gems-kernel/source/THIRDPARTY/xnu/bsd/vfs/vfs_utfconv.c

1228 lines
30 KiB
C
Raw Normal View History

2024-06-03 11:29:39 -05:00
/*
* Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Includes Unicode 3.2 decomposition code derived from Core Foundation
*/
#include <sys/param.h>
#include <sys/utfconv.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <libkern/OSByteOrder.h>
#if defined(KERNEL) && !defined(VFS_UTF8_UNIT_TEST)
#include <kern/assert.h>
#else
#include <assert.h>
#endif
/*
* UTF-8 (Unicode Transformation Format)
*
* UTF-8 is the Unicode Transformation Format that serializes a Unicode
* character as a sequence of one to four bytes. Only the shortest form
* required to represent the significant Unicode bits is legal.
*
* UTF-8 Multibyte Codes
*
* Bytes Bits Unicode Min Unicode Max UTF-8 Byte Sequence (binary)
* -----------------------------------------------------------------------------
* 1 7 0x0000 0x007F 0xxxxxxx
* 2 11 0x0080 0x07FF 110xxxxx 10xxxxxx
* 3 16 0x0800 0xFFFF 1110xxxx 10xxxxxx 10xxxxxx
* 4 21 0x10000 0x10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
* -----------------------------------------------------------------------------
*/
#define UNICODE_TO_UTF8_LEN(c) \
((c) < 0x0080 ? 1 : ((c) < 0x0800 ? 2 : (((c) & 0xf800) == 0xd800 ? 2 : 3)))
#define UCS_ALT_NULL 0x2400
/* Surrogate Pair Constants */
#define SP_HALF_SHIFT 10
#define SP_HALF_BASE 0x0010000u
#define SP_HALF_MASK 0x3FFu
#define SP_HIGH_FIRST 0xD800u
#define SP_HIGH_LAST 0xDBFFu
#define SP_LOW_FIRST 0xDC00u
#define SP_LOW_LAST 0xDFFFu
#include "vfs_utfconvdata.h"
/*
* Test for a combining character.
*
* Similar to __CFUniCharIsNonBaseCharacter except that
* unicode_combinable also includes Hangul Jamo characters.
*/
int
unicode_combinable(u_int16_t character)
{
const u_int8_t *bitmap = __CFUniCharCombiningBitmap;
u_int8_t value;
if (character < 0x0300) {
return 0;
}
value = bitmap[(character >> 8) & 0xFF];
if (value == 0xFF) {
return 1;
} else if (value) {
bitmap = bitmap + ((value - 1) * 32) + 256;
return bitmap[(character & 0xFF) / 8] & (1 << (character % 8)) ? 1 : 0;
}
return 0;
}
/*
* Test for a precomposed character.
*
* Similar to __CFUniCharIsDecomposableCharacter.
*/
int
unicode_decomposeable(u_int16_t character)
{
const u_int8_t *bitmap = __CFUniCharDecomposableBitmap;
u_int8_t value;
if (character < 0x00C0) {
return 0;
}
value = bitmap[(character >> 8) & 0xFF];
if (value == 0xFF) {
return 1;
} else if (value) {
bitmap = bitmap + ((value - 1) * 32) + 256;
return bitmap[(character & 0xFF) / 8] & (1 << (character % 8)) ? 1 : 0;
}
return 0;
}
/*
* Get the combing class.
*
* Similar to CFUniCharGetCombiningPropertyForCharacter.
*/
static inline u_int8_t
get_combining_class(u_int16_t character)
{
const u_int8_t *bitmap = __CFUniCharCombiningPropertyBitmap;
u_int8_t value = bitmap[(character >> 8)];
if (value) {
bitmap = bitmap + (value * 256);
return bitmap[character % 256];
}
return 0;
}
static int unicode_decompose(u_int16_t character, u_int16_t *convertedChars);
static u_int16_t unicode_combine(u_int16_t base, u_int16_t combining);
static void prioritysort(u_int16_t* characters, int count);
static u_int16_t ucs_to_sfm(u_int16_t ucs_ch, int lastchar);
static u_int16_t sfm_to_ucs(u_int16_t ucs_ch);
char utf_extrabytes[32] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 2, 2, 3, -1
};
const char hexdigits[16] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
};
/*
* utf8_encodelen - Calculate the UTF-8 encoding length
*
* This function takes a Unicode input string, ucsp, of ucslen bytes
* and calculates the size of the UTF-8 output in bytes (not including
* a NULL termination byte). The string must reside in kernel memory.
*
* If '/' chars are possible in the Unicode input then an alternate
* (replacement) char should be provided in altslash.
*
* FLAGS
* UTF_REVERSE_ENDIAN: Unicode byte order is opposite current runtime
*
* UTF_BIG_ENDIAN: Unicode byte order is always big endian
*
* UTF_LITTLE_ENDIAN: Unicode byte order is always little endian
*
* UTF_DECOMPOSED: generate fully decomposed output
*
* UTF_PRECOMPOSED is ignored since utf8_encodestr doesn't support it
*
* ERRORS
* None
*/
size_t
utf8_encodelen(const u_int16_t * ucsp, size_t ucslen, u_int16_t altslash, int flags)
{
u_int16_t ucs_ch;
u_int16_t * chp = NULL;
u_int16_t sequence[8];
int extra = 0;
size_t charcnt;
int swapbytes = (flags & UTF_REVERSE_ENDIAN);
int decompose = (flags & UTF_DECOMPOSED);
size_t len;
charcnt = ucslen / 2;
len = 0;
while (charcnt-- > 0) {
if (extra > 0) {
--extra;
ucs_ch = *chp++;
} else {
ucs_ch = *ucsp++;
if (swapbytes) {
ucs_ch = OSSwapInt16(ucs_ch);
}
if (ucs_ch == '/') {
ucs_ch = altslash ? altslash : '_';
} else if (ucs_ch == '\0') {
ucs_ch = UCS_ALT_NULL;
} else if (decompose && unicode_decomposeable(ucs_ch)) {
extra = unicode_decompose(ucs_ch, sequence) - 1;
charcnt += extra;
ucs_ch = sequence[0];
chp = &sequence[1];
}
}
len += UNICODE_TO_UTF8_LEN(ucs_ch);
}
return len;
}
/*
* utf8_encodestr - Encodes a Unicode string to UTF-8
*
* NOTES:
* The resulting UTF-8 string is NULL terminated.
*
* If '/' chars are allowed on disk then an alternate
* (replacement) char must be provided in altslash.
*
* input flags:
* UTF_REVERSE_ENDIAN: Unicode byteorder is opposite current runtime
*
* UTF_BIG_ENDIAN: Unicode byte order is always big endian
*
* UTF_LITTLE_ENDIAN: Unicode byte order is always little endian
*
* UTF_DECOMPOSED: generate fully decomposed output
*
* UTF_NO_NULL_TERM: don't add NULL termination to UTF-8 output
*
* result:
* ENAMETOOLONG: Name didn't fit; only buflen bytes were encoded
*
* EINVAL: Illegal char found; char was replaced by an '_'.
*/
int
utf8_encodestr(const u_int16_t * ucsp, size_t ucslen, u_int8_t * utf8p,
size_t * utf8len, size_t buflen, u_int16_t altslash, int flags)
{
u_int8_t * bufstart;
u_int8_t * bufend;
u_int16_t ucs_ch;
u_int16_t * chp = NULL;
u_int16_t sequence[8];
int extra = 0;
size_t charcnt;
int swapbytes = (flags & UTF_REVERSE_ENDIAN);
int nullterm = ((flags & UTF_NO_NULL_TERM) == 0);
int decompose = (flags & UTF_DECOMPOSED);
int sfmconv = (flags & UTF_SFM_CONVERSIONS);
int result = 0;
bufstart = utf8p;
bufend = bufstart + buflen;
if (nullterm) {
--bufend;
}
charcnt = ucslen / 2;
while (charcnt-- > 0) {
if (extra > 0) {
--extra;
ucs_ch = *chp++;
} else {
ucs_ch = swapbytes ? OSSwapInt16(*ucsp++) : *ucsp++;
if (decompose && unicode_decomposeable(ucs_ch)) {
extra = unicode_decompose(ucs_ch, sequence) - 1;
charcnt += extra;
ucs_ch = sequence[0];
chp = &sequence[1];
}
}
/* Slash and NULL are not permitted */
if (ucs_ch == '/') {
if (altslash) {
ucs_ch = altslash;
} else {
ucs_ch = '_';
result = EINVAL;
}
} else if (ucs_ch == '\0') {
ucs_ch = UCS_ALT_NULL;
}
if (ucs_ch < 0x0080) {
if (utf8p >= bufend) {
result = ENAMETOOLONG;
break;
}
*utf8p++ = (u_int8_t)ucs_ch;
} else if (ucs_ch < 0x800) {
if ((utf8p + 1) >= bufend) {
result = ENAMETOOLONG;
break;
}
*utf8p++ = 0xc0 | (u_int8_t)(ucs_ch >> 6);
*utf8p++ = 0x80 | (0x3f & ucs_ch);
} else {
/* These chars never valid Unicode. */
if (ucs_ch == 0xFFFE || ucs_ch == 0xFFFF) {
result = EINVAL;
break;
}
/* Combine valid surrogate pairs */
if (ucs_ch >= SP_HIGH_FIRST && ucs_ch <= SP_HIGH_LAST
&& charcnt > 0) {
u_int16_t ch2;
u_int32_t pair;
ch2 = swapbytes ? OSSwapInt16(*ucsp) : *ucsp;
if (ch2 >= SP_LOW_FIRST && ch2 <= SP_LOW_LAST) {
pair = ((ucs_ch - SP_HIGH_FIRST) << SP_HALF_SHIFT)
+ (ch2 - SP_LOW_FIRST) + SP_HALF_BASE;
if ((utf8p + 3) >= bufend) {
result = ENAMETOOLONG;
break;
}
--charcnt;
++ucsp;
*utf8p++ = 0xf0 | (u_int8_t)(pair >> 18);
*utf8p++ = 0x80 | (0x3f & (pair >> 12));
*utf8p++ = 0x80 | (0x3f & (pair >> 6));
*utf8p++ = 0x80 | (0x3f & pair);
continue;
}
} else if (sfmconv) {
ucs_ch = sfm_to_ucs(ucs_ch);
if (ucs_ch < 0x0080) {
if (utf8p >= bufend) {
result = ENAMETOOLONG;
break;
}
*utf8p++ = (u_int8_t)ucs_ch;
continue;
}
}
if ((utf8p + 2) >= bufend) {
result = ENAMETOOLONG;
break;
}
*utf8p++ = 0xe0 | (ucs_ch >> 12);
*utf8p++ = 0x80 | (0x3f & (ucs_ch >> 6));
*utf8p++ = 0x80 | (0x3f & ucs_ch);
}
}
*utf8len = utf8p - bufstart;
if (nullterm) {
*utf8p++ = '\0';
}
return result;
}
// Pushes a character taking account of combining character sequences
static void
push(uint16_t ucs_ch, int *combcharcnt, uint16_t **ucsp)
{
/*
* Make multiple combining character sequences canonical
*/
if (unicode_combinable(ucs_ch)) {
++*combcharcnt; /* start tracking a run */
} else if (*combcharcnt) {
if (*combcharcnt > 1) {
prioritysort(*ucsp - *combcharcnt, *combcharcnt);
}
*combcharcnt = 0; /* start over */
}
*(*ucsp)++ = ucs_ch;
}
/*
* utf8_decodestr - Decodes a UTF-8 string back to Unicode
*
* NOTES:
* The input UTF-8 string does not need to be null terminated
* if utf8len is set.
*
* If '/' chars are allowed on disk then an alternate
* (replacement) char must be provided in altslash.
*
* input flags:
* UTF_REV_ENDIAN: Unicode byte order is opposite current runtime
*
* UTF_BIG_ENDIAN: Unicode byte order is always big endian
*
* UTF_LITTLE_ENDIAN: Unicode byte order is always little endian
*
* UTF_DECOMPOSED: generate fully decomposed output (NFD)
*
* UTF_PRECOMPOSED: generate precomposed output (NFC)
*
* UTF_ESCAPE_ILLEGAL: percent escape any illegal UTF-8 input
*
* result:
* ENAMETOOLONG: Name didn't fit; only ucslen chars were decoded.
*
* EINVAL: Illegal UTF-8 sequence found.
*/
int
utf8_decodestr(const u_int8_t* utf8p, size_t utf8len, u_int16_t* ucsp,
size_t *ucslen, size_t buflen, u_int16_t altslash, int flags)
{
u_int16_t* bufstart;
u_int16_t* bufend;
unsigned int ucs_ch;
unsigned int byte;
int combcharcnt = 0;
int result = 0;
int decompose, precompose, escaping;
int sfmconv;
int extrabytes;
decompose = (flags & UTF_DECOMPOSED);
precompose = (flags & UTF_PRECOMPOSED);
escaping = (flags & UTF_ESCAPE_ILLEGAL);
sfmconv = (flags & UTF_SFM_CONVERSIONS);
bufstart = ucsp;
bufend = (u_int16_t *)((u_int8_t *)ucsp + buflen);
while (utf8len-- > 0 && (byte = *utf8p++) != '\0') {
if ((ucsp + 1) > bufend) {
goto toolong;
}
/* check for ascii */
if (byte < 0x80) {
ucs_ch = sfmconv ? ucs_to_sfm((u_int16_t)byte, utf8len == 0) : byte;
} else {
u_int32_t ch;
extrabytes = utf_extrabytes[byte >> 3];
if ((extrabytes < 0) || ((int)utf8len < extrabytes)) {
goto escape;
}
utf8len -= extrabytes;
switch (extrabytes) {
case 1:
ch = byte; ch <<= 6; /* 1st byte */
byte = *utf8p++; /* 2nd byte */
if ((byte >> 6) != 2) {
goto escape2;
}
ch += byte;
ch -= 0x00003080UL;
if (ch < 0x0080) {
goto escape2;
}
ucs_ch = ch;
break;
case 2:
ch = byte; ch <<= 6; /* 1st byte */
byte = *utf8p++; /* 2nd byte */
if ((byte >> 6) != 2) {
goto escape2;
}
ch += byte; ch <<= 6;
byte = *utf8p++; /* 3rd byte */
if ((byte >> 6) != 2) {
goto escape3;
}
ch += byte;
ch -= 0x000E2080UL;
if (ch < 0x0800) {
goto escape3;
}
if (ch >= 0xD800) {
if (ch <= 0xDFFF) {
goto escape3;
}
if (ch == 0xFFFE || ch == 0xFFFF) {
goto escape3;
}
}
ucs_ch = ch;
break;
case 3:
ch = byte; ch <<= 6; /* 1st byte */
byte = *utf8p++; /* 2nd byte */
if ((byte >> 6) != 2) {
goto escape2;
}
ch += byte; ch <<= 6;
byte = *utf8p++; /* 3rd byte */
if ((byte >> 6) != 2) {
goto escape3;
}
ch += byte; ch <<= 6;
byte = *utf8p++; /* 4th byte */
if ((byte >> 6) != 2) {
goto escape4;
}
ch += byte;
ch -= 0x03C82080UL + SP_HALF_BASE;
ucs_ch = (ch >> SP_HALF_SHIFT) + SP_HIGH_FIRST;
if (ucs_ch < SP_HIGH_FIRST || ucs_ch > SP_HIGH_LAST) {
goto escape4;
}
push((uint16_t)ucs_ch, &combcharcnt, &ucsp);
if (ucsp >= bufend) {
goto toolong;
}
ucs_ch = (ch & SP_HALF_MASK) + SP_LOW_FIRST;
if (ucs_ch < SP_LOW_FIRST || ucs_ch > SP_LOW_LAST) {
--ucsp;
goto escape4;
}
*ucsp++ = (u_int16_t)ucs_ch;
continue;
default:
result = EINVAL;
goto exit;
}
if (decompose) {
if (unicode_decomposeable((u_int16_t)ucs_ch)) {
u_int16_t sequence[8] = {0};
int count, i;
count = unicode_decompose((u_int16_t)ucs_ch, sequence);
for (i = 0; i < count; ++i) {
if (ucsp >= bufend) {
goto toolong;
}
push(sequence[i], &combcharcnt, &ucsp);
}
continue;
}
} else if (precompose && (ucsp != bufstart)) {
u_int16_t composite, base;
if (unicode_combinable((u_int16_t)ucs_ch)) {
base = ucsp[-1];
composite = unicode_combine(base, (u_int16_t)ucs_ch);
if (composite) {
--ucsp;
ucs_ch = composite;
}
}
}
if (ucs_ch == UCS_ALT_NULL) {
ucs_ch = '\0';
}
}
if (ucs_ch == altslash) {
ucs_ch = '/';
}
push((u_int16_t)ucs_ch, &combcharcnt, &ucsp);
continue;
/*
* Escape illegal UTF-8 into something legal.
*/
escape4:
utf8p -= 3;
goto escape;
escape3:
utf8p -= 2;
goto escape;
escape2:
utf8p -= 1;
escape:
if (!escaping) {
result = EINVAL;
goto exit;
}
if (extrabytes > 0) {
utf8len += extrabytes;
}
byte = *(utf8p - 1);
if ((ucsp + 2) >= bufend) {
goto toolong;
}
/* Make a previous combining sequence canonical. */
if (combcharcnt > 1) {
prioritysort(ucsp - combcharcnt, combcharcnt);
}
combcharcnt = 0;
ucs_ch = '%';
*ucsp++ = (u_int16_t)ucs_ch;
ucs_ch = hexdigits[byte >> 4];
*ucsp++ = (u_int16_t)ucs_ch;
ucs_ch = hexdigits[byte & 0x0F];
*ucsp++ = (u_int16_t)ucs_ch;
}
/*
* Make a previous combining sequence canonical
*/
if (combcharcnt > 1) {
prioritysort(ucsp - combcharcnt, combcharcnt);
}
if (flags & UTF_REVERSE_ENDIAN) {
uint16_t *p = bufstart;
while (p < ucsp) {
*p = OSSwapInt16(*p);
++p;
}
}
exit:
*ucslen = (u_int8_t*)ucsp - (u_int8_t*)bufstart;
return result;
toolong:
result = ENAMETOOLONG;
goto exit;
}
/*
* utf8_validatestr - Check for a valid UTF-8 string.
*/
int
utf8_validatestr(const u_int8_t* utf8p, size_t utf8len)
{
unsigned int byte;
u_int32_t ch;
unsigned int ucs_ch;
size_t extrabytes;
while (utf8len-- > 0 && (byte = *utf8p++) != '\0') {
if (byte < 0x80) {
continue; /* plain ascii */
}
extrabytes = utf_extrabytes[byte >> 3];
if (utf8len < extrabytes) {
goto invalid;
}
utf8len -= extrabytes;
switch (extrabytes) {
case 1:
ch = byte; ch <<= 6; /* 1st byte */
byte = *utf8p++; /* 2nd byte */
if ((byte >> 6) != 2) {
goto invalid;
}
ch += byte;
ch -= 0x00003080UL;
if (ch < 0x0080) {
goto invalid;
}
break;
case 2:
ch = byte; ch <<= 6; /* 1st byte */
byte = *utf8p++; /* 2nd byte */
if ((byte >> 6) != 2) {
goto invalid;
}
ch += byte; ch <<= 6;
byte = *utf8p++; /* 3rd byte */
if ((byte >> 6) != 2) {
goto invalid;
}
ch += byte;
ch -= 0x000E2080UL;
if (ch < 0x0800) {
goto invalid;
}
if (ch >= 0xD800) {
if (ch <= 0xDFFF) {
goto invalid;
}
if (ch == 0xFFFE || ch == 0xFFFF) {
goto invalid;
}
}
break;
case 3:
ch = byte; ch <<= 6; /* 1st byte */
byte = *utf8p++; /* 2nd byte */
if ((byte >> 6) != 2) {
goto invalid;
}
ch += byte; ch <<= 6;
byte = *utf8p++; /* 3rd byte */
if ((byte >> 6) != 2) {
goto invalid;
}
ch += byte; ch <<= 6;
byte = *utf8p++; /* 4th byte */
if ((byte >> 6) != 2) {
goto invalid;
}
ch += byte;
ch -= 0x03C82080UL + SP_HALF_BASE;
ucs_ch = (ch >> SP_HALF_SHIFT) + SP_HIGH_FIRST;
if (ucs_ch < SP_HIGH_FIRST || ucs_ch > SP_HIGH_LAST) {
goto invalid;
}
ucs_ch = (ch & SP_HALF_MASK) + SP_LOW_FIRST;
if (ucs_ch < SP_LOW_FIRST || ucs_ch > SP_LOW_LAST) {
goto invalid;
}
break;
default:
goto invalid;
}
}
return 0;
invalid:
return EINVAL;
}
/*
* utf8_normalizestr - Normalize a UTF-8 string (NFC or NFD)
*
* This function takes an UTF-8 input string, instr, of inlen bytes
* and produces normalized UTF-8 output into a buffer of buflen bytes
* pointed to by outstr. The size of the output in bytes (not including
* a NULL termination byte) is returned in outlen. In-place conversions
* are not supported (i.e. instr != outstr).]
*
* FLAGS
* UTF_DECOMPOSED: output string will be fully decomposed (NFD)
*
* UTF_PRECOMPOSED: output string will be precomposed (NFC)
*
* UTF_NO_NULL_TERM: do not add null termination to output string
*
* UTF_ESCAPE_ILLEGAL: percent escape any illegal UTF-8 input
*
* ERRORS
* ENAMETOOLONG: output did not fit or input exceeded MAXPATHLEN bytes
*
* EINVAL: illegal UTF-8 sequence encountered or invalid flags
*/
int
utf8_normalizestr(const u_int8_t* instr, size_t inlen, u_int8_t* outstr,
size_t *outlen, size_t buflen, int flags)
{
u_int16_t unicodebuf[32];
u_int16_t* unistr = NULL;
size_t unicode_bytes;
size_t uft8_bytes;
size_t inbuflen;
u_int8_t *outbufstart, *outbufend;
const u_int8_t *inbufstart;
unsigned int byte;
int decompose, precompose;
int result = 0;
if (flags & ~(UTF_DECOMPOSED | UTF_PRECOMPOSED | UTF_NO_NULL_TERM | UTF_ESCAPE_ILLEGAL)) {
return EINVAL;
}
decompose = (flags & UTF_DECOMPOSED);
precompose = (flags & UTF_PRECOMPOSED);
if ((decompose && precompose) || (!decompose && !precompose)) {
return EINVAL;
}
outbufstart = outstr;
outbufend = outbufstart + buflen;
inbufstart = instr;
inbuflen = inlen;
while (inlen-- > 0 && (byte = *instr++) != '\0') {
if (outstr >= outbufend) {
result = ENAMETOOLONG;
goto exit;
}
if (byte >= 0x80) {
goto nonASCII;
}
/* ASCII is already normalized. */
*outstr++ = (u_int8_t)byte;
}
exit:
*outlen = outstr - outbufstart;
if (((flags & UTF_NO_NULL_TERM) == 0)) {
if (outstr < outbufend) {
*outstr++ = '\0';
} else {
result = ENAMETOOLONG;
}
}
return result;
/*
* Non-ASCII uses the existing utf8_encodestr/utf8_decodestr
* functions to perform the normalization. Since this will
* presumably be used to normalize filenames in the back-end
* (on disk or over-the-wire), it should be fast enough.
*/
nonASCII:
/* Make sure the input size is reasonable. */
if (inbuflen > MAXPATHLEN) {
result = ENAMETOOLONG;
goto exit;
}
/*
* Compute worst case Unicode buffer size.
*
* For pre-composed output, every UTF-8 input byte will be at
* most 2 Unicode bytes. For decomposed output, 2 UTF-8 bytes
* (smallest composite char sequence) may yield 6 Unicode bytes
* (1 base char + 2 combining chars).
*/
unicode_bytes = precompose ? (inbuflen * 2) : (inbuflen * 3);
if (unicode_bytes <= sizeof(unicodebuf)) {
unistr = &unicodebuf[0];
} else {
unistr = kalloc_data(unicode_bytes, Z_WAITOK);
}
/* Normalize the string. */
result = utf8_decodestr(inbufstart, inbuflen, unistr, &unicode_bytes,
unicode_bytes, 0, flags & ~UTF_NO_NULL_TERM);
if (result == 0) {
/* Put results back into UTF-8. */
result = utf8_encodestr(unistr, unicode_bytes, outbufstart,
&uft8_bytes, buflen, 0, UTF_NO_NULL_TERM);
outstr = outbufstart + uft8_bytes;
}
if (unistr && unistr != &unicodebuf[0]) {
kfree_data(unistr, unicode_bytes);
}
goto exit;
}
/*
* Unicode 3.2 decomposition code (derived from Core Foundation)
*/
typedef struct {
u_int32_t _key;
u_int32_t _value;
} unicode_mappings32;
static inline u_int32_t
getmappedvalue32(const unicode_mappings32 *theTable, u_int32_t numElem,
u_int16_t character)
{
const unicode_mappings32 *p, *q, *divider;
if ((character < theTable[0]._key) || (character > theTable[numElem - 1]._key)) {
return 0;
}
p = theTable;
q = p + (numElem - 1);
while (p <= q) {
divider = p + ((q - p) >> 1); /* divide by 2 */
if (character < divider->_key) {
q = divider - 1;
} else if (character > divider->_key) {
p = divider + 1;
} else {
return divider->_value;
}
}
return 0;
}
#define RECURSIVE_DECOMPOSITION (1 << 15)
#define EXTRACT_COUNT(value) (((value) >> 12) & 0x0007)
typedef struct {
u_int16_t _key;
u_int16_t _value;
} unicode_mappings16;
static inline u_int16_t
getmappedvalue16(const unicode_mappings16 *theTable, u_int32_t numElem,
u_int16_t character)
{
const unicode_mappings16 *p, *q, *divider;
if ((character < theTable[0]._key) || (character > theTable[numElem - 1]._key)) {
return 0;
}
p = theTable;
q = p + (numElem - 1);
while (p <= q) {
divider = p + ((q - p) >> 1); /* divide by 2 */
if (character < divider->_key) {
q = divider - 1;
} else if (character > divider->_key) {
p = divider + 1;
} else {
return divider->_value;
}
}
return 0;
}
static u_int32_t
unicode_recursive_decompose(u_int16_t character, u_int16_t *convertedChars)
{
u_int16_t value;
u_int32_t length;
u_int16_t firstChar;
u_int16_t theChar;
const u_int16_t *bmpMappings;
u_int32_t usedLength;
value = getmappedvalue16(
(const unicode_mappings16 *)__CFUniCharDecompositionTable,
__UniCharDecompositionTableLength, character);
length = EXTRACT_COUNT(value);
firstChar = value & 0x0FFF;
theChar = firstChar;
bmpMappings = (length == 1 ? &theChar : __CFUniCharMultipleDecompositionTable + firstChar);
usedLength = 0;
if (value & RECURSIVE_DECOMPOSITION) {
usedLength = unicode_recursive_decompose((u_int16_t)*bmpMappings, convertedChars);
--length; /* Decrement for the first char */
if (!usedLength) {
return 0;
}
++bmpMappings;
convertedChars += usedLength;
}
usedLength += length;
while (length--) {
*(convertedChars++) = *(bmpMappings++);
}
return usedLength;
}
#define HANGUL_SBASE 0xAC00
#define HANGUL_LBASE 0x1100
#define HANGUL_VBASE 0x1161
#define HANGUL_TBASE 0x11A7
#define HANGUL_SCOUNT 11172
#define HANGUL_LCOUNT 19
#define HANGUL_VCOUNT 21
#define HANGUL_TCOUNT 28
#define HANGUL_NCOUNT (HANGUL_VCOUNT * HANGUL_TCOUNT)
/*
* unicode_decompose - decompose a composed Unicode char
*
* Composed Unicode characters are forbidden on
* HFS Plus volumes. ucs_decompose will convert a
* composed character into its correct decomposed
* sequence.
*
* Similar to CFUniCharDecomposeCharacter
*/
static int
unicode_decompose(u_int16_t character, u_int16_t *convertedChars)
{
if ((character >= HANGUL_SBASE) &&
(character <= (HANGUL_SBASE + HANGUL_SCOUNT))) {
u_int32_t length;
character -= HANGUL_SBASE;
length = (character % HANGUL_TCOUNT ? 3 : 2);
*(convertedChars++) =
character / HANGUL_NCOUNT + HANGUL_LBASE;
*(convertedChars++) =
(character % HANGUL_NCOUNT) / HANGUL_TCOUNT + HANGUL_VBASE;
if (length > 2) {
*convertedChars = (character % HANGUL_TCOUNT) + HANGUL_TBASE;
}
return length;
} else {
return unicode_recursive_decompose(character, convertedChars);
}
}
/*
* unicode_combine - generate a precomposed Unicode char
*
* Precomposed Unicode characters are required for some volume
* formats and network protocols. unicode_combine will combine
* a decomposed character sequence into a single precomposed
* (composite) character.
*
* Similar toCFUniCharPrecomposeCharacter but unicode_combine
* also handles Hangul Jamo characters.
*/
static u_int16_t
unicode_combine(u_int16_t base, u_int16_t combining)
{
u_int32_t value;
/* Check HANGUL */
if ((combining >= HANGUL_VBASE) && (combining < (HANGUL_TBASE + HANGUL_TCOUNT))) {
/* 2 char Hangul sequences */
if ((combining < (HANGUL_VBASE + HANGUL_VCOUNT)) &&
(base >= HANGUL_LBASE && base < (HANGUL_LBASE + HANGUL_LCOUNT))) {
return HANGUL_SBASE +
((base - HANGUL_LBASE) * (HANGUL_VCOUNT * HANGUL_TCOUNT)) +
((combining - HANGUL_VBASE) * HANGUL_TCOUNT);
}
/* 3 char Hangul sequences */
if ((combining > HANGUL_TBASE) &&
(base >= HANGUL_SBASE && base < (HANGUL_SBASE + HANGUL_SCOUNT))) {
if ((base - HANGUL_SBASE) % HANGUL_TCOUNT) {
return 0;
} else {
return base + (combining - HANGUL_TBASE);
}
}
}
value = getmappedvalue32(
(const unicode_mappings32 *)__CFUniCharPrecompSourceTable,
__CFUniCharPrecompositionTableLength, combining);
if (value) {
value = getmappedvalue16(
(const unicode_mappings16 *)
((const u_int32_t *)__CFUniCharBMPPrecompDestinationTable + (value & 0xFFFF)),
(value >> 16), base);
}
return (u_int16_t)value;
}
/*
* prioritysort - order combining chars into canonical order
*
* Similar to CFUniCharPrioritySort
*/
static void
prioritysort(u_int16_t* characters, int count)
{
u_int32_t p1, p2;
u_int16_t *ch1, *ch2;
u_int16_t *end;
int changes = 0;
end = characters + count;
do {
changes = 0;
ch1 = characters;
ch2 = characters + 1;
p2 = get_combining_class(*ch1);
while (ch2 < end) {
p1 = p2;
p2 = get_combining_class(*ch2);
if (p1 > p2 && p2 != 0) {
u_int16_t tmp;
tmp = *ch1;
*ch1 = *ch2;
*ch2 = tmp;
changes = 1;
/*
* Make sure that p2 contains the combining class for the
* character now stored at *ch2. This isn't required for
* correctness, but it will be more efficient if a character
* with a large combining class has to "bubble past" several
* characters with lower combining classes.
*/
p2 = p1;
}
++ch1;
++ch2;
}
} while (changes);
}
/*
* Invalid NTFS filename characters are encodeded using the
* SFM (Services for Macintosh) private use Unicode characters.
*
* These should only be used for SMB, MSDOS or NTFS.
*
* Illegal NTFS Char SFM Unicode Char
* ----------------------------------------
* 0x01-0x1f 0xf001-0xf01f
* '"' 0xf020
* '*' 0xf021
* '/' 0xf022
* '<' 0xf023
* '>' 0xf024
* '?' 0xf025
* '\' 0xf026
* '|' 0xf027
* ' ' 0xf028 (Only if last char of the name)
* '.' 0xf029 (Only if last char of the name)
* ----------------------------------------
*
* Reference: http://support.microsoft.com/kb/q117258/
*/
#define MAX_SFM2MAC 0x29
#define SFMCODE_PREFIX_MASK 0xf000
/*
* In the Mac OS 9 days the colon was illegal in a file name. For that reason
* SFM had no conversion for the colon. There is a conversion for the
* slash. In Mac OS X the slash is illegal in a file name. So for us the colon
* is a slash and a slash is a colon. So we can just replace the slash with the
* colon in our tables and everything will just work.
*/
static u_int8_t
sfm2mac[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 00 - 07 */
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /* 08 - 0F */
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, /* 10 - 17 */
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, /* 18 - 1F */
0x22, 0x2a, 0x3a, 0x3c, 0x3e, 0x3f, 0x5c, 0x7c, /* 20 - 27 */
0x20, 0x2e /* 28 - 29 */
};
#define SFM2MAC_LEN ((sizeof(sfm2mac))/sizeof(sfm2mac[0]))
static u_int8_t
mac2sfm[] = {
0x20, 0x21, 0x20, 0x23, 0x24, 0x25, 0x26, 0x27, /* 20 - 27 */
0x28, 0x29, 0x21, 0x2b, 0x2c, 0x2d, 0x2e, 0x22, /* 28 - 2f */
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, /* 30 - 37 */
0x38, 0x39, 0x22, 0x3b, 0x23, 0x3d, 0x24, 0x25, /* 38 - 3f */
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, /* 40 - 47 */
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, /* 48 - 4f */
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, /* 50 - 57 */
0x58, 0x59, 0x5a, 0x5b, 0x26, 0x5d, 0x5e, 0x5f, /* 58 - 5f */
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, /* 60 - 67 */
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, /* 68 - 6f */
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, /* 70 - 77 */
0x78, 0x79, 0x7a, 0x7b, 0x27, 0x7d, 0x7e, 0x7f /* 78 - 7f */
};
#define MAC2SFM_LEN ((sizeof(mac2sfm))/sizeof(mac2sfm[0]))
/*
* Encode illegal NTFS filename characters into SFM Private Unicode characters
*
* Assumes non-zero ASCII input.
*/
static u_int16_t
ucs_to_sfm(u_int16_t ucs_ch, int lastchar)
{
/* The last character of filename cannot be a space or period. */
if (lastchar) {
if (ucs_ch == 0x20) {
return 0xf028;
} else if (ucs_ch == 0x2e) {
return 0xf029;
}
}
/* 0x01 - 0x1f is simple transformation. */
if (ucs_ch <= 0x1f) {
return ucs_ch | 0xf000;
} else { /* 0x20 - 0x7f */
u_int16_t lsb;
assert((ucs_ch - 0x0020) < MAC2SFM_LEN);
lsb = mac2sfm[ucs_ch - 0x0020];
if (lsb != ucs_ch) {
return 0xf000 | lsb;
}
}
return ucs_ch;
}
/*
* Decode any SFM Private Unicode characters
*/
static u_int16_t
sfm_to_ucs(u_int16_t ucs_ch)
{
if (((ucs_ch & 0xffC0) == SFMCODE_PREFIX_MASK) &&
((ucs_ch & 0x003f) <= MAX_SFM2MAC)) {
assert((ucs_ch & 0x003f) < SFM2MAC_LEN);
ucs_ch = sfm2mac[ucs_ch & 0x003f];
}
return ucs_ch;
}