINGSPACE(d);
d->m_len -= d->m_len % AES_BLOCKLEN;
if (d->m_len > i) {
d->m_len = i;
}
dptr = mtod(d, u_int8_t *);
dn = 0;
}
/* adjust len if greater than space available */
if (len > d->m_len - dn) {
len = d->m_len - dn;
}
/* encrypt */
// check input pointer alignment and use a separate aligned buffer (if sp is not aligned on 4-byte boundary).
if (IPSEC_IS_P2ALIGNED(sp)) {
sp_unaligned = NULL;
} else {
sp_unaligned = sp;
if (len > MAX_REALIGN_LEN) {
m_freem(m);
if (d0) {
m_freem(d0);
}
if (sp_aligned != NULL) {
kfree_data(sp_aligned, MAX_REALIGN_LEN);
sp_aligned = NULL;
}
return ENOBUFS;
}
if (sp_aligned == NULL) {
sp_aligned = (u_int8_t *)kalloc_data(MAX_REALIGN_LEN, Z_NOWAIT);
if (sp_aligned == NULL) {
m_freem(m);
if (d0) {
m_freem(d0);
}
return ENOMEM;
}
}
sp = sp_aligned;
memcpy(sp, sp_unaligned, len);
}
// check ivp pointer alignment and use a separate aligned buffer (if ivp is not aligned on 4-byte boundary).
if (IPSEC_IS_P2ALIGNED(ivp)) {
ivp_unaligned = NULL;
} else {
ivp_unaligned = ivp;
ivp = ivp_aligned_buf;
memcpy(ivp, ivp_unaligned, AES_BLOCKLEN);
}
// no need to check output pointer alignment
aes_encrypt_cbc(sp, ivp, len >> 4, dptr + dn,
(aes_encrypt_ctx*)(&(((aes_ctx*)sav->sched_enc)->encrypt)));
// update unaligned pointers
if (!IPSEC_IS_P2ALIGNED(sp_unaligned)) {
sp = sp_unaligned;
}
if (!IPSEC_IS_P2ALIGNED(ivp_unaligned)) {
ivp = ivp_unaligned;
}
/* update offsets */
sn += len;
dn += len;
/* next iv */
ivp = dptr + dn - AES_BLOCKLEN; // last block encrypted
/* find the next source block and skip empty mbufs */
while (s && sn >= s->m_len) {
sn -= s->m_len;
soff += s->m_len;
s = s->m_next;
}
}
/* free un-needed source mbufs and add dest mbufs to chain */
m_freem(scut->m_next);
scut->m_len = scutoff;
scut->m_next = d0;
// free memory
if (sp_aligned != NULL) {
kfree_data(sp_aligned, MAX_REALIGN_LEN);
sp_aligned = NULL;
}
/* just in case */
cc_clear(sizeof(sbuf), sbuf);
key_sa_stir_iv(sav);
return 0;
}
int
esp_aes_cbc_encrypt_data(struct secasvar *sav, uint8_t *input_data,
size_t input_data_len, struct newesp *esp_hdr, uint8_t *out_iv,
size_t out_ivlen, uint8_t *output_data, size_t output_data_len)
{
aes_encrypt_ctx *ctx = NULL;
uint8_t *ivp = NULL;
aes_rval rc = 0;
ESP_CHECK_ARG(sav);
ESP_CHECK_ARG(input_data);
ESP_CHECK_ARG(esp_hdr);
ESP_CHECK_ARG(out_iv);
ESP_CHECK_ARG(output_data);
VERIFY(input_data_len > 0);
VERIFY(output_data_len >= input_data_len);
VERIFY(out_ivlen == AES_BLOCKLEN);
memcpy(out_iv, sav->iv, out_ivlen);
ivp = (uint8_t *)sav->iv;
if (input_data_len % AES_BLOCKLEN) {
esp_log_err("payload length %zu must be multiple of "
"AES_BLOCKLEN, SPI 0x%08x", input_data_len, ntohl(sav->spi));
return EINVAL;
}
ctx = (aes_encrypt_ctx *)(&(((aes_ctx *)sav->sched_enc)->encrypt));
VERIFY((input_data_len >> 4) <= UINT32_MAX);
if (__improbable((rc = aes_encrypt_cbc(input_data, ivp,
(unsigned int)(input_data_len >> 4), output_data, ctx)) != 0)) {
esp_log_err("encrypt failed %d, SPI 0x%08x", rc, ntohl(sav->spi));
return rc;
}
key_sa_stir_iv(sav);
return 0;
}
int
esp_aes_cbc_decrypt_data(struct secasvar *sav, uint8_t *input_data,
size_t input_data_len, struct newesp *esp_hdr, uint8_t *iv,
size_t ivlen, uint8_t *output_data, size_t output_data_len)
{
aes_decrypt_ctx *ctx = NULL;
aes_rval rc = 0;
ESP_CHECK_ARG(sav);
ESP_CHECK_ARG(input_data);
ESP_CHECK_ARG(esp_hdr);
ESP_CHECK_ARG(output_data);
VERIFY(input_data_len > 0);
VERIFY(output_data_len >= input_data_len);
if (__improbable(ivlen != AES_BLOCKLEN)) {
esp_log_err("ivlen(%zu) != AES_BLOCKLEN, SPI 0x%08x",
ivlen, ntohl(sav->spi));
return EINVAL;
}
if (__improbable(input_data_len % AES_BLOCKLEN)) {
esp_packet_log_err("input data length(%zu) must be a multiple of "
"AES_BLOCKLEN", input_data_len);
return EINVAL;
}
ctx = (aes_decrypt_ctx *)(&(((aes_ctx *)sav->sched_enc)->decrypt));
VERIFY((input_data_len >> 4) <= UINT32_MAX);
if (__improbable((rc = aes_decrypt_cbc(input_data, iv,
(unsigned int)(input_data_len >> 4), output_data, ctx)) != 0)) {
esp_log_err("decrypt failed %d, SPI 0x%08x", rc, ntohl(sav->spi));
return rc;
}
return 0;
}
size_t
esp_gcm_schedlen(
__unused const struct esp_algorithm *algo)
{
return sizeof(aes_gcm_ctx) + aes_decrypt_get_ctx_size_gcm() + aes_encrypt_get_ctx_size_gcm() + ESP_GCM_ALIGN;
}
int
esp_gcm_schedule( __unused const struct esp_algorithm *algo,
struct secasvar *sav)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
aes_gcm_ctx *ctx = (aes_gcm_ctx*)P2ROUNDUP(sav->sched_enc, ESP_GCM_ALIGN);
const u_int ivlen = sav->ivlen;
const bool implicit_iv = ((sav->flags & SADB_X_EXT_IIV) != 0);
const bool gmac_only = (sav->alg_enc == SADB_X_EALG_AES_GMAC);
unsigned char nonce[ESP_GCM_SALT_LEN + ivlen];
int rc;
ctx->decrypt = &ctx->ctxt[0];
ctx->encrypt = &ctx->ctxt[aes_decrypt_get_ctx_size_gcm() / sizeof(ccgcm_ctx)];
if (ivlen != (implicit_iv ? 0 : ESP_GCM_IVLEN)) {
ipseclog((LOG_ERR, "%s: unsupported ivlen %d\n", __FUNCTION__, ivlen));
return EINVAL;
}
if (implicit_iv && gmac_only) {
ipseclog((LOG_ERR, "%s: IIV and GMAC-only not supported together\n", __FUNCTION__));
return EINVAL;
}
rc = aes_decrypt_key_gcm((const unsigned char *) _KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc) - ESP_GCM_SALT_LEN, ctx->decrypt);
if (rc) {
return rc;
}
if (!implicit_iv) {
memset(nonce, 0, ESP_GCM_SALT_LEN + ivlen);
memcpy(nonce, _KEYBUF(sav->key_enc) + _KEYLEN(sav->key_enc) - ESP_GCM_SALT_LEN, ESP_GCM_SALT_LEN);
memcpy(nonce + ESP_GCM_SALT_LEN, sav->iv, ivlen);
rc = aes_encrypt_key_with_iv_gcm((const unsigned char *) _KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc) - ESP_GCM_SALT_LEN, nonce, ctx->encrypt);
cc_clear(sizeof(nonce), nonce);
if (rc) {
return rc;
}
} else {
rc = aes_encrypt_key_gcm((const unsigned char *) _KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc) - ESP_GCM_SALT_LEN, ctx->encrypt);
if (rc) {
return rc;
}
}
rc = aes_encrypt_reset_gcm(ctx->encrypt);
if (rc) {
return rc;
}
return rc;
}
int
esp_gcm_ivlen(const struct esp_algorithm *algo,
struct secasvar *sav)
{
if (!algo) {
panic("esp_gcm_ivlen: unknown algorithm");
}
if (sav != NULL && ((sav->flags & SADB_X_EXT_IIV) != 0)) {
return 0;
} else {
return algo->ivlenval;
}
}
int
esp_gcm_encrypt_finalize(struct secasvar *sav,
unsigned char *tag, size_t tag_bytes)
{
aes_gcm_ctx *ctx = (aes_gcm_ctx*)P2ROUNDUP(sav->sched_enc, ESP_GCM_ALIGN);
return aes_encrypt_finalize_gcm(tag, tag_bytes, ctx->encrypt);
}
int
esp_gcm_decrypt_finalize(struct secasvar *sav,
unsigned char *tag, size_t tag_bytes)
{
aes_gcm_ctx *ctx = (aes_gcm_ctx*)P2ROUNDUP(sav->sched_enc, ESP_GCM_ALIGN);
return aes_decrypt_finalize_gcm(tag, tag_bytes, ctx->decrypt);
}
int
esp_gcm_encrypt_aes(
struct mbuf *m,
size_t off,
__unused size_t plen,
struct secasvar *sav,
const struct esp_algorithm *algo __unused,
int ivlen)
{
struct mbuf *s = m;
uint32_t soff = 0; /* offset from the head of chain, to head of this mbuf */
uint32_t sn = 0; /* offset from the head of the mbuf, to meat */
uint8_t *sp = NULL;
aes_gcm_ctx *ctx;
uint32_t len;
const bool implicit_iv = ((sav->flags & SADB_X_EXT_IIV) != 0);
const bool gmac_only = (sav->alg_enc == SADB_X_EALG_AES_GMAC);
struct newesp esp;
unsigned char nonce[ESP_GCM_SALT_LEN + ESP_GCM_IVLEN];
VERIFY(off <= INT_MAX);
const size_t ivoff = off + sizeof(struct newesp);
VERIFY(ivoff <= INT_MAX);
const size_t bodyoff = ivoff + ivlen;
VERIFY(bodyoff <= INT_MAX);
if (ivlen != (implicit_iv ? 0 : ESP_GCM_IVLEN)) {
ipseclog((LOG_ERR, "%s: unsupported ivlen %d\n", __FUNCTION__, ivlen));
m_freem(m);
return EINVAL;
}
if (implicit_iv && gmac_only) {
ipseclog((LOG_ERR, "%s: IIV and GMAC-only not supported together\n", __FUNCTION__));
m_freem(m);
return EINVAL;
}
ctx = (aes_gcm_ctx *)P2ROUNDUP(sav->sched_enc, ESP_GCM_ALIGN);
if (aes_encrypt_reset_gcm(ctx->encrypt)) {
ipseclog((LOG_ERR, "%s: gcm reset failure\n", __FUNCTION__));
m_freem(m);
return EINVAL;
}
/* Copy the ESP header */
m_copydata(m, (int)off, sizeof(esp), (caddr_t) &esp);
/* Construct the IV */
memset(nonce, 0, sizeof(nonce));
if (!implicit_iv) {
/* generate new iv */
if (aes_encrypt_inc_iv_gcm((unsigned char *)nonce, ctx->encrypt)) {
ipseclog((LOG_ERR, "%s: iv generation failure\n", __FUNCTION__));
m_freem(m);
return EINVAL;
}
/*
* The IV is now generated within corecrypto and
* is provided to ESP using aes_encrypt_inc_iv_gcm().
* This makes the sav->iv redundant and is no longer
* used in GCM operations. But we still copy the IV
* back to sav->iv to ensure that any future code reading
* this value will get the latest IV.
*/
memcpy(sav->iv, (nonce + ESP_GCM_SALT_LEN), ivlen);
m_copyback(m, (int)ivoff, ivlen, sav->iv);
} else {
/* Use the ESP sequence number in the header to form the
* nonce according to RFC 8750. The first 4 bytes are the
* salt value, the next 4 bytes are zeroes, and the final
* 4 bytes are the ESP sequence number.
*/
memcpy(nonce, _KEYBUF(sav->key_enc) + _KEYLEN(sav->key_enc) - ESP_GCM_SALT_LEN, ESP_GCM_SALT_LEN);
memcpy(nonce + sizeof(nonce) - sizeof(esp.esp_seq), &esp.esp_seq, sizeof(esp.esp_seq));
if (aes_encrypt_set_iv_gcm((const unsigned char *)nonce, sizeof(nonce), ctx->encrypt)) {
ipseclog((LOG_ERR, "%s: iv set failure\n", __FUNCTION__));
cc_clear(sizeof(nonce), nonce);
m_freem(m);
return EINVAL;
}
}
if (m->m_pkthdr.len < bodyoff) {
ipseclog((LOG_ERR, "%s: bad len %d/%u\n", __FUNCTION__,
m->m_pkthdr.len, (u_int32_t)bodyoff));
cc_clear(sizeof(nonce), nonce);
m_freem(m);
return EINVAL;
}
/* Add ESP header to Additional Authentication Data */
if (aes_encrypt_aad_gcm((unsigned char*)&esp, sizeof(esp), ctx->encrypt)) {
ipseclog((LOG_ERR, "%s: packet encryption ESP header AAD failure\n", __FUNCTION__));
cc_clear(sizeof(nonce), nonce);
m_freem(m);
return EINVAL;
}
/* Add IV to Additional Authentication Data for GMAC-only mode */
if (gmac_only) {
if (aes_encrypt_aad_gcm(nonce + ESP_GCM_SALT_LEN, ESP_GCM_IVLEN, ctx->encrypt)) {
ipseclog((LOG_ERR, "%s: packet encryption IV AAD failure\n", __FUNCTION__));
cc_clear(sizeof(nonce), nonce);
m_freem(m);
return EINVAL;
}
}
/* Clear nonce */
cc_clear(sizeof(nonce), nonce);
/* skip headers/IV */
while (s != NULL && soff < bodyoff) {
if (soff + s->m_len > bodyoff) {
sn = (uint32_t)bodyoff - soff;
break;
}
soff += s->m_len;
s = s->m_next;
}
/* Encrypt (or add to AAD) payload */
while (s != NULL && soff < m->m_pkthdr.len) {
/* skip empty mbufs */
if ((len = s->m_len - sn) != 0) {
sp = mtod(s, uint8_t *) + sn;
if (!gmac_only) {
if (aes_encrypt_gcm(sp, len, sp, ctx->encrypt)) {
ipseclog((LOG_ERR, "%s: failed to encrypt\n", __FUNCTION__));
m_freem(m);
return EINVAL;
}
} else {
if (aes_encrypt_aad_gcm(sp, len, ctx->encrypt)) {
ipseclog((LOG_ERR, "%s: failed to add data to AAD\n", __FUNCTION__));
m_freem(m);
return EINVAL;
}
}
}
sn = 0;
soff += s->m_len;
s = s->m_next;
}
if (s == NULL && soff != m->m_pkthdr.len) {
ipseclog((LOG_ERR, "%s: not enough mbufs %d %d, SPI 0x%08x",
__FUNCTION__, soff, m->m_pkthdr.len, ntohl(sav->spi)));
m_freem(m);
return EFBIG;
}
return 0;
}
int
esp_gcm_decrypt_aes(
struct mbuf *m,
size_t off,
struct secasvar *sav,
const struct esp_algorithm *algo __unused,
int ivlen)
{
struct mbuf *s = m;
uint32_t soff = 0; /* offset from the head of chain, to head of this mbuf */
uint32_t sn = 0; /* offset from the head of the mbuf, to meat */
uint8_t *sp = NULL;
aes_gcm_ctx *ctx;
uint32_t len;
const bool implicit_iv = ((sav->flags & SADB_X_EXT_IIV) != 0);
const bool gmac_only = (sav->alg_enc == SADB_X_EALG_AES_GMAC);
struct newesp esp;
unsigned char nonce[ESP_GCM_SALT_LEN + ESP_GCM_IVLEN];
VERIFY(off <= INT_MAX);
const size_t ivoff = off + sizeof(struct newesp);
VERIFY(ivoff <= INT_MAX);
const size_t bodyoff = ivoff + ivlen;
VERIFY(bodyoff <= INT_MAX);
if (ivlen != (implicit_iv ? 0 : ESP_GCM_IVLEN)) {
ipseclog((LOG_ERR, "%s: unsupported ivlen %d\n", __FUNCTION__, ivlen));
m_freem(m);
return EINVAL;
}
if (implicit_iv && gmac_only) {
ipseclog((LOG_ERR, "%s: IIV and GMAC-only not supported together\n", __FUNCTION__));
m_freem(m);
return EINVAL;
}
if (m->m_pkthdr.len < bodyoff) {
ipseclog((LOG_ERR, "%s: bad len %d/%u\n", __FUNCTION__,
m->m_pkthdr.len, (u_int32_t)bodyoff));
m_freem(m);
return EINVAL;
}
/* Copy the ESP header */
m_copydata(m, (int)off, sizeof(esp), (caddr_t) &esp);
/* Construct IV starting with salt */
memset(nonce, 0, sizeof(nonce));
memcpy(nonce, _KEYBUF(sav->key_enc) + _KEYLEN(sav->key_enc) - ESP_GCM_SALT_LEN, ESP_GCM_SALT_LEN);
if (!implicit_iv) {
/* grab IV from packet */
u_int8_t iv[ESP_GCM_IVLEN] __attribute__((aligned(4)));
m_copydata(m, (int)ivoff, ivlen, (caddr_t) iv);
memcpy(nonce + ESP_GCM_SALT_LEN, iv, ivlen);
/* just in case */
cc_clear(sizeof(iv), iv);
} else {
/* Use the ESP sequence number in the header to form the
* rest of the nonce according to RFC 8750.
*/
memcpy(nonce + sizeof(nonce) - sizeof(esp.esp_seq), &esp.esp_seq, sizeof(esp.esp_seq));
}
ctx = (aes_gcm_ctx *)P2ROUNDUP(sav->sched_enc, ESP_GCM_ALIGN);
if (aes_decrypt_set_iv_gcm(nonce, sizeof(nonce), ctx->decrypt)) {
ipseclog((LOG_ERR, "%s: failed to set IV\n", __FUNCTION__));
cc_clear(sizeof(nonce), nonce);
m_freem(m);
return EINVAL;
}
/* Add ESP header to Additional Authentication Data */
if (aes_decrypt_aad_gcm((unsigned char*)&esp, sizeof(esp), ctx->decrypt)) {
ipseclog((LOG_ERR, "%s: packet decryption ESP header AAD failure\n", __FUNCTION__));
cc_clear(sizeof(nonce), nonce);
m_freem(m);
return EINVAL;
}
/* Add IV to Additional Authentication Data for GMAC-only mode */
if (gmac_only) {
if (aes_decrypt_aad_gcm(nonce + ESP_GCM_SALT_LEN, ESP_GCM_IVLEN, ctx->decrypt)) {
ipseclog((LOG_ERR, "%s: packet decryption IV AAD failure\n", __FUNCTION__));
cc_clear(sizeof(nonce), nonce);
m_freem(m);
return EINVAL;
}
}
/* Clear nonce */
cc_clear(sizeof(nonce), nonce);
/* skip headers/IV */
while (s != NULL && soff < bodyoff) {
if (soff + s->m_len > bodyoff) {
sn = (uint32_t)bodyoff - soff;
break;
}
soff += s->m_len;
s = s->m_next;
}
/* Decrypt (or just authenticate) payload */
while (s != NULL && soff < m->m_pkthdr.len) {
/* skip empty mbufs */
if ((len = s->m_len - sn) != 0) {
sp = mtod(s, uint8_t *) + sn;
if (!gmac_only) {
if (aes_decrypt_gcm(sp, len, sp, ctx->decrypt)) {
ipseclog((LOG_ERR, "%s: failed to decrypt\n", __FUNCTION__));
m_freem(m);
return EINVAL;
}
} else {
if (aes_decrypt_aad_gcm(sp, len, ctx->decrypt)) {
ipseclog((LOG_ERR, "%s: failed to add data to AAD\n", __FUNCTION__));
m_freem(m);
return EINVAL;
}
}
}
sn = 0;
soff += s->m_len;
s = s->m_next;
}
if (s == NULL && soff != m->m_pkthdr.len) {
ipseclog((LOG_ERR, "%s: not enough mbufs %d %d, SPI 0x%08x",
__FUNCTION__, soff, m->m_pkthdr.len, ntohl(sav->spi)));
m_freem(m);
return EFBIG;
}
return 0;
}
int
esp_aes_gcm_encrypt_data(struct secasvar *sav, uint8_t *input_data,
size_t input_data_len, struct newesp *esp_hdr, uint8_t *out_iv,
size_t ivlen, uint8_t *output_data, size_t output_data_len)
{
unsigned char nonce[ESP_GCM_SALT_LEN + ESP_GCM_IVLEN] = {};
int rc = 0; // return code of corecrypto operations
ESP_CHECK_ARG(sav);
ESP_CHECK_ARG(input_data);
ESP_CHECK_ARG(esp_hdr);
ESP_CHECK_ARG(output_data);
VERIFY(input_data_len > 0);
VERIFY(output_data_len >= input_data_len);
const bool implicit_iv = ((sav->flags & SADB_X_EXT_IIV) == SADB_X_EXT_IIV);
const bool gmac_only = (sav->alg_enc == SADB_X_EALG_AES_GMAC);
if (__improbable(implicit_iv && gmac_only)) {
esp_log_err("IIV and GMAC-only not supported together, SPI 0x%08x\n",
ntohl(sav->spi));
return EINVAL;
}
aes_gcm_ctx *ctx = (aes_gcm_ctx *)P2ROUNDUP(sav->sched_enc, ESP_GCM_ALIGN);
if (__improbable((rc = aes_encrypt_reset_gcm(ctx->encrypt)) != 0)) {
esp_log_err("Context reset failure %d, SPI 0x%08x\n",
rc, ntohl(sav->spi));
return rc;
}
if (implicit_iv) {
VERIFY(out_iv == NULL);
VERIFY(ivlen == 0);
/* Use the ESP sequence number in the header to form the
* nonce according to RFC 8750. The first 4 bytes are the
* salt value, the next 4 bytes are zeroes, and the final
* 4 bytes are the ESP sequence number.
*/
memcpy(nonce, _KEYBUF(sav->key_enc) + _KEYLEN(sav->key_enc) -
ESP_GCM_SALT_LEN, ESP_GCM_SALT_LEN);
memcpy(nonce + sizeof(nonce) - sizeof(esp_hdr->esp_seq),
&esp_hdr->esp_seq, sizeof(esp_hdr->esp_seq));
if (__improbable((rc = aes_encrypt_set_iv_gcm((const unsigned char *)nonce,
sizeof(nonce), ctx->encrypt)) != 0)) {
esp_log_err("Set IV failure %d, SPI 0x%08x\n",
rc, ntohl(sav->spi));
cc_clear(sizeof(nonce), nonce);
return rc;
}
} else {
ESP_CHECK_ARG(out_iv);
VERIFY(ivlen == ESP_GCM_IVLEN);
/* generate new iv */
if (__improbable((rc = aes_encrypt_inc_iv_gcm((unsigned char *)nonce,
ctx->encrypt)) != 0)) {
esp_log_err("IV generation failure %d, SPI 0x%08x\n",
rc, ntohl(sav->spi));
cc_clear(sizeof(nonce), nonce);
return rc;
}
memcpy(out_iv, (nonce + ESP_GCM_SALT_LEN), ESP_GCM_IVLEN);
}
/* Set Additional Authentication Data */
if (__improbable((rc = aes_encrypt_aad_gcm((unsigned char*)esp_hdr,
sizeof(*esp_hdr), ctx->encrypt)) != 0)) {
esp_log_err("Set AAD failure %d, SPI 0x%08x\n", rc, ntohl(sav->spi));
cc_clear(sizeof(nonce), nonce);
return rc;
}
/* Add IV to Additional Authentication Data for GMAC-only mode */
if (gmac_only) {
if (__improbable((rc = aes_encrypt_aad_gcm(nonce +
ESP_GCM_SALT_LEN, ESP_GCM_IVLEN, ctx->encrypt)) != 0)) {
esp_log_err("Packet encryption IV AAD failure %d, SPI 0x%08x\n",
rc, ntohl(sav->spi));
cc_clear(sizeof(nonce), nonce);
return rc;
}
}
cc_clear(sizeof(nonce), nonce);
if (gmac_only) {
if (__improbable((rc = aes_encrypt_aad_gcm(input_data, (unsigned int)input_data_len,
ctx->encrypt)) != 0)) {
esp_log_err("set aad failure %d, SPI 0x%08x\n", rc, ntohl(sav->spi));
return rc;
}
memcpy(output_data, input_data, input_data_len);
} else {
if (__improbable((rc = aes_encrypt_gcm(input_data, (unsigned int)input_data_len,
output_data, ctx->encrypt)) != 0)) {
esp_log_err("encrypt failure %d, SPI 0x%08x\n", rc, ntohl(sav->spi));
return rc;
}
}
return 0;
}
int
esp_aes_gcm_decrypt_data(struct secasvar *sav, uint8_t *input_data,
size_t input_data_len, struct newesp *esp_hdr, uint8_t *iv, size_t ivlen,
uint8_t *output_data, size_t output_data_len)
{
unsigned char nonce[ESP_GCM_SALT_LEN + ESP_GCM_IVLEN] = {};
aes_gcm_ctx *ctx = NULL;
int rc = 0;
ESP_CHECK_ARG(sav);
ESP_CHECK_ARG(input_data);
ESP_CHECK_ARG(esp_hdr);
ESP_CHECK_ARG(output_data);
VERIFY(input_data_len > 0);
VERIFY(output_data_len >= input_data_len);
const bool implicit_iv = ((sav->flags & SADB_X_EXT_IIV) == SADB_X_EXT_IIV);
const bool gmac_only = (sav->alg_enc == SADB_X_EALG_AES_GMAC);
if (__improbable(implicit_iv && gmac_only)) {
esp_log_err("IIV and GMAC-only not supported together, SPI 0x%08x\n",
ntohl(sav->spi));
return EINVAL;
}
memcpy(nonce, _KEYBUF(sav->key_enc) + _KEYLEN(sav->key_enc) -
ESP_GCM_SALT_LEN, ESP_GCM_SALT_LEN);
if (implicit_iv) {
VERIFY(iv == NULL);
VERIFY(ivlen == 0);
/* Use the ESP sequence number in the header to form the
* rest of the nonce according to RFC 8750.
*/
memcpy(nonce + sizeof(nonce) - sizeof(esp_hdr->esp_seq), &esp_hdr->esp_seq, sizeof(esp_hdr->esp_seq));
} else {
ESP_CHECK_ARG(iv);
VERIFY(ivlen == ESP_GCM_IVLEN);
memcpy(nonce + ESP_GCM_SALT_LEN, iv, ESP_GCM_IVLEN);
}
ctx = (aes_gcm_ctx *)P2ROUNDUP(sav->sched_enc, ESP_GCM_ALIGN);
if (__improbable((rc = aes_decrypt_set_iv_gcm(nonce, sizeof(nonce),
ctx->decrypt)) != 0)) {
esp_log_err("set iv failure %d, SPI 0x%08x\n", rc, ntohl(sav->spi));
cc_clear(sizeof(nonce), nonce);
return rc;
}
/* Set Additional Authentication Data */
if (__improbable((rc = aes_decrypt_aad_gcm((unsigned char *)esp_hdr, sizeof(*esp_hdr),
ctx->decrypt)) != 0)) {
esp_log_err("AAD failure %d, SPI 0x%08x\n", rc, ntohl(sav->spi));
cc_clear(sizeof(nonce), nonce);
return rc;
}
/* Add IV to Additional Authentication Data for GMAC-only mode */
if (gmac_only) {
if (__improbable((rc = aes_decrypt_aad_gcm(nonce + ESP_GCM_SALT_LEN,
ESP_GCM_IVLEN, ctx->decrypt)) != 0)) {
esp_log_err("AAD failure %d, SPI 0x%08x\n", rc, ntohl(sav->spi));
cc_clear(sizeof(nonce), nonce);
return rc;
}
}
cc_clear(sizeof(nonce), nonce);
if (gmac_only) {
if (__improbable((rc = aes_decrypt_aad_gcm(input_data, (unsigned int)input_data_len,
ctx->decrypt)) != 0)) {
esp_log_err("AAD failure %d, SPI 0x%08x\n", rc, ntohl(sav->spi));
return rc;
}
memcpy(output_data, input_data, input_data_len);
} else {
if (__improbable((rc = aes_decrypt_gcm(input_data, (unsigned int)input_data_len,
output_data, ctx->decrypt)) != 0)) {
esp_log_err("decrypt failure %d, SPI 0x%08x\n", rc, ntohl(sav->spi));
return rc;
}
}
return 0;
}