/*---------------------------------------------------------------------------+ | errors.c | | | | The error handling functions for wm-FPU-emu | | | | Copyright (C) 1992,1993,1994 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | | Australia. E-mail billm@vaxc.cc.monash.edu.au | | | | | +---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------+ | Note: | | The file contains code which accesses user memory. | | Emulator static data may change when user memory is accessed, due to | | other processes using the emulator while swapping is in progress. | +---------------------------------------------------------------------------*/ #include #include #include "fpu_system.h" #include "exception.h" #include "fpu_emu.h" #include "status_w.h" #include "control_w.h" #include "reg_constant.h" #include "version.h" /* */ #undef PRINT_MESSAGES /* */ void Un_impl(void) { unsigned char byte1, FPU_modrm; unsigned long address = FPU_ORIG_EIP; RE_ENTRANT_CHECK_OFF; /* No need to verify_area(), we have previously fetched these bytes. */ printk("Unimplemented FPU Opcode at eip=%p : ", (void *) address); while ( 1 ) { byte1 = get_fs_byte((unsigned char *) address); if ( (byte1 & 0xf8) == 0xd8 ) break; printk("[%02x]", byte1); address++; } printk("%02x ", byte1); FPU_modrm = get_fs_byte(1 + (unsigned char *) address); if (FPU_modrm >= 0300) printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7); else printk("/%d\n", (FPU_modrm >> 3) & 7); RE_ENTRANT_CHECK_ON; EXCEPTION(EX_Invalid); } /* Called for opcodes which are illegal and which are known to result in a SIGILL with a real 80486. */ void FPU_illegal(void) { math_abort(FPU_info,SIGILL); } void emu_printall() { int i; static char *tag_desc[] = { "Valid", "Zero", "ERROR", "ERROR", "DeNorm", "Inf", "NaN", "Empty" }; unsigned char byte1, FPU_modrm; unsigned long address = FPU_ORIG_EIP; RE_ENTRANT_CHECK_OFF; /* No need to verify_area(), we have previously fetched these bytes. */ printk("At %p: ", (void *) address); while ( 1 ) { byte1 = get_fs_byte((unsigned char *) address); if ( (byte1 & 0xf8) == 0xd8 ) break; printk("[%02x]", byte1); address++; } printk("%02x ", byte1); FPU_modrm = get_fs_byte(1 + (unsigned char *) address); partial_status = status_word(); #ifdef DEBUGGING if ( partial_status & SW_Backward ) printk("SW: backward compatibility\n"); if ( partial_status & SW_C3 ) printk("SW: condition bit 3\n"); if ( partial_status & SW_C2 ) printk("SW: condition bit 2\n"); if ( partial_status & SW_C1 ) printk("SW: condition bit 1\n"); if ( partial_status & SW_C0 ) printk("SW: condition bit 0\n"); if ( partial_status & SW_Summary ) printk("SW: exception summary\n"); if ( partial_status & SW_Stack_Fault ) printk("SW: stack fault\n"); if ( partial_status & SW_Precision ) printk("SW: loss of precision\n"); if ( partial_status & SW_Underflow ) printk("SW: underflow\n"); if ( partial_status & SW_Overflow ) printk("SW: overflow\n"); if ( partial_status & SW_Zero_Div ) printk("SW: divide by zero\n"); if ( partial_status & SW_Denorm_Op ) printk("SW: denormalized operand\n"); if ( partial_status & SW_Invalid ) printk("SW: invalid operation\n"); #endif DEBUGGING if (FPU_modrm >= 0300) printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7); else printk("/%d, mod=%d rm=%d\n", (FPU_modrm >> 3) & 7, (FPU_modrm >> 6) & 3, FPU_modrm & 7); printk(" SW: b=%d st=%ld es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n", partial_status & 0x8000 ? 1 : 0, /* busy */ (partial_status & 0x3800) >> 11, /* stack top pointer */ partial_status & 0x80 ? 1 : 0, /* Error summary status */ partial_status & 0x40 ? 1 : 0, /* Stack flag */ partial_status & SW_C3?1:0, partial_status & SW_C2?1:0, /* cc */ partial_status & SW_C1?1:0, partial_status & SW_C0?1:0, /* cc */ partial_status & SW_Precision?1:0, partial_status & SW_Underflow?1:0, partial_status & SW_Overflow?1:0, partial_status & SW_Zero_Div?1:0, partial_status & SW_Denorm_Op?1:0, partial_status & SW_Invalid?1:0); printk(" CW: ic=%d rc=%ld%ld pc=%ld%ld iem=%d ef=%d%d%d%d%d%d\n", control_word & 0x1000 ? 1 : 0, (control_word & 0x800) >> 11, (control_word & 0x400) >> 10, (control_word & 0x200) >> 9, (control_word & 0x100) >> 8, control_word & 0x80 ? 1 : 0, control_word & SW_Precision?1:0, control_word & SW_Underflow?1:0, control_word & SW_Overflow?1:0, control_word & SW_Zero_Div?1:0, control_word & SW_Denorm_Op?1:0, control_word & SW_Invalid?1:0); for ( i = 0; i < 8; i++ ) { FPU_REG *r = &st(i); switch (r->tag) { case TW_Empty: continue; break; case TW_Zero: #if 0 printk("st(%d) %c .0000 0000 0000 0000 ", i, r->sign ? '-' : '+'); break; #endif case TW_Valid: case TW_NaN: /* case TW_Denormal: */ case TW_Infinity: printk("st(%d) %c .%04lx %04lx %04lx %04lx e%+-6ld ", i, r->sign ? '-' : '+', (long)(r->sigh >> 16), (long)(r->sigh & 0xFFFF), (long)(r->sigl >> 16), (long)(r->sigl & 0xFFFF), r->exp - EXP_BIAS + 1); break; default: printk("Whoops! Error in errors.c "); break; } printk("%s\n", tag_desc[(int) (unsigned) r->tag]); } printk("[data] %c .%04lx %04lx %04lx %04lx e%+-6ld ", FPU_loaded_data.sign ? '-' : '+', (long)(FPU_loaded_data.sigh >> 16), (long)(FPU_loaded_data.sigh & 0xFFFF), (long)(FPU_loaded_data.sigl >> 16), (long)(FPU_loaded_data.sigl & 0xFFFF), FPU_loaded_data.exp - EXP_BIAS + 1); printk("%s\n", tag_desc[(int) (unsigned) FPU_loaded_data.tag]); RE_ENTRANT_CHECK_ON; } static struct { int type; char *name; } exception_names[] = { { EX_StackOver, "stack overflow" }, { EX_StackUnder, "stack underflow" }, { EX_Precision, "loss of precision" }, { EX_Underflow, "underflow" }, { EX_Overflow, "overflow" }, { EX_ZeroDiv, "divide by zero" }, { EX_Denormal, "denormalized operand" }, { EX_Invalid, "invalid operation" }, { EX_INTERNAL, "INTERNAL BUG in "FPU_VERSION }, { 0, NULL } }; /* EX_INTERNAL is always given with a code which indicates where the error was detected. Internal error types: 0 in load_store.c 0x14 in fpu_etc.c 0x1nn in a *.c file: 0x101 in reg_add_sub.c 0x102 in reg_mul.c 0x103 in poly_sin.c 0x104 in poly_atan.c 0x105 in reg_mul.c 0x106 in reg_ld_str.c 0x107 in fpu_trig.c 0x108 in reg_compare.c 0x109 in reg_compare.c 0x110 in reg_add_sub.c 0x111 in fpe_entry.c 0x112 in fpu_trig.c 0x113 in errors.c 0x114 in reg_ld_str.c 0x115 in fpu_trig.c 0x116 in fpu_trig.c 0x117 in fpu_trig.c 0x118 in fpu_trig.c 0x119 in fpu_trig.c 0x120 in poly_atan.c 0x121 in reg_compare.c 0x122 in reg_compare.c 0x123 in reg_compare.c 0x125 in fpu_trig.c 0x126 in fpu_entry.c 0x127 in poly_2xm1.c 0x128 in fpu_entry.c 0x2nn in an *.S file: 0x201 in reg_u_add.S, reg_round.S 0x202 in reg_u_div.S 0x203 in reg_u_div.S 0x204 in reg_u_div.S 0x205 in reg_u_mul.S 0x206 in reg_u_sub.S 0x207 in wm_sqrt.S 0x208 in reg_div.S 0x209 in reg_u_sub.S 0x210 in reg_u_sub.S 0x211 in reg_u_sub.S 0x212 in reg_u_sub.S 0x213 in wm_sqrt.S 0x214 in wm_sqrt.S 0x215 in wm_sqrt.S 0x216 in reg_round.S 0x217 in reg_round.S 0x218 in reg_round.S 0x220 in reg_norm.S 0x221 in reg_norm.S */ void exception(int n) { int i, int_type; int_type = 0; /* Needed only to stop compiler warnings */ if ( n & EX_INTERNAL ) { int_type = n - EX_INTERNAL; n = EX_INTERNAL; /* Set lots of exception bits! */ partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward); } else { /* Extract only the bits which we use to set the status word */ n &= (SW_Exc_Mask); /* Set the corresponding exception bit */ partial_status |= n; /* Set summary bits iff exception isn't masked */ if ( partial_status & ~control_word & CW_Exceptions ) partial_status |= (SW_Summary | SW_Backward); if ( n & (SW_Stack_Fault | EX_Precision) ) { if ( !(n & SW_C1) ) /* This bit distinguishes over- from underflow for a stack fault, and roundup from round-down for precision loss. */ partial_status &= ~SW_C1; } } RE_ENTRANT_CHECK_OFF; if ( (~control_word & n & CW_Exceptions) || (n == EX_INTERNAL) ) { #ifdef PRINT_MESSAGES /* My message from the sponsor */ printk(FPU_VERSION" "__DATE__" (C) W. Metzenthen.\n"); #endif PRINT_MESSAGES /* Get a name string for error reporting */ for (i=0; exception_names[i].type; i++) if ( (exception_names[i].type & n) == exception_names[i].type ) break; if (exception_names[i].type) { #ifdef PRINT_MESSAGES printk("FP Exception: %s!\n", exception_names[i].name); #endif PRINT_MESSAGES } else printk("FP emulator: Unknown Exception: 0x%04x!\n", n); if ( n == EX_INTERNAL ) { printk("FP emulator: Internal error type 0x%04x\n", int_type); emu_printall(); } #ifdef PRINT_MESSAGES else emu_printall(); #endif PRINT_MESSAGES /* * The 80486 generates an interrupt on the next non-control FPU * instruction. So we need some means of flagging it. * We use the ES (Error Summary) bit for this, assuming that * this is the way a real FPU does it (until I can check it out), * if not, then some method such as the following kludge might * be needed. */ /* regs[0].tag |= TW_FPU_Interrupt; */ } RE_ENTRANT_CHECK_ON; #ifdef __DEBUG__ math_abort(FPU_info,SIGFPE); #endif __DEBUG__ } /* Real operation attempted on two operands, one a NaN. */ /* Returns nz if the exception is unmasked */ asmlinkage int real_2op_NaN(FPU_REG const *a, FPU_REG const *b, FPU_REG *dest) { FPU_REG const *x; int signalling; /* The default result for the case of two "equal" NaNs (signs may differ) is chosen to reproduce 80486 behaviour */ x = a; if (a->tag == TW_NaN) { if (b->tag == TW_NaN) { signalling = !(a->sigh & b->sigh & 0x40000000); /* find the "larger" */ if ( significand(a) < significand(b) ) x = b; } else { /* return the quiet version of the NaN in a */ signalling = !(a->sigh & 0x40000000); } } else #ifdef PARANOID if (b->tag == TW_NaN) #endif PARANOID { signalling = !(b->sigh & 0x40000000); x = b; } #ifdef PARANOID else { signalling = 0; EXCEPTION(EX_INTERNAL|0x113); x = &CONST_QNaN; } #endif PARANOID if ( !signalling ) { if ( !(x->sigh & 0x80000000) ) /* pseudo-NaN ? */ x = &CONST_QNaN; reg_move(x, dest); return 0; } if ( control_word & CW_Invalid ) { /* The masked response */ if ( !(x->sigh & 0x80000000) ) /* pseudo-NaN ? */ x = &CONST_QNaN; reg_move(x, dest); /* ensure a Quiet NaN */ dest->sigh |= 0x40000000; } EXCEPTION(EX_Invalid); return !(control_word & CW_Invalid); } /* Invalid arith operation on Valid registers */ /* Returns nz if the exception is unmasked */ asmlinkage int arith_invalid(FPU_REG *dest) { EXCEPTION(EX_Invalid); if ( control_word & CW_Invalid ) { /* The masked response */ reg_move(&CONST_QNaN, dest); } return !(control_word & CW_Invalid); } /* Divide a finite number by zero */ asmlinkage int divide_by_zero(int sign, FPU_REG *dest) { if ( control_word & CW_ZeroDiv ) { /* The masked response */ reg_move(&CONST_INF, dest); dest->sign = (unsigned char)sign; } EXCEPTION(EX_ZeroDiv); return !(control_word & CW_ZeroDiv); } /* This may be called often, so keep it lean */ int set_precision_flag(int flags) { if ( control_word & CW_Precision ) { partial_status &= ~(SW_C1 & flags); partial_status |= flags; /* The masked response */ return 0; } else { exception(flags); return 1; } } /* This may be called often, so keep it lean */ asmlinkage void set_precision_flag_up(void) { if ( control_word & CW_Precision ) partial_status |= (SW_Precision | SW_C1); /* The masked response */ else exception(EX_Precision | SW_C1); } /* This may be called often, so keep it lean */ asmlinkage void set_precision_flag_down(void) { if ( control_word & CW_Precision ) { /* The masked response */ partial_status &= ~SW_C1; partial_status |= SW_Precision; } else exception(EX_Precision); } asmlinkage int denormal_operand(void) { if ( control_word & CW_Denormal ) { /* The masked response */ partial_status |= SW_Denorm_Op; return 0; } else { exception(EX_Denormal); return 1; } } asmlinkage int arith_overflow(FPU_REG *dest) { if ( control_word & CW_Overflow ) { char sign; /* The masked response */ /* ###### The response here depends upon the rounding mode */ sign = dest->sign; reg_move(&CONST_INF, dest); dest->sign = sign; } else { /* Subtract the magic number from the exponent */ dest->exp -= (3 * (1 << 13)); } EXCEPTION(EX_Overflow); if ( control_word & CW_Overflow ) { /* The overflow exception is masked. */ /* By definition, precision is lost. The roundup bit (C1) is also set because we have "rounded" upwards to Infinity. */ EXCEPTION(EX_Precision | SW_C1); return !(control_word & CW_Precision); } return !(control_word & CW_Overflow); } asmlinkage int arith_underflow(FPU_REG *dest) { if ( control_word & CW_Underflow ) { /* The masked response */ if ( dest->exp <= EXP_UNDER - 63 ) { reg_move(&CONST_Z, dest); partial_status &= ~SW_C1; /* Round down. */ } } else { /* Add the magic number to the exponent. */ dest->exp += (3 * (1 << 13)); } EXCEPTION(EX_Underflow); if ( control_word & CW_Underflow ) { /* The underflow exception is masked. */ EXCEPTION(EX_Precision); return !(control_word & CW_Precision); } return !(control_word & CW_Underflow); } void stack_overflow(void) { if ( control_word & CW_Invalid ) { /* The masked response */ top--; reg_move(&CONST_QNaN, FPU_st0_ptr = &st(0)); } EXCEPTION(EX_StackOver); return; } void stack_underflow(void) { if ( control_word & CW_Invalid ) { /* The masked response */ reg_move(&CONST_QNaN, FPU_st0_ptr); } EXCEPTION(EX_StackUnder); return; } void stack_underflow_i(int i) { if ( control_word & CW_Invalid ) { /* The masked response */ reg_move(&CONST_QNaN, &(st(i))); } EXCEPTION(EX_StackUnder); return; } void stack_underflow_pop(int i) { if ( control_word & CW_Invalid ) { /* The masked response */ reg_move(&CONST_QNaN, &(st(i))); pop(); } EXCEPTION(EX_StackUnder); return; }