gems-kernel/source/THIRDPARTY/xnu/bsd/netinet6/ipsec.c

5517 lines
141 KiB
C
Raw Normal View History

2024-06-03 11:29:39 -05:00
/*
* Copyright (c) 2008-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* $FreeBSD: src/sys/netinet6/ipsec.c,v 1.3.2.7 2001/07/19 06:37:23 kris Exp $ */
/* $KAME: ipsec.c,v 1.103 2001/05/24 07:14:18 sakane Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* IPsec controller part.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mcache.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/priv.h>
#include <kern/locks.h>
#include <sys/kauth.h>
#include <sys/bitstring.h>
#include <libkern/OSAtomic.h>
#include <libkern/sysctl.h>
#include <net/if.h>
#include <net/route.h>
#include <net/if_ipsec.h>
#include <net/if_ports_used.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/in_var.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <netinet/ip_ecn.h>
#include <netinet6/ip6_ecn.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/in_pcb.h>
#include <netinet/icmp6.h>
#include <netinet6/ipsec.h>
#include <netinet6/ipsec6.h>
#include <netinet6/ah.h>
#include <netinet6/ah6.h>
#if IPSEC_ESP
#include <netinet6/esp.h>
#include <netinet6/esp6.h>
#endif
#include <netkey/key.h>
#include <netkey/keydb.h>
#include <netkey/key_debug.h>
#include <net/net_osdep.h>
#include <IOKit/pwr_mgt/IOPM.h>
#include <os/log_private.h>
#include <kern/assert.h>
#if SKYWALK
#include <skywalk/os_skywalk_private.h>
#endif // SKYWALK
#if IPSEC_DEBUG
int ipsec_debug = 1;
#else
int ipsec_debug = 0;
#endif
#include <sys/kdebug.h>
#define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIPSEC, 1)
#define DBG_LAYER_END NETDBG_CODE(DBG_NETIPSEC, 3)
#define DBG_FNC_GETPOL_SOCK NETDBG_CODE(DBG_NETIPSEC, (1 << 8))
#define DBG_FNC_GETPOL_ADDR NETDBG_CODE(DBG_NETIPSEC, (2 << 8))
#define DBG_FNC_IPSEC_OUT NETDBG_CODE(DBG_NETIPSEC, (3 << 8))
struct ipsecstat ipsecstat;
int ip4_ah_cleartos = 1;
int ip4_ah_offsetmask = 0; /* maybe IP_DF? */
int ip4_ipsec_dfbit = 0; /* DF bit on encap. 0: clear 1: set 2: copy */
int ip4_esp_trans_deflev = IPSEC_LEVEL_USE;
int ip4_esp_net_deflev = IPSEC_LEVEL_USE;
int ip4_ah_trans_deflev = IPSEC_LEVEL_USE;
int ip4_ah_net_deflev = IPSEC_LEVEL_USE;
struct secpolicy ip4_def_policy;
int ip4_ipsec_ecn = ECN_COMPATIBILITY; /* ECN ignore(-1)/compatibility(0)/normal(1) */
int ip4_esp_randpad = -1;
int esp_udp_encap_port = 0;
static int sysctl_def_policy SYSCTL_HANDLER_ARGS;
extern int natt_keepalive_interval;
extern u_int64_t natt_now;
struct ipsec_tag;
void *sleep_wake_handle = NULL;
SYSCTL_DECL(_net_inet_ipsec);
SYSCTL_DECL(_net_inet6_ipsec6);
/* net.inet.ipsec */
SYSCTL_STRUCT(_net_inet_ipsec, IPSECCTL_STATS,
stats, CTLFLAG_RD | CTLFLAG_LOCKED, &ipsecstat, ipsecstat, "");
SYSCTL_PROC(_net_inet_ipsec, IPSECCTL_DEF_POLICY, def_policy, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&ip4_def_policy.policy, 0, &sysctl_def_policy, "I", "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_ESP_TRANSLEV, esp_trans_deflev,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_esp_trans_deflev, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_ESP_NETLEV, esp_net_deflev,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_esp_net_deflev, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_AH_TRANSLEV, ah_trans_deflev,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_ah_trans_deflev, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_AH_NETLEV, ah_net_deflev,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_ah_net_deflev, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_AH_CLEARTOS,
ah_cleartos, CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_ah_cleartos, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_AH_OFFSETMASK,
ah_offsetmask, CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_ah_offsetmask, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DFBIT,
dfbit, CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_ipsec_dfbit, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_ECN,
ecn, CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_ipsec_ecn, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG,
debug, CTLFLAG_RW | CTLFLAG_LOCKED, &ipsec_debug, 0, "");
SYSCTL_INT(_net_inet_ipsec, IPSECCTL_ESP_RANDPAD,
esp_randpad, CTLFLAG_RW | CTLFLAG_LOCKED, &ip4_esp_randpad, 0, "");
/* for performance, we bypass ipsec until a security policy is set */
int ipsec_bypass = 1;
SYSCTL_INT(_net_inet_ipsec, OID_AUTO, bypass, CTLFLAG_RD | CTLFLAG_LOCKED, &ipsec_bypass, 0, "");
/*
* NAT Traversal requires a UDP port for encapsulation,
* esp_udp_encap_port controls which port is used. Racoon
* must set this port to the port racoon is using locally
* for nat traversal.
*/
SYSCTL_INT(_net_inet_ipsec, OID_AUTO, esp_port,
CTLFLAG_RW | CTLFLAG_LOCKED, &esp_udp_encap_port, 0, "");
struct ipsecstat ipsec6stat;
int ip6_esp_trans_deflev = IPSEC_LEVEL_USE;
int ip6_esp_net_deflev = IPSEC_LEVEL_USE;
int ip6_ah_trans_deflev = IPSEC_LEVEL_USE;
int ip6_ah_net_deflev = IPSEC_LEVEL_USE;
struct secpolicy ip6_def_policy;
int ip6_ipsec_ecn = ECN_COMPATIBILITY; /* ECN ignore(-1)/compatibility(0)/normal(1) */
int ip6_esp_randpad = -1;
/* net.inet6.ipsec6 */
SYSCTL_STRUCT(_net_inet6_ipsec6, IPSECCTL_STATS,
stats, CTLFLAG_RD | CTLFLAG_LOCKED, &ipsec6stat, ipsecstat, "");
SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_POLICY,
def_policy, CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_def_policy.policy, 0, "");
SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_ESP_TRANSLEV, esp_trans_deflev,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_esp_trans_deflev, 0, "");
SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_ESP_NETLEV, esp_net_deflev,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_esp_net_deflev, 0, "");
SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_AH_TRANSLEV, ah_trans_deflev,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_ah_trans_deflev, 0, "");
SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_AH_NETLEV, ah_net_deflev,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_ah_net_deflev, 0, "");
SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_ECN,
ecn, CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_ipsec_ecn, 0, "");
SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG,
debug, CTLFLAG_RW | CTLFLAG_LOCKED, &ipsec_debug, 0, "");
SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_ESP_RANDPAD,
esp_randpad, CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_esp_randpad, 0, "");
SYSCTL_DECL(_net_link_generic_system);
static int ipsec_setspidx_interface(struct secpolicyindex *, u_int8_t, struct mbuf *,
int, int, int);
static int ipsec_setspidx_mbuf(struct secpolicyindex *, u_int8_t, u_int,
struct mbuf *, int);
static int ipsec4_setspidx_inpcb(struct mbuf *, struct inpcb *pcb);
static int ipsec6_setspidx_in6pcb(struct mbuf *, struct in6pcb *pcb);
static int ipsec_setspidx(struct mbuf *, struct secpolicyindex *, int, int);
static void ipsec4_get_ulp(struct mbuf *m, struct secpolicyindex *, int);
static int ipsec4_setspidx_ipaddr(struct mbuf *, struct secpolicyindex *);
static void ipsec6_get_ulp(struct mbuf *m, struct secpolicyindex *, int);
static int ipsec6_setspidx_ipaddr(struct mbuf *, struct secpolicyindex *);
static struct inpcbpolicy *ipsec_newpcbpolicy(void);
static void ipsec_delpcbpolicy(struct inpcbpolicy *);
static struct secpolicy *ipsec_deepcopy_policy(struct secpolicy *src);
static int ipsec_set_policy(struct secpolicy **pcb_sp,
int optname, caddr_t request, size_t len, int priv);
static void vshiftl(unsigned char *, int, size_t);
static int ipsec_in_reject(struct secpolicy *, struct mbuf *);
static int ipsec64_encapsulate(struct mbuf *, struct secasvar *, uint32_t);
static int ipsec6_update_routecache_and_output(struct ipsec_output_state *state, struct secasvar *sav);
static int ipsec46_encapsulate(struct ipsec_output_state *state, struct secasvar *sav);
static struct ipsec_tag *ipsec_addaux(struct mbuf *);
static struct ipsec_tag *ipsec_findaux(struct mbuf *);
static void ipsec_optaux(struct mbuf *, struct ipsec_tag *);
int ipsec_send_natt_keepalive(struct secasvar *sav);
bool ipsec_fill_offload_frame(ifnet_t ifp, struct secasvar *sav, struct ifnet_keepalive_offload_frame *frame, size_t frame_data_offset);
extern bool IOPMCopySleepWakeUUIDKey(char *, size_t);
typedef IOReturn (*IOServiceInterestHandler)( void * target, void * refCon,
UInt32 messageType, void * provider,
void * messageArgument, vm_size_t argSize );
extern void *registerSleepWakeInterest(IOServiceInterestHandler, void *, void *);
static int
sysctl_def_policy SYSCTL_HANDLER_ARGS
{
int new_policy = ip4_def_policy.policy;
int error = sysctl_handle_int(oidp, &new_policy, 0, req);
#pragma unused(arg1, arg2)
if (error == 0) {
if (new_policy != IPSEC_POLICY_NONE &&
new_policy != IPSEC_POLICY_DISCARD) {
return EINVAL;
}
ip4_def_policy.policy = new_policy;
/* Turn off the bypass if the default security policy changes */
if (ipsec_bypass != 0 && ip4_def_policy.policy != IPSEC_POLICY_NONE) {
ipsec_bypass = 0;
}
}
return error;
}
/*
* For OUTBOUND packet having a socket. Searching SPD for packet,
* and return a pointer to SP.
* OUT: NULL: no apropreate SP found, the following value is set to error.
* 0 : bypass
* EACCES : discard packet.
* ENOENT : ipsec_acquire() in progress, maybe.
* others : error occurred.
* others: a pointer to SP
*
* NOTE: IPv6 mapped adddress concern is implemented here.
*/
struct secpolicy *
ipsec4_getpolicybysock(struct mbuf *m,
u_int8_t dir,
struct socket *so,
int *error)
{
struct inpcbpolicy *pcbsp = NULL;
struct secpolicy *currsp = NULL; /* policy on socket */
struct secpolicy *kernsp = NULL; /* policy on kernel */
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL || so == NULL || error == NULL) {
panic("ipsec4_getpolicybysock: NULL pointer was passed.");
}
if (so->so_pcb == NULL) {
printf("ipsec4_getpolicybysock: so->so_pcb == NULL\n");
return ipsec4_getpolicybyaddr(m, dir, 0, error);
}
switch (SOCK_DOM(so)) {
case PF_INET:
pcbsp = sotoinpcb(so)->inp_sp;
break;
case PF_INET6:
pcbsp = sotoin6pcb(so)->in6p_sp;
break;
}
if (!pcbsp) {
/* Socket has not specified an IPSEC policy */
return ipsec4_getpolicybyaddr(m, dir, 0, error);
}
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_START, 0, 0, 0, 0, 0);
switch (SOCK_DOM(so)) {
case PF_INET:
/* set spidx in pcb */
*error = ipsec4_setspidx_inpcb(m, sotoinpcb(so));
break;
case PF_INET6:
/* set spidx in pcb */
*error = ipsec6_setspidx_in6pcb(m, sotoin6pcb(so));
break;
default:
panic("ipsec4_getpolicybysock: unsupported address family");
}
if (*error) {
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 1, *error, 0, 0, 0);
return NULL;
}
/* sanity check */
if (pcbsp == NULL) {
panic("ipsec4_getpolicybysock: pcbsp is NULL.");
}
switch (dir) {
case IPSEC_DIR_INBOUND:
currsp = pcbsp->sp_in;
break;
case IPSEC_DIR_OUTBOUND:
currsp = pcbsp->sp_out;
break;
default:
panic("ipsec4_getpolicybysock: illegal direction.");
}
/* sanity check */
if (currsp == NULL) {
panic("ipsec4_getpolicybysock: currsp is NULL.");
}
/* when privilieged socket */
if (pcbsp->priv) {
switch (currsp->policy) {
case IPSEC_POLICY_BYPASS:
lck_mtx_lock(sadb_mutex);
currsp->refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 2, *error, 0, 0, 0);
return currsp;
case IPSEC_POLICY_ENTRUST:
/* look for a policy in SPD */
kernsp = key_allocsp(&currsp->spidx, dir);
/* SP found */
if (kernsp != NULL) {
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec4_getpolicybysock called "
"to allocate SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(kernsp)));
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 3, *error, 0, 0, 0);
return kernsp;
}
/* no SP found */
lck_mtx_lock(sadb_mutex);
if (ip4_def_policy.policy != IPSEC_POLICY_DISCARD
&& ip4_def_policy.policy != IPSEC_POLICY_NONE) {
ipseclog((LOG_INFO,
"fixed system default policy: %d->%d\n",
ip4_def_policy.policy, IPSEC_POLICY_NONE));
ip4_def_policy.policy = IPSEC_POLICY_NONE;
}
ip4_def_policy.refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 4, *error, 0, 0, 0);
return &ip4_def_policy;
case IPSEC_POLICY_IPSEC:
lck_mtx_lock(sadb_mutex);
currsp->refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 5, *error, 0, 0, 0);
return currsp;
default:
ipseclog((LOG_ERR, "ipsec4_getpolicybysock: "
"Invalid policy for PCB %d\n", currsp->policy));
*error = EINVAL;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 6, *error, 0, 0, 0);
return NULL;
}
/* NOTREACHED */
}
/* when non-privilieged socket */
/* look for a policy in SPD */
kernsp = key_allocsp(&currsp->spidx, dir);
/* SP found */
if (kernsp != NULL) {
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec4_getpolicybysock called "
"to allocate SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(kernsp)));
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 7, *error, 0, 0, 0);
return kernsp;
}
/* no SP found */
switch (currsp->policy) {
case IPSEC_POLICY_BYPASS:
ipseclog((LOG_ERR, "ipsec4_getpolicybysock: "
"Illegal policy for non-priviliged defined %d\n",
currsp->policy));
*error = EINVAL;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 8, *error, 0, 0, 0);
return NULL;
case IPSEC_POLICY_ENTRUST:
lck_mtx_lock(sadb_mutex);
if (ip4_def_policy.policy != IPSEC_POLICY_DISCARD
&& ip4_def_policy.policy != IPSEC_POLICY_NONE) {
ipseclog((LOG_INFO,
"fixed system default policy: %d->%d\n",
ip4_def_policy.policy, IPSEC_POLICY_NONE));
ip4_def_policy.policy = IPSEC_POLICY_NONE;
}
ip4_def_policy.refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 9, *error, 0, 0, 0);
return &ip4_def_policy;
case IPSEC_POLICY_IPSEC:
lck_mtx_lock(sadb_mutex);
currsp->refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 10, *error, 0, 0, 0);
return currsp;
default:
ipseclog((LOG_ERR, "ipsec4_getpolicybysock: "
"Invalid policy for PCB %d\n", currsp->policy));
*error = EINVAL;
KERNEL_DEBUG(DBG_FNC_GETPOL_SOCK | DBG_FUNC_END, 11, *error, 0, 0, 0);
return NULL;
}
/* NOTREACHED */
}
/*
* For FORWADING packet or OUTBOUND without a socket. Searching SPD for packet,
* and return a pointer to SP.
* OUT: positive: a pointer to the entry for security policy leaf matched.
* NULL: no apropreate SP found, the following value is set to error.
* 0 : bypass
* EACCES : discard packet.
* ENOENT : ipsec_acquire() in progress, maybe.
* others : error occurred.
*/
struct secpolicy *
ipsec4_getpolicybyaddr(struct mbuf *m,
u_int8_t dir,
int flag,
int *error)
{
struct secpolicy *sp = NULL;
if (ipsec_bypass != 0) {
return 0;
}
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL || error == NULL) {
panic("ipsec4_getpolicybyaddr: NULL pointer was passed.");
}
{
struct secpolicyindex spidx;
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_START, 0, 0, 0, 0, 0);
bzero(&spidx, sizeof(spidx));
/* make a index to look for a policy */
*error = ipsec_setspidx_mbuf(&spidx, dir, AF_INET, m,
(flag & IP_FORWARDING) ? 0 : 1);
if (*error != 0) {
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_END, 1, *error, 0, 0, 0);
return NULL;
}
sp = key_allocsp(&spidx, dir);
}
/* SP found */
if (sp != NULL) {
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec4_getpolicybyaddr called "
"to allocate SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(sp)));
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_END, 2, *error, 0, 0, 0);
return sp;
}
/* no SP found */
lck_mtx_lock(sadb_mutex);
if (ip4_def_policy.policy != IPSEC_POLICY_DISCARD
&& ip4_def_policy.policy != IPSEC_POLICY_NONE) {
ipseclog((LOG_INFO, "fixed system default policy:%d->%d\n",
ip4_def_policy.policy,
IPSEC_POLICY_NONE));
ip4_def_policy.policy = IPSEC_POLICY_NONE;
}
ip4_def_policy.refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_END, 3, *error, 0, 0, 0);
return &ip4_def_policy;
}
/* Match with bound interface rather than src addr.
* Unlike getpolicybyaddr, do not set the default policy.
* Return 0 if should continue processing, or -1 if packet
* should be dropped.
*/
int
ipsec4_getpolicybyinterface(struct mbuf *m,
u_int8_t dir,
int *flags,
struct ip_out_args *ipoa,
struct secpolicy **sp)
{
struct secpolicyindex spidx;
int error = 0;
if (ipsec_bypass != 0) {
return 0;
}
/* Sanity check */
if (m == NULL || ipoa == NULL || sp == NULL) {
panic("ipsec4_getpolicybyinterface: NULL pointer was passed.");
}
if (ipoa->ipoa_boundif == IFSCOPE_NONE) {
return 0;
}
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_START, 0, 0, 0, 0, 0);
bzero(&spidx, sizeof(spidx));
/* make a index to look for a policy */
error = ipsec_setspidx_interface(&spidx, dir, m, (*flags & IP_FORWARDING) ? 0 : 1,
ipoa->ipoa_boundif, 4);
if (error != 0) {
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_END, 1, error, 0, 0, 0);
return 0;
}
*sp = key_allocsp(&spidx, dir);
/* Return SP, whether NULL or not */
if (*sp != NULL && (*sp)->policy == IPSEC_POLICY_IPSEC) {
if ((*sp)->ipsec_if == NULL) {
/* Invalid to capture on an interface without redirect */
key_freesp(*sp, KEY_SADB_UNLOCKED);
*sp = NULL;
return -1;
} else if ((*sp)->disabled) {
/* Disabled policies go in the clear */
key_freesp(*sp, KEY_SADB_UNLOCKED);
*sp = NULL;
*flags |= IP_NOIPSEC; /* Avoid later IPsec check */
} else {
/* If policy is enabled, redirect to ipsec interface */
ipoa->ipoa_boundif = (*sp)->ipsec_if->if_index;
}
}
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_END, 2, error, 0, 0, 0);
return 0;
}
/*
* For OUTBOUND packet having a socket. Searching SPD for packet,
* and return a pointer to SP.
* OUT: NULL: no apropreate SP found, the following value is set to error.
* 0 : bypass
* EACCES : discard packet.
* ENOENT : ipsec_acquire() in progress, maybe.
* others : error occurred.
* others: a pointer to SP
*/
struct secpolicy *
ipsec6_getpolicybysock(struct mbuf *m,
u_int8_t dir,
struct socket *so,
int *error)
{
struct inpcbpolicy *pcbsp = NULL;
struct secpolicy *currsp = NULL; /* policy on socket */
struct secpolicy *kernsp = NULL; /* policy on kernel */
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL || so == NULL || error == NULL) {
panic("ipsec6_getpolicybysock: NULL pointer was passed.");
}
#if DIAGNOSTIC
if (SOCK_DOM(so) != PF_INET6) {
panic("ipsec6_getpolicybysock: socket domain != inet6");
}
#endif
pcbsp = sotoin6pcb(so)->in6p_sp;
if (!pcbsp) {
return ipsec6_getpolicybyaddr(m, dir, 0, error);
}
/* set spidx in pcb */
ipsec6_setspidx_in6pcb(m, sotoin6pcb(so));
/* sanity check */
if (pcbsp == NULL) {
panic("ipsec6_getpolicybysock: pcbsp is NULL.");
}
switch (dir) {
case IPSEC_DIR_INBOUND:
currsp = pcbsp->sp_in;
break;
case IPSEC_DIR_OUTBOUND:
currsp = pcbsp->sp_out;
break;
default:
panic("ipsec6_getpolicybysock: illegal direction.");
}
/* sanity check */
if (currsp == NULL) {
panic("ipsec6_getpolicybysock: currsp is NULL.");
}
/* when privilieged socket */
if (pcbsp->priv) {
switch (currsp->policy) {
case IPSEC_POLICY_BYPASS:
lck_mtx_lock(sadb_mutex);
currsp->refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
return currsp;
case IPSEC_POLICY_ENTRUST:
/* look for a policy in SPD */
kernsp = key_allocsp(&currsp->spidx, dir);
/* SP found */
if (kernsp != NULL) {
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec6_getpolicybysock called "
"to allocate SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(kernsp)));
*error = 0;
return kernsp;
}
/* no SP found */
lck_mtx_lock(sadb_mutex);
if (ip6_def_policy.policy != IPSEC_POLICY_DISCARD
&& ip6_def_policy.policy != IPSEC_POLICY_NONE) {
ipseclog((LOG_INFO,
"fixed system default policy: %d->%d\n",
ip6_def_policy.policy, IPSEC_POLICY_NONE));
ip6_def_policy.policy = IPSEC_POLICY_NONE;
}
ip6_def_policy.refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
return &ip6_def_policy;
case IPSEC_POLICY_IPSEC:
lck_mtx_lock(sadb_mutex);
currsp->refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
return currsp;
default:
ipseclog((LOG_ERR, "ipsec6_getpolicybysock: "
"Invalid policy for PCB %d\n", currsp->policy));
*error = EINVAL;
return NULL;
}
/* NOTREACHED */
}
/* when non-privilieged socket */
/* look for a policy in SPD */
kernsp = key_allocsp(&currsp->spidx, dir);
/* SP found */
if (kernsp != NULL) {
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec6_getpolicybysock called "
"to allocate SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(kernsp)));
*error = 0;
return kernsp;
}
/* no SP found */
switch (currsp->policy) {
case IPSEC_POLICY_BYPASS:
ipseclog((LOG_ERR, "ipsec6_getpolicybysock: "
"Illegal policy for non-priviliged defined %d\n",
currsp->policy));
*error = EINVAL;
return NULL;
case IPSEC_POLICY_ENTRUST:
lck_mtx_lock(sadb_mutex);
if (ip6_def_policy.policy != IPSEC_POLICY_DISCARD
&& ip6_def_policy.policy != IPSEC_POLICY_NONE) {
ipseclog((LOG_INFO,
"fixed system default policy: %d->%d\n",
ip6_def_policy.policy, IPSEC_POLICY_NONE));
ip6_def_policy.policy = IPSEC_POLICY_NONE;
}
ip6_def_policy.refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
return &ip6_def_policy;
case IPSEC_POLICY_IPSEC:
lck_mtx_lock(sadb_mutex);
currsp->refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
return currsp;
default:
ipseclog((LOG_ERR,
"ipsec6_policybysock: Invalid policy for PCB %d\n",
currsp->policy));
*error = EINVAL;
return NULL;
}
/* NOTREACHED */
}
/*
* For FORWADING packet or OUTBOUND without a socket. Searching SPD for packet,
* and return a pointer to SP.
* `flag' means that packet is to be forwarded whether or not.
* flag = 1: forwad
* OUT: positive: a pointer to the entry for security policy leaf matched.
* NULL: no apropreate SP found, the following value is set to error.
* 0 : bypass
* EACCES : discard packet.
* ENOENT : ipsec_acquire() in progress, maybe.
* others : error occurred.
*/
#ifndef IP_FORWARDING
#define IP_FORWARDING 1
#endif
struct secpolicy *
ipsec6_getpolicybyaddr(struct mbuf *m,
u_int8_t dir,
int flag,
int *error)
{
struct secpolicy *sp = NULL;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL || error == NULL) {
panic("ipsec6_getpolicybyaddr: NULL pointer was passed.");
}
{
struct secpolicyindex spidx;
bzero(&spidx, sizeof(spidx));
/* make a index to look for a policy */
*error = ipsec_setspidx_mbuf(&spidx, dir, AF_INET6, m,
(flag & IP_FORWARDING) ? 0 : 1);
if (*error != 0) {
return NULL;
}
sp = key_allocsp(&spidx, dir);
}
/* SP found */
if (sp != NULL) {
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec6_getpolicybyaddr called "
"to allocate SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(sp)));
*error = 0;
return sp;
}
/* no SP found */
lck_mtx_lock(sadb_mutex);
if (ip6_def_policy.policy != IPSEC_POLICY_DISCARD
&& ip6_def_policy.policy != IPSEC_POLICY_NONE) {
ipseclog((LOG_INFO, "fixed system default policy: %d->%d\n",
ip6_def_policy.policy, IPSEC_POLICY_NONE));
ip6_def_policy.policy = IPSEC_POLICY_NONE;
}
ip6_def_policy.refcnt++;
lck_mtx_unlock(sadb_mutex);
*error = 0;
return &ip6_def_policy;
}
/* Match with bound interface rather than src addr.
* Unlike getpolicybyaddr, do not set the default policy.
* Return 0 if should continue processing, or -1 if packet
* should be dropped.
*/
int
ipsec6_getpolicybyinterface(struct mbuf *m,
u_int8_t dir,
int flag,
struct ip6_out_args *ip6oap,
int *noipsec,
struct secpolicy **sp)
{
struct secpolicyindex spidx;
int error = 0;
if (ipsec_bypass != 0) {
return 0;
}
/* Sanity check */
if (m == NULL || sp == NULL || noipsec == NULL || ip6oap == NULL) {
panic("ipsec6_getpolicybyinterface: NULL pointer was passed.");
}
*noipsec = 0;
if (ip6oap->ip6oa_boundif == IFSCOPE_NONE) {
return 0;
}
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_START, 0, 0, 0, 0, 0);
bzero(&spidx, sizeof(spidx));
/* make a index to look for a policy */
error = ipsec_setspidx_interface(&spidx, dir, m, (flag & IP_FORWARDING) ? 0 : 1,
ip6oap->ip6oa_boundif, 6);
if (error != 0) {
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_END, 1, error, 0, 0, 0);
return 0;
}
*sp = key_allocsp(&spidx, dir);
/* Return SP, whether NULL or not */
if (*sp != NULL && (*sp)->policy == IPSEC_POLICY_IPSEC) {
if ((*sp)->ipsec_if == NULL) {
/* Invalid to capture on an interface without redirect */
key_freesp(*sp, KEY_SADB_UNLOCKED);
*sp = NULL;
return -1;
} else if ((*sp)->disabled) {
/* Disabled policies go in the clear */
key_freesp(*sp, KEY_SADB_UNLOCKED);
*sp = NULL;
*noipsec = 1; /* Avoid later IPsec check */
} else {
/* If policy is enabled, redirect to ipsec interface */
ip6oap->ip6oa_boundif = (*sp)->ipsec_if->if_index;
}
}
KERNEL_DEBUG(DBG_FNC_GETPOL_ADDR | DBG_FUNC_END, 2, *error, 0, 0, 0);
return 0;
}
/*
* set IP address into spidx from mbuf.
* When Forwarding packet and ICMP echo reply, this function is used.
*
* IN: get the followings from mbuf.
* protocol family, src, dst, next protocol
* OUT:
* 0: success.
* other: failure, and set errno.
*/
static int
ipsec_setspidx_mbuf(
struct secpolicyindex *spidx,
u_int8_t dir,
__unused u_int family,
struct mbuf *m,
int needport)
{
int error;
/* sanity check */
if (spidx == NULL || m == NULL) {
panic("ipsec_setspidx_mbuf: NULL pointer was passed.");
}
bzero(spidx, sizeof(*spidx));
error = ipsec_setspidx(m, spidx, needport, 0);
if (error) {
goto bad;
}
spidx->dir = dir;
return 0;
bad:
/* XXX initialize */
bzero(spidx, sizeof(*spidx));
return EINVAL;
}
static int
ipsec_setspidx_interface(
struct secpolicyindex *spidx,
u_int8_t dir,
struct mbuf *m,
int needport,
int ifindex,
int ip_version)
{
int error;
/* sanity check */
if (spidx == NULL || m == NULL) {
panic("ipsec_setspidx_interface: NULL pointer was passed.");
}
bzero(spidx, sizeof(*spidx));
error = ipsec_setspidx(m, spidx, needport, ip_version);
if (error) {
goto bad;
}
spidx->dir = dir;
if (ifindex != 0) {
ifnet_head_lock_shared();
spidx->internal_if = ifindex2ifnet[ifindex];
ifnet_head_done();
} else {
spidx->internal_if = NULL;
}
return 0;
bad:
return EINVAL;
}
static int
ipsec4_setspidx_inpcb(struct mbuf *m, struct inpcb *pcb)
{
struct secpolicyindex *spidx;
int error;
if (ipsec_bypass != 0) {
return 0;
}
/* sanity check */
if (pcb == NULL) {
panic("ipsec4_setspidx_inpcb: no PCB found.");
}
if (pcb->inp_sp == NULL) {
panic("ipsec4_setspidx_inpcb: no inp_sp found.");
}
if (pcb->inp_sp->sp_out == NULL || pcb->inp_sp->sp_in == NULL) {
panic("ipsec4_setspidx_inpcb: no sp_in/out found.");
}
bzero(&pcb->inp_sp->sp_in->spidx, sizeof(*spidx));
bzero(&pcb->inp_sp->sp_out->spidx, sizeof(*spidx));
spidx = &pcb->inp_sp->sp_in->spidx;
error = ipsec_setspidx(m, spidx, 1, 0);
if (error) {
goto bad;
}
spidx->dir = IPSEC_DIR_INBOUND;
spidx = &pcb->inp_sp->sp_out->spidx;
error = ipsec_setspidx(m, spidx, 1, 0);
if (error) {
goto bad;
}
spidx->dir = IPSEC_DIR_OUTBOUND;
return 0;
bad:
bzero(&pcb->inp_sp->sp_in->spidx, sizeof(*spidx));
bzero(&pcb->inp_sp->sp_out->spidx, sizeof(*spidx));
return error;
}
static int
ipsec6_setspidx_in6pcb(struct mbuf *m, struct in6pcb *pcb)
{
struct secpolicyindex *spidx;
int error;
/* sanity check */
if (pcb == NULL) {
panic("ipsec6_setspidx_in6pcb: no PCB found.");
}
if (pcb->in6p_sp == NULL) {
panic("ipsec6_setspidx_in6pcb: no in6p_sp found.");
}
if (pcb->in6p_sp->sp_out == NULL || pcb->in6p_sp->sp_in == NULL) {
panic("ipsec6_setspidx_in6pcb: no sp_in/out found.");
}
bzero(&pcb->in6p_sp->sp_in->spidx, sizeof(*spidx));
bzero(&pcb->in6p_sp->sp_out->spidx, sizeof(*spidx));
spidx = &pcb->in6p_sp->sp_in->spidx;
error = ipsec_setspidx(m, spidx, 1, 0);
if (error) {
goto bad;
}
spidx->dir = IPSEC_DIR_INBOUND;
spidx = &pcb->in6p_sp->sp_out->spidx;
error = ipsec_setspidx(m, spidx, 1, 0);
if (error) {
goto bad;
}
spidx->dir = IPSEC_DIR_OUTBOUND;
return 0;
bad:
bzero(&pcb->in6p_sp->sp_in->spidx, sizeof(*spidx));
bzero(&pcb->in6p_sp->sp_out->spidx, sizeof(*spidx));
return error;
}
/*
* configure security policy index (src/dst/proto/sport/dport)
* by looking at the content of mbuf.
* the caller is responsible for error recovery (like clearing up spidx).
*/
static int
ipsec_setspidx(struct mbuf *m,
struct secpolicyindex *spidx,
int needport,
int force_ip_version)
{
struct ip *ip = NULL;
struct ip ipbuf;
u_int v;
struct mbuf *n;
int len;
int error;
if (m == NULL) {
panic("ipsec_setspidx: m == 0 passed.");
}
/*
* validate m->m_pkthdr.len. we see incorrect length if we
* mistakenly call this function with inconsistent mbuf chain
* (like 4.4BSD tcp/udp processing). XXX should we panic here?
*/
len = 0;
for (n = m; n; n = n->m_next) {
len += n->m_len;
}
if (m->m_pkthdr.len != len) {
KEYDEBUG(KEYDEBUG_IPSEC_DUMP,
printf("ipsec_setspidx: "
"total of m_len(%d) != pkthdr.len(%d), "
"ignored.\n",
len, m->m_pkthdr.len));
return EINVAL;
}
if (m->m_pkthdr.len < sizeof(struct ip)) {
KEYDEBUG(KEYDEBUG_IPSEC_DUMP,
printf("ipsec_setspidx: "
"pkthdr.len(%d) < sizeof(struct ip), ignored.\n",
m->m_pkthdr.len));
return EINVAL;
}
if (m->m_len >= sizeof(*ip)) {
ip = mtod(m, struct ip *);
} else {
m_copydata(m, 0, sizeof(ipbuf), (caddr_t)&ipbuf);
ip = &ipbuf;
}
if (force_ip_version) {
v = force_ip_version;
} else {
#ifdef _IP_VHL
v = _IP_VHL_V(ip->ip_vhl);
#else
v = ip->ip_v;
#endif
}
switch (v) {
case 4:
error = ipsec4_setspidx_ipaddr(m, spidx);
if (error) {
return error;
}
ipsec4_get_ulp(m, spidx, needport);
return 0;
case 6:
if (m->m_pkthdr.len < sizeof(struct ip6_hdr)) {
KEYDEBUG(KEYDEBUG_IPSEC_DUMP,
printf("ipsec_setspidx: "
"pkthdr.len(%d) < sizeof(struct ip6_hdr), "
"ignored.\n", m->m_pkthdr.len));
return EINVAL;
}
error = ipsec6_setspidx_ipaddr(m, spidx);
if (error) {
return error;
}
ipsec6_get_ulp(m, spidx, needport);
return 0;
default:
KEYDEBUG(KEYDEBUG_IPSEC_DUMP,
printf("ipsec_setspidx: "
"unknown IP version %u, ignored.\n", v));
return EINVAL;
}
}
static void
ipsec4_get_ulp(struct mbuf *m, struct secpolicyindex *spidx, int needport)
{
struct ip ip;
struct ip6_ext ip6e;
u_int8_t nxt;
int off;
struct tcphdr th;
struct udphdr uh;
/* sanity check */
if (m == NULL) {
panic("ipsec4_get_ulp: NULL pointer was passed.");
}
if (m->m_pkthdr.len < sizeof(ip)) {
panic("ipsec4_get_ulp: too short");
}
/* set default */
spidx->ul_proto = IPSEC_ULPROTO_ANY;
((struct sockaddr_in *)&spidx->src)->sin_port = IPSEC_PORT_ANY;
((struct sockaddr_in *)&spidx->dst)->sin_port = IPSEC_PORT_ANY;
m_copydata(m, 0, sizeof(ip), (caddr_t)&ip);
/* ip_input() flips it into host endian XXX need more checking */
if (ip.ip_off & (IP_MF | IP_OFFMASK)) {
return;
}
nxt = ip.ip_p;
#ifdef _IP_VHL
off = _IP_VHL_HL(ip->ip_vhl) << 2;
#else
off = ip.ip_hl << 2;
#endif
while (off < m->m_pkthdr.len) {
switch (nxt) {
case IPPROTO_TCP:
spidx->ul_proto = nxt;
if (!needport) {
return;
}
if (off + sizeof(struct tcphdr) > m->m_pkthdr.len) {
return;
}
m_copydata(m, off, sizeof(th), (caddr_t)&th);
((struct sockaddr_in *)&spidx->src)->sin_port =
th.th_sport;
((struct sockaddr_in *)&spidx->dst)->sin_port =
th.th_dport;
return;
case IPPROTO_UDP:
spidx->ul_proto = nxt;
if (!needport) {
return;
}
if (off + sizeof(struct udphdr) > m->m_pkthdr.len) {
return;
}
m_copydata(m, off, sizeof(uh), (caddr_t)&uh);
((struct sockaddr_in *)&spidx->src)->sin_port =
uh.uh_sport;
((struct sockaddr_in *)&spidx->dst)->sin_port =
uh.uh_dport;
return;
case IPPROTO_AH:
if (off + sizeof(ip6e) > m->m_pkthdr.len) {
return;
}
m_copydata(m, off, sizeof(ip6e), (caddr_t)&ip6e);
off += (ip6e.ip6e_len + 2) << 2;
nxt = ip6e.ip6e_nxt;
break;
case IPPROTO_ICMP:
default:
/* XXX intermediate headers??? */
spidx->ul_proto = nxt;
return;
}
}
}
/* assumes that m is sane */
static int
ipsec4_setspidx_ipaddr(struct mbuf *m, struct secpolicyindex *spidx)
{
struct ip *ip = NULL;
struct ip ipbuf;
struct sockaddr_in *sin;
if (m->m_len >= sizeof(*ip)) {
ip = mtod(m, struct ip *);
} else {
m_copydata(m, 0, sizeof(ipbuf), (caddr_t)&ipbuf);
ip = &ipbuf;
}
sin = (struct sockaddr_in *)&spidx->src;
bzero(sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
bcopy(&ip->ip_src, &sin->sin_addr, sizeof(ip->ip_src));
spidx->prefs = sizeof(struct in_addr) << 3;
sin = (struct sockaddr_in *)&spidx->dst;
bzero(sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
bcopy(&ip->ip_dst, &sin->sin_addr, sizeof(ip->ip_dst));
spidx->prefd = sizeof(struct in_addr) << 3;
return 0;
}
static void
ipsec6_get_ulp(struct mbuf *m,
struct secpolicyindex *spidx,
int needport)
{
int off, nxt;
struct tcphdr th;
struct udphdr uh;
/* sanity check */
if (m == NULL) {
panic("ipsec6_get_ulp: NULL pointer was passed.");
}
KEYDEBUG(KEYDEBUG_IPSEC_DUMP,
printf("ipsec6_get_ulp:\n"); kdebug_mbuf(m));
/* set default */
spidx->ul_proto = IPSEC_ULPROTO_ANY;
((struct sockaddr_in6 *)&spidx->src)->sin6_port = IPSEC_PORT_ANY;
((struct sockaddr_in6 *)&spidx->dst)->sin6_port = IPSEC_PORT_ANY;
nxt = -1;
off = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt);
if (off < 0 || m->m_pkthdr.len < off) {
return;
}
VERIFY(nxt <= UINT8_MAX);
switch (nxt) {
case IPPROTO_TCP:
spidx->ul_proto = (u_int8_t)nxt;
if (!needport) {
break;
}
if (off + sizeof(struct tcphdr) > m->m_pkthdr.len) {
break;
}
m_copydata(m, off, sizeof(th), (caddr_t)&th);
((struct sockaddr_in6 *)&spidx->src)->sin6_port = th.th_sport;
((struct sockaddr_in6 *)&spidx->dst)->sin6_port = th.th_dport;
break;
case IPPROTO_UDP:
spidx->ul_proto = (u_int8_t)nxt;
if (!needport) {
break;
}
if (off + sizeof(struct udphdr) > m->m_pkthdr.len) {
break;
}
m_copydata(m, off, sizeof(uh), (caddr_t)&uh);
((struct sockaddr_in6 *)&spidx->src)->sin6_port = uh.uh_sport;
((struct sockaddr_in6 *)&spidx->dst)->sin6_port = uh.uh_dport;
break;
case IPPROTO_ICMPV6:
default:
/* XXX intermediate headers??? */
spidx->ul_proto = (u_int8_t)nxt;
break;
}
}
/* assumes that m is sane */
static int
ipsec6_setspidx_ipaddr(struct mbuf *m,
struct secpolicyindex *spidx)
{
struct ip6_hdr *ip6 = NULL;
struct ip6_hdr ip6buf;
struct sockaddr_in6 *sin6;
if (m->m_len >= sizeof(*ip6)) {
ip6 = mtod(m, struct ip6_hdr *);
} else {
m_copydata(m, 0, sizeof(ip6buf), (caddr_t)&ip6buf);
ip6 = &ip6buf;
}
sin6 = (struct sockaddr_in6 *)&spidx->src;
bzero(sin6, sizeof(*sin6));
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(struct sockaddr_in6);
bcopy(&ip6->ip6_src, &sin6->sin6_addr, sizeof(ip6->ip6_src));
if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
ip6_getsrcifaddr_info(m, &sin6->sin6_scope_id, NULL);
} else if (m->m_pkthdr.pkt_ext_flags & PKTF_EXT_OUTPUT_SCOPE) {
sin6->sin6_scope_id = ip6_output_getsrcifscope(m);
}
in6_verify_ifscope(&ip6->ip6_src, sin6->sin6_scope_id);
if (in6_embedded_scope) {
sin6->sin6_addr.s6_addr16[1] = 0;
sin6->sin6_scope_id = ntohs(ip6->ip6_src.s6_addr16[1]);
}
}
spidx->prefs = sizeof(struct in6_addr) << 3;
sin6 = (struct sockaddr_in6 *)&spidx->dst;
bzero(sin6, sizeof(*sin6));
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(struct sockaddr_in6);
bcopy(&ip6->ip6_dst, &sin6->sin6_addr, sizeof(ip6->ip6_dst));
if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) {
if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
ip6_getdstifaddr_info(m, &sin6->sin6_scope_id, NULL);
} else if (m->m_pkthdr.pkt_ext_flags & PKTF_EXT_OUTPUT_SCOPE) {
sin6->sin6_scope_id = ip6_output_getdstifscope(m);
}
in6_verify_ifscope(&ip6->ip6_dst, sin6->sin6_scope_id);
if (in6_embedded_scope) {
sin6->sin6_addr.s6_addr16[1] = 0;
sin6->sin6_scope_id = ntohs(ip6->ip6_dst.s6_addr16[1]);
}
}
spidx->prefd = sizeof(struct in6_addr) << 3;
return 0;
}
static struct inpcbpolicy *
ipsec_newpcbpolicy(void)
{
struct inpcbpolicy *p;
p = kalloc_type(struct inpcbpolicy, Z_WAITOK | Z_ZERO);
return p;
}
static void
ipsec_delpcbpolicy(struct inpcbpolicy *p)
{
kfree_type(struct inpcbpolicy, p);
}
/* initialize policy in PCB */
int
ipsec_init_policy(struct socket *so,
struct inpcbpolicy **pcb_sp)
{
struct inpcbpolicy *new;
/* sanity check. */
if (so == NULL || pcb_sp == NULL) {
panic("ipsec_init_policy: NULL pointer was passed.");
}
new = ipsec_newpcbpolicy();
if (new == NULL) {
ipseclog((LOG_DEBUG, "ipsec_init_policy: No more memory.\n"));
return ENOBUFS;
}
#ifdef __APPLE__
if (kauth_cred_issuser(so->so_cred))
#else
if (so->so_cred != 0 && !suser(so->so_cred->pc_ucred, NULL))
#endif
{ new->priv = 1;} else {
new->priv = 0;
}
if ((new->sp_in = key_newsp()) == NULL) {
ipsec_delpcbpolicy(new);
return ENOBUFS;
}
new->sp_in->state = IPSEC_SPSTATE_ALIVE;
new->sp_in->policy = IPSEC_POLICY_ENTRUST;
if ((new->sp_out = key_newsp()) == NULL) {
key_freesp(new->sp_in, KEY_SADB_UNLOCKED);
ipsec_delpcbpolicy(new);
return ENOBUFS;
}
new->sp_out->state = IPSEC_SPSTATE_ALIVE;
new->sp_out->policy = IPSEC_POLICY_ENTRUST;
*pcb_sp = new;
return 0;
}
/* copy old ipsec policy into new */
int
ipsec_copy_policy(struct inpcbpolicy *old,
struct inpcbpolicy *new)
{
struct secpolicy *sp;
if (ipsec_bypass != 0) {
return 0;
}
sp = ipsec_deepcopy_policy(old->sp_in);
if (sp) {
key_freesp(new->sp_in, KEY_SADB_UNLOCKED);
new->sp_in = sp;
} else {
return ENOBUFS;
}
sp = ipsec_deepcopy_policy(old->sp_out);
if (sp) {
key_freesp(new->sp_out, KEY_SADB_UNLOCKED);
new->sp_out = sp;
} else {
return ENOBUFS;
}
new->priv = old->priv;
return 0;
}
/* deep-copy a policy in PCB */
static struct secpolicy *
ipsec_deepcopy_policy(struct secpolicy *src)
{
struct ipsecrequest *newchain = NULL;
struct ipsecrequest *p;
struct ipsecrequest **q;
struct secpolicy *dst;
if (src == NULL) {
return NULL;
}
dst = key_newsp();
if (dst == NULL) {
return NULL;
}
/*
* deep-copy IPsec request chain. This is required since struct
* ipsecrequest is not reference counted.
*/
q = &newchain;
for (p = src->req; p; p = p->next) {
*q = kalloc_type(struct ipsecrequest, Z_WAITOK_ZERO_NOFAIL);
(*q)->saidx.proto = p->saidx.proto;
(*q)->saidx.mode = p->saidx.mode;
(*q)->level = p->level;
(*q)->saidx.reqid = p->saidx.reqid;
bcopy(&p->saidx.src, &(*q)->saidx.src, sizeof((*q)->saidx.src));
bcopy(&p->saidx.dst, &(*q)->saidx.dst, sizeof((*q)->saidx.dst));
(*q)->sp = dst;
q = &((*q)->next);
}
dst->req = newchain;
dst->state = src->state;
dst->policy = src->policy;
/* do not touch the refcnt fields */
return dst;
}
/* set policy and ipsec request if present. */
static int
ipsec_set_policy(struct secpolicy **pcb_sp,
__unused int optname,
caddr_t request,
size_t len,
int priv)
{
struct sadb_x_policy *xpl;
struct secpolicy *newsp = NULL;
int error;
/* sanity check. */
if (pcb_sp == NULL || *pcb_sp == NULL || request == NULL) {
return EINVAL;
}
if (len < sizeof(*xpl)) {
return EINVAL;
}
xpl = (struct sadb_x_policy *)(void *)request;
KEYDEBUG(KEYDEBUG_IPSEC_DUMP,
printf("ipsec_set_policy: passed policy\n");
kdebug_sadb_x_policy((struct sadb_ext *)xpl));
/* check policy type */
/* ipsec_set_policy() accepts IPSEC, ENTRUST and BYPASS. */
if (xpl->sadb_x_policy_type == IPSEC_POLICY_DISCARD
|| xpl->sadb_x_policy_type == IPSEC_POLICY_NONE) {
return EINVAL;
}
/* check privileged socket */
if (priv == 0 && xpl->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
return EACCES;
}
/* allocation new SP entry */
if ((newsp = key_msg2sp(xpl, len, &error)) == NULL) {
return error;
}
newsp->state = IPSEC_SPSTATE_ALIVE;
/* clear old SP and set new SP */
key_freesp(*pcb_sp, KEY_SADB_UNLOCKED);
*pcb_sp = newsp;
KEYDEBUG(KEYDEBUG_IPSEC_DUMP,
printf("ipsec_set_policy: new policy\n");
kdebug_secpolicy(newsp));
return 0;
}
int
ipsec4_set_policy(struct inpcb *inp,
int optname,
caddr_t request,
size_t len,
int priv)
{
struct sadb_x_policy *xpl;
struct secpolicy **pcb_sp;
int error = 0;
struct sadb_x_policy xpl_aligned_buf;
u_int8_t *xpl_unaligned;
/* sanity check. */
if (inp == NULL || request == NULL) {
return EINVAL;
}
if (len < sizeof(*xpl)) {
return EINVAL;
}
xpl = (struct sadb_x_policy *)(void *)request;
/* This is a new mbuf allocated by soopt_getm() */
if (IPSEC_IS_P2ALIGNED(xpl)) {
xpl_unaligned = NULL;
} else {
xpl_unaligned = (__typeof__(xpl_unaligned))xpl;
memcpy(&xpl_aligned_buf, xpl, sizeof(xpl_aligned_buf));
xpl = (__typeof__(xpl)) & xpl_aligned_buf;
}
if (inp->inp_sp == NULL) {
error = ipsec_init_policy(inp->inp_socket, &inp->inp_sp);
if (error) {
return error;
}
}
/* select direction */
switch (xpl->sadb_x_policy_dir) {
case IPSEC_DIR_INBOUND:
pcb_sp = &inp->inp_sp->sp_in;
break;
case IPSEC_DIR_OUTBOUND:
pcb_sp = &inp->inp_sp->sp_out;
break;
default:
ipseclog((LOG_ERR, "ipsec4_set_policy: invalid direction=%u\n",
xpl->sadb_x_policy_dir));
return EINVAL;
}
/* turn bypass off */
if (ipsec_bypass != 0) {
ipsec_bypass = 0;
}
return ipsec_set_policy(pcb_sp, optname, request, len, priv);
}
/* delete policy in PCB */
int
ipsec4_delete_pcbpolicy(struct inpcb *inp)
{
/* sanity check. */
if (inp == NULL) {
panic("ipsec4_delete_pcbpolicy: NULL pointer was passed.");
}
if (inp->inp_sp == NULL) {
return 0;
}
if (inp->inp_sp->sp_in != NULL) {
key_freesp(inp->inp_sp->sp_in, KEY_SADB_UNLOCKED);
inp->inp_sp->sp_in = NULL;
}
if (inp->inp_sp->sp_out != NULL) {
key_freesp(inp->inp_sp->sp_out, KEY_SADB_UNLOCKED);
inp->inp_sp->sp_out = NULL;
}
ipsec_delpcbpolicy(inp->inp_sp);
inp->inp_sp = NULL;
return 0;
}
int
ipsec6_set_policy(struct in6pcb *in6p,
int optname,
caddr_t request,
size_t len,
int priv)
{
struct sadb_x_policy *xpl;
struct secpolicy **pcb_sp;
int error = 0;
struct sadb_x_policy xpl_aligned_buf;
u_int8_t *xpl_unaligned;
/* sanity check. */
if (in6p == NULL || request == NULL) {
return EINVAL;
}
if (len < sizeof(*xpl)) {
return EINVAL;
}
xpl = (struct sadb_x_policy *)(void *)request;
/* This is a new mbuf allocated by soopt_getm() */
if (IPSEC_IS_P2ALIGNED(xpl)) {
xpl_unaligned = NULL;
} else {
xpl_unaligned = (__typeof__(xpl_unaligned))xpl;
memcpy(&xpl_aligned_buf, xpl, sizeof(xpl_aligned_buf));
xpl = (__typeof__(xpl)) & xpl_aligned_buf;
}
if (in6p->in6p_sp == NULL) {
error = ipsec_init_policy(in6p->inp_socket, &in6p->in6p_sp);
if (error) {
return error;
}
}
/* select direction */
switch (xpl->sadb_x_policy_dir) {
case IPSEC_DIR_INBOUND:
pcb_sp = &in6p->in6p_sp->sp_in;
break;
case IPSEC_DIR_OUTBOUND:
pcb_sp = &in6p->in6p_sp->sp_out;
break;
default:
ipseclog((LOG_ERR, "ipsec6_set_policy: invalid direction=%u\n",
xpl->sadb_x_policy_dir));
return EINVAL;
}
return ipsec_set_policy(pcb_sp, optname, request, len, priv);
}
int
ipsec6_delete_pcbpolicy(struct in6pcb *in6p)
{
/* sanity check. */
if (in6p == NULL) {
panic("ipsec6_delete_pcbpolicy: NULL pointer was passed.");
}
if (in6p->in6p_sp == NULL) {
return 0;
}
if (in6p->in6p_sp->sp_in != NULL) {
key_freesp(in6p->in6p_sp->sp_in, KEY_SADB_UNLOCKED);
in6p->in6p_sp->sp_in = NULL;
}
if (in6p->in6p_sp->sp_out != NULL) {
key_freesp(in6p->in6p_sp->sp_out, KEY_SADB_UNLOCKED);
in6p->in6p_sp->sp_out = NULL;
}
ipsec_delpcbpolicy(in6p->in6p_sp);
in6p->in6p_sp = NULL;
return 0;
}
/*
* return current level.
* Either IPSEC_LEVEL_USE or IPSEC_LEVEL_REQUIRE are always returned.
*/
u_int
ipsec_get_reqlevel(struct ipsecrequest *isr)
{
u_int level = 0;
u_int esp_trans_deflev = 0, esp_net_deflev = 0, ah_trans_deflev = 0, ah_net_deflev = 0;
/* sanity check */
if (isr == NULL || isr->sp == NULL) {
panic("ipsec_get_reqlevel: NULL pointer is passed.");
}
if (((struct sockaddr *)&isr->sp->spidx.src)->sa_family
!= ((struct sockaddr *)&isr->sp->spidx.dst)->sa_family) {
panic("ipsec_get_reqlevel: family mismatched.");
}
/* XXX note that we have ipseclog() expanded here - code sync issue */
#define IPSEC_CHECK_DEFAULT(lev) \
(((lev) != IPSEC_LEVEL_USE && (lev) != IPSEC_LEVEL_REQUIRE \
&& (lev) != IPSEC_LEVEL_UNIQUE) \
? (ipsec_debug \
? log(LOG_INFO, "fixed system default level " #lev ":%d->%d\n",\
(lev), IPSEC_LEVEL_REQUIRE) \
: (void)0), \
(lev) = IPSEC_LEVEL_REQUIRE, \
(lev) \
: (lev))
/* set default level */
switch (((struct sockaddr *)&isr->sp->spidx.src)->sa_family) {
case AF_INET:
esp_trans_deflev = IPSEC_CHECK_DEFAULT(ip4_esp_trans_deflev);
esp_net_deflev = IPSEC_CHECK_DEFAULT(ip4_esp_net_deflev);
ah_trans_deflev = IPSEC_CHECK_DEFAULT(ip4_ah_trans_deflev);
ah_net_deflev = IPSEC_CHECK_DEFAULT(ip4_ah_net_deflev);
break;
case AF_INET6:
esp_trans_deflev = IPSEC_CHECK_DEFAULT(ip6_esp_trans_deflev);
esp_net_deflev = IPSEC_CHECK_DEFAULT(ip6_esp_net_deflev);
ah_trans_deflev = IPSEC_CHECK_DEFAULT(ip6_ah_trans_deflev);
ah_net_deflev = IPSEC_CHECK_DEFAULT(ip6_ah_net_deflev);
break;
default:
panic("key_get_reqlevel: Unknown family. %d",
((struct sockaddr *)&isr->sp->spidx.src)->sa_family);
}
#undef IPSEC_CHECK_DEFAULT
/* set level */
switch (isr->level) {
case IPSEC_LEVEL_DEFAULT:
switch (isr->saidx.proto) {
case IPPROTO_ESP:
if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
level = esp_net_deflev;
} else {
level = esp_trans_deflev;
}
break;
case IPPROTO_AH:
if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
level = ah_net_deflev;
} else {
level = ah_trans_deflev;
}
break;
case IPPROTO_IPCOMP:
ipseclog((LOG_ERR, "ipsec_get_reqlevel: "
"still got IPCOMP - exiting\n"));
break;
default:
panic("ipsec_get_reqlevel: "
"Illegal protocol defined %u\n",
isr->saidx.proto);
}
break;
case IPSEC_LEVEL_USE:
case IPSEC_LEVEL_REQUIRE:
level = isr->level;
break;
case IPSEC_LEVEL_UNIQUE:
level = IPSEC_LEVEL_REQUIRE;
break;
default:
panic("ipsec_get_reqlevel: Illegal IPsec level %u",
isr->level);
}
return level;
}
/*
* Check AH/ESP integrity.
* OUT:
* 0: valid
* 1: invalid
*/
static int
ipsec_in_reject(struct secpolicy *sp, struct mbuf *m)
{
struct ipsecrequest *isr;
u_int level;
int need_auth, need_conf, need_icv;
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("ipsec_in_reject: using SP\n");
kdebug_secpolicy(sp));
/* check policy */
switch (sp->policy) {
case IPSEC_POLICY_DISCARD:
case IPSEC_POLICY_GENERATE:
return 1;
case IPSEC_POLICY_BYPASS:
case IPSEC_POLICY_NONE:
return 0;
case IPSEC_POLICY_IPSEC:
break;
case IPSEC_POLICY_ENTRUST:
default:
panic("ipsec_hdrsiz: Invalid policy found. %d", sp->policy);
}
need_auth = 0;
need_conf = 0;
need_icv = 0;
/* XXX should compare policy against ipsec header history */
for (isr = sp->req; isr != NULL; isr = isr->next) {
/* get current level */
level = ipsec_get_reqlevel(isr);
switch (isr->saidx.proto) {
case IPPROTO_ESP:
if (level == IPSEC_LEVEL_REQUIRE) {
need_conf++;
#if 0
/* this won't work with multiple input threads - isr->sav would change
* with every packet and is not necessarily related to the current packet
* being processed. If ESP processing is required - the esp code should
* make sure that the integrity check is present and correct. I don't see
* why it would be necessary to check for the presence of the integrity
* check value here. I think this is just wrong.
* isr->sav has been removed.
* %%%%%% this needs to be re-worked at some point but I think the code below can
* be ignored for now.
*/
if (isr->sav != NULL
&& isr->sav->flags == SADB_X_EXT_NONE
&& isr->sav->alg_auth != SADB_AALG_NONE) {
need_icv++;
}
#endif
}
break;
case IPPROTO_AH:
if (level == IPSEC_LEVEL_REQUIRE) {
need_auth++;
need_icv++;
}
break;
case IPPROTO_IPCOMP:
/*
* we don't really care, as IPcomp document says that
* we shouldn't compress small packets, IPComp policy
* should always be treated as being in "use" level.
*/
break;
}
}
KEYDEBUG(KEYDEBUG_IPSEC_DUMP,
printf("ipsec_in_reject: auth:%d conf:%d icv:%d m_flags:%x\n",
need_auth, need_conf, need_icv, m->m_flags));
if ((need_conf && !(m->m_flags & M_DECRYPTED))
|| (!need_auth && need_icv && !(m->m_flags & M_AUTHIPDGM))
|| (need_auth && !(m->m_flags & M_AUTHIPHDR))) {
return 1;
}
return 0;
}
/*
* Check AH/ESP integrity.
* This function is called from tcp_input(), udp_input(),
* and {ah,esp}4_input for tunnel mode
*/
int
ipsec4_in_reject_so(struct mbuf *m, struct socket *so)
{
struct secpolicy *sp = NULL;
int error;
int result;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL) {
return 0; /* XXX should be panic ? */
}
/* get SP for this packet.
* When we are called from ip_forward(), we call
* ipsec4_getpolicybyaddr() with IP_FORWARDING flag.
*/
if (so == NULL) {
sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_INBOUND, IP_FORWARDING, &error);
} else {
sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_INBOUND, 0, &error);
}
if (sp == NULL) {
return 0; /* XXX should be panic ?
* -> No, there may be error. */
}
result = ipsec_in_reject(sp, m);
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec4_in_reject_so call free SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(sp)));
key_freesp(sp, KEY_SADB_UNLOCKED);
return result;
}
int
ipsec4_in_reject(struct mbuf *m, struct inpcb *inp)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
if (inp == NULL) {
return ipsec4_in_reject_so(m, NULL);
}
if (inp->inp_socket) {
return ipsec4_in_reject_so(m, inp->inp_socket);
} else {
panic("ipsec4_in_reject: invalid inpcb/socket");
}
/* NOTREACHED */
return 0;
}
/*
* Check AH/ESP integrity.
* This function is called from tcp6_input(), udp6_input(),
* and {ah,esp}6_input for tunnel mode
*/
int
ipsec6_in_reject_so(struct mbuf *m, struct socket *so)
{
struct secpolicy *sp = NULL;
int error;
int result;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL) {
return 0; /* XXX should be panic ? */
}
/* get SP for this packet.
* When we are called from ip_forward(), we call
* ipsec6_getpolicybyaddr() with IP_FORWARDING flag.
*/
if (so == NULL) {
sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_INBOUND, IP_FORWARDING, &error);
} else {
sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_INBOUND, 0, &error);
}
if (sp == NULL) {
return 0; /* XXX should be panic ? */
}
result = ipsec_in_reject(sp, m);
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec6_in_reject_so call free SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(sp)));
key_freesp(sp, KEY_SADB_UNLOCKED);
return result;
}
int
ipsec6_in_reject(struct mbuf *m, struct in6pcb *in6p)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
if (in6p == NULL) {
return ipsec6_in_reject_so(m, NULL);
}
if (in6p->in6p_socket) {
return ipsec6_in_reject_so(m, in6p->in6p_socket);
} else {
panic("ipsec6_in_reject: invalid in6p/socket");
}
/* NOTREACHED */
return 0;
}
/*
* compute the byte size to be occupied by IPsec header.
* in case it is tunneled, it includes the size of outer IP header.
* NOTE: SP passed is free in this function.
*/
size_t
ipsec_hdrsiz(struct secpolicy *sp)
{
struct ipsecrequest *isr;
size_t siz, clen;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("ipsec_hdrsiz: using SP\n");
kdebug_secpolicy(sp));
/* check policy */
switch (sp->policy) {
case IPSEC_POLICY_DISCARD:
case IPSEC_POLICY_GENERATE:
case IPSEC_POLICY_BYPASS:
case IPSEC_POLICY_NONE:
return 0;
case IPSEC_POLICY_IPSEC:
break;
case IPSEC_POLICY_ENTRUST:
default:
panic("ipsec_hdrsiz: Invalid policy found. %d", sp->policy);
}
siz = 0;
for (isr = sp->req; isr != NULL; isr = isr->next) {
clen = 0;
switch (isr->saidx.proto) {
case IPPROTO_ESP:
#if IPSEC_ESP
clen = esp_hdrsiz(isr);
#else
clen = 0; /*XXX*/
#endif
break;
case IPPROTO_AH:
clen = ah_hdrsiz(isr);
break;
default:
ipseclog((LOG_ERR, "ipsec_hdrsiz: "
"unknown protocol %u\n",
isr->saidx.proto));
break;
}
if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
switch (((struct sockaddr *)&isr->saidx.dst)->sa_family) {
case AF_INET:
clen += sizeof(struct ip);
break;
case AF_INET6:
clen += sizeof(struct ip6_hdr);
break;
default:
ipseclog((LOG_ERR, "ipsec_hdrsiz: "
"unknown AF %d in IPsec tunnel SA\n",
((struct sockaddr *)&isr->saidx.dst)->sa_family));
break;
}
}
siz += clen;
}
return siz;
}
/* This function is called from ip_forward() and ipsec4_hdrsize_tcp(). */
size_t
ipsec4_hdrsiz(struct mbuf *m, u_int8_t dir, struct inpcb *inp)
{
struct secpolicy *sp = NULL;
int error;
size_t size;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL) {
return 0; /* XXX should be panic ? */
}
if (inp != NULL && inp->inp_socket == NULL) {
panic("ipsec4_hdrsize: why is socket NULL but there is PCB.");
}
/* get SP for this packet.
* When we are called from ip_forward(), we call
* ipsec4_getpolicybyaddr() with IP_FORWARDING flag.
*/
if (inp == NULL) {
sp = ipsec4_getpolicybyaddr(m, dir, IP_FORWARDING, &error);
} else {
sp = ipsec4_getpolicybyaddr(m, dir, 0, &error);
}
if (sp == NULL) {
return 0; /* XXX should be panic ? */
}
size = ipsec_hdrsiz(sp);
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec4_hdrsiz call free SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(sp)));
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("ipsec4_hdrsiz: size:%lu.\n", (u_int32_t)size));
key_freesp(sp, KEY_SADB_UNLOCKED);
return size;
}
/* This function is called from ipsec6_hdrsize_tcp(),
* and maybe from ip6_forward.()
*/
size_t
ipsec6_hdrsiz(struct mbuf *m, u_int8_t dir, struct in6pcb *in6p)
{
struct secpolicy *sp = NULL;
int error;
size_t size;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL) {
return 0; /* XXX shoud be panic ? */
}
if (in6p != NULL && in6p->in6p_socket == NULL) {
panic("ipsec6_hdrsize: why is socket NULL but there is PCB.");
}
/* get SP for this packet */
/* XXX Is it right to call with IP_FORWARDING. */
if (in6p == NULL) {
sp = ipsec6_getpolicybyaddr(m, dir, IP_FORWARDING, &error);
} else {
sp = ipsec6_getpolicybyaddr(m, dir, 0, &error);
}
if (sp == NULL) {
return 0;
}
size = ipsec_hdrsiz(sp);
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ipsec6_hdrsiz call free SP:0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(sp)));
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("ipsec6_hdrsiz: size:%lu.\n", (u_int32_t)size));
key_freesp(sp, KEY_SADB_UNLOCKED);
return size;
}
/*
* encapsulate for ipsec tunnel.
* ip->ip_src must be fixed later on.
*/
int
ipsec4_encapsulate(struct mbuf *m, struct secasvar *sav)
{
struct ip *oip;
struct ip *ip;
size_t plen;
u_int32_t hlen;
/* can't tunnel between different AFs */
if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family
!= ((struct sockaddr *)&sav->sah->saidx.dst)->sa_family
|| ((struct sockaddr *)&sav->sah->saidx.src)->sa_family != AF_INET) {
m_freem(m);
return EINVAL;
}
if (m->m_len < sizeof(*ip)) {
panic("ipsec4_encapsulate: assumption failed (first mbuf length)");
}
ip = mtod(m, struct ip *);
#ifdef _IP_VHL
hlen = _IP_VHL_HL(ip->ip_vhl) << 2;
#else
hlen = ip->ip_hl << 2;
#endif
if (m->m_len != hlen) {
panic("ipsec4_encapsulate: assumption failed (first mbuf length)");
}
/* generate header checksum */
ip->ip_sum = 0;
#ifdef _IP_VHL
ip->ip_sum = in_cksum(m, hlen);
#else
ip->ip_sum = in_cksum(m, hlen);
#endif
plen = m->m_pkthdr.len;
/*
* grow the mbuf to accomodate the new IPv4 header.
* NOTE: IPv4 options will never be copied.
*/
if (M_LEADINGSPACE(m->m_next) < hlen) {
struct mbuf *n;
MGET(n, M_DONTWAIT, MT_DATA);
if (!n) {
m_freem(m);
return ENOBUFS;
}
n->m_len = hlen;
n->m_next = m->m_next;
m->m_next = n;
m->m_pkthdr.len += hlen;
oip = mtod(n, struct ip *);
} else {
m->m_next->m_len += hlen;
m->m_next->m_data -= hlen;
m->m_pkthdr.len += hlen;
oip = mtod(m->m_next, struct ip *);
}
ip = mtod(m, struct ip *);
ovbcopy((caddr_t)ip, (caddr_t)oip, hlen);
m->m_len = sizeof(struct ip);
m->m_pkthdr.len -= (hlen - sizeof(struct ip));
/* construct new IPv4 header. see RFC 2401 5.1.2.1 */
/* ECN consideration. */
ip_ecn_ingress(ip4_ipsec_ecn, &ip->ip_tos, &oip->ip_tos);
#ifdef _IP_VHL
ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
#else
ip->ip_hl = sizeof(struct ip) >> 2;
#endif
ip->ip_off &= htons(~IP_OFFMASK);
ip->ip_off &= htons(~IP_MF);
switch (ip4_ipsec_dfbit) {
case 0: /* clear DF bit */
ip->ip_off &= htons(~IP_DF);
break;
case 1: /* set DF bit */
ip->ip_off |= htons(IP_DF);
break;
default: /* copy DF bit */
break;
}
ip->ip_p = IPPROTO_IPIP;
if (plen + sizeof(struct ip) < IP_MAXPACKET) {
ip->ip_len = htons((u_int16_t)(plen + sizeof(struct ip)));
} else {
ipseclog((LOG_ERR, "IPv4 ipsec: size exceeds limit: "
"leave ip_len as is (invalid packet)\n"));
}
if (rfc6864 && IP_OFF_IS_ATOMIC(ntohs(ip->ip_off))) {
ip->ip_id = 0;
} else {
ip->ip_id = ip_randomid((uint64_t)m);
}
bcopy(&((struct sockaddr_in *)&sav->sah->saidx.src)->sin_addr,
&ip->ip_src, sizeof(ip->ip_src));
bcopy(&((struct sockaddr_in *)&sav->sah->saidx.dst)->sin_addr,
&ip->ip_dst, sizeof(ip->ip_dst));
ip->ip_ttl = IPDEFTTL;
/* XXX Should ip_src be updated later ? */
return 0;
}
int
ipsec6_encapsulate(struct mbuf *m, struct secasvar *sav)
{
struct ip6_hdr *oip6;
struct ip6_hdr *ip6;
size_t plen;
/* can't tunnel between different AFs */
if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family
!= ((struct sockaddr *)&sav->sah->saidx.dst)->sa_family
|| ((struct sockaddr *)&sav->sah->saidx.src)->sa_family != AF_INET6) {
m_freem(m);
return EINVAL;
}
plen = m->m_pkthdr.len;
/*
* grow the mbuf to accomodate the new IPv6 header.
*/
if (m->m_len != sizeof(struct ip6_hdr)) {
panic("ipsec6_encapsulate: assumption failed (first mbuf length)");
}
if (M_LEADINGSPACE(m->m_next) < sizeof(struct ip6_hdr)) {
struct mbuf *n;
MGET(n, M_DONTWAIT, MT_DATA);
if (!n) {
m_freem(m);
return ENOBUFS;
}
n->m_len = sizeof(struct ip6_hdr);
n->m_next = m->m_next;
m->m_next = n;
m->m_pkthdr.len += sizeof(struct ip6_hdr);
oip6 = mtod(n, struct ip6_hdr *);
} else {
m->m_next->m_len += sizeof(struct ip6_hdr);
m->m_next->m_data -= sizeof(struct ip6_hdr);
m->m_pkthdr.len += sizeof(struct ip6_hdr);
oip6 = mtod(m->m_next, struct ip6_hdr *);
}
ip6 = mtod(m, struct ip6_hdr *);
ovbcopy((caddr_t)ip6, (caddr_t)oip6, sizeof(struct ip6_hdr));
/* Fake link-local scope-class addresses */
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&oip6->ip6_src)) {
oip6->ip6_src.s6_addr16[1] = 0;
}
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&oip6->ip6_dst)) {
oip6->ip6_dst.s6_addr16[1] = 0;
}
/* construct new IPv6 header. see RFC 2401 5.1.2.2 */
/* ECN consideration. */
ip6_ecn_ingress(ip6_ipsec_ecn, &ip6->ip6_flow, &oip6->ip6_flow);
if (plen < IPV6_MAXPACKET - sizeof(struct ip6_hdr)) {
ip6->ip6_plen = htons((u_int16_t)plen);
} else {
/* ip6->ip6_plen will be updated in ip6_output() */
}
ip6->ip6_nxt = IPPROTO_IPV6;
bcopy(&((struct sockaddr_in6 *)&sav->sah->saidx.src)->sin6_addr,
&ip6->ip6_src, sizeof(ip6->ip6_src));
bcopy(&((struct sockaddr_in6 *)&sav->sah->saidx.dst)->sin6_addr,
&ip6->ip6_dst, sizeof(ip6->ip6_dst));
ip6->ip6_hlim = IPV6_DEFHLIM;
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) {
ip6->ip6_src.s6_addr16[1] = htons((u_int16_t)sav->sah->outgoing_if);
ip6->ip6_dst.s6_addr16[1] = htons((u_int16_t)sav->sah->outgoing_if);
}
/* XXX Should ip6_src be updated later ? */
return 0;
}
static int
ipsec64_encapsulate(struct mbuf *m, struct secasvar *sav, u_int32_t dscp_mapping)
{
struct ip6_hdr *ip6, *ip6i;
struct ip *ip;
size_t plen;
/* tunneling over IPv4 */
if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family
!= ((struct sockaddr *)&sav->sah->saidx.dst)->sa_family
|| ((struct sockaddr *)&sav->sah->saidx.src)->sa_family != AF_INET) {
m_freem(m);
return EINVAL;
}
plen = m->m_pkthdr.len;
ip6 = mtod(m, struct ip6_hdr *);
/*
* grow the mbuf to accomodate the new IPv4 header.
*/
if (m->m_len != sizeof(struct ip6_hdr)) {
panic("ipsec6_encapsulate: assumption failed (first mbuf length)");
}
if (M_LEADINGSPACE(m->m_next) < sizeof(struct ip6_hdr)) {
struct mbuf *n;
MGET(n, M_DONTWAIT, MT_DATA);
if (!n) {
m_freem(m);
return ENOBUFS;
}
n->m_len = sizeof(struct ip6_hdr);
n->m_next = m->m_next;
m->m_next = n;
m->m_pkthdr.len += sizeof(struct ip);
ip6i = mtod(n, struct ip6_hdr *);
} else {
m->m_next->m_len += sizeof(struct ip6_hdr);
m->m_next->m_data -= sizeof(struct ip6_hdr);
m->m_pkthdr.len += sizeof(struct ip);
ip6i = mtod(m->m_next, struct ip6_hdr *);
}
bcopy(ip6, ip6i, sizeof(struct ip6_hdr));
ip = mtod(m, struct ip *);
m->m_len = sizeof(struct ip);
/*
* Fill in some of the IPv4 fields - we don't need all of them
* because the rest will be filled in by ip_output
*/
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(struct ip) >> 2;
ip->ip_id = 0;
ip->ip_sum = 0;
ip->ip_tos = 0;
ip->ip_off = 0;
ip->ip_ttl = IPDEFTTL;
ip->ip_p = IPPROTO_IPV6;
/* construct new IPv4 header. see RFC 2401 5.1.2.1 */
/* ECN consideration. */
if (dscp_mapping == IPSEC_DSCP_MAPPING_COPY) {
// Copy DSCP bits from inner IP to outer IP packet.
ip64_ecn_ingress(ip4_ipsec_ecn, &ip->ip_tos, &ip6i->ip6_flow);
} else if (dscp_mapping == IPSEC_DSCP_MAPPING_LEGACY) {
// Copy DSCP bits in legacy style.
ip64_ecn_ingress(ip4_ipsec_ecn, &ip->ip_tos, &ip6->ip6_flow);
}
if (plen + sizeof(struct ip) < IP_MAXPACKET) {
ip->ip_len = htons((u_int16_t)(plen + sizeof(struct ip)));
} else {
ip->ip_len = htons((u_int16_t)plen);
ipseclog((LOG_ERR, "IPv4 ipsec: size exceeds limit: "
"leave ip_len as is (invalid packet)\n"));
}
bcopy(&((struct sockaddr_in *)&sav->sah->saidx.src)->sin_addr,
&ip->ip_src, sizeof(ip->ip_src));
bcopy(&((struct sockaddr_in *)&sav->sah->saidx.dst)->sin_addr,
&ip->ip_dst, sizeof(ip->ip_dst));
return 0;
}
int
ipsec6_update_routecache_and_output(
struct ipsec_output_state *state,
struct secasvar *sav)
{
struct sockaddr_in6* dst6;
struct route_in6 *ro6;
struct ip6_hdr *ip6;
errno_t error = 0;
int plen;
struct ip6_out_args ip6oa;
struct route_in6 ro6_new;
struct flowadv *adv = NULL;
if (!state->m) {
return EINVAL;
}
ip6 = mtod(state->m, struct ip6_hdr *);
// grab sadb_mutex, before updating sah's route cache
lck_mtx_lock(sadb_mutex);
ro6 = &sav->sah->sa_route;
dst6 = (struct sockaddr_in6 *)(void *)&ro6->ro_dst;
if (ro6->ro_rt) {
RT_LOCK(ro6->ro_rt);
}
if (ROUTE_UNUSABLE(ro6) ||
!IN6_ARE_ADDR_EQUAL(&dst6->sin6_addr, &ip6->ip6_dst)) {
if (ro6->ro_rt != NULL) {
RT_UNLOCK(ro6->ro_rt);
}
ROUTE_RELEASE(ro6);
}
if (ro6->ro_rt == 0) {
bzero(dst6, sizeof(*dst6));
dst6->sin6_family = AF_INET6;
dst6->sin6_len = sizeof(*dst6);
dst6->sin6_addr = ip6->ip6_dst;
rtalloc_scoped((struct route *)ro6, sav->sah->outgoing_if);
if (ro6->ro_rt) {
RT_LOCK(ro6->ro_rt);
}
}
if (ro6->ro_rt == 0) {
ip6stat.ip6s_noroute++;
IPSEC_STAT_INCREMENT(ipsec6stat.out_noroute);
error = EHOSTUNREACH;
// release sadb_mutex, after updating sah's route cache
lck_mtx_unlock(sadb_mutex);
return error;
}
/*
* adjust state->dst if tunnel endpoint is offlink
*
* XXX: caching rt_gateway value in the state is
* not really good, since it may point elsewhere
* when the gateway gets modified to a larger
* sockaddr via rt_setgate(). This is currently
* addressed by SA_SIZE roundup in that routine.
*/
if (ro6->ro_rt->rt_flags & RTF_GATEWAY) {
dst6 = (struct sockaddr_in6 *)(void *)ro6->ro_rt->rt_gateway;
}
RT_UNLOCK(ro6->ro_rt);
ROUTE_RELEASE(&state->ro);
route_copyout((struct route *)&state->ro, (struct route *)ro6, sizeof(struct route_in6));
state->dst = (struct sockaddr *)dst6;
state->tunneled = 6;
// release sadb_mutex, after updating sah's route cache
lck_mtx_unlock(sadb_mutex);
state->m = ipsec6_splithdr(state->m);
if (!state->m) {
IPSEC_STAT_INCREMENT(ipsec6stat.out_nomem);
error = ENOMEM;
return error;
}
ip6 = mtod(state->m, struct ip6_hdr *);
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
#if IPSEC_ESP
error = esp6_output(state->m, &ip6->ip6_nxt, state->m->m_next, sav);
#else
m_freem(state->m);
error = EINVAL;
#endif
break;
case IPPROTO_AH:
error = ah6_output(state->m, &ip6->ip6_nxt, state->m->m_next, sav);
break;
default:
ipseclog((LOG_ERR, "%s: unknown ipsec protocol %d\n", __FUNCTION__, sav->sah->saidx.proto));
m_freem(state->m);
IPSEC_STAT_INCREMENT(ipsec6stat.out_inval);
error = EINVAL;
break;
}
if (error) {
// If error, packet already freed by above output routines
state->m = NULL;
return error;
}
plen = state->m->m_pkthdr.len - sizeof(struct ip6_hdr);
if (plen > IPV6_MAXPACKET) {
ipseclog((LOG_ERR, "%s: IPsec with IPv6 jumbogram is not supported\n", __FUNCTION__));
IPSEC_STAT_INCREMENT(ipsec6stat.out_inval);
error = EINVAL;/*XXX*/
return error;
}
ip6 = mtod(state->m, struct ip6_hdr *);
ip6->ip6_plen = htons((u_int16_t)plen);
ipsec_set_pkthdr_for_interface(sav->sah->ipsec_if, state->m, AF_INET6,
sav->flowid);
ipsec_set_ip6oa_for_interface(sav->sah->ipsec_if, &ip6oa);
/* Increment statistics */
ifnet_stat_increment_out(sav->sah->ipsec_if, 1, (u_int32_t)mbuf_pkthdr_len(state->m), 0);
/* Send to ip6_output */
bzero(&ro6_new, sizeof(ro6_new));
bzero(&ip6oa, sizeof(ip6oa));
ip6oa.ip6oa_flowadv.code = 0;
ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR;
if (state->outgoing_if) {
ip6oa.ip6oa_boundif = state->outgoing_if;
ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
ip6_output_setsrcifscope(state->m, state->outgoing_if, NULL);
ip6_output_setdstifscope(state->m, state->outgoing_if, NULL);
}
adv = &ip6oa.ip6oa_flowadv;
(void) ip6_output(state->m, NULL, &ro6_new, IPV6_OUTARGS, NULL, NULL, &ip6oa);
state->m = NULL;
if (adv->code == FADV_FLOW_CONTROLLED || adv->code == FADV_SUSPENDED) {
error = ENOBUFS;
ifnet_disable_output(sav->sah->ipsec_if);
return error;
}
return 0;
}
int
ipsec46_encapsulate(struct ipsec_output_state *state, struct secasvar *sav)
{
struct mbuf *m;
struct ip6_hdr *ip6;
struct ip *oip;
struct ip *ip;
size_t plen;
u_int32_t hlen;
m = state->m;
if (!m) {
return EINVAL;
}
/* can't tunnel between different AFs */
if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family
!= ((struct sockaddr *)&sav->sah->saidx.dst)->sa_family
|| ((struct sockaddr *)&sav->sah->saidx.src)->sa_family != AF_INET6) {
m_freem(m);
return EINVAL;
}
if (m->m_len < sizeof(*ip)) {
panic("ipsec46_encapsulate: assumption failed (first mbuf length)");
return EINVAL;
}
ip = mtod(m, struct ip *);
#ifdef _IP_VHL
hlen = _IP_VHL_HL(ip->ip_vhl) << 2;
#else
hlen = ip->ip_hl << 2;
#endif
if (m->m_len != hlen) {
panic("ipsec46_encapsulate: assumption failed (first mbuf length)");
return EINVAL;
}
/* generate header checksum */
ip->ip_sum = 0;
#ifdef _IP_VHL
ip->ip_sum = in_cksum(m, hlen);
#else
ip->ip_sum = in_cksum(m, hlen);
#endif
plen = m->m_pkthdr.len; // save original IPv4 packet len, this will be ipv6 payload len
/*
* First move the IPv4 header to the second mbuf in the chain
*/
if (M_LEADINGSPACE(m->m_next) < hlen) {
struct mbuf *n;
MGET(n, M_DONTWAIT, MT_DATA);
if (!n) {
m_freem(m);
return ENOBUFS;
}
n->m_len = hlen;
n->m_next = m->m_next;
m->m_next = n;
m->m_pkthdr.len += sizeof(struct ip6_hdr);
oip = mtod(n, struct ip *);
} else {
m->m_next->m_len += hlen;
m->m_next->m_data -= hlen;
m->m_pkthdr.len += sizeof(struct ip6_hdr);
oip = mtod(m->m_next, struct ip *);
}
ip = mtod(m, struct ip *);
ovbcopy((caddr_t)ip, (caddr_t)oip, hlen);
/*
* Grow the first mbuf to accomodate the new IPv6 header.
*/
if (M_LEADINGSPACE(m) < sizeof(struct ip6_hdr) - hlen) {
struct mbuf *n;
MGETHDR(n, M_DONTWAIT, MT_HEADER);
if (!n) {
m_freem(m);
return ENOBUFS;
}
M_COPY_PKTHDR(n, m);
MH_ALIGN(n, sizeof(struct ip6_hdr));
n->m_len = sizeof(struct ip6_hdr);
n->m_next = m->m_next;
m->m_next = NULL;
m_freem(m);
state->m = n;
m = state->m;
} else {
m->m_len += (sizeof(struct ip6_hdr) - hlen);
m->m_data -= (sizeof(struct ip6_hdr) - hlen);
}
ip6 = mtod(m, struct ip6_hdr *);
ip6->ip6_flow = 0;
ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
ip6->ip6_vfc |= IPV6_VERSION;
/* construct new IPv6 header. see RFC 2401 5.1.2.2 */
/* ECN consideration. */
if (state->dscp_mapping == IPSEC_DSCP_MAPPING_COPY) {
// Copy DSCP bits from inner IP to outer IP packet.
ip46_ecn_ingress(ip6_ipsec_ecn, &ip6->ip6_flow, &oip->ip_tos);
} else if (state->dscp_mapping == IPSEC_DSCP_MAPPING_LEGACY) {
// Copy DSCP bits in legacy style.
ip46_ecn_ingress(ip6_ipsec_ecn, &ip6->ip6_flow, &ip->ip_tos);
}
if (plen < IPV6_MAXPACKET - sizeof(struct ip6_hdr)) {
ip6->ip6_plen = htons((u_int16_t)plen);
} else {
/* ip6->ip6_plen will be updated in ip6_output() */
}
ip6->ip6_nxt = IPPROTO_IPV4;
ip6->ip6_hlim = IPV6_DEFHLIM;
bcopy(&((struct sockaddr_in6 *)&sav->sah->saidx.src)->sin6_addr,
&ip6->ip6_src, sizeof(ip6->ip6_src));
bcopy(&((struct sockaddr_in6 *)&sav->sah->saidx.dst)->sin6_addr,
&ip6->ip6_dst, sizeof(ip6->ip6_dst));
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) {
ip6->ip6_src.s6_addr16[1] = htons((u_int16_t)sav->sah->outgoing_if);
ip6->ip6_dst.s6_addr16[1] = htons((u_int16_t)sav->sah->outgoing_if);
}
return 0;
}
/*
* Check the variable replay window.
* ipsec_chkreplay() performs replay check before ICV verification.
* ipsec_updatereplay() updates replay bitmap. This must be called after
* ICV verification (it also performs replay check, which is usually done
* beforehand).
* 0 (zero) is returned if packet disallowed, 1 if packet permitted.
*
* based on RFC 2401.
*/
int
ipsec_chkreplay(u_int32_t seq, struct secasvar *sav, u_int8_t replay_index)
{
const struct secreplay *replay;
u_int32_t diff;
size_t fr;
size_t wsizeb; /* constant: bits of window size */
size_t frlast; /* constant: last frame */
/* sanity check */
if (sav == NULL) {
panic("ipsec_chkreplay: NULL pointer was passed.");
}
lck_mtx_lock(sadb_mutex);
replay = sav->replay[replay_index];
if (replay->wsize == 0) {
lck_mtx_unlock(sadb_mutex);
return 1; /* no need to check replay. */
}
/* constant */
frlast = replay->wsize - 1;
wsizeb = replay->wsize << 3;
/* sequence number of 0 is invalid */
if (seq == 0) {
lck_mtx_unlock(sadb_mutex);
return 0;
}
/* first time is always okay */
if (replay->count == 0) {
lck_mtx_unlock(sadb_mutex);
return 1;
}
if (seq > replay->lastseq) {
/* larger sequences are okay */
lck_mtx_unlock(sadb_mutex);
return 1;
} else {
/* seq is equal or less than lastseq. */
diff = replay->lastseq - seq;
/* over range to check, i.e. too old or wrapped */
if (diff >= wsizeb) {
lck_mtx_unlock(sadb_mutex);
return 0;
}
fr = frlast - diff / 8;
/* this packet already seen ? */
if ((replay->bitmap)[fr] & (1 << (diff % 8))) {
lck_mtx_unlock(sadb_mutex);
return 0;
}
/* out of order but good */
lck_mtx_unlock(sadb_mutex);
return 1;
}
}
/*
* check replay counter whether to update or not.
* OUT: 0: OK
* 1: NG
*/
int
ipsec_updatereplay(u_int32_t seq, struct secasvar *sav, u_int8_t replay_index)
{
struct secreplay *replay;
u_int32_t diff;
size_t fr;
size_t wsizeb; /* constant: bits of window size */
size_t frlast; /* constant: last frame */
/* sanity check */
if (sav == NULL) {
panic("ipsec_chkreplay: NULL pointer was passed.");
}
lck_mtx_lock(sadb_mutex);
replay = sav->replay[replay_index];
if (replay->wsize == 0) {
goto ok; /* no need to check replay. */
}
/* constant */
frlast = replay->wsize - 1;
wsizeb = replay->wsize << 3;
/* sequence number of 0 is invalid */
if (seq == 0) {
lck_mtx_unlock(sadb_mutex);
return 1;
}
/* first time */
if (replay->count == 0) {
replay->lastseq = seq;
bzero(replay->bitmap, replay->wsize);
(replay->bitmap)[frlast] = 1;
goto ok;
}
if (seq > replay->lastseq) {
/* seq is larger than lastseq. */
diff = seq - replay->lastseq;
/* new larger sequence number */
if (diff < wsizeb) {
/* In window */
/* set bit for this packet */
vshiftl((unsigned char *) replay->bitmap, diff, replay->wsize);
(replay->bitmap)[frlast] |= 1;
} else {
/* this packet has a "way larger" */
bzero(replay->bitmap, replay->wsize);
(replay->bitmap)[frlast] = 1;
}
replay->lastseq = seq;
/* larger is good */
} else {
/* seq is equal or less than lastseq. */
diff = replay->lastseq - seq;
/* over range to check, i.e. too old or wrapped */
if (diff >= wsizeb) {
lck_mtx_unlock(sadb_mutex);
return 1;
}
fr = frlast - diff / 8;
/* this packet already seen ? */
if ((replay->bitmap)[fr] & (1 << (diff % 8))) {
lck_mtx_unlock(sadb_mutex);
return 1;
}
/* mark as seen */
(replay->bitmap)[fr] |= (1 << (diff % 8));
/* out of order but good */
}
ok:
{
u_int32_t max_count = ~0;
if ((sav->flags2 & SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) ==
SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) {
max_count = PER_TC_REPLAY_WINDOW_RANGE;
}
if (replay->count == max_count) {
/* set overflow flag */
replay->overflow++;
/* don't increment, no more packets accepted */
if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0) {
lck_mtx_unlock(sadb_mutex);
return 1;
}
ipseclog((LOG_WARNING, "replay counter made %d cycle. %s\n",
replay->overflow, ipsec_logsastr(sav)));
}
}
replay->count++;
lck_mtx_unlock(sadb_mutex);
return 0;
}
/*
* shift variable length buffer to left.
* IN: bitmap: pointer to the buffer
* nbit: the number of to shift.
* wsize: buffer size (bytes).
*/
static void
vshiftl(unsigned char *bitmap, int nbit, size_t wsize)
{
size_t i;
int s, j;
unsigned char over;
for (j = 0; j < nbit; j += 8) {
s = (nbit - j < 8) ? (nbit - j): 8;
bitmap[0] <<= s;
for (i = 1; i < wsize; i++) {
over = (bitmap[i] >> (8 - s));
bitmap[i] <<= s;
bitmap[i - 1] |= over;
}
}
return;
}
const char *
ipsec4_logpacketstr(struct ip *ip, u_int32_t spi)
{
static char buf[256] __attribute__((aligned(4)));
char *p;
u_int8_t *s, *d;
s = (u_int8_t *)(&ip->ip_src);
d = (u_int8_t *)(&ip->ip_dst);
p = buf;
snprintf(buf, sizeof(buf), "packet(SPI=%u ", (u_int32_t)ntohl(spi));
while (p && *p) {
p++;
}
snprintf(p, sizeof(buf) - (p - buf), "src=%u.%u.%u.%u",
s[0], s[1], s[2], s[3]);
while (p && *p) {
p++;
}
snprintf(p, sizeof(buf) - (p - buf), " dst=%u.%u.%u.%u",
d[0], d[1], d[2], d[3]);
while (p && *p) {
p++;
}
snprintf(p, sizeof(buf) - (p - buf), ")");
return buf;
}
const char *
ipsec6_logpacketstr(struct ip6_hdr *ip6, u_int32_t spi)
{
static char buf[256] __attribute__((aligned(4)));
char *p;
p = buf;
snprintf(buf, sizeof(buf), "packet(SPI=%u ", (u_int32_t)ntohl(spi));
while (p && *p) {
p++;
}
snprintf(p, sizeof(buf) - (p - buf), "src=%s",
ip6_sprintf(&ip6->ip6_src));
while (p && *p) {
p++;
}
snprintf(p, sizeof(buf) - (p - buf), " dst=%s",
ip6_sprintf(&ip6->ip6_dst));
while (p && *p) {
p++;
}
snprintf(p, sizeof(buf) - (p - buf), ")");
return buf;
}
const char *
ipsec_logsastr(struct secasvar *sav)
{
static char buf[256] __attribute__((aligned(4)));
char *p;
struct secasindex *saidx = &sav->sah->saidx;
/* validity check */
if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family
!= ((struct sockaddr *)&sav->sah->saidx.dst)->sa_family) {
panic("ipsec_logsastr: family mismatched.");
}
p = buf;
snprintf(buf, sizeof(buf), "SA(SPI=%u ", (u_int32_t)ntohl(sav->spi));
while (p && *p) {
p++;
}
if (((struct sockaddr *)&saidx->src)->sa_family == AF_INET) {
u_int8_t *s, *d;
s = (u_int8_t *)&((struct sockaddr_in *)&saidx->src)->sin_addr;
d = (u_int8_t *)&((struct sockaddr_in *)&saidx->dst)->sin_addr;
snprintf(p, sizeof(buf) - (p - buf),
"src=%d.%d.%d.%d dst=%d.%d.%d.%d",
s[0], s[1], s[2], s[3], d[0], d[1], d[2], d[3]);
} else if (((struct sockaddr *)&saidx->src)->sa_family == AF_INET6) {
snprintf(p, sizeof(buf) - (p - buf),
"src=%s",
ip6_sprintf(&((struct sockaddr_in6 *)&saidx->src)->sin6_addr));
while (p && *p) {
p++;
}
snprintf(p, sizeof(buf) - (p - buf),
" dst=%s",
ip6_sprintf(&((struct sockaddr_in6 *)&saidx->dst)->sin6_addr));
}
while (p && *p) {
p++;
}
snprintf(p, sizeof(buf) - (p - buf), ")");
return buf;
}
void
ipsec_dumpmbuf(struct mbuf *m)
{
int totlen;
int i;
u_char *p;
totlen = 0;
printf("---\n");
while (m) {
p = mtod(m, u_char *);
for (i = 0; i < m->m_len; i++) {
printf("%02x ", p[i]);
totlen++;
if (totlen % 16 == 0) {
printf("\n");
}
}
m = m->m_next;
}
if (totlen % 16 != 0) {
printf("\n");
}
printf("---\n");
}
#if INET
/*
* IPsec output logic for IPv4.
*/
static int
ipsec4_output_internal(struct ipsec_output_state *state, struct secasvar *sav)
{
struct ip *ip = NULL;
int error = 0;
struct sockaddr_in *dst4;
struct route *ro4;
/* validity check */
if (sav == NULL || sav->sah == NULL) {
error = EINVAL;
goto bad;
}
/*
* If there is no valid SA, we give up to process any
* more. In such a case, the SA's status is changed
* from DYING to DEAD after allocating. If a packet
* send to the receiver by dead SA, the receiver can
* not decode a packet because SA has been dead.
*/
if (sav->state != SADB_SASTATE_MATURE
&& sav->state != SADB_SASTATE_DYING) {
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
error = EINVAL;
goto bad;
}
state->outgoing_if = sav->sah->outgoing_if;
/*
* There may be the case that SA status will be changed when
* we are refering to one. So calling splsoftnet().
*/
if (sav->sah->saidx.mode == IPSEC_MODE_TUNNEL) {
/*
* build IPsec tunnel.
*/
state->m = ipsec4_splithdr(state->m);
if (!state->m) {
error = ENOMEM;
goto bad;
}
if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family == AF_INET6) {
error = ipsec46_encapsulate(state, sav);
if (error) {
// packet already freed by encapsulation error handling
state->m = NULL;
return error;
}
error = ipsec6_update_routecache_and_output(state, sav);
return error;
} else if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family == AF_INET) {
error = ipsec4_encapsulate(state->m, sav);
if (error) {
state->m = NULL;
goto bad;
}
ip = mtod(state->m, struct ip *);
// grab sadb_mutex, before updating sah's route cache
lck_mtx_lock(sadb_mutex);
ro4 = (struct route *)&sav->sah->sa_route;
dst4 = (struct sockaddr_in *)(void *)&ro4->ro_dst;
if (ro4->ro_rt != NULL) {
RT_LOCK(ro4->ro_rt);
}
if (ROUTE_UNUSABLE(ro4) ||
dst4->sin_addr.s_addr != ip->ip_dst.s_addr) {
if (ro4->ro_rt != NULL) {
RT_UNLOCK(ro4->ro_rt);
}
ROUTE_RELEASE(ro4);
}
if (ro4->ro_rt == 0) {
dst4->sin_family = AF_INET;
dst4->sin_len = sizeof(*dst4);
dst4->sin_addr = ip->ip_dst;
rtalloc_scoped(ro4, sav->sah->outgoing_if);
if (ro4->ro_rt == 0) {
OSAddAtomic(1, &ipstat.ips_noroute);
error = EHOSTUNREACH;
// release sadb_mutex, after updating sah's route cache
lck_mtx_unlock(sadb_mutex);
goto bad;
}
RT_LOCK(ro4->ro_rt);
}
/*
* adjust state->dst if tunnel endpoint is offlink
*
* XXX: caching rt_gateway value in the state is
* not really good, since it may point elsewhere
* when the gateway gets modified to a larger
* sockaddr via rt_setgate(). This is currently
* addressed by SA_SIZE roundup in that routine.
*/
if (ro4->ro_rt->rt_flags & RTF_GATEWAY) {
dst4 = (struct sockaddr_in *)(void *)ro4->ro_rt->rt_gateway;
}
RT_UNLOCK(ro4->ro_rt);
ROUTE_RELEASE(&state->ro);
route_copyout((struct route *)&state->ro, ro4, sizeof(struct route));
state->dst = (struct sockaddr *)dst4;
state->tunneled = 4;
// release sadb_mutex, after updating sah's route cache
lck_mtx_unlock(sadb_mutex);
} else {
ipseclog((LOG_ERR, "%s: family mismatched between inner and outer spi=%u\n",
__FUNCTION__, (u_int32_t)ntohl(sav->spi)));
error = EAFNOSUPPORT;
goto bad;
}
}
state->m = ipsec4_splithdr(state->m);
if (!state->m) {
error = ENOMEM;
goto bad;
}
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
#if IPSEC_ESP
if ((error = esp4_output(state->m, sav)) != 0) {
state->m = NULL;
goto bad;
}
break;
#else
m_freem(state->m);
state->m = NULL;
error = EINVAL;
goto bad;
#endif
case IPPROTO_AH:
if ((error = ah4_output(state->m, sav)) != 0) {
state->m = NULL;
goto bad;
}
break;
default:
ipseclog((LOG_ERR,
"ipsec4_output: unknown ipsec protocol %d\n",
sav->sah->saidx.proto));
m_freem(state->m);
state->m = NULL;
error = EPROTONOSUPPORT;
goto bad;
}
if (state->m == 0) {
error = ENOMEM;
goto bad;
}
#if SKYWALK
state->m->m_pkthdr.pkt_flowid = sav->flowid;
state->m->m_pkthdr.pkt_flags |= PKTF_FLOW_ID;
#endif /* !SKYWALK */
return 0;
bad:
return error;
}
int
ipsec4_interface_kpipe_output(ifnet_t interface, kern_packet_t sph,
kern_packet_t dph)
{
struct sockaddr_in src = {};
struct sockaddr_in dst = {};
struct secasvar *sav = NULL;
uint8_t *sbaddr = NULL;
uint8_t *dbaddr = NULL;
size_t hlen = 0;
uint32_t slen = 0;
uint32_t dlim = 0, doff = 0, dlen = 0;
int err = 0;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
MD_BUFLET_ADDR(SK_PTR_ADDR_KPKT(sph), sbaddr);
kern_buflet_t sbuf = __packet_get_next_buflet(sph, NULL);
VERIFY(sbuf != NULL);
slen = __buflet_get_data_length(sbuf);
if (__improbable(slen < sizeof(struct ip))) {
os_log_info(OS_LOG_DEFAULT, "ipsec4 interface kpipe output: "
"source buffer shorter than ip header, %u\n", slen);
err = EINVAL;
goto bad;
}
struct ip *ip = (struct ip *)(void *)sbaddr;
ASSERT(IP_HDR_ALIGNED_P(ip));
/* Find security association matching source and destination address */
src.sin_family = AF_INET;
src.sin_len = sizeof(src);
src.sin_addr.s_addr = ip->ip_src.s_addr;
dst.sin_family = AF_INET;
dst.sin_len = sizeof(dst);
dst.sin_addr.s_addr = ip->ip_dst.s_addr;
sav = key_alloc_outbound_sav_for_interface(interface, AF_INET,
(struct sockaddr *)&src, (struct sockaddr *)&dst);
if (__improbable(sav == NULL)) {
os_log_info(OS_LOG_DEFAULT, "ipsec4 interface kpipe output: "
"failed to find outbound sav\n");
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = ENOENT;
goto bad;
}
if (__improbable(sav->sah == NULL)) {
os_log_info(OS_LOG_DEFAULT, "ipsec4 interface kpipe output: "
"sah is NULL\n");
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = ENOENT;
goto bad;
}
if (__improbable(sav->sah->saidx.mode != IPSEC_MODE_TRANSPORT)) {
os_log_info(OS_LOG_DEFAULT, "ipsec tunnel mode not supported "
"in kpipe mode, SPI=%x\n", ntohl(sav->spi));
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = EINVAL;
goto bad;
}
if (__improbable((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV |
SADB_X_EXT_NATT | SADB_X_EXT_NATT_MULTIPLEUSERS |
SADB_X_EXT_CYCSEQ | SADB_X_EXT_PMASK)) != 0)) {
os_log_info(OS_LOG_DEFAULT, "sadb flag %x not supported in "
"kpipe mode, SPI=%x\n", sav->flags, ntohl(sav->spi));
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = EINVAL;
goto bad;
}
/*
* If there is no valid SA, we give up to process any
* more. In such a case, the SA's status is changed
* from DYING to DEAD after allocating. If a packet
* send to the receiver by dead SA, the receiver can
* not decode a packet because SA has been dead.
*/
if (__improbable(sav->state != SADB_SASTATE_MATURE
&& sav->state != SADB_SASTATE_DYING)) {
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = EINVAL;
goto bad;
}
#ifdef _IP_VHL
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
#else
hlen = ip->ip_hl << 2;
#endif
/* Copy the IP header from source packet to destination packet */
MD_BUFLET_ADDR(SK_PTR_ADDR_KPKT(dph), dbaddr);
kern_buflet_t dbuf = __packet_get_next_buflet(dph, NULL);
doff = __buflet_get_data_offset(dbuf);
VERIFY(doff == 0);
dlen = __buflet_get_data_length(dbuf);
VERIFY(dlen == 0);
dlim = __buflet_get_data_limit(dbuf);
if (__improbable(dlim < hlen)) {
os_log_info(OS_LOG_DEFAULT, "ipsec4 interface kpipe output: "
"buflet size shorter than hlen %u, SPI=%x\n", dlim, ntohl(sav->spi));
err = EMSGSIZE;
goto bad;
}
VERIFY(hlen <= UINT16_MAX);
memcpy(dbaddr, sbaddr, hlen);
__buflet_set_data_length(dbuf, (uint16_t)hlen);
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP: {
if (__improbable((err = esp_kpipe_output(sav, sph, dph)) != 0)) {
goto bad;
}
break;
}
case IPPROTO_AH: {
os_log_info(OS_LOG_DEFAULT, "AH not supported in kpipe mode\n");
err = EPROTONOSUPPORT;
goto bad;
}
default: {
os_log_info(OS_LOG_DEFAULT, "unknown ipsec protocol %d\n",
sav->sah->saidx.proto);
err = EPROTONOSUPPORT;
goto bad;
}
}
key_freesav(sav, KEY_SADB_UNLOCKED);
return 0;
bad:
if (sav != NULL) {
key_freesav(sav, KEY_SADB_UNLOCKED);
sav = NULL;
}
return err;
}
int
ipsec6_interface_kpipe_output(ifnet_t interface, kern_packet_t sph,
kern_packet_t dph)
{
struct sockaddr_in6 src = {};
struct sockaddr_in6 dst = {};
struct secasvar *sav = NULL;
uint8_t *sbaddr = NULL;
uint8_t *dbaddr = NULL;
uint32_t slen = 0;
uint32_t dlim = 0, doff = 0, dlen = 0;
int err = 0;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
MD_BUFLET_ADDR(SK_PTR_ADDR_KPKT(sph), sbaddr);
kern_buflet_t sbuf = __packet_get_next_buflet(sph, NULL);
VERIFY(sbuf != NULL);
slen = __buflet_get_data_length(sbuf);
if (__improbable(slen < sizeof(struct ip6_hdr))) {
os_log_info(OS_LOG_DEFAULT, "ipsec6 interface kpipe output: "
"source buffer shorter than ipv6 header, %u\n", slen);
err = EINVAL;
goto bad;
}
struct ip6_hdr *ip6 = (struct ip6_hdr *)sbaddr;
/* Find security association matching source and destination address */
src.sin6_family = AF_INET6;
src.sin6_len = sizeof(src);
memcpy(&src.sin6_addr, &ip6->ip6_src, sizeof(src.sin6_addr));
dst.sin6_family = AF_INET6;
dst.sin6_len = sizeof(dst);
memcpy(&dst.sin6_addr, &ip6->ip6_dst, sizeof(dst.sin6_addr));
sav = key_alloc_outbound_sav_for_interface(interface, AF_INET6,
(struct sockaddr *)&src, (struct sockaddr *)&dst);
if (__improbable(sav == NULL)) {
os_log_info(OS_LOG_DEFAULT, "ipsec6 interface kpipe output: "
"failed to find outbound sav\n");
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = ENOENT;
goto bad;
}
if (__improbable(sav->sah == NULL)) {
os_log_info(OS_LOG_DEFAULT, "ipsec6 interface kpipe output: "
"sah is NULL\n");
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = ENOENT;
goto bad;
}
if (__improbable(sav->sah->saidx.mode != IPSEC_MODE_TRANSPORT)) {
os_log_info(OS_LOG_DEFAULT, "ipsec tunnel mode not supported "
"in kpipe mode, SPI=%x\n", ntohl(sav->spi));
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = EINVAL;
goto bad;
}
if (__improbable((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV |
SADB_X_EXT_NATT | SADB_X_EXT_NATT_MULTIPLEUSERS |
SADB_X_EXT_CYCSEQ | SADB_X_EXT_PMASK)) != 0)) {
os_log_info(OS_LOG_DEFAULT, "sadb flag %x not supported in "
"kpipe mode, SPI=%x\n", sav->flags, ntohl(sav->spi));
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = EINVAL;
goto bad;
}
/*
* If there is no valid SA, we give up to process any
* more. In such a case, the SA's status is changed
* from DYING to DEAD after allocating. If a packet
* send to the receiver by dead SA, the receiver can
* not decode a packet because SA has been dead.
*/
if (__improbable(sav->state != SADB_SASTATE_MATURE
&& sav->state != SADB_SASTATE_DYING)) {
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
err = EINVAL;
goto bad;
}
/* Copy the IPv6 header from source packet to destination packet */
MD_BUFLET_ADDR(SK_PTR_ADDR_KPKT(dph), dbaddr);
kern_buflet_t dbuf = __packet_get_next_buflet(dph, NULL);
doff = __buflet_get_data_offset(dbuf);
VERIFY(doff == 0);
dlen = __buflet_get_data_length(dbuf);
VERIFY(dlen == 0);
dlim = __buflet_get_data_limit(dbuf);
if (__improbable(dlim < sizeof(struct ip6_hdr))) {
os_log_info(OS_LOG_DEFAULT, "ipsec6 interface kpipe output"
"buflet size shorter than hlen %u, SPI=%x\n", dlim, ntohl(sav->spi));
err = EMSGSIZE;
goto bad;
}
memcpy(dbaddr, sbaddr, sizeof(struct ip6_hdr));
__buflet_set_data_length(dbuf, sizeof(struct ip6_hdr));
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP: {
if (__improbable((err = esp_kpipe_output(sav, sph, dph)) != 0)) {
goto bad;
}
break;
}
case IPPROTO_AH: {
os_log_info(OS_LOG_DEFAULT, "AH not supported in kpipe mode\n");
err = EPROTONOSUPPORT;
goto bad;
}
default: {
os_log_info(OS_LOG_DEFAULT, "unknown ipsec protocol %d\n",
sav->sah->saidx.proto);
err = EPROTONOSUPPORT;
goto bad;
}
}
key_freesav(sav, KEY_SADB_UNLOCKED);
return 0;
bad:
if (sav != NULL) {
key_freesav(sav, KEY_SADB_UNLOCKED);
sav = NULL;
}
return err;
}
int
ipsec4_interface_output(struct ipsec_output_state *state, ifnet_t interface)
{
int error = 0;
struct secasvar *sav = NULL;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
if (state == NULL) {
panic("state == NULL in ipsec4_output");
}
if (state->m == NULL) {
panic("state->m == NULL in ipsec4_output");
}
if (state->dst == NULL) {
panic("state->dst == NULL in ipsec4_output");
}
struct ip *ip = mtod(state->m, struct ip *);
struct sockaddr_in src = {};
src.sin_family = AF_INET;
src.sin_len = sizeof(src);
memcpy(&src.sin_addr, &ip->ip_src, sizeof(src.sin_addr));
struct sockaddr_in dst = {};
dst.sin_family = AF_INET;
dst.sin_len = sizeof(dst);
memcpy(&dst.sin_addr, &ip->ip_dst, sizeof(dst.sin_addr));
sav = key_alloc_outbound_sav_for_interface(interface, AF_INET,
(struct sockaddr *)&src,
(struct sockaddr *)&dst);
if (sav == NULL) {
goto bad;
}
if ((error = ipsec4_output_internal(state, sav)) != 0) {
goto bad;
}
KERNEL_DEBUG(DBG_FNC_IPSEC_OUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
return 0;
bad:
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
m_freem(state->m);
state->m = NULL;
KERNEL_DEBUG(DBG_FNC_IPSEC_OUT | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
int
ipsec4_output(struct ipsec_output_state *state, struct secpolicy *sp, __unused int flags)
{
struct ip *ip = NULL;
struct ipsecrequest *isr = NULL;
struct secasindex saidx;
struct secasvar *sav = NULL;
int error = 0;
struct sockaddr_in *sin;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
if (!state) {
panic("state == NULL in ipsec4_output");
}
if (!state->m) {
panic("state->m == NULL in ipsec4_output");
}
if (!state->dst) {
panic("state->dst == NULL in ipsec4_output");
}
KERNEL_DEBUG(DBG_FNC_IPSEC_OUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("ipsec4_output: applied SP\n");
kdebug_secpolicy(sp));
for (isr = sp->req; isr != NULL; isr = isr->next) {
/* make SA index for search proper SA */
ip = mtod(state->m, struct ip *);
bcopy(&isr->saidx, &saidx, sizeof(saidx));
saidx.mode = isr->saidx.mode;
saidx.reqid = isr->saidx.reqid;
sin = (struct sockaddr_in *)&saidx.src;
if (sin->sin_len == 0) {
sin->sin_len = sizeof(*sin);
sin->sin_family = AF_INET;
sin->sin_port = IPSEC_PORT_ANY;
bcopy(&ip->ip_src, &sin->sin_addr,
sizeof(sin->sin_addr));
}
sin = (struct sockaddr_in *)&saidx.dst;
if (sin->sin_len == 0) {
sin->sin_len = sizeof(*sin);
sin->sin_family = AF_INET;
sin->sin_port = IPSEC_PORT_ANY;
/*
* Get port from packet if upper layer is UDP and nat traversal
* is enabled and transport mode.
*/
if ((esp_udp_encap_port & 0xFFFF) != 0 &&
isr->saidx.mode == IPSEC_MODE_TRANSPORT) {
if (ip->ip_p == IPPROTO_UDP) {
struct udphdr *udp;
u_int32_t hlen;
#ifdef _IP_VHL
hlen = IP_VHL_HL(ip->ip_vhl) << 2;
#else
hlen = ip->ip_hl << 2;
#endif
if (state->m->m_len < hlen + sizeof(struct udphdr)) {
state->m = m_pullup(state->m, hlen + sizeof(struct udphdr));
if (!state->m) {
ipseclog((LOG_DEBUG, "IPv4 output: can't pullup UDP header\n"));
IPSEC_STAT_INCREMENT(ipsecstat.in_inval);
goto bad;
}
ip = mtod(state->m, struct ip *);
}
udp = (struct udphdr *)(void *)(((u_int8_t *)ip) + hlen);
sin->sin_port = udp->uh_dport;
}
}
bcopy(&ip->ip_dst, &sin->sin_addr,
sizeof(sin->sin_addr));
}
if ((error = key_checkrequest(isr, &saidx, &sav)) != 0) {
/*
* IPsec processing is required, but no SA found.
* I assume that key_acquire() had been called
* to get/establish the SA. Here I discard
* this packet because it is responsibility for
* upper layer to retransmit the packet.
*/
IPSEC_STAT_INCREMENT(ipsecstat.out_nosa);
goto bad;
}
/* validity check */
if (sav == NULL) {
switch (ipsec_get_reqlevel(isr)) {
case IPSEC_LEVEL_USE:
continue;
case IPSEC_LEVEL_REQUIRE:
/* must be not reached here. */
panic("ipsec4_output: no SA found, but required.");
}
}
if ((error = ipsec4_output_internal(state, sav)) != 0) {
goto bad;
}
}
KERNEL_DEBUG(DBG_FNC_IPSEC_OUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
return 0;
bad:
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
m_freem(state->m);
state->m = NULL;
KERNEL_DEBUG(DBG_FNC_IPSEC_OUT | DBG_FUNC_END, error, 0, 0, 0, 0);
return error;
}
#endif
/*
* IPsec output logic for IPv6, transport mode.
*/
static int
ipsec6_output_trans_internal(
struct ipsec_output_state *state,
struct secasvar *sav,
u_char *nexthdrp,
struct mbuf *mprev)
{
struct ip6_hdr *ip6;
size_t plen;
int error = 0;
/* validity check */
if (sav == NULL || sav->sah == NULL) {
error = EINVAL;
goto bad;
}
/*
* If there is no valid SA, we give up to process.
* see same place at ipsec4_output().
*/
if (sav->state != SADB_SASTATE_MATURE
&& sav->state != SADB_SASTATE_DYING) {
IPSEC_STAT_INCREMENT(ipsec6stat.out_nosa);
error = EINVAL;
goto bad;
}
state->outgoing_if = sav->sah->outgoing_if;
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
#if IPSEC_ESP
error = esp6_output(state->m, nexthdrp, mprev->m_next, sav);
#else
m_freem(state->m);
error = EINVAL;
#endif
break;
case IPPROTO_AH:
error = ah6_output(state->m, nexthdrp, mprev->m_next, sav);
break;
default:
ipseclog((LOG_ERR, "ipsec6_output_trans: "
"unknown ipsec protocol %d\n", sav->sah->saidx.proto));
m_freem(state->m);
IPSEC_STAT_INCREMENT(ipsec6stat.out_inval);
error = EPROTONOSUPPORT;
break;
}
if (error) {
state->m = NULL;
goto bad;
}
plen = state->m->m_pkthdr.len - sizeof(struct ip6_hdr);
if (plen > IPV6_MAXPACKET) {
ipseclog((LOG_ERR, "ipsec6_output_trans: "
"IPsec with IPv6 jumbogram is not supported\n"));
IPSEC_STAT_INCREMENT(ipsec6stat.out_inval);
error = EINVAL; /*XXX*/
goto bad;
}
ip6 = mtod(state->m, struct ip6_hdr *);
ip6->ip6_plen = htons((u_int16_t)plen);
#if SKYWALK
ASSERT(state->m != NULL);
state->m->m_pkthdr.pkt_flowid = sav->flowid;
state->m->m_pkthdr.pkt_flags |= PKTF_FLOW_ID;
#endif /* !SKYWALK */
return 0;
bad:
return error;
}
int
ipsec6_output_trans(
struct ipsec_output_state *state,
u_char *nexthdrp,
struct mbuf *mprev,
struct secpolicy *sp,
__unused int flags,
int *tun)
{
struct ip6_hdr *ip6;
struct ipsecrequest *isr = NULL;
struct secasindex saidx;
int error = 0;
struct sockaddr_in6 *sin6;
struct secasvar *sav = NULL;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
if (!state) {
panic("state == NULL in ipsec6_output_trans");
}
if (!state->m) {
panic("state->m == NULL in ipsec6_output_trans");
}
if (!nexthdrp) {
panic("nexthdrp == NULL in ipsec6_output_trans");
}
if (!mprev) {
panic("mprev == NULL in ipsec6_output_trans");
}
if (!sp) {
panic("sp == NULL in ipsec6_output_trans");
}
if (!tun) {
panic("tun == NULL in ipsec6_output_trans");
}
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("ipsec6_output_trans: applyed SP\n");
kdebug_secpolicy(sp));
*tun = 0;
for (isr = sp->req; isr; isr = isr->next) {
if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
/* the rest will be handled by ipsec6_output_tunnel() */
break;
}
/* make SA index for search proper SA */
ip6 = mtod(state->m, struct ip6_hdr *);
bcopy(&isr->saidx, &saidx, sizeof(saidx));
saidx.mode = isr->saidx.mode;
saidx.reqid = isr->saidx.reqid;
sin6 = (struct sockaddr_in6 *)&saidx.src;
if (sin6->sin6_len == 0) {
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = IPSEC_PORT_ANY;
bcopy(&ip6->ip6_src, &sin6->sin6_addr,
sizeof(ip6->ip6_src));
if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
/* fix scope id for comparing SPD */
sin6->sin6_scope_id = ip6_output_getsrcifscope(state->m);
in6_verify_ifscope(&ip6->ip6_src, sin6->sin6_scope_id);
if (in6_embedded_scope) {
sin6->sin6_scope_id = ntohs(ip6->ip6_src.s6_addr16[1]);
sin6->sin6_addr.s6_addr16[1] = 0;
}
}
}
sin6 = (struct sockaddr_in6 *)&saidx.dst;
if (sin6->sin6_len == 0) {
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = IPSEC_PORT_ANY;
bcopy(&ip6->ip6_dst, &sin6->sin6_addr,
sizeof(ip6->ip6_dst));
if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) {
/* fix scope id for comparing SPD */
sin6->sin6_scope_id = ip6_output_getdstifscope(state->m);
in6_verify_ifscope(&ip6->ip6_dst, sin6->sin6_scope_id);
if (in6_embedded_scope) {
sin6->sin6_scope_id = ntohs(ip6->ip6_dst.s6_addr16[1]);
sin6->sin6_addr.s6_addr16[1] = 0;
}
}
}
if (key_checkrequest(isr, &saidx, &sav) == ENOENT) {
/*
* IPsec processing is required, but no SA found.
* I assume that key_acquire() had been called
* to get/establish the SA. Here I discard
* this packet because it is responsibility for
* upper layer to retransmit the packet.
*/
IPSEC_STAT_INCREMENT(ipsec6stat.out_nosa);
error = ENOENT;
/*
* Notify the fact that the packet is discarded
* to ourselves. I believe this is better than
* just silently discarding. (jinmei@kame.net)
* XXX: should we restrict the error to TCP packets?
* XXX: should we directly notify sockets via
* pfctlinputs?
*/
icmp6_error(state->m, ICMP6_DST_UNREACH,
ICMP6_DST_UNREACH_ADMIN, 0);
state->m = NULL; /* icmp6_error freed the mbuf */
goto bad;
}
/* validity check */
if (sav == NULL) {
switch (ipsec_get_reqlevel(isr)) {
case IPSEC_LEVEL_USE:
continue;
case IPSEC_LEVEL_REQUIRE:
/* must be not reached here. */
panic("ipsec6_output_trans: no SA found, but required.");
}
}
if ((error = ipsec6_output_trans_internal(state, sav, nexthdrp, mprev)) != 0) {
goto bad;
}
}
/* if we have more to go, we need a tunnel mode processing */
if (isr != NULL) {
*tun = 1;
}
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
return 0;
bad:
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
m_freem(state->m);
state->m = NULL;
return error;
}
/*
* IPsec output logic for IPv6, tunnel mode.
*/
static int
ipsec6_output_tunnel_internal(struct ipsec_output_state *state, struct secasvar *sav, int *must_be_last)
{
struct ip6_hdr *ip6;
struct sockaddr_in6* dst6;
struct route_in6 *ro6;
size_t plen;
int error = 0;
/* validity check */
if (sav == NULL || sav->sah == NULL || sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) {
error = EINVAL;
goto bad;
}
/*
* If there is no valid SA, we give up to process.
* see same place at ipsec4_output().
*/
if (sav->state != SADB_SASTATE_MATURE
&& sav->state != SADB_SASTATE_DYING) {
IPSEC_STAT_INCREMENT(ipsec6stat.out_nosa);
error = EINVAL;
goto bad;
}
state->outgoing_if = sav->sah->outgoing_if;
if (sav->sah->saidx.mode == IPSEC_MODE_TUNNEL) {
/*
* build IPsec tunnel.
*/
state->m = ipsec6_splithdr(state->m);
if (!state->m) {
IPSEC_STAT_INCREMENT(ipsec6stat.out_nomem);
error = ENOMEM;
goto bad;
}
if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family == AF_INET6) {
error = ipsec6_encapsulate(state->m, sav);
if (error) {
state->m = 0;
goto bad;
}
ip6 = mtod(state->m, struct ip6_hdr *);
} else if (((struct sockaddr *)&sav->sah->saidx.src)->sa_family == AF_INET) {
struct ip *ip;
struct sockaddr_in* dst4;
struct route *ro4 = NULL;
struct route ro4_copy;
struct ip_out_args ipoa;
bzero(&ipoa, sizeof(ipoa));
ipoa.ipoa_boundif = IFSCOPE_NONE;
ipoa.ipoa_flags = IPOAF_SELECT_SRCIF;
ipoa.ipoa_sotc = SO_TC_UNSPEC;
ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC;
if (must_be_last) {
*must_be_last = 1;
}
state->tunneled = 4; /* must not process any further in ip6_output */
error = ipsec64_encapsulate(state->m, sav, state->dscp_mapping);
if (error) {
state->m = 0;
goto bad;
}
/* Now we have an IPv4 packet */
ip = mtod(state->m, struct ip *);
// grab sadb_mutex, to update sah's route cache and get a local copy of it
lck_mtx_lock(sadb_mutex);
ro4 = (struct route *)&sav->sah->sa_route;
dst4 = (struct sockaddr_in *)(void *)&ro4->ro_dst;
if (ro4->ro_rt) {
RT_LOCK(ro4->ro_rt);
}
if (ROUTE_UNUSABLE(ro4) ||
dst4->sin_addr.s_addr != ip->ip_dst.s_addr) {
if (ro4->ro_rt != NULL) {
RT_UNLOCK(ro4->ro_rt);
}
ROUTE_RELEASE(ro4);
}
if (ro4->ro_rt == NULL) {
dst4->sin_family = AF_INET;
dst4->sin_len = sizeof(*dst4);
dst4->sin_addr = ip->ip_dst;
} else {
RT_UNLOCK(ro4->ro_rt);
}
route_copyout(&ro4_copy, ro4, sizeof(struct route));
// release sadb_mutex, after updating sah's route cache and getting a local copy
lck_mtx_unlock(sadb_mutex);
state->m = ipsec4_splithdr(state->m);
if (!state->m) {
error = ENOMEM;
ROUTE_RELEASE(&ro4_copy);
goto bad;
}
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
#if IPSEC_ESP
if ((error = esp4_output(state->m, sav)) != 0) {
state->m = NULL;
ROUTE_RELEASE(&ro4_copy);
goto bad;
}
break;
#else
m_freem(state->m);
state->m = NULL;
error = EINVAL;
ROUTE_RELEASE(&ro4_copy);
goto bad;
#endif
case IPPROTO_AH:
if ((error = ah4_output(state->m, sav)) != 0) {
state->m = NULL;
ROUTE_RELEASE(&ro4_copy);
goto bad;
}
break;
default:
ipseclog((LOG_ERR,
"ipsec4_output: unknown ipsec protocol %d\n",
sav->sah->saidx.proto));
m_freem(state->m);
state->m = NULL;
error = EPROTONOSUPPORT;
ROUTE_RELEASE(&ro4_copy);
goto bad;
}
if (state->m == 0) {
error = ENOMEM;
ROUTE_RELEASE(&ro4_copy);
goto bad;
}
ipsec_set_pkthdr_for_interface(sav->sah->ipsec_if, state->m,
AF_INET, sav->flowid);
ipsec_set_ipoa_for_interface(sav->sah->ipsec_if, &ipoa);
ip = mtod(state->m, struct ip *);
ip->ip_len = ntohs(ip->ip_len); /* flip len field before calling ip_output */
error = ip_output(state->m, NULL, &ro4_copy, IP_OUTARGS, NULL, &ipoa);
state->m = NULL;
// grab sadb_mutex, to synchronize the sah's route cache with the local copy
lck_mtx_lock(sadb_mutex);
route_copyin(&ro4_copy, ro4, sizeof(struct route));
lck_mtx_unlock(sadb_mutex);
if (error != 0) {
goto bad;
}
goto done;
} else {
ipseclog((LOG_ERR, "ipsec6_output_tunnel: "
"unsupported inner family, spi=%u\n",
(u_int32_t)ntohl(sav->spi)));
IPSEC_STAT_INCREMENT(ipsec6stat.out_inval);
error = EAFNOSUPPORT;
goto bad;
}
// grab sadb_mutex, before updating sah's route cache
lck_mtx_lock(sadb_mutex);
ro6 = &sav->sah->sa_route;
dst6 = (struct sockaddr_in6 *)(void *)&ro6->ro_dst;
if (ro6->ro_rt) {
RT_LOCK(ro6->ro_rt);
}
if (ROUTE_UNUSABLE(ro6) ||
!IN6_ARE_ADDR_EQUAL(&dst6->sin6_addr, &ip6->ip6_dst)) {
if (ro6->ro_rt != NULL) {
RT_UNLOCK(ro6->ro_rt);
}
ROUTE_RELEASE(ro6);
}
if (ro6->ro_rt == 0) {
bzero(dst6, sizeof(*dst6));
dst6->sin6_family = AF_INET6;
dst6->sin6_len = sizeof(*dst6);
dst6->sin6_addr = ip6->ip6_dst;
rtalloc_scoped((struct route *)ro6, sav->sah->outgoing_if);
if (ro6->ro_rt) {
RT_LOCK(ro6->ro_rt);
}
}
if (ro6->ro_rt == 0) {
ip6stat.ip6s_noroute++;
IPSEC_STAT_INCREMENT(ipsec6stat.out_noroute);
error = EHOSTUNREACH;
// release sadb_mutex, after updating sah's route cache
lck_mtx_unlock(sadb_mutex);
goto bad;
}
/*
* adjust state->dst if tunnel endpoint is offlink
*
* XXX: caching rt_gateway value in the state is
* not really good, since it may point elsewhere
* when the gateway gets modified to a larger
* sockaddr via rt_setgate(). This is currently
* addressed by SA_SIZE roundup in that routine.
*/
if (ro6->ro_rt->rt_flags & RTF_GATEWAY) {
dst6 = (struct sockaddr_in6 *)(void *)ro6->ro_rt->rt_gateway;
}
RT_UNLOCK(ro6->ro_rt);
ROUTE_RELEASE(&state->ro);
route_copyout((struct route *)&state->ro, (struct route *)ro6, sizeof(struct route_in6));
state->dst = (struct sockaddr *)dst6;
state->tunneled = 6;
// release sadb_mutex, after updating sah's route cache
lck_mtx_unlock(sadb_mutex);
}
state->m = ipsec6_splithdr(state->m);
if (!state->m) {
IPSEC_STAT_INCREMENT(ipsec6stat.out_nomem);
error = ENOMEM;
goto bad;
}
ip6 = mtod(state->m, struct ip6_hdr *);
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
#if IPSEC_ESP
error = esp6_output(state->m, &ip6->ip6_nxt, state->m->m_next, sav);
#else
m_freem(state->m);
error = EINVAL;
#endif
break;
case IPPROTO_AH:
error = ah6_output(state->m, &ip6->ip6_nxt, state->m->m_next, sav);
break;
default:
ipseclog((LOG_ERR, "ipsec6_output_tunnel: "
"unknown ipsec protocol %d\n", sav->sah->saidx.proto));
m_freem(state->m);
IPSEC_STAT_INCREMENT(ipsec6stat.out_inval);
error = EINVAL;
break;
}
if (error) {
state->m = NULL;
goto bad;
}
plen = state->m->m_pkthdr.len - sizeof(struct ip6_hdr);
if (plen > IPV6_MAXPACKET) {
ipseclog((LOG_ERR, "ipsec6_output_tunnel: "
"IPsec with IPv6 jumbogram is not supported\n"));
IPSEC_STAT_INCREMENT(ipsec6stat.out_inval);
error = EINVAL; /*XXX*/
goto bad;
}
ip6 = mtod(state->m, struct ip6_hdr *);
ip6->ip6_plen = htons((u_int16_t)plen);
done:
#if SKYWALK
if (state->m != NULL) {
state->m->m_pkthdr.pkt_flowid = sav->flowid;
state->m->m_pkthdr.pkt_flags |= PKTF_FLOW_ID;
}
#endif /* !SKYWALK */
return 0;
bad:
return error;
}
int
ipsec6_output_tunnel(
struct ipsec_output_state *state,
struct secpolicy *sp,
__unused int flags)
{
struct ip6_hdr *ip6;
struct ipsecrequest *isr = NULL;
struct secasindex saidx;
struct secasvar *sav = NULL;
int error = 0;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
if (!state) {
panic("state == NULL in ipsec6_output_tunnel");
}
if (!state->m) {
panic("state->m == NULL in ipsec6_output_tunnel");
}
if (!sp) {
panic("sp == NULL in ipsec6_output_tunnel");
}
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("ipsec6_output_tunnel: applyed SP\n");
kdebug_secpolicy(sp));
/*
* transport mode ipsec (before the 1st tunnel mode) is already
* processed by ipsec6_output_trans().
*/
for (isr = sp->req; isr; isr = isr->next) {
if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
break;
}
}
for (/* already initialized */; isr; isr = isr->next) {
if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
/* When tunnel mode, SA peers must be specified. */
bcopy(&isr->saidx, &saidx, sizeof(saidx));
} else {
/* make SA index to look for a proper SA */
struct sockaddr_in6 *sin6;
bzero(&saidx, sizeof(saidx));
saidx.proto = isr->saidx.proto;
saidx.mode = isr->saidx.mode;
saidx.reqid = isr->saidx.reqid;
ip6 = mtod(state->m, struct ip6_hdr *);
sin6 = (struct sockaddr_in6 *)&saidx.src;
if (sin6->sin6_len == 0) {
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = IPSEC_PORT_ANY;
bcopy(&ip6->ip6_src, &sin6->sin6_addr,
sizeof(ip6->ip6_src));
if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
/* fix scope id for comparing SPD */
sin6->sin6_scope_id = ip6_output_getsrcifscope(state->m);
in6_verify_ifscope(&ip6->ip6_src, sin6->sin6_scope_id);
if (in6_embedded_scope) {
sin6->sin6_scope_id = ntohs(ip6->ip6_src.s6_addr16[1]);
sin6->sin6_addr.s6_addr16[1] = 0;
}
}
}
sin6 = (struct sockaddr_in6 *)&saidx.dst;
if (sin6->sin6_len == 0) {
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = IPSEC_PORT_ANY;
bcopy(&ip6->ip6_dst, &sin6->sin6_addr,
sizeof(ip6->ip6_dst));
if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) {
/* fix scope id for comparing SPD */
sin6->sin6_scope_id = ip6_output_getdstifscope(state->m);
in6_verify_ifscope(&ip6->ip6_dst, sin6->sin6_scope_id);
if (in6_embedded_scope) {
sin6->sin6_scope_id = ntohs(ip6->ip6_src.s6_addr16[1]);
sin6->sin6_addr.s6_addr16[1] = 0;
}
}
}
}
if (key_checkrequest(isr, &saidx, &sav) == ENOENT) {
/*
* IPsec processing is required, but no SA found.
* I assume that key_acquire() had been called
* to get/establish the SA. Here I discard
* this packet because it is responsibility for
* upper layer to retransmit the packet.
*/
IPSEC_STAT_INCREMENT(ipsec6stat.out_nosa);
error = ENOENT;
goto bad;
}
/* validity check */
if (sav == NULL) {
switch (ipsec_get_reqlevel(isr)) {
case IPSEC_LEVEL_USE:
continue;
case IPSEC_LEVEL_REQUIRE:
/* must be not reached here. */
panic("ipsec6_output_tunnel: no SA found, but required.");
}
}
/*
* If there is no valid SA, we give up to process.
* see same place at ipsec4_output().
*/
if (sav->state != SADB_SASTATE_MATURE
&& sav->state != SADB_SASTATE_DYING) {
IPSEC_STAT_INCREMENT(ipsec6stat.out_nosa);
error = EINVAL;
goto bad;
}
int must_be_last = 0;
if ((error = ipsec6_output_tunnel_internal(state, sav, &must_be_last)) != 0) {
goto bad;
}
if (must_be_last && isr->next) {
ipseclog((LOG_ERR, "ipsec6_output_tunnel: "
"IPv4 must be outer layer, spi=%u\n",
(u_int32_t)ntohl(sav->spi)));
error = EINVAL;
goto bad;
}
}
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
return 0;
bad:
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
if (state->m) {
m_freem(state->m);
}
state->m = NULL;
return error;
}
int
ipsec6_interface_output(struct ipsec_output_state *state, ifnet_t interface, u_char *nexthdrp, struct mbuf *mprev)
{
int error = 0;
struct secasvar *sav = NULL;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
if (state == NULL) {
panic("state == NULL in ipsec6_output");
}
if (state->m == NULL) {
panic("state->m == NULL in ipsec6_output");
}
if (nexthdrp == NULL) {
panic("nexthdrp == NULL in ipsec6_output");
}
if (mprev == NULL) {
panic("mprev == NULL in ipsec6_output");
}
struct ip6_hdr *ip6 = mtod(state->m, struct ip6_hdr *);
struct sockaddr_in6 src = {};
src.sin6_family = AF_INET6;
src.sin6_len = sizeof(src);
memcpy(&src.sin6_addr, &ip6->ip6_src, sizeof(src.sin6_addr));
struct sockaddr_in6 dst = {};
dst.sin6_family = AF_INET6;
dst.sin6_len = sizeof(dst);
memcpy(&dst.sin6_addr, &ip6->ip6_dst, sizeof(dst.sin6_addr));
sav = key_alloc_outbound_sav_for_interface(interface, AF_INET6,
(struct sockaddr *)&src,
(struct sockaddr *)&dst);
if (sav == NULL) {
goto bad;
}
if (sav->sah && sav->sah->saidx.mode == IPSEC_MODE_TUNNEL) {
if ((error = ipsec6_output_tunnel_internal(state, sav, NULL)) != 0) {
goto bad;
}
} else {
if ((error = ipsec6_output_trans_internal(state, sav, nexthdrp, mprev)) != 0) {
goto bad;
}
}
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
return 0;
bad:
if (sav) {
key_freesav(sav, KEY_SADB_UNLOCKED);
}
m_freem(state->m);
state->m = NULL;
return error;
}
#if INET
/*
* Chop IP header and option off from the payload.
*/
struct mbuf *
ipsec4_splithdr(struct mbuf *m)
{
struct mbuf *mh;
struct ip *ip;
int hlen;
if (m->m_len < sizeof(struct ip)) {
panic("ipsec4_splithdr: first mbuf too short, m_len %d, pkt_len %d, m_flag %x", m->m_len, m->m_pkthdr.len, m->m_flags);
}
ip = mtod(m, struct ip *);
#ifdef _IP_VHL
hlen = _IP_VHL_HL(ip->ip_vhl) << 2;
#else
hlen = ip->ip_hl << 2;
#endif
if (m->m_len > hlen) {
MGETHDR(mh, M_DONTWAIT, MT_HEADER); /* MAC-OK */
if (!mh) {
m_freem(m);
return NULL;
}
M_COPY_PKTHDR(mh, m);
MH_ALIGN(mh, hlen);
m->m_flags &= ~M_PKTHDR;
m_mchtype(m, MT_DATA);
m->m_len -= hlen;
m->m_data += hlen;
mh->m_next = m;
m = mh;
m->m_len = hlen;
bcopy((caddr_t)ip, mtod(m, caddr_t), hlen);
} else if (m->m_len < hlen) {
m = m_pullup(m, hlen);
if (!m) {
return NULL;
}
}
return m;
}
#endif
struct mbuf *
ipsec6_splithdr(struct mbuf *m)
{
struct mbuf *mh;
struct ip6_hdr *ip6;
int hlen;
if (m->m_len < sizeof(struct ip6_hdr)) {
panic("ipsec6_splithdr: first mbuf too short");
}
ip6 = mtod(m, struct ip6_hdr *);
hlen = sizeof(struct ip6_hdr);
if (m->m_len > hlen) {
MGETHDR(mh, M_DONTWAIT, MT_HEADER); /* MAC-OK */
if (!mh) {
m_freem(m);
return NULL;
}
M_COPY_PKTHDR(mh, m);
MH_ALIGN(mh, hlen);
m->m_flags &= ~M_PKTHDR;
m_mchtype(m, MT_DATA);
m->m_len -= hlen;
m->m_data += hlen;
mh->m_next = m;
m = mh;
m->m_len = hlen;
bcopy((caddr_t)ip6, mtod(m, caddr_t), hlen);
} else if (m->m_len < hlen) {
m = m_pullup(m, hlen);
if (!m) {
return NULL;
}
}
return m;
}
/* validate inbound IPsec tunnel packet. */
int
ipsec4_tunnel_validate(
struct mbuf *m, /* no pullup permitted, m->m_len >= ip */
int off,
u_int nxt0,
struct secasvar *sav,
sa_family_t *ifamily)
{
u_int8_t nxt = nxt0 & 0xff;
struct sockaddr_in *sin;
struct sockaddr_in osrc, odst, i4src, i4dst;
struct sockaddr_in6 i6src, i6dst;
int hlen;
struct secpolicy *sp;
struct ip *oip;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* do not decapsulate if the SA is for transport mode only */
if (sav->sah->saidx.mode == IPSEC_MODE_TRANSPORT) {
return 0;
}
#if DIAGNOSTIC
if (m->m_len < sizeof(struct ip)) {
panic("too short mbuf on ipsec4_tunnel_validate");
}
#endif
if (nxt != IPPROTO_IPV4 && nxt != IPPROTO_IPV6) {
return 0;
}
if (m->m_pkthdr.len < off + sizeof(struct ip)) {
return 0;
}
oip = mtod(m, struct ip *);
#ifdef _IP_VHL
hlen = _IP_VHL_HL(oip->ip_vhl) << 2;
#else
hlen = oip->ip_hl << 2;
#endif
if (hlen != sizeof(struct ip)) {
return 0;
}
sin = (struct sockaddr_in *)&sav->sah->saidx.dst;
if (sin->sin_family != AF_INET) {
return 0;
}
if (bcmp(&oip->ip_dst, &sin->sin_addr, sizeof(oip->ip_dst)) != 0) {
return 0;
}
if (sav->sah->ipsec_if != NULL) {
// the ipsec interface SAs don't have a policies.
if (nxt == IPPROTO_IPV4) {
*ifamily = AF_INET;
} else if (nxt == IPPROTO_IPV6) {
*ifamily = AF_INET6;
} else {
return 0;
}
return 1;
}
/* XXX slow */
bzero(&osrc, sizeof(osrc));
bzero(&odst, sizeof(odst));
osrc.sin_family = odst.sin_family = AF_INET;
osrc.sin_len = odst.sin_len = sizeof(struct sockaddr_in);
osrc.sin_addr = oip->ip_src;
odst.sin_addr = oip->ip_dst;
/*
* RFC2401 5.2.1 (b): (assume that we are using tunnel mode)
* - if the inner destination is multicast address, there can be
* multiple permissible inner source address. implementation
* may want to skip verification of inner source address against
* SPD selector.
* - if the inner protocol is ICMP, the packet may be an error report
* from routers on the other side of the VPN cloud (R in the
* following diagram). in this case, we cannot verify inner source
* address against SPD selector.
* me -- gw === gw -- R -- you
*
* we consider the first bullet to be users responsibility on SPD entry
* configuration (if you need to encrypt multicast traffic, set
* the source range of SPD selector to 0.0.0.0/0, or have explicit
* address ranges for possible senders).
* the second bullet is not taken care of (yet).
*
* therefore, we do not do anything special about inner source.
*/
if (nxt == IPPROTO_IPV4) {
bzero(&i4src, sizeof(struct sockaddr_in));
bzero(&i4dst, sizeof(struct sockaddr_in));
i4src.sin_family = i4dst.sin_family = *ifamily = AF_INET;
i4src.sin_len = i4dst.sin_len = sizeof(struct sockaddr_in);
m_copydata(m, off + offsetof(struct ip, ip_src), sizeof(i4src.sin_addr),
(caddr_t)&i4src.sin_addr);
m_copydata(m, off + offsetof(struct ip, ip_dst), sizeof(i4dst.sin_addr),
(caddr_t)&i4dst.sin_addr);
sp = key_gettunnel((struct sockaddr *)&osrc, (struct sockaddr *)&odst,
(struct sockaddr *)&i4src, (struct sockaddr *)&i4dst);
} else if (nxt == IPPROTO_IPV6) {
bzero(&i6src, sizeof(struct sockaddr_in6));
bzero(&i6dst, sizeof(struct sockaddr_in6));
i6src.sin6_family = i6dst.sin6_family = *ifamily = AF_INET6;
i6src.sin6_len = i6dst.sin6_len = sizeof(struct sockaddr_in6);
m_copydata(m, off + offsetof(struct ip6_hdr, ip6_src), sizeof(i6src.sin6_addr),
(caddr_t)&i6src.sin6_addr);
m_copydata(m, off + offsetof(struct ip6_hdr, ip6_dst), sizeof(i6dst.sin6_addr),
(caddr_t)&i6dst.sin6_addr);
sp = key_gettunnel((struct sockaddr *)&osrc, (struct sockaddr *)&odst,
(struct sockaddr *)&i6src, (struct sockaddr *)&i6dst);
} else {
return 0; /* unsupported family */
}
if (!sp) {
return 0;
}
key_freesp(sp, KEY_SADB_UNLOCKED);
return 1;
}
/* validate inbound IPsec tunnel packet. */
int
ipsec6_tunnel_validate(
struct mbuf *m, /* no pullup permitted, m->m_len >= ip */
int off,
u_int nxt0,
struct secasvar *sav,
sa_family_t *ifamily)
{
u_int8_t nxt = nxt0 & 0xff;
struct sockaddr_in6 *sin6;
struct sockaddr_in i4src, i4dst;
struct sockaddr_in6 osrc, odst, i6src, i6dst;
struct secpolicy *sp;
struct ip6_hdr *oip6;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* do not decapsulate if the SA is for transport mode only */
if (sav->sah->saidx.mode == IPSEC_MODE_TRANSPORT) {
return 0;
}
#if DIAGNOSTIC
if (m->m_len < sizeof(struct ip6_hdr)) {
panic("too short mbuf on ipsec6_tunnel_validate");
}
#endif
if (nxt == IPPROTO_IPV4) {
if (m->m_pkthdr.len < off + sizeof(struct ip)) {
ipseclog((LOG_NOTICE, "ipsec6_tunnel_validate pkthdr %d off %d ip6hdr %zu", m->m_pkthdr.len, off, sizeof(struct ip6_hdr)));
return 0;
}
} else if (nxt == IPPROTO_IPV6) {
if (m->m_pkthdr.len < off + sizeof(struct ip6_hdr)) {
ipseclog((LOG_NOTICE, "ipsec6_tunnel_validate pkthdr %d off %d ip6hdr %zu", m->m_pkthdr.len, off, sizeof(struct ip6_hdr)));
return 0;
}
} else {
ipseclog((LOG_NOTICE, "ipsec6_tunnel_validate invalid nxt(%u) protocol", nxt));
return 0;
}
oip6 = mtod(m, struct ip6_hdr *);
/* AF_INET should be supported, but at this moment we don't. */
sin6 = (struct sockaddr_in6 *)&sav->sah->saidx.dst;
if (sin6->sin6_family != AF_INET6) {
return 0;
}
struct in6_addr tmp_sah_dst_addr = {};
struct in6_addr *sah_dst_addr = &((struct sockaddr_in6 *)&sav->sah->saidx.dst)->sin6_addr;
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(sah_dst_addr)) {
memcpy(&tmp_sah_dst_addr, sah_dst_addr, sizeof(tmp_sah_dst_addr));
tmp_sah_dst_addr.s6_addr16[1] = htons((u_int16_t)sav->sah->outgoing_if);
sah_dst_addr = &tmp_sah_dst_addr;
}
if (!IN6_ARE_ADDR_EQUAL(&oip6->ip6_dst, sah_dst_addr)) {
return 0;
}
if (sav->sah->ipsec_if != NULL) {
// the ipsec interface SAs don't have a policies.
if (nxt == IPPROTO_IPV4) {
*ifamily = AF_INET;
} else if (nxt == IPPROTO_IPV6) {
*ifamily = AF_INET6;
} else {
return 0;
}
return 1;
}
/* XXX slow */
bzero(&osrc, sizeof(osrc));
bzero(&odst, sizeof(odst));
osrc.sin6_family = odst.sin6_family = AF_INET6;
osrc.sin6_len = odst.sin6_len = sizeof(struct sockaddr_in6);
osrc.sin6_addr = oip6->ip6_src;
odst.sin6_addr = oip6->ip6_dst;
/*
* regarding to inner source address validation, see a long comment
* in ipsec4_tunnel_validate.
*/
if (nxt == IPPROTO_IPV4) {
bzero(&i4src, sizeof(struct sockaddr_in));
bzero(&i4dst, sizeof(struct sockaddr_in));
i4src.sin_family = i4dst.sin_family = *ifamily = AF_INET;
i4src.sin_len = i4dst.sin_len = sizeof(struct sockaddr_in);
m_copydata(m, off + offsetof(struct ip, ip_src), sizeof(i4src.sin_addr),
(caddr_t)&i4src.sin_addr);
m_copydata(m, off + offsetof(struct ip, ip_dst), sizeof(i4dst.sin_addr),
(caddr_t)&i4dst.sin_addr);
sp = key_gettunnel((struct sockaddr *)&osrc, (struct sockaddr *)&odst,
(struct sockaddr *)&i4src, (struct sockaddr *)&i4dst);
} else if (nxt == IPPROTO_IPV6) {
bzero(&i6src, sizeof(struct sockaddr_in6));
bzero(&i6dst, sizeof(struct sockaddr_in6));
i6src.sin6_family = i6dst.sin6_family = *ifamily = AF_INET6;
i6src.sin6_len = i6dst.sin6_len = sizeof(struct sockaddr_in6);
m_copydata(m, off + offsetof(struct ip6_hdr, ip6_src), sizeof(i6src.sin6_addr),
(caddr_t)&i6src.sin6_addr);
m_copydata(m, off + offsetof(struct ip6_hdr, ip6_dst), sizeof(i6dst.sin6_addr),
(caddr_t)&i6dst.sin6_addr);
sp = key_gettunnel((struct sockaddr *)&osrc, (struct sockaddr *)&odst,
(struct sockaddr *)&i6src, (struct sockaddr *)&i6dst);
} else {
return 0; /* unsupported family */
}
/*
* when there is no suitable inbound policy for the packet of the ipsec
* tunnel mode, the kernel never decapsulate the tunneled packet
* as the ipsec tunnel mode even when the system wide policy is "none".
* then the kernel leaves the generic tunnel module to process this
* packet. if there is no rule of the generic tunnel, the packet
* is rejected and the statistics will be counted up.
*/
if (!sp) {
return 0;
}
key_freesp(sp, KEY_SADB_UNLOCKED);
return 1;
}
/*
* Make a mbuf chain for encryption.
* If the original mbuf chain contains a mbuf with a cluster,
* allocate a new cluster and copy the data to the new cluster.
* XXX: this hack is inefficient, but is necessary to handle cases
* of TCP retransmission...
*/
struct mbuf *
ipsec_copypkt(struct mbuf *m)
{
struct mbuf *n, **mpp, *mnew;
for (n = m, mpp = &m; n; n = n->m_next) {
if (n->m_flags & M_EXT) {
/*
* Make a copy only if there are more than one references
* to the cluster.
* XXX: is this approach effective?
*/
if (
m_get_ext_free(n) != NULL ||
m_mclhasreference(n)
) {
int remain, copied;
struct mbuf *mm;
if (n->m_flags & M_PKTHDR) {
MGETHDR(mnew, M_DONTWAIT, MT_HEADER); /* MAC-OK */
if (mnew == NULL) {
goto fail;
}
M_COPY_PKTHDR(mnew, n);
} else {
MGET(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
goto fail;
}
}
mnew->m_len = 0;
mm = mnew;
/*
* Copy data. If we don't have enough space to
* store the whole data, allocate a cluster
* or additional mbufs.
* XXX: we don't use m_copyback(), since the
* function does not use clusters and thus is
* inefficient.
*/
remain = n->m_len;
copied = 0;
while (1) {
int len;
struct mbuf *mn;
if (remain <= (mm->m_flags & M_PKTHDR ? MHLEN : MLEN)) {
len = remain;
} else { /* allocate a cluster */
MCLGET(mm, M_DONTWAIT);
if (!(mm->m_flags & M_EXT)) {
m_free(mm);
goto fail;
}
len = remain < MCLBYTES ?
remain : MCLBYTES;
}
bcopy(m_mtod_current(n) + copied, m_mtod_current(mm), len);
copied += len;
remain -= len;
mm->m_len = len;
if (remain <= 0) { /* completed? */
break;
}
/* need another mbuf */
MGETHDR(mn, M_DONTWAIT, MT_HEADER); /* XXXMAC: tags copied next time in loop? */
if (mn == NULL) {
goto fail;
}
mn->m_pkthdr.rcvif = NULL;
mm->m_next = mn;
mm = mn;
}
/* adjust chain */
mm->m_next = m_free(n);
n = mm;
*mpp = mnew;
mpp = &n->m_next;
continue;
}
}
*mpp = n;
mpp = &n->m_next;
}
return m;
fail:
m_freem(m);
return NULL;
}
/* Used to avoid processing the packet over again */
#define IPSEC_HISTORY_MAX 8
struct ipsec_tag {
struct socket *socket;
u_int32_t history_count;
};
static struct ipsec_tag *
ipsec_addaux(
struct mbuf *m)
{
struct m_tag *tag;
/* Check if the tag already exists */
tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPSEC);
if (tag == NULL) {
struct ipsec_tag *itag;
/* Allocate a tag */
tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPSEC,
sizeof(struct ipsec_tag), M_DONTWAIT, m);
if (tag) {
itag = (struct ipsec_tag*)(tag->m_tag_data);
itag->socket = 0;
itag->history_count = 0;
m_tag_prepend(m, tag);
}
}
return tag ? (struct ipsec_tag*)(tag->m_tag_data) : NULL;
}
static struct ipsec_tag *
ipsec_findaux(
struct mbuf *m)
{
struct m_tag *tag;
tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPSEC);
return tag != NULL ? (struct ipsec_tag*)(tag->m_tag_data) : NULL;
}
void
ipsec_delaux(
struct mbuf *m)
{
struct m_tag *tag;
tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPSEC);
if (tag != NULL) {
m_tag_delete(m, tag);
}
}
/* if the aux buffer is unnecessary, nuke it. */
static void
ipsec_optaux(
struct mbuf *m,
struct ipsec_tag *itag)
{
if (itag != NULL && itag->socket == NULL && itag->history_count == 0) {
ipsec_delaux(m);
}
}
int
ipsec_setsocket(struct mbuf *m, struct socket *so)
{
struct ipsec_tag *tag;
/* if so == NULL, don't insist on getting the aux mbuf */
if (so != NULL) {
tag = ipsec_addaux(m);
if (!tag) {
return ENOBUFS;
}
} else {
tag = ipsec_findaux(m);
}
if (tag != NULL) {
tag->socket = so;
ipsec_optaux(m, tag);
}
return 0;
}
struct socket *
ipsec_getsocket(struct mbuf *m)
{
struct ipsec_tag *itag;
itag = ipsec_findaux(m);
if (itag) {
return itag->socket;
} else {
return NULL;
}
}
int
ipsec_incr_history_count(
struct mbuf *m,
__unused int proto,
__unused u_int32_t spi)
{
struct ipsec_tag *itag;
itag = ipsec_addaux(m);
if (itag == NULL) {
return ENOBUFS;
}
if (itag->history_count == IPSEC_HISTORY_MAX) {
return ENOSPC; /* XXX */
}
itag->history_count++;
return 0;
}
u_int32_t
ipsec_get_history_count(
struct mbuf *m)
{
struct ipsec_tag *itag;
itag = ipsec_findaux(m);
if (itag == NULL) {
return 0;
}
return itag->history_count;
}
struct ipsec_tag_container {
struct m_tag ipsec_m_tag;
struct ipsec_tag ipsec_tag;
};
static struct m_tag *
m_tag_kalloc_ipsec(u_int32_t id, u_int16_t type, uint16_t len, int wait)
{
struct ipsec_tag_container *tag_container;
struct m_tag *tag = NULL;
assert3u(id, ==, KERNEL_MODULE_TAG_ID);
assert3u(type, ==, KERNEL_TAG_TYPE_IPSEC);
assert3u(len, ==, sizeof(struct ipsec_tag));
if (len != sizeof(struct ipsec_tag)) {
return NULL;
}
tag_container = kalloc_type(struct ipsec_tag_container, wait | M_ZERO);
if (tag_container != NULL) {
tag = &tag_container->ipsec_m_tag;
assert3p(tag, ==, tag_container);
M_TAG_INIT(tag, id, type, len, &tag_container->ipsec_tag, NULL);
}
return tag;
}
static void
m_tag_kfree_ipsec(struct m_tag *tag)
{
struct ipsec_tag_container *tag_container = (struct ipsec_tag_container *)tag;
assert3u(tag->m_tag_len, ==, sizeof(struct ipsec_tag));
kfree_type(struct ipsec_tag_container, tag_container);
}
void
ipsec_register_m_tag(void)
{
int error;
error = m_register_internal_tag_type(KERNEL_TAG_TYPE_IPSEC, sizeof(struct ipsec_tag),
m_tag_kalloc_ipsec, m_tag_kfree_ipsec);
assert3u(error, ==, 0);
}
__private_extern__ boolean_t
ipsec_send_natt_keepalive(
struct secasvar *sav)
{
struct mbuf *m = NULL;
int error = 0;
int keepalive_interval = natt_keepalive_interval;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(sadb_mutex);
if (((esp_udp_encap_port & 0xFFFF) == 0 && sav->natt_encapsulated_src_port == 0) || sav->remote_ike_port == 0) {
lck_mtx_unlock(sadb_mutex);
return FALSE;
}
if (sav->natt_interval != 0) {
keepalive_interval = (int)sav->natt_interval;
}
// natt timestamp may have changed... reverify
if ((natt_now - sav->natt_last_activity) < keepalive_interval) {
lck_mtx_unlock(sadb_mutex);
return FALSE;
}
if (sav->flags & SADB_X_EXT_ESP_KEEPALIVE) {
lck_mtx_unlock(sadb_mutex);
return FALSE; // don't send these from the kernel
}
lck_mtx_unlock(sadb_mutex);
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL) {
return FALSE;
}
lck_mtx_lock(sadb_mutex);
if (sav->sah->saidx.dst.ss_family == AF_INET) {
struct ip_out_args ipoa = {};
struct route ro = {};
ipoa.ipoa_boundif = IFSCOPE_NONE;
ipoa.ipoa_flags = IPOAF_SELECT_SRCIF;
ipoa.ipoa_sotc = SO_TC_UNSPEC;
ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC;
struct ip *ip = (__typeof__(ip))m_mtod(m);
/*
* Type 2: a UDP packet complete with IP header.
* We must do this because UDP output requires
* an inpcb which we don't have. UDP packet
* contains one byte payload. The byte is set
* to 0xFF.
*/
struct udphdr *uh = (__typeof__(uh))(void *)((char *)m_mtod(m) + sizeof(*ip));
m->m_len = sizeof(struct udpiphdr) + 1;
bzero(m_mtod(m), m->m_len);
m->m_pkthdr.len = m->m_len;
ip->ip_len = (u_short)m->m_len;
ip->ip_ttl = (u_char)ip_defttl;
ip->ip_p = IPPROTO_UDP;
if (sav->sah->dir != IPSEC_DIR_INBOUND) {
ip->ip_src = ((struct sockaddr_in*)&sav->sah->saidx.src)->sin_addr;
ip->ip_dst = ((struct sockaddr_in*)&sav->sah->saidx.dst)->sin_addr;
} else {
ip->ip_src = ((struct sockaddr_in*)&sav->sah->saidx.dst)->sin_addr;
ip->ip_dst = ((struct sockaddr_in*)&sav->sah->saidx.src)->sin_addr;
}
if (sav->natt_encapsulated_src_port != 0) {
uh->uh_sport = (u_short)sav->natt_encapsulated_src_port;
} else {
uh->uh_sport = htons((u_short)esp_udp_encap_port);
}
uh->uh_sport = htons((u_short)esp_udp_encap_port);
uh->uh_dport = htons(sav->remote_ike_port);
uh->uh_ulen = htons(1 + sizeof(*uh));
uh->uh_sum = 0;
*(u_int8_t*)((char*)m_mtod(m) + sizeof(*ip) + sizeof(*uh)) = 0xFF;
if (ROUTE_UNUSABLE(&sav->sah->sa_route) ||
rt_key(sav->sah->sa_route.ro_rt)->sa_family != AF_INET) {
ROUTE_RELEASE(&sav->sah->sa_route);
}
route_copyout(&ro, (struct route *)&sav->sah->sa_route, sizeof(struct route));
lck_mtx_unlock(sadb_mutex);
necp_mark_packet_as_keepalive(m, TRUE);
error = ip_output(m, NULL, &ro, IP_OUTARGS | IP_NOIPSEC, NULL, &ipoa);
lck_mtx_lock(sadb_mutex);
route_copyin(&ro, (struct route *)&sav->sah->sa_route, sizeof(struct route));
} else if (sav->sah->saidx.dst.ss_family == AF_INET6) {
struct ip6_out_args ip6oa = {};
struct route_in6 ro6 = {};
ip6oa.ip6oa_flowadv.code = 0;
ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR;
if (sav->sah->outgoing_if) {
ip6oa.ip6oa_boundif = sav->sah->outgoing_if;
ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
}
struct ip6_hdr *ip6 = (__typeof__(ip6))m_mtod(m);
/*
* Type 2: a UDP packet complete with IPv6 header.
* We must do this because UDP output requires
* an inpcb which we don't have. UDP packet
* contains one byte payload. The byte is set
* to 0xFF.
*/
struct udphdr *uh = (__typeof__(uh))(void *)((char *)m_mtod(m) + sizeof(*ip6));
m->m_len = sizeof(struct udphdr) + sizeof(struct ip6_hdr) + 1;
bzero(m_mtod(m), m->m_len);
m->m_pkthdr.len = m->m_len;
ip6->ip6_flow = 0;
ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
ip6->ip6_vfc |= IPV6_VERSION;
ip6->ip6_nxt = IPPROTO_UDP;
ip6->ip6_hlim = (u_int8_t)ip6_defhlim;
ip6->ip6_plen = htons(sizeof(struct udphdr) + 1);
if (sav->sah->dir != IPSEC_DIR_INBOUND) {
ip6->ip6_src = ((struct sockaddr_in6 *)&sav->sah->saidx.src)->sin6_addr;
ip6->ip6_dst = ((struct sockaddr_in6 *)&sav->sah->saidx.dst)->sin6_addr;
ip6_output_setsrcifscope(m, ((struct sockaddr_in6 *)&sav->sah->saidx.src)->sin6_scope_id, NULL);
ip6_output_setdstifscope(m, ((struct sockaddr_in6 *)&sav->sah->saidx.dst)->sin6_scope_id, NULL);
} else {
ip6->ip6_src = ((struct sockaddr_in6 *)&sav->sah->saidx.dst)->sin6_addr;
ip6->ip6_dst = ((struct sockaddr_in6 *)&sav->sah->saidx.src)->sin6_addr;
ip6_output_setdstifscope(m, ((struct sockaddr_in6 *)&sav->sah->saidx.src)->sin6_scope_id, NULL);
ip6_output_setsrcifscope(m, ((struct sockaddr_in6 *)&sav->sah->saidx.dst)->sin6_scope_id, NULL);
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
ip6->ip6_src.s6_addr16[1] = 0;
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
ip6->ip6_dst.s6_addr16[1] = 0;
}
if (sav->natt_encapsulated_src_port != 0) {
uh->uh_sport = (u_short)sav->natt_encapsulated_src_port;
} else {
uh->uh_sport = htons((u_short)esp_udp_encap_port);
}
uh->uh_dport = htons(sav->remote_ike_port);
uh->uh_ulen = htons(1 + sizeof(*uh));
*(u_int8_t*)((char*)m_mtod(m) + sizeof(*ip6) + sizeof(*uh)) = 0xFF;
uh->uh_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst, htonl(ntohs(uh->uh_ulen) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = (CSUM_UDPIPV6 | CSUM_ZERO_INVERT);
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
if (ROUTE_UNUSABLE(&sav->sah->sa_route) ||
rt_key(sav->sah->sa_route.ro_rt)->sa_family != AF_INET6) {
ROUTE_RELEASE(&sav->sah->sa_route);
}
route_copyout((struct route *)&ro6, (struct route *)&sav->sah->sa_route, sizeof(struct route_in6));
lck_mtx_unlock(sadb_mutex);
necp_mark_packet_as_keepalive(m, TRUE);
error = ip6_output(m, NULL, &ro6, IPV6_OUTARGS, NULL, NULL, &ip6oa);
lck_mtx_lock(sadb_mutex);
route_copyin((struct route *)&ro6, (struct route *)&sav->sah->sa_route, sizeof(struct route_in6));
} else {
ipseclog((LOG_ERR, "nat keepalive: invalid address family %u\n", sav->sah->saidx.dst.ss_family));
lck_mtx_unlock(sadb_mutex);
m_freem(m);
return FALSE;
}
if (error == 0) {
sav->natt_last_activity = natt_now;
lck_mtx_unlock(sadb_mutex);
return TRUE;
}
lck_mtx_unlock(sadb_mutex);
return FALSE;
}
__private_extern__ bool
ipsec_fill_offload_frame(ifnet_t ifp,
struct secasvar *sav,
struct ifnet_keepalive_offload_frame *frame,
size_t frame_data_offset)
{
u_int8_t *data = NULL;
struct ip *ip = NULL;
struct udphdr *uh = NULL;
if (sav == NULL || sav->sah == NULL || frame == NULL ||
(ifp != NULL && ifp->if_index != sav->sah->outgoing_if) ||
sav->sah->saidx.dst.ss_family != AF_INET ||
!(sav->flags & SADB_X_EXT_NATT) ||
!(sav->flags & SADB_X_EXT_NATT_KEEPALIVE) ||
!(sav->flags & SADB_X_EXT_NATT_KEEPALIVE_OFFLOAD) ||
sav->flags & SADB_X_EXT_ESP_KEEPALIVE ||
((esp_udp_encap_port & 0xFFFF) == 0 && sav->natt_encapsulated_src_port == 0) ||
sav->remote_ike_port == 0 ||
(natt_keepalive_interval == 0 && sav->natt_interval == 0 && sav->natt_offload_interval == 0)) {
/* SA is not eligible for keepalive offload on this interface */
return FALSE;
}
if (frame_data_offset + sizeof(struct udpiphdr) + 1 >
IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) {
/* Not enough room in this data frame */
return FALSE;
}
data = frame->data;
ip = (__typeof__(ip))(void *)(data + frame_data_offset);
uh = (__typeof__(uh))(void *)(data + frame_data_offset + sizeof(*ip));
frame->length = (u_int8_t)(frame_data_offset + sizeof(struct udpiphdr) + 1);
frame->type = IFNET_KEEPALIVE_OFFLOAD_FRAME_IPSEC;
frame->ether_type = IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4;
bzero(data, IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE);
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(struct ip) >> 2;
ip->ip_off &= htons(~IP_OFFMASK);
ip->ip_off &= htons(~IP_MF);
switch (ip4_ipsec_dfbit) {
case 0: /* clear DF bit */
ip->ip_off &= htons(~IP_DF);
break;
case 1: /* set DF bit */
ip->ip_off |= htons(IP_DF);
break;
default: /* copy DF bit */
break;
}
ip->ip_len = htons(sizeof(struct udpiphdr) + 1);
if (rfc6864 && IP_OFF_IS_ATOMIC(htons(ip->ip_off))) {
ip->ip_id = 0;
} else {
ip->ip_id = ip_randomid((uint64_t)data);
}
ip->ip_ttl = (u_char)ip_defttl;
ip->ip_p = IPPROTO_UDP;
ip->ip_sum = 0;
if (sav->sah->dir != IPSEC_DIR_INBOUND) {
ip->ip_src = ((struct sockaddr_in*)&sav->sah->saidx.src)->sin_addr;
ip->ip_dst = ((struct sockaddr_in*)&sav->sah->saidx.dst)->sin_addr;
} else {
ip->ip_src = ((struct sockaddr_in*)&sav->sah->saidx.dst)->sin_addr;
ip->ip_dst = ((struct sockaddr_in*)&sav->sah->saidx.src)->sin_addr;
}
ip->ip_sum = in_cksum_hdr_opt(ip);
/* Fill out the UDP header */
if (sav->natt_encapsulated_src_port != 0) {
uh->uh_sport = (u_short)sav->natt_encapsulated_src_port;
} else {
uh->uh_sport = htons((u_short)esp_udp_encap_port);
}
uh->uh_dport = htons(sav->remote_ike_port);
uh->uh_ulen = htons(1 + sizeof(*uh));
uh->uh_sum = 0;
*(u_int8_t*)(data + frame_data_offset + sizeof(*ip) + sizeof(*uh)) = 0xFF;
if (sav->natt_offload_interval != 0) {
frame->interval = sav->natt_offload_interval;
} else if (sav->natt_interval != 0) {
frame->interval = sav->natt_interval;
} else {
frame->interval = (u_int16_t)natt_keepalive_interval;
}
return TRUE;
}
static void
ipsec_get_local_ports(void)
{
errno_t error;
ifnet_t *ifp_list;
uint32_t count, i;
static uint8_t port_bitmap[bitstr_size(IP_PORTRANGE_SIZE)];
error = ifnet_list_get_all(IFNET_FAMILY_IPSEC, &ifp_list, &count);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: ifnet_list_get_all() failed %d",
__func__, error);
return;
}
for (i = 0; i < count; i++) {
ifnet_t ifp = ifp_list[i];
/*
* Get all the TCP and UDP ports for IPv4 and IPv6
*/
error = ifnet_get_local_ports_extended(ifp, PF_UNSPEC,
IFNET_GET_LOCAL_PORTS_WILDCARDOK |
IFNET_GET_LOCAL_PORTS_NOWAKEUPOK |
IFNET_GET_LOCAL_PORTS_ANYTCPSTATEOK,
port_bitmap);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: ifnet_get_local_ports_extended(%s) failed %d",
__func__, if_name(ifp), error);
}
}
ifnet_list_free(ifp_list);
}
static IOReturn
ipsec_sleep_wake_handler(void *target, void *refCon, UInt32 messageType,
void *provider, void *messageArgument, vm_size_t argSize)
{
#pragma unused(target, refCon, provider, messageArgument, argSize)
switch (messageType) {
case kIOMessageSystemWillSleep:
{
ipsec_get_local_ports();
break;
}
default:
break;
}
return IOPMAckImplied;
}
void
ipsec_monitor_sleep_wake(void)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
if (sleep_wake_handle == NULL) {
sleep_wake_handle = registerSleepWakeInterest(ipsec_sleep_wake_handler,
NULL, NULL);
if (sleep_wake_handle != NULL) {
ipseclog((LOG_INFO,
"ipsec: monitoring sleep wake"));
}
}
}
void
ipsec_init(void)
{
ipsec_register_control();
}