gems-kernel/source/THIRDPARTY/xnu/bsd/security/audit/audit_pipe.c

1116 lines
29 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*-
* Copyright (c) 2006 Robert N. M. Watson
* Copyright (c) 2008-2009 Apple, Inc.
* All rights reserved.
*
* This software was developed by Robert Watson for the TrustedBSD Project.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdarg.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/conf.h>
#include <sys/poll.h>
#include <sys/user.h>
#include <sys/signalvar.h>
#include <miscfs/devfs/devfs.h>
#include <bsm/audit.h>
#include <security/audit/audit.h>
#include <security/audit/audit_ioctl.h>
#include <security/audit/audit_bsd.h>
#include <security/audit/audit_private.h>
#if CONFIG_AUDIT
/*
* Implementation of a clonable special device providing a live stream of BSM
* audit data. Consumers receive a "tee" of the system audit trail by
* default, but may also define alternative event selections using ioctls.
* This interface provides unreliable but timely access to audit events.
* Consumers should be very careful to avoid introducing event cycles.
*/
/*
* Memory types.
*/
static MALLOC_DEFINE(M_AUDIT_PIPE, "audit_pipe", "Audit pipes");
static MALLOC_DEFINE(M_AUDIT_PIPE_ENTRY, "audit_pipeent",
"Audit pipe entries and buffers");
static MALLOC_DEFINE(M_AUDIT_PIPE_PRESELECT, "audit_pipe_presel",
"Audit pipe preselection structure");
/*
* Audit pipe buffer parameters.
*/
#define AUDIT_PIPE_QLIMIT_DEFAULT (128)
#define AUDIT_PIPE_QLIMIT_MIN (1)
#define AUDIT_PIPE_QLIMIT_MAX (1024)
/*
* Description of an entry in an audit_pipe.
*/
struct audit_pipe_entry {
void *ape_record;
u_int ape_record_len;
TAILQ_ENTRY(audit_pipe_entry) ape_queue;
};
/*
* Audit pipes allow processes to express "interest" in the set of records
* that are delivered via the pipe. They do this in a similar manner to the
* mechanism for audit trail configuration, by expressing two global masks,
* and optionally expressing per-auid masks. The following data structure is
* the per-auid mask description. The global state is stored in the audit
* pipe data structure.
*
* We may want to consider a more space/time-efficient data structure once
* usage patterns for per-auid specifications are clear.
*/
struct audit_pipe_preselect {
au_id_t app_auid;
au_mask_t app_mask;
TAILQ_ENTRY(audit_pipe_preselect) app_list;
};
/*
* Description of an individual audit_pipe. Consists largely of a bounded
* length queue.
*/
#define AUDIT_PIPE_ASYNC 0x00000001
#define AUDIT_PIPE_NBIO 0x00000002
struct audit_pipe {
int ap_open; /* Device open? */
u_int ap_flags;
struct selinfo ap_selinfo;
pid_t ap_sigio;
/*
* Per-pipe mutex protecting most fields in this data structure.
*/
struct mtx ap_mtx;
/*
* Per-pipe sleep lock serializing user-generated reads and flushes.
* uiomove() is called to copy out the current head record's data
* while the record remains in the queue, so we prevent other threads
* from removing it using this lock.
*/
struct slck ap_sx;
/*
* Condition variable to signal when data has been delivered to a
* pipe.
*/
struct cv ap_cv;
/*
* Various queue-related variables: qlen and qlimit are a count of
* records in the queue; qbyteslen is the number of bytes of data
* across all records, and qoffset is the amount read so far of the
* first record in the queue. The number of bytes available for
* reading in the queue is qbyteslen - qoffset.
*/
u_int ap_qlen;
u_int ap_qlimit;
u_int ap_qbyteslen;
u_int ap_qoffset;
/*
* Per-pipe operation statistics.
*/
u_int64_t ap_inserts; /* Records added. */
u_int64_t ap_reads; /* Records read. */
u_int64_t ap_drops; /* Records dropped. */
/*
* Fields relating to pipe interest: global masks for unmatched
* processes (attributable, non-attributable), and a list of specific
* interest specifications by auid.
*/
int ap_preselect_mode;
au_mask_t ap_preselect_flags;
au_mask_t ap_preselect_naflags;
TAILQ_HEAD(, audit_pipe_preselect) ap_preselect_list;
/*
* Current pending record list. Protected by a combination of ap_mtx
* and ap_sx. Note particularly that *both* locks are required to
* remove a record from the head of the queue, as an in-progress read
* may sleep while copying and therefore cannot hold ap_mtx.
*/
TAILQ_HEAD(, audit_pipe_entry) ap_queue;
/*
* Global pipe list.
*/
TAILQ_ENTRY(audit_pipe) ap_list;
};
#define AUDIT_PIPE_LOCK(ap) mtx_lock(&(ap)->ap_mtx)
#define AUDIT_PIPE_LOCK_ASSERT(ap) mtx_assert(&(ap)->ap_mtx, MA_OWNED)
#define AUDIT_PIPE_LOCK_DESTROY(ap) mtx_destroy(&(ap)->ap_mtx)
#define AUDIT_PIPE_LOCK_INIT(ap) mtx_init(&(ap)->ap_mtx, \
"audit_pipe_mtx", NULL, MTX_DEF)
#define AUDIT_PIPE_UNLOCK(ap) mtx_unlock(&(ap)->ap_mtx)
#define AUDIT_PIPE_MTX(ap) (&(ap)->ap_mtx)
#define AUDIT_PIPE_SX_LOCK_DESTROY(ap) slck_destroy(&(ap)->ap_sx)
#define AUDIT_PIPE_SX_LOCK_INIT(ap) slck_init(&(ap)->ap_sx, "audit_pipe_sx")
#define AUDIT_PIPE_SX_XLOCK_ASSERT(ap) slck_assert(&(ap)->ap_sx, SA_XLOCKED)
#define AUDIT_PIPE_SX_XLOCK_SIG(ap) slck_lock_sig(&(ap)->ap_sx)
#define AUDIT_PIPE_SX_XUNLOCK(ap) slck_unlock(&(ap)->ap_sx)
/*
* Global list of audit pipes, rwlock to protect it. Individual record
* queues on pipes are protected by per-pipe locks; these locks synchronize
* between threads walking the list to deliver to individual pipes and add/
* remove of pipes, and are mostly acquired for read.
*/
static TAILQ_HEAD(, audit_pipe) audit_pipe_list;
static struct rwlock audit_pipe_lock;
#define AUDIT_PIPE_LIST_LOCK_INIT() rw_init(&audit_pipe_lock, \
"audit_pipe_list_lock")
#define AUDIT_PIPE_LIST_RLOCK() rw_rlock(&audit_pipe_lock)
#define AUDIT_PIPE_LIST_RUNLOCK() rw_runlock(&audit_pipe_lock)
#define AUDIT_PIPE_LIST_WLOCK() rw_wlock(&audit_pipe_lock)
#define AUDIT_PIPE_LIST_WLOCK_ASSERT() rw_assert(&audit_pipe_lock, \
RA_WLOCKED)
#define AUDIT_PIPE_LIST_WUNLOCK() rw_wunlock(&audit_pipe_lock)
/*
* Cloning related variables and constants.
*/
#define AUDIT_PIPE_NAME "auditpipe"
#define MAX_AUDIT_PIPES 32
static int audit_pipe_major;
/*
* dev_t doesn't have a pointer for "softc" data. So we have to keep track of
* it with the following global array (indexed by the minor number).
*
* XXX We may want to dynamically grow this as needed.
*/
static struct audit_pipe *audit_pipe_dtab[MAX_AUDIT_PIPES];
/*
* Special device methods and definition.
*/
static open_close_fcn_t audit_pipe_open;
static open_close_fcn_t audit_pipe_close;
static read_write_fcn_t audit_pipe_read;
static ioctl_fcn_t audit_pipe_ioctl;
static select_fcn_t audit_pipe_poll;
static const struct cdevsw audit_pipe_cdevsw = {
.d_open = audit_pipe_open,
.d_close = audit_pipe_close,
.d_read = audit_pipe_read,
.d_write = eno_rdwrt,
.d_ioctl = audit_pipe_ioctl,
.d_stop = eno_stop,
.d_reset = eno_reset,
.d_ttys = NULL,
.d_select = audit_pipe_poll,
.d_mmap = eno_mmap,
.d_strategy = eno_strat,
.d_type = 0
};
/*
* Some global statistics on audit pipes.
*/
static int audit_pipe_count; /* Current number of pipes. */
static u_int64_t audit_pipe_ever; /* Pipes ever allocated. */
static u_int64_t audit_pipe_records; /* Records seen. */
static u_int64_t audit_pipe_drops; /* Global record drop count. */
/*
* Free an audit pipe entry.
*/
static void
audit_pipe_entry_free(struct audit_pipe_entry *ape)
{
kfree_data(ape->ape_record, ape->ape_record_len);
kfree_type(struct audit_pipe_entry, ape);
}
/*
* Find an audit pipe preselection specification for an auid, if any.
*/
static struct audit_pipe_preselect *
audit_pipe_preselect_find(struct audit_pipe *ap, au_id_t auid)
{
struct audit_pipe_preselect *app;
AUDIT_PIPE_LOCK_ASSERT(ap);
TAILQ_FOREACH(app, &ap->ap_preselect_list, app_list) {
if (app->app_auid == auid) {
return app;
}
}
return NULL;
}
/*
* Query the per-pipe mask for a specific auid.
*/
static int
audit_pipe_preselect_get(struct audit_pipe *ap, au_id_t auid,
au_mask_t *maskp)
{
struct audit_pipe_preselect *app;
int error;
AUDIT_PIPE_LOCK(ap);
app = audit_pipe_preselect_find(ap, auid);
if (app != NULL) {
*maskp = app->app_mask;
error = 0;
} else {
error = ENOENT;
}
AUDIT_PIPE_UNLOCK(ap);
return error;
}
/*
* Set the per-pipe mask for a specific auid. Add a new entry if needed;
* otherwise, update the current entry.
*/
static void
audit_pipe_preselect_set(struct audit_pipe *ap, au_id_t auid, au_mask_t mask)
{
struct audit_pipe_preselect *app, *app_new;
/*
* Pessimistically assume that the auid doesn't already have a mask
* set, and allocate. We will free it if it is unneeded.
*/
app_new = kalloc_type(struct audit_pipe_preselect, Z_WAITOK | Z_NOFAIL);
AUDIT_PIPE_LOCK(ap);
app = audit_pipe_preselect_find(ap, auid);
if (app == NULL) {
app = app_new;
app_new = NULL;
app->app_auid = auid;
TAILQ_INSERT_TAIL(&ap->ap_preselect_list, app, app_list);
}
app->app_mask = mask;
AUDIT_PIPE_UNLOCK(ap);
kfree_type(struct audit_pipe_preselect, app_new);
}
/*
* Delete a per-auid mask on an audit pipe.
*/
static int
audit_pipe_preselect_delete(struct audit_pipe *ap, au_id_t auid)
{
struct audit_pipe_preselect *app;
int error;
AUDIT_PIPE_LOCK(ap);
app = audit_pipe_preselect_find(ap, auid);
if (app != NULL) {
TAILQ_REMOVE(&ap->ap_preselect_list, app, app_list);
error = 0;
} else {
error = ENOENT;
}
AUDIT_PIPE_UNLOCK(ap);
kfree_type(struct audit_pipe_preselect, app);
return error;
}
/*
* Delete all per-auid masks on an audit pipe.
*/
static void
audit_pipe_preselect_flush_locked(struct audit_pipe *ap)
{
struct audit_pipe_preselect *app;
AUDIT_PIPE_LOCK_ASSERT(ap);
while ((app = TAILQ_FIRST(&ap->ap_preselect_list)) != NULL) {
TAILQ_REMOVE(&ap->ap_preselect_list, app, app_list);
kfree_type(struct audit_pipe_preselect, app);
}
}
static void
audit_pipe_preselect_flush(struct audit_pipe *ap)
{
AUDIT_PIPE_LOCK(ap);
audit_pipe_preselect_flush_locked(ap);
AUDIT_PIPE_UNLOCK(ap);
}
/*-
* Determine whether a specific audit pipe matches a record with these
* properties. Algorithm is as follows:
*
* - If the pipe is configured to track the default trail configuration, then
* use the results of global preselection matching.
* - If not, search for a specifically configured auid entry matching the
* event. If an entry is found, use that.
* - Otherwise, use the default flags or naflags configured for the pipe.
*/
static int
audit_pipe_preselect_check(struct audit_pipe *ap, au_id_t auid,
au_event_t event, au_class_t class, int sorf, int trail_preselect)
{
struct audit_pipe_preselect *app;
AUDIT_PIPE_LOCK_ASSERT(ap);
switch (ap->ap_preselect_mode) {
case AUDITPIPE_PRESELECT_MODE_TRAIL:
return trail_preselect;
case AUDITPIPE_PRESELECT_MODE_LOCAL:
app = audit_pipe_preselect_find(ap, auid);
if (app == NULL) {
if (auid == (uid_t)AU_DEFAUDITID) {
return au_preselect(event, class,
&ap->ap_preselect_naflags, sorf);
} else {
return au_preselect(event, class,
&ap->ap_preselect_flags, sorf);
}
} else {
return au_preselect(event, class, &app->app_mask,
sorf);
}
default:
panic("audit_pipe_preselect_check: mode %d",
ap->ap_preselect_mode);
}
return 0;
}
/*
* Determine whether there exists a pipe interested in a record with specific
* properties.
*/
int
audit_pipe_preselect(au_id_t auid, au_event_t event, au_class_t class,
int sorf, int trail_preselect)
{
struct audit_pipe *ap;
/* Lockless read to avoid acquiring the global lock if not needed. */
if (TAILQ_EMPTY(&audit_pipe_list)) {
return 0;
}
AUDIT_PIPE_LIST_RLOCK();
TAILQ_FOREACH(ap, &audit_pipe_list, ap_list) {
AUDIT_PIPE_LOCK(ap);
if (audit_pipe_preselect_check(ap, auid, event, class, sorf,
trail_preselect)) {
AUDIT_PIPE_UNLOCK(ap);
AUDIT_PIPE_LIST_RUNLOCK();
return 1;
}
AUDIT_PIPE_UNLOCK(ap);
}
AUDIT_PIPE_LIST_RUNLOCK();
return 0;
}
/*
* Append individual record to a queue -- allocate queue-local buffer, and
* add to the queue. If the queue is full or we can't allocate memory, drop
* the newest record.
*/
static void
audit_pipe_append(struct audit_pipe *ap, void *record, u_int record_len)
{
struct audit_pipe_entry *ape;
AUDIT_PIPE_LOCK_ASSERT(ap);
if (ap->ap_qlen >= ap->ap_qlimit) {
ap->ap_drops++;
audit_pipe_drops++;
return;
}
ape = kalloc_type(struct audit_pipe_entry, Z_NOWAIT | Z_ZERO);
if (ape == NULL) {
ap->ap_drops++;
audit_pipe_drops++;
return;
}
ape->ape_record = kalloc_data(record_len, Z_NOWAIT);
if (ape->ape_record == NULL) {
kfree_type(struct audit_pipe_entry, ape);
ap->ap_drops++;
audit_pipe_drops++;
return;
}
bcopy(record, ape->ape_record, record_len);
ape->ape_record_len = record_len;
TAILQ_INSERT_TAIL(&ap->ap_queue, ape, ape_queue);
ap->ap_inserts++;
ap->ap_qlen++;
ap->ap_qbyteslen += ape->ape_record_len;
selwakeup(&ap->ap_selinfo);
if (ap->ap_flags & AUDIT_PIPE_ASYNC) {
pgsigio(ap->ap_sigio, SIGIO);
}
#if 0 /* XXX - fix select */
selwakeuppri(&ap->ap_selinfo, PSOCK);
KNOTE_LOCKED(&ap->ap_selinfo.si_note, 0);
if (ap->ap_flags & AUDIT_PIPE_ASYNC) {
pgsigio(&ap->ap_sigio, SIGIO, 0);
}
#endif
cv_broadcast(&ap->ap_cv);
}
/*
* audit_pipe_submit(): audit_worker submits audit records via this
* interface, which arranges for them to be delivered to pipe queues.
*/
void
audit_pipe_submit(au_id_t auid, au_event_t event, au_class_t class, int sorf,
int trail_select, void *record, u_int record_len)
{
struct audit_pipe *ap;
/*
* Lockless read to avoid lock overhead if pipes are not in use.
*/
if (TAILQ_FIRST(&audit_pipe_list) == NULL) {
return;
}
AUDIT_PIPE_LIST_RLOCK();
TAILQ_FOREACH(ap, &audit_pipe_list, ap_list) {
AUDIT_PIPE_LOCK(ap);
if (audit_pipe_preselect_check(ap, auid, event, class, sorf,
trail_select)) {
audit_pipe_append(ap, record, record_len);
}
AUDIT_PIPE_UNLOCK(ap);
}
AUDIT_PIPE_LIST_RUNLOCK();
/* Unlocked increment. */
audit_pipe_records++;
}
/*
* audit_pipe_submit_user(): the same as audit_pipe_submit(), except that
* since we don't currently have selection information available, it is
* delivered to the pipe unconditionally.
*
* XXXRW: This is a bug. The BSM check routine for submitting a user record
* should parse that information and return it.
*/
void
audit_pipe_submit_user(void *record, u_int record_len)
{
struct audit_pipe *ap;
/*
* Lockless read to avoid lock overhead if pipes are not in use.
*/
if (TAILQ_FIRST(&audit_pipe_list) == NULL) {
return;
}
AUDIT_PIPE_LIST_RLOCK();
TAILQ_FOREACH(ap, &audit_pipe_list, ap_list) {
AUDIT_PIPE_LOCK(ap);
audit_pipe_append(ap, record, record_len);
AUDIT_PIPE_UNLOCK(ap);
}
AUDIT_PIPE_LIST_RUNLOCK();
/* Unlocked increment. */
audit_pipe_records++;
}
/*
* Allocate a new audit pipe. Connects the pipe, on success, to the global
* list and updates statistics.
*/
static struct audit_pipe *
audit_pipe_alloc(void)
{
struct audit_pipe *ap;
AUDIT_PIPE_LIST_WLOCK_ASSERT();
ap = kalloc_type(struct audit_pipe, Z_WAITOK | Z_ZERO | Z_NOFAIL);
ap->ap_qlimit = AUDIT_PIPE_QLIMIT_DEFAULT;
TAILQ_INIT(&ap->ap_queue);
#ifndef __APPLE__
knlist_init(&ap->ap_selinfo.si_note, AUDIT_PIPE_MTX(ap), NULL, NULL,
NULL);
#endif
AUDIT_PIPE_LOCK_INIT(ap);
AUDIT_PIPE_SX_LOCK_INIT(ap);
cv_init(&ap->ap_cv, "audit_pipe");
/*
* Default flags, naflags, and auid-specific preselection settings to
* 0. Initialize the mode to the global trail so that if praudit(1)
* is run on /dev/auditpipe, it sees events associated with the
* default trail. Pipe-aware application can clear the flag, set
* custom masks, and flush the pipe as needed.
*/
bzero(&ap->ap_preselect_flags, sizeof(ap->ap_preselect_flags));
bzero(&ap->ap_preselect_naflags, sizeof(ap->ap_preselect_naflags));
TAILQ_INIT(&ap->ap_preselect_list);
ap->ap_preselect_mode = AUDITPIPE_PRESELECT_MODE_TRAIL;
/*
* Add to global list and update global statistics.
*/
TAILQ_INSERT_HEAD(&audit_pipe_list, ap, ap_list);
audit_pipe_count++;
audit_pipe_ever++;
return ap;
}
/*
* Flush all records currently present in an audit pipe; assume mutex is held.
*/
static void
audit_pipe_flush(struct audit_pipe *ap)
{
struct audit_pipe_entry *ape;
AUDIT_PIPE_LOCK_ASSERT(ap);
while ((ape = TAILQ_FIRST(&ap->ap_queue)) != NULL) {
TAILQ_REMOVE(&ap->ap_queue, ape, ape_queue);
ap->ap_qbyteslen -= ape->ape_record_len;
audit_pipe_entry_free(ape);
ap->ap_qlen--;
}
ap->ap_qoffset = 0;
KASSERT(ap->ap_qlen == 0, ("audit_pipe_free: ap_qbyteslen"));
KASSERT(ap->ap_qbyteslen == 0, ("audit_pipe_flush: ap_qbyteslen"));
}
/*
* Free an audit pipe; this means freeing all preselection state and all
* records in the pipe. Assumes global write lock and pipe mutex are held to
* revent any new records from being inserted during the free, and that the
* audit pipe is still on the global list.
*/
static void
audit_pipe_free(struct audit_pipe *ap)
{
AUDIT_PIPE_LIST_WLOCK_ASSERT();
AUDIT_PIPE_LOCK_ASSERT(ap);
audit_pipe_preselect_flush_locked(ap);
audit_pipe_flush(ap);
cv_destroy(&ap->ap_cv);
AUDIT_PIPE_SX_LOCK_DESTROY(ap);
AUDIT_PIPE_UNLOCK(ap);
AUDIT_PIPE_LOCK_DESTROY(ap);
#ifndef __APPLE__
knlist_destroy(&ap->ap_selinfo.si_note);
#endif
TAILQ_REMOVE(&audit_pipe_list, ap, ap_list);
kfree_type(struct audit_pipe, ap);
audit_pipe_count--;
}
/*
* Audit pipe clone routine -- provides a new minor number, or to return (-1),
* if one can't be provided. Called with DEVFS_LOCK held.
*/
static int
audit_pipe_clone(__unused dev_t dev, int action)
{
int i;
if (action == DEVFS_CLONE_ALLOC) {
for (i = 0; i < MAX_AUDIT_PIPES; i++) {
if (audit_pipe_dtab[i] == NULL) {
return i;
}
}
/*
* XXX Should really return -1 here but that seems to hang
* things in devfs. Instead return 0 and let _open() tell
* userland the bad news.
*/
return 0;
}
return -1;
}
/*
* Audit pipe open method. Explicit privilege check isn't used as this
* allows file permissions on the special device to be used to grant audit
* review access. Those file permissions should be managed carefully.
*/
static int
audit_pipe_open(dev_t dev, __unused int flags, __unused int devtype,
__unused proc_t p)
{
struct audit_pipe *ap;
int u;
u = minor(dev);
if (u < 0 || u >= MAX_AUDIT_PIPES) {
return ENXIO;
}
AUDIT_PIPE_LIST_WLOCK();
ap = audit_pipe_dtab[u];
if (ap == NULL) {
ap = audit_pipe_alloc();
if (ap == NULL) {
AUDIT_PIPE_LIST_WUNLOCK();
return ENOMEM;
}
audit_pipe_dtab[u] = ap;
} else {
KASSERT(ap->ap_open, ("audit_pipe_open: ap && !ap_open"));
AUDIT_PIPE_LIST_WUNLOCK();
return EBUSY;
}
ap->ap_open = 1;
AUDIT_PIPE_LIST_WUNLOCK();
#ifndef __APPLE__
proc_getpid(fsetown(td->td_proc), &ap->ap_sigio);
#endif
return 0;
}
/*
* Close audit pipe, tear down all records, etc.
*/
static int
audit_pipe_close(dev_t dev, __unused int flags, __unused int devtype,
__unused proc_t p)
{
struct audit_pipe *ap;
int u;
u = minor(dev);
ap = audit_pipe_dtab[u];
KASSERT(ap != NULL, ("audit_pipe_close: ap == NULL"));
KASSERT(ap->ap_open, ("audit_pipe_close: !ap_open"));
#ifndef __APPLE__
funsetown(&ap->ap_sigio);
#endif
AUDIT_PIPE_LIST_WLOCK();
AUDIT_PIPE_LOCK(ap);
ap->ap_open = 0;
audit_pipe_free(ap);
audit_pipe_dtab[u] = NULL;
AUDIT_PIPE_LIST_WUNLOCK();
return 0;
}
/*
* Audit pipe ioctl() routine. Handle file descriptor and audit pipe layer
* commands.
*/
static int
audit_pipe_ioctl(dev_t dev, u_long cmd, caddr_t data,
__unused int flag, __unused proc_t p)
{
struct auditpipe_ioctl_preselect *aip;
struct audit_pipe *ap;
au_mask_t *maskp;
int error, mode;
au_id_t auid;
ap = audit_pipe_dtab[minor(dev)];
KASSERT(ap != NULL, ("audit_pipe_ioctl: ap == NULL"));
/*
* Audit pipe ioctls: first come standard device node ioctls, then
* manipulation of pipe settings, and finally, statistics query
* ioctls.
*/
switch (cmd) {
case FIONBIO:
AUDIT_PIPE_LOCK(ap);
if (*(int *)data) {
ap->ap_flags |= AUDIT_PIPE_NBIO;
} else {
ap->ap_flags &= ~AUDIT_PIPE_NBIO;
}
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
case FIONREAD:
AUDIT_PIPE_LOCK(ap);
*(int *)data = ap->ap_qbyteslen - ap->ap_qoffset;
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
case FIOASYNC:
AUDIT_PIPE_LOCK(ap);
if (*(int *)data) {
ap->ap_flags |= AUDIT_PIPE_ASYNC;
} else {
ap->ap_flags &= ~AUDIT_PIPE_ASYNC;
}
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
#ifndef __APPLE__
case FIOSETOWN:
error = fsetown(*(int *)data, &ap->ap_sigio);
break;
case FIOGETOWN:
*(int *)data = fgetown(&ap->ap_sigio);
error = 0;
break;
#endif /* !__APPLE__ */
case AUDITPIPE_GET_QLEN:
*(u_int *)data = ap->ap_qlen;
error = 0;
break;
case AUDITPIPE_GET_QLIMIT:
*(u_int *)data = ap->ap_qlimit;
error = 0;
break;
case AUDITPIPE_SET_QLIMIT:
/* Lockless integer write. */
if (*(u_int *)data >= AUDIT_PIPE_QLIMIT_MIN ||
*(u_int *)data <= AUDIT_PIPE_QLIMIT_MAX) {
ap->ap_qlimit = *(u_int *)data;
error = 0;
} else {
error = EINVAL;
}
break;
case AUDITPIPE_GET_QLIMIT_MIN:
*(u_int *)data = AUDIT_PIPE_QLIMIT_MIN;
error = 0;
break;
case AUDITPIPE_GET_QLIMIT_MAX:
*(u_int *)data = AUDIT_PIPE_QLIMIT_MAX;
error = 0;
break;
case AUDITPIPE_GET_PRESELECT_FLAGS:
AUDIT_PIPE_LOCK(ap);
maskp = (au_mask_t *)data;
*maskp = ap->ap_preselect_flags;
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
case AUDITPIPE_SET_PRESELECT_FLAGS:
AUDIT_PIPE_LOCK(ap);
maskp = (au_mask_t *)data;
ap->ap_preselect_flags = *maskp;
AUDIT_CHECK_IF_KEVENTS_MASK(ap->ap_preselect_flags);
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
case AUDITPIPE_GET_PRESELECT_NAFLAGS:
AUDIT_PIPE_LOCK(ap);
maskp = (au_mask_t *)data;
*maskp = ap->ap_preselect_naflags;
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
case AUDITPIPE_SET_PRESELECT_NAFLAGS:
AUDIT_PIPE_LOCK(ap);
maskp = (au_mask_t *)data;
ap->ap_preselect_naflags = *maskp;
AUDIT_CHECK_IF_KEVENTS_MASK(ap->ap_preselect_naflags);
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
case AUDITPIPE_GET_PRESELECT_AUID:
aip = (struct auditpipe_ioctl_preselect *)data;
error = audit_pipe_preselect_get(ap, aip->aip_auid,
&aip->aip_mask);
break;
case AUDITPIPE_SET_PRESELECT_AUID:
aip = (struct auditpipe_ioctl_preselect *)data;
audit_pipe_preselect_set(ap, aip->aip_auid, aip->aip_mask);
error = 0;
break;
case AUDITPIPE_DELETE_PRESELECT_AUID:
auid = *(au_id_t *)data;
error = audit_pipe_preselect_delete(ap, auid);
break;
case AUDITPIPE_FLUSH_PRESELECT_AUID:
audit_pipe_preselect_flush(ap);
error = 0;
break;
case AUDITPIPE_GET_PRESELECT_MODE:
AUDIT_PIPE_LOCK(ap);
*(int *)data = ap->ap_preselect_mode;
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
case AUDITPIPE_SET_PRESELECT_MODE:
mode = *(int *)data;
switch (mode) {
case AUDITPIPE_PRESELECT_MODE_TRAIL:
case AUDITPIPE_PRESELECT_MODE_LOCAL:
AUDIT_PIPE_LOCK(ap);
ap->ap_preselect_mode = mode;
AUDIT_PIPE_UNLOCK(ap);
error = 0;
break;
default:
error = EINVAL;
}
break;
case AUDITPIPE_FLUSH:
if (AUDIT_PIPE_SX_XLOCK_SIG(ap) != 0) {
return EINTR;
}
AUDIT_PIPE_LOCK(ap);
audit_pipe_flush(ap);
AUDIT_PIPE_UNLOCK(ap);
AUDIT_PIPE_SX_XUNLOCK(ap);
error = 0;
break;
case AUDITPIPE_GET_MAXAUDITDATA:
*(u_int *)data = MAXAUDITDATA;
error = 0;
break;
case AUDITPIPE_GET_INSERTS:
*(u_int *)data = ap->ap_inserts;
error = 0;
break;
case AUDITPIPE_GET_READS:
*(u_int *)data = ap->ap_reads;
error = 0;
break;
case AUDITPIPE_GET_DROPS:
*(u_int *)data = ap->ap_drops;
error = 0;
break;
case AUDITPIPE_GET_TRUNCATES:
*(u_int *)data = 0;
error = 0;
break;
default:
error = ENOTTY;
}
return error;
}
/*
* Audit pipe read. Read one or more partial or complete records to user
* memory.
*/
static int
audit_pipe_read(dev_t dev, struct uio *uio, __unused int flag)
{
struct audit_pipe_entry *ape;
struct audit_pipe *ap;
u_int toread;
int error;
ap = audit_pipe_dtab[minor(dev)];
KASSERT(ap != NULL, ("audit_pipe_read: ap == NULL"));
/*
* We hold an sleep lock over read and flush because we rely on the
* stability of a record in the queue during uiomove(9).
*/
if (AUDIT_PIPE_SX_XLOCK_SIG(ap) != 0) {
return EINTR;
}
AUDIT_PIPE_LOCK(ap);
while (TAILQ_EMPTY(&ap->ap_queue)) {
if (ap->ap_flags & AUDIT_PIPE_NBIO) {
AUDIT_PIPE_UNLOCK(ap);
AUDIT_PIPE_SX_XUNLOCK(ap);
return EAGAIN;
}
error = cv_wait_sig(&ap->ap_cv, AUDIT_PIPE_MTX(ap));
if (error) {
AUDIT_PIPE_UNLOCK(ap);
AUDIT_PIPE_SX_XUNLOCK(ap);
return error;
}
}
/*
* Copy as many remaining bytes from the current record to userspace
* as we can. Keep processing records until we run out of records in
* the queue, or until the user buffer runs out of space.
*
* Note: we rely on the sleep lock to maintain ape's stability here.
*/
ap->ap_reads++;
while ((ape = TAILQ_FIRST(&ap->ap_queue)) != NULL &&
uio_resid(uio) > 0) {
AUDIT_PIPE_LOCK_ASSERT(ap);
KASSERT(ape->ape_record_len > ap->ap_qoffset,
("audit_pipe_read: record_len > qoffset (1)"));
toread = MIN((int)(ape->ape_record_len - ap->ap_qoffset),
uio_resid(uio));
AUDIT_PIPE_UNLOCK(ap);
error = uiomove((char *)ape->ape_record + ap->ap_qoffset,
toread, uio);
if (error) {
AUDIT_PIPE_SX_XUNLOCK(ap);
return error;
}
/*
* If the copy succeeded, update book-keeping, and if no
* bytes remain in the current record, free it.
*/
AUDIT_PIPE_LOCK(ap);
KASSERT(TAILQ_FIRST(&ap->ap_queue) == ape,
("audit_pipe_read: queue out of sync after uiomove"));
ap->ap_qoffset += toread;
KASSERT(ape->ape_record_len >= ap->ap_qoffset,
("audit_pipe_read: record_len >= qoffset (2)"));
if (ap->ap_qoffset == ape->ape_record_len) {
TAILQ_REMOVE(&ap->ap_queue, ape, ape_queue);
ap->ap_qbyteslen -= ape->ape_record_len;
audit_pipe_entry_free(ape);
ap->ap_qlen--;
ap->ap_qoffset = 0;
}
}
AUDIT_PIPE_UNLOCK(ap);
AUDIT_PIPE_SX_XUNLOCK(ap);
return 0;
}
/*
* Audit pipe poll.
*/
static int
audit_pipe_poll(dev_t dev, int events, void *wql, struct proc *p)
{
struct audit_pipe *ap;
int revents;
revents = 0;
ap = audit_pipe_dtab[minor(dev)];
KASSERT(ap != NULL, ("audit_pipe_poll: ap == NULL"));
if (events & (POLLIN | POLLRDNORM)) {
AUDIT_PIPE_LOCK(ap);
if (TAILQ_FIRST(&ap->ap_queue) != NULL) {
revents |= events & (POLLIN | POLLRDNORM);
} else {
selrecord(p, &ap->ap_selinfo, wql);
}
AUDIT_PIPE_UNLOCK(ap);
}
return revents;
}
static void *devnode;
int
audit_pipe_init(void)
{
dev_t dev;
TAILQ_INIT(&audit_pipe_list);
AUDIT_PIPE_LIST_LOCK_INIT();
audit_pipe_major = cdevsw_add(-1, &audit_pipe_cdevsw);
if (audit_pipe_major < 0) {
return KERN_FAILURE;
}
dev = makedev(audit_pipe_major, 0);
devnode = devfs_make_node_clone(dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL,
0600, audit_pipe_clone, "auditpipe");
if (devnode == NULL) {
return KERN_FAILURE;
}
return KERN_SUCCESS;
}
int
audit_pipe_shutdown(void)
{
/* unwind everything */
devfs_remove(devnode);
(void) cdevsw_remove(audit_pipe_major, &audit_pipe_cdevsw);
return KERN_SUCCESS;
}
#endif /* CONFIG_AUDIT */