/* * Copyright (c) 2000-2023 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94 * $FreeBSD: src/sys/netinet/tcp_usrreq.c,v 1.51.2.9 2001/08/22 00:59:12 silby Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if TCPDEBUG #include #endif #if MPTCP #include #endif /* MPTCP */ #if IPSEC #include #endif /*IPSEC*/ #if FLOW_DIVERT #include #endif /* FLOW_DIVERT */ #if SKYWALK #include #include #endif /* SKYWALK */ #include extern char *proc_name_address(void *p); errno_t tcp_fill_info_for_info_tuple(struct info_tuple *, struct tcp_info *); static int tcp_sysctl_info(struct sysctl_oid *, void *, int, struct sysctl_req *); static void tcp_connection_fill_info(struct tcpcb *tp, struct tcp_connection_info *tci); static int tcp_get_mpkl_send_info(struct mbuf *, struct so_mpkl_send_info *); /* * TCP protocol interface to socket abstraction. */ static int tcp_attach(struct socket *, struct proc *); static int tcp_connect(struct tcpcb *, struct sockaddr *, struct proc *); static int tcp6_connect(struct tcpcb *, struct sockaddr *, struct proc *); static int tcp6_usr_connect(struct socket *, struct sockaddr *, struct proc *); static struct tcpcb *tcp_disconnect(struct tcpcb *); static struct tcpcb *tcp_usrclosed(struct tcpcb *); extern void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb); #if TCPDEBUG #define TCPDEBUG0 int ostate = 0 #define TCPDEBUG1() ostate = tp ? tp->t_state : 0 #define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \ tcp_trace(TA_USER, ostate, tp, 0, 0, req) #else #define TCPDEBUG0 #define TCPDEBUG1() #define TCPDEBUG2(req) #endif SYSCTL_PROC(_net_inet_tcp, OID_AUTO, info, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_KERN, 0, 0, tcp_sysctl_info, "S", "TCP info per tuple"); int faster_mcopy = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, faster_mcopy, CTLFLAG_RW | CTLFLAG_LOCKED, &faster_mcopy, 1, "Speed up m_copym"); /* * TCP attaches to socket via pru_attach(), reserving space, * and an internet control block. * * Returns: 0 Success * EISCONN * tcp_attach:ENOBUFS * tcp_attach:ENOMEM * tcp_attach:??? [IPSEC specific] */ static int tcp_usr_attach(struct socket *so, __unused int proto, struct proc *p) { int error; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = 0; TCPDEBUG0; TCPDEBUG1(); if (inp) { error = EISCONN; goto out; } error = tcp_attach(so, p); if (error) { goto out; } if ((so->so_options & SO_LINGER) && so->so_linger == 0) { so->so_linger = (short)(TCP_LINGERTIME * hz); } if (faster_mcopy) { so->so_snd.sb_flags |= SB_SENDHEAD; so->so_snd.sb_sendhead = NULL; so->so_snd.sb_sendoff = 0; } tp = sototcpcb(so); out: TCPDEBUG2(PRU_ATTACH); return error; } /* * pru_detach() detaches the TCP protocol from the socket. * If the protocol state is non-embryonic, then can't * do this directly: have to initiate a pru_disconnect(), * which may finish later; embryonic TCB's can just * be discarded here. */ static int tcp_usr_detach(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; TCPDEBUG0; if (inp == 0 || (inp->inp_state == INPCB_STATE_DEAD)) { return EINVAL; /* XXX */ } socket_lock_assert_owned(so); tp = intotcpcb(inp); /* In case we got disconnected from the peer */ if (tp == NULL) { goto out; } TCPDEBUG1(); calculate_tcp_clock(); tp = tcp_disconnect(tp); out: TCPDEBUG2(PRU_DETACH); return error; } #if NECP #define COMMON_START_ALLOW_FLOW_DIVERT(allow) TCPDEBUG0; \ do { \ if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) \ return (EINVAL); \ if (!(allow) && necp_socket_should_use_flow_divert(inp)) \ return (EPROTOTYPE); \ tp = intotcpcb(inp); \ TCPDEBUG1(); \ calculate_tcp_clock(); \ } while (0) #else /* NECP */ #define COMMON_START_ALLOW_FLOW_DIVERT(allow) TCPDEBUG0; \ do { \ if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) \ return (EINVAL); \ tp = intotcpcb(inp); \ TCPDEBUG1(); \ calculate_tcp_clock(); \ } while (0) #endif /* !NECP */ #define COMMON_START() COMMON_START_ALLOW_FLOW_DIVERT(false) #define COMMON_END(req) out: TCPDEBUG2(req); return error; goto out /* * Give the socket an address. * * Returns: 0 Success * EINVAL Invalid argument [COMMON_START] * EAFNOSUPPORT Address family not supported * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted */ static int tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in *sinp; COMMON_START_ALLOW_FLOW_DIVERT(true); if (nam->sa_family != 0 && nam->sa_family != AF_INET) { error = EAFNOSUPPORT; goto out; } /* * Must check for multicast and broadcast addresses and disallow binding * to them. */ sinp = SIN(nam); if (sinp->sin_family == AF_INET && (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr)) || sinp->sin_addr.s_addr == INADDR_BROADCAST)) { error = EAFNOSUPPORT; goto out; } error = in_pcbbind(inp, nam, p); if (error) { goto out; } #if NECP /* Update NECP client with bind result if not in middle of connect */ if ((inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS) && !uuid_is_null(inp->necp_client_uuid)) { socket_unlock(so, 0); necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); socket_lock(so, 0); } #endif /* NECP */ COMMON_END(PRU_BIND); } static int tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); const uint8_t old_flags = inp->inp_vflag; struct tcpcb *tp; struct sockaddr_in6 *sin6p; COMMON_START_ALLOW_FLOW_DIVERT(true); if (nam->sa_family != 0 && nam->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto out; } /* * Must check for multicast and broadcast addresses and disallow binding * to them. */ sin6p = SIN6(nam); if (sin6p->sin6_family == AF_INET6 && (IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr) || ((IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr) || IN6_IS_ADDR_V4COMPAT(&sin6p->sin6_addr)) && (IN_MULTICAST(ntohl(sin6p->sin6_addr.s6_addr32[3])) || sin6p->sin6_addr.s6_addr32[3] == INADDR_BROADCAST)))) { error = EAFNOSUPPORT; goto out; } /* * Another thread won the binding race so do not change inp_vflag */ if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) { error = EINVAL; goto out; } inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr)) { inp->inp_vflag |= INP_IPV4; } else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, SA(&sin), p); if (error != 0) { inp->inp_vflag = old_flags; route_clear(&inp->inp_route); } goto out; } } error = in6_pcbbind(inp, nam, p); if (error) { inp->inp_vflag = old_flags; route_clear(&inp->inp_route); goto out; } COMMON_END(PRU_BIND); } /* * Prepare to accept connections. * * Returns: 0 Success * EINVAL [COMMON_START] * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted */ static int tcp_usr_listen(struct socket *so, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START_ALLOW_FLOW_DIVERT(true); if (inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, p); } if (error == 0) { TCP_LOG_STATE(tp, TCPS_LISTEN); tp->t_state = TCPS_LISTEN; if (nstat_collect) { nstat_pcb_event(inp, NSTAT_EVENT_SRC_FLOW_STATE_LISTEN); } } TCP_LOG_LISTEN(tp, error); COMMON_END(PRU_LISTEN); } static int tcp6_usr_listen(struct socket *so, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START_ALLOW_FLOW_DIVERT(true); if (inp->inp_lport == 0) { inp->inp_vflag &= ~INP_IPV4; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { inp->inp_vflag |= INP_IPV4; } error = in6_pcbbind(inp, NULL, p); } if (error == 0) { TCP_LOG_STATE(tp, TCPS_LISTEN); tp->t_state = TCPS_LISTEN; if (nstat_collect) { nstat_pcb_event(inp, NSTAT_EVENT_SRC_FLOW_STATE_LISTEN); } } TCP_LOG_LISTEN(tp, error); COMMON_END(PRU_LISTEN); } static int tcp_connect_complete(struct socket *so) { struct tcpcb *tp = sototcpcb(so); struct inpcb *inp = sotoinpcb(so); int error = 0; /* TFO delays the tcp_output until later, when the app calls write() */ if (so->so_flags1 & SOF1_PRECONNECT_DATA) { if (!necp_socket_is_allowed_to_send_recv(sotoinpcb(so), NULL, 0, NULL, NULL, NULL, NULL)) { TCP_LOG_DROP_NECP(NULL, NULL, tp, true); return EHOSTUNREACH; } /* Initialize enough state so that we can actually send data */ tcp_mss(tp, -1, IFSCOPE_NONE); tp->snd_wnd = tp->t_maxseg; tp->max_sndwnd = tp->snd_wnd; } else { tp->t_flagsext |= TF_USR_OUTPUT; error = tcp_output(tp); tp->t_flagsext &= ~TF_USR_OUTPUT; } #if NECP /* Update NECP client with connected five-tuple */ if (error == 0 && !uuid_is_null(inp->necp_client_uuid)) { socket_unlock(so, 0); necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); socket_lock(so, 0); } #endif /* NECP */ return error; } __attribute__((noinline)) static void tcp_log_address_error(int error, struct sockaddr *nam, struct proc *p) { char buffer[MAX_IPv6_STR_LEN]; if (nam->sa_family == AF_INET6) { struct sockaddr_in6 *sin6p = SIN6(nam); inet_ntop(AF_INET6, &sin6p->sin6_addr, buffer, sizeof(buffer)); } else { struct sockaddr_in *sinp = SIN(nam); inet_ntop(AF_INET, &sinp->sin_addr, buffer, sizeof(buffer)); } if (p == NULL) { p = current_proc(); } os_log(OS_LOG_DEFAULT, "connect address error %d for %s process %s:%u", error, buffer, proc_name_address(p), proc_pid(p)); } /* * Note that connecting to the all-zeros address is OK and is treated as the * loopback address */ static int tcp_usr_connect_common(struct socket *so, struct tcpcb *tp, struct sockaddr *nam, struct proc *p, bool isipv6, bool need_connect_complete) { int error = 0; struct inpcb *inp = sotoinpcb(so); if (isipv6 == 0) { struct sockaddr_in *sinp; if (nam->sa_family != 0 && nam->sa_family != AF_INET) { error = EAFNOSUPPORT; goto out; } /* * Disallow connecting to multicast and broadcast addresses. */ sinp = SIN(nam); if (sinp->sin_family == AF_INET && (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr)) || sinp->sin_addr.s_addr == INADDR_BROADCAST)) { error = EAFNOSUPPORT; goto out; } if ((error = tcp_connect(tp, nam, p)) != 0) { goto out; } } else { struct sockaddr_in6 *sin6p; if (nam->sa_family != 0 && nam->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto out; } /* * Disallow connecting to multicast and broadcast addresses. */ sin6p = SIN6(nam); if (sin6p->sin6_family == AF_INET6 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) { error = EAFNOSUPPORT; goto out; } if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { struct sockaddr_in sin; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { error = EINVAL; goto out; } in6_sin6_2_sin(&sin, sin6p); /* * Disallow connecting to multicast and broadcast addresses. */ if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr)) || sin.sin_addr.s_addr == INADDR_BROADCAST) { error = EAFNOSUPPORT; goto out; } inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; if ((error = tcp_connect(tp, SA(&sin), p)) != 0) { goto out; } goto out; } else if (IN6_IS_ADDR_V4COMPAT(&sin6p->sin6_addr)) { /* * Disallow connecting to multicast and broadcast addresses. */ if (IN_MULTICAST(ntohl(sin6p->sin6_addr.s6_addr32[3])) || sin6p->sin6_addr.s6_addr32[3] == INADDR_BROADCAST) { error = EAFNOSUPPORT; goto out; } } inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((error = tcp6_connect(tp, nam, p)) != 0) { goto out; } } out: if (need_connect_complete && error == 0) { error = tcp_connect_complete(so); } TCP_LOG_CONNECT(tp, true, error); if (error == EAFNOSUPPORT) { tcp_log_address_error(error, nam, p); } return error; } /* * Initiate connection to peer. * Create a template for use in transmissions on this connection. * Enter SYN_SENT state, and mark socket as connecting. * Start keep-alive timer, and seed output sequence space. * Send initial segment on connection. */ static int tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; TCPDEBUG0; if (inp == NULL) { return EINVAL; } else if (inp->inp_state == INPCB_STATE_DEAD) { if (so->so_error) { error = so->so_error; so->so_error = 0; return error; } else { return EINVAL; } } #if NECP #if CONTENT_FILTER error = cfil_sock_attach(so, NULL, nam, CFS_CONNECTION_DIR_OUT); if (error != 0) { return error; } #endif /* CONTENT_FILTER */ #if FLOW_DIVERT if (necp_socket_should_use_flow_divert(inp)) { error = flow_divert_pcb_init(so); if (error == 0) { error = flow_divert_connect_out(so, nam, p); } return error; } else { so->so_flags1 |= SOF1_FLOW_DIVERT_SKIP; } #endif /* FLOW_DIVERT */ #endif /* NECP */ tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); error = tcp_usr_connect_common(so, tp, nam, p, false, true); if (error != 0) { goto out; } COMMON_END(PRU_CONNECT); } static int tcp_usr_connectx_common(struct socket *so, int af, struct sockaddr *src, struct sockaddr *dst, struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, uint32_t arglen, struct uio *auio, user_ssize_t *bytes_written) { #pragma unused(aid, flags, arg, arglen) struct inpcb *inp = sotoinpcb(so); int error = 0; user_ssize_t datalen = 0; if (inp == NULL) { return EINVAL; } VERIFY(dst != NULL); ASSERT(!(inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS)); inp->inp_flags2 |= INP2_CONNECT_IN_PROGRESS; #if NECP inp_update_necp_policy(inp, src, dst, ifscope); #endif /* NECP */ if ((so->so_flags1 & SOF1_DATA_IDEMPOTENT) && (tcp_fastopen & TCP_FASTOPEN_CLIENT)) { sototcpcb(so)->t_flagsext |= TF_FASTOPEN; } /* bind socket to the specified interface, if requested */ if (ifscope != IFSCOPE_NONE && (error = inp_bindif(inp, ifscope, NULL)) != 0) { goto done; } /* if source address and/or port is specified, bind to it */ if (src != NULL) { error = sobindlock(so, src, 0); /* already locked */ if (error != 0) { goto done; } } switch (af) { case AF_INET: error = tcp_usr_connect(so, dst, p); break; case AF_INET6: error = tcp6_usr_connect(so, dst, p); break; default: VERIFY(0); /* NOTREACHED */ } if (error != 0) { goto done; } /* if there is data, copy it */ if (auio != NULL) { socket_unlock(so, 0); VERIFY(bytes_written != NULL); datalen = uio_resid(auio); error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL, (uio_t)auio, NULL, NULL, 0); socket_lock(so, 0); if (error == 0 || error == EWOULDBLOCK) { *bytes_written = datalen - uio_resid(auio); } /* * sosend returns EWOULDBLOCK if it's a non-blocking * socket or a timeout occured (this allows to return * the amount of queued data through sendit()). * * However, connectx() returns EINPROGRESS in case of a * blocking socket. So we change the return value here. */ if (error == EWOULDBLOCK) { error = EINPROGRESS; } } if (error == 0 && pcid != NULL) { *pcid = 1; /* there is only one connection in regular TCP */ } done: if (error && error != EINPROGRESS) { so->so_flags1 &= ~SOF1_PRECONNECT_DATA; } inp->inp_flags2 &= ~INP2_CONNECT_IN_PROGRESS; return error; } static int tcp_usr_connectx(struct socket *so, struct sockaddr *src, struct sockaddr *dst, struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) { return tcp_usr_connectx_common(so, AF_INET, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written); } static int tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; TCPDEBUG0; if (inp == NULL) { return EINVAL; } else if (inp->inp_state == INPCB_STATE_DEAD) { if (so->so_error) { error = so->so_error; so->so_error = 0; return error; } else { return EINVAL; } } #if NECP #if CONTENT_FILTER error = cfil_sock_attach(so, NULL, nam, CFS_CONNECTION_DIR_OUT); if (error != 0) { return error; } #endif /* CONTENT_FILTER */ #if FLOW_DIVERT if (necp_socket_should_use_flow_divert(inp)) { error = flow_divert_pcb_init(so); if (error == 0) { error = flow_divert_connect_out(so, nam, p); } return error; } else { so->so_flags1 |= SOF1_FLOW_DIVERT_SKIP; } #endif /* FLOW_DIVERT */ #endif /* NECP */ tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); error = tcp_usr_connect_common(so, tp, nam, p, true, true); if (error != 0) { route_clear(&inp->inp_route); goto out; } COMMON_END(PRU_CONNECT); } static int tcp6_usr_connectx(struct socket *so, struct sockaddr*src, struct sockaddr *dst, struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) { return tcp_usr_connectx_common(so, AF_INET6, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written); } /* * Initiate disconnect from peer. * If connection never passed embryonic stage, just drop; * else if don't need to let data drain, then can just drop anyways, * else have to begin TCP shutdown process: mark socket disconnecting, * drain unread data, state switch to reflect user close, and * send segment (e.g. FIN) to peer. Socket will be really disconnected * when peer sends FIN and acks ours. * * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. */ static int tcp_usr_disconnect(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; socket_lock_assert_owned(so); COMMON_START(); /* In case we got disconnected from the peer */ if (tp == NULL) { goto out; } tp = tcp_disconnect(tp); COMMON_END(PRU_DISCONNECT); } /* * User-protocol pru_disconnectx callback. */ static int tcp_usr_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid) { #pragma unused(cid) if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) { return EINVAL; } return tcp_usr_disconnect(so); } /* * Accept a connection. Essentially all the work is * done at higher levels; just return the address * of the peer, storing through addr. */ static int tcp_usr_accept(struct socket *so, struct sockaddr **nam) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = NULL; TCPDEBUG0; in_getpeeraddr(so, nam); if (so->so_state & SS_ISDISCONNECTED) { error = ECONNABORTED; goto out; } if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { return EINVAL; } #if NECP else if (necp_socket_should_use_flow_divert(inp)) { return EPROTOTYPE; } #endif /* NECP */ tp = intotcpcb(inp); TCPDEBUG1(); TCP_LOG_ACCEPT(tp, 0); calculate_tcp_clock(); COMMON_END(PRU_ACCEPT); } static int tcp6_usr_accept(struct socket *so, struct sockaddr **nam) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = NULL; TCPDEBUG0; if (so->so_state & SS_ISDISCONNECTED) { error = ECONNABORTED; goto out; } if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { return EINVAL; } #if NECP else if (necp_socket_should_use_flow_divert(inp)) { return EPROTOTYPE; } #endif /* NECP */ tp = intotcpcb(inp); TCPDEBUG1(); TCP_LOG_ACCEPT(tp, 0); calculate_tcp_clock(); in6_mapped_peeraddr(so, nam); COMMON_END(PRU_ACCEPT); } /* * Mark the connection as being incapable of further output. * * Returns: 0 Success * EINVAL [COMMON_START] * tcp_output:EADDRNOTAVAIL * tcp_output:ENOBUFS * tcp_output:EMSGSIZE * tcp_output:EHOSTUNREACH * tcp_output:ENETUNREACH * tcp_output:ENETDOWN * tcp_output:ENOMEM * tcp_output:EACCES * tcp_output:EMSGSIZE * tcp_output:ENOBUFS * tcp_output:??? [ignorable: mostly IPSEC/firewall/DLIL] */ static int tcp_usr_shutdown(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; TCPDEBUG0; if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { return EINVAL; } socantsendmore(so); /* * In case we got disconnected from the peer, or if this is * a socket that is to be flow-diverted (but not yet). */ tp = intotcpcb(inp); TCPDEBUG1(); if (tp == NULL #if NECP || (necp_socket_should_use_flow_divert(inp)) #endif /* NECP */ ) { if (tp != NULL) { error = EPROTOTYPE; } goto out; } calculate_tcp_clock(); tp = tcp_usrclosed(tp); #if MPTCP /* A reset has been sent but socket exists, do not send FIN */ if ((so->so_flags & SOF_MP_SUBFLOW) && (tp) && (tp->t_mpflags & TMPF_RESET)) { goto out; } #endif #if CONTENT_FILTER /* Don't send a FIN yet */ if (tp && !(so->so_state & SS_ISDISCONNECTED) && cfil_sock_data_pending(&so->so_snd)) { goto out; } #endif /* CONTENT_FILTER */ if (tp) { error = tcp_output(tp); } COMMON_END(PRU_SHUTDOWN); } /* * After a receive, possibly send window update to peer. */ static int tcp_usr_rcvd(struct socket *so, int flags) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); /* In case we got disconnected from the peer */ if (tp == NULL) { goto out; } tcp_sbrcv_trim(tp, &so->so_rcv); if ((flags & MSG_WAITALL) && SEQ_LT(tp->last_ack_sent, tp->rcv_nxt)) { tp->t_flags |= TF_ACKNOW; } /* * This tcp_output is solely there to trigger window-updates. * However, we really do not want these window-updates while we * are still in SYN_SENT or SYN_RECEIVED. */ if (TCPS_HAVEESTABLISHED(tp->t_state)) { tcp_output(tp); } #if CONTENT_FILTER cfil_sock_buf_update(&so->so_rcv); #endif /* CONTENT_FILTER */ COMMON_END(PRU_RCVD); } __attribute__((noinline)) static int tcp_send_implied_connect(struct socket *so, struct tcpcb *tp, struct sockaddr *nam, struct proc *p, bool isipv6) { int error = 0; error = tcp_usr_connect_common(so, tp, nam, p, isipv6, false); if (error != 0) { goto out; } /* * initialize window to default value, and * initialize maxseg/maxopd using peer's cached * MSS. */ tp->snd_wnd = TTCP_CLIENT_SND_WND; tp->max_sndwnd = tp->snd_wnd; tcp_mss(tp, -1, IFSCOPE_NONE); out: return error; } __attribute__((noinline)) static void mpkl_tcp_send(struct socket *so, struct tcpcb *tp, uint32_t mpkl_seq, uint32_t mpkl_len, struct so_mpkl_send_info *mpkl_send_info) { struct inpcb *inp = tp->t_inpcb; if (inp == NULL) { return; } if ((inp->inp_last_outifp != NULL && (inp->inp_last_outifp->if_xflags & IFXF_MPK_LOG)) || (inp->inp_boundifp != NULL && (inp->inp_boundifp->if_xflags & IFXF_MPK_LOG))) { MPKL_TCP_SEND(tcp_mpkl_log_object, mpkl_send_info->mpkl_proto, mpkl_send_info->mpkl_uuid, ntohs(inp->inp_lport), ntohs(inp->inp_fport), mpkl_seq, mpkl_len, so->last_pid, so->so_log_seqn++); } } /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. Unlike the other * pru_*() routines, the mbuf chains are our responsibility. We * must either enqueue them or free them. The other pru_* routines * generally are caller-frees. * * Returns: 0 Success * ECONNRESET * EINVAL * ENOBUFS * tcp_connect:EADDRINUSE Address in use * tcp_connect:EADDRNOTAVAIL Address not available. * tcp_connect:EINVAL Invalid argument * tcp_connect:EAFNOSUPPORT Address family not supported [notdef] * tcp_connect:EACCES Permission denied * tcp_connect:EAGAIN Resource unavailable, try again * tcp_connect:EPERM Operation not permitted * tcp_output:EADDRNOTAVAIL * tcp_output:ENOBUFS * tcp_output:EMSGSIZE * tcp_output:EHOSTUNREACH * tcp_output:ENETUNREACH * tcp_output:ENETDOWN * tcp_output:ENOMEM * tcp_output:EACCES * tcp_output:EMSGSIZE * tcp_output:ENOBUFS * tcp_output:??? [ignorable: mostly IPSEC/firewall/DLIL] * tcp6_connect:??? [IPV6 only] */ static int tcp_usr_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; uint32_t mpkl_len = 0; /* length of mbuf chain */ uint32_t mpkl_seq = 0; /* sequence number where new data is added */ struct so_mpkl_send_info mpkl_send_info = {}; bool isipv6; TCPDEBUG0; if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD #if NECP || (necp_socket_should_use_flow_divert(inp)) #endif /* NECP */ ) { /* * OOPS! we lost a race, the TCP session got reset after * we checked SS_CANTSENDMORE, eg: while doing uiomove or a * network interrupt in the non-splnet() section of sosend(). */ if (m != NULL) { m_freem(m); } if (control != NULL) { m_freem(control); control = NULL; } if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { error = ECONNRESET; /* XXX EPIPE? */ } else { error = EPROTOTYPE; } tp = NULL; TCPDEBUG1(); goto out; } isipv6 = nam && nam->sa_family == AF_INET6 ? true : false; tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); if (net_mpklog_enabled) { mpkl_seq = tp->snd_una + so->so_snd.sb_cc; if (m) { mpkl_len = m_length(m); } if (so->so_flags1 & SOF1_MPKL_SEND_INFO) { uuid_copy(mpkl_send_info.mpkl_uuid, so->so_mpkl_send_uuid); mpkl_send_info.mpkl_proto = so->so_mpkl_send_proto; } } if (control != NULL) { if (control->m_len > 0 && net_mpklog_enabled) { error = tcp_get_mpkl_send_info(control, &mpkl_send_info); /* * Intepretation of the returned code: * 0: client wants us to use value passed in SCM_MPKL_SEND_INFO * 1: SCM_MPKL_SEND_INFO was not present * other: failure */ if (error != 0 && error != ENOMSG) { m_freem(control); if (m != NULL) { m_freem(m); } control = NULL; m = NULL; goto out; } } /* * Silently drop unsupported ancillary data messages */ m_freem(control); control = NULL; } /* MPTCP sublow socket buffers must not be compressed */ VERIFY(!(so->so_flags & SOF_MP_SUBFLOW) || (so->so_snd.sb_flags & SB_NOCOMPRESS)); if (!(flags & PRUS_OOB) || (so->so_flags1 & SOF1_PRECONNECT_DATA)) { sbappendstream(&so->so_snd, m); if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, */ error = tcp_send_implied_connect(so, tp, nam, p, isipv6); if (error != 0) { goto out; } /* The sequence number of the data is past the SYN */ mpkl_seq = tp->iss + 1; } if (flags & PRUS_EOF) { /* * Close the send side of the connection after * the data is sent. */ socantsendmore(so); tp = tcp_usrclosed(tp); } if (tp != NULL) { if (flags & PRUS_MORETOCOME) { tp->t_flags |= TF_MORETOCOME; } tp->t_flagsext |= TF_USR_OUTPUT; error = tcp_output(tp); tp->t_flagsext &= ~TF_USR_OUTPUT; if (flags & PRUS_MORETOCOME) { tp->t_flags &= ~TF_MORETOCOME; } } } else { if (sbspace(&so->so_snd) == 0) { /* if no space is left in sockbuf, * do not try to squeeze in OOB traffic */ m_freem(m); error = ENOBUFS; goto out; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ sbappendstream(&so->so_snd, m); if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg/maxopd using peer's cached * MSS. */ error = tcp_send_implied_connect(so, tp, nam, p, isipv6); if (error != 0) { goto out; } } tp->snd_up = tp->snd_una + so->so_snd.sb_cc; tp->t_flagsext |= TF_FORCE; tp->t_flagsext |= TF_USR_OUTPUT; error = tcp_output(tp); tp->t_flagsext &= ~TF_USR_OUTPUT; tp->t_flagsext &= ~TF_FORCE; } if (net_mpklog_enabled) { mpkl_tcp_send(so, tp, mpkl_seq, mpkl_len, &mpkl_send_info); } /* * We wait for the socket to successfully connect before returning. * This allows us to signal a timeout to the application. */ if (so->so_state & SS_ISCONNECTING) { if (so->so_state & SS_NBIO) { error = EWOULDBLOCK; } else { error = sbwait(&so->so_snd); } } COMMON_END((flags & PRUS_OOB) ? PRU_SENDOOB : ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND)); } /* * Abort the TCP. */ static int tcp_usr_abort(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); /* In case we got disconnected from the peer */ if (tp == NULL) { goto out; } tp = tcp_drop(tp, ECONNABORTED); VERIFY(so->so_usecount > 0); so->so_usecount--; COMMON_END(PRU_ABORT); } /* * Receive out-of-band data. * * Returns: 0 Success * EINVAL [COMMON_START] * EINVAL * EWOULDBLOCK */ static int tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); if ((so->so_oobmark == 0 && (so->so_state & SS_RCVATMARK) == 0) || so->so_options & SO_OOBINLINE || tp->t_oobflags & TCPOOB_HADDATA) { error = EINVAL; goto out; } if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { error = EWOULDBLOCK; goto out; } m->m_len = 1; *mtod(m, caddr_t) = tp->t_iobc; so->so_state &= ~SS_RCVATMARK; if ((flags & MSG_PEEK) == 0) { tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); } COMMON_END(PRU_RCVOOB); } static int tcp_usr_preconnect(struct socket *so) { struct inpcb *inp = sotoinpcb(so); int error = 0; #if NECP if (necp_socket_should_use_flow_divert(inp)) { /* May happen, if in tcp_usr_connect we did not had a chance * to set the usrreqs (due to some error). So, let's get out * of here. */ goto out; } #endif /* NECP */ error = tcp_output(sototcpcb(so)); soclearfastopen(so); COMMON_END(PRU_PRECONNECT); } /* xxx - should be const */ struct pr_usrreqs tcp_usrreqs = { .pru_abort = tcp_usr_abort, .pru_accept = tcp_usr_accept, .pru_attach = tcp_usr_attach, .pru_bind = tcp_usr_bind, .pru_connect = tcp_usr_connect, .pru_connectx = tcp_usr_connectx, .pru_control = in_control, .pru_detach = tcp_usr_detach, .pru_disconnect = tcp_usr_disconnect, .pru_disconnectx = tcp_usr_disconnectx, .pru_listen = tcp_usr_listen, .pru_peeraddr = in_getpeeraddr, .pru_rcvd = tcp_usr_rcvd, .pru_rcvoob = tcp_usr_rcvoob, .pru_send = tcp_usr_send, .pru_shutdown = tcp_usr_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosend = sosend, .pru_soreceive = soreceive, .pru_preconnect = tcp_usr_preconnect, }; struct pr_usrreqs tcp6_usrreqs = { .pru_abort = tcp_usr_abort, .pru_accept = tcp6_usr_accept, .pru_attach = tcp_usr_attach, .pru_bind = tcp6_usr_bind, .pru_connect = tcp6_usr_connect, .pru_connectx = tcp6_usr_connectx, .pru_control = in6_control, .pru_detach = tcp_usr_detach, .pru_disconnect = tcp_usr_disconnect, .pru_disconnectx = tcp_usr_disconnectx, .pru_listen = tcp6_usr_listen, .pru_peeraddr = in6_mapped_peeraddr, .pru_rcvd = tcp_usr_rcvd, .pru_rcvoob = tcp_usr_rcvoob, .pru_send = tcp_usr_send, .pru_shutdown = tcp_usr_shutdown, .pru_sockaddr = in6_mapped_sockaddr, .pru_sosend = sosend, .pru_soreceive = soreceive, .pru_preconnect = tcp_usr_preconnect, }; /* * Common subroutine to open a TCP connection to remote host specified * by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local * port number if needed. Call in_pcbladdr to do the routing and to choose * a local host address (interface). If there is an existing incarnation * of the same connection in TIME-WAIT state and if the remote host was * sending CC options and if the connection duration was < MSL, then * truncate the previous TIME-WAIT state and proceed. * Initialize connection parameters and enter SYN-SENT state. * * Returns: 0 Success * EADDRINUSE * EINVAL * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted * in_pcbladdr:EINVAL Invalid argument * in_pcbladdr:EAFNOSUPPORT Address family not supported * in_pcbladdr:EADDRNOTAVAIL Address not available */ static int tcp_connect(struct tcpcb *tp, struct sockaddr *nam, struct proc *p) { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct tcpcb *otp; struct sockaddr_in *sin = SIN(nam); struct in_addr laddr; int error = 0; struct ifnet *outif = NULL; if (inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, p); if (error) { goto done; } } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. */ error = in_pcbladdr(inp, nam, &laddr, IFSCOPE_NONE, &outif, 0); if (error) { goto done; } socket_unlock(inp->inp_socket, 0); oinp = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr != INADDR_ANY ? inp->inp_laddr : laddr, inp->inp_lport, 0, NULL); socket_lock(inp->inp_socket, 0); if (oinp) { if (oinp != inp) { /* 4143933: avoid deadlock if inp == oinp */ socket_lock(oinp->inp_socket, 1); } if (in_pcb_checkstate(oinp, WNT_RELEASE, 1) == WNT_STOPUSING) { if (oinp != inp) { socket_unlock(oinp->inp_socket, 1); } goto skip_oinp; } if (oinp != inp && (otp = intotcpcb(oinp)) != NULL && otp->t_state == TCPS_TIME_WAIT && ((int)(tcp_now - otp->t_starttime)) < tcp_msl && (otp->t_flags & TF_RCVD_CC)) { otp = tcp_close(otp); } else { printf("tcp_connect: inp=0x%llx err=EADDRINUSE\n", (uint64_t)VM_KERNEL_ADDRPERM(inp)); if (oinp != inp) { socket_unlock(oinp->inp_socket, 1); } error = EADDRINUSE; goto done; } if (oinp != inp) { socket_unlock(oinp->inp_socket, 1); } } skip_oinp: if ((inp->inp_laddr.s_addr == INADDR_ANY ? laddr.s_addr : inp->inp_laddr.s_addr) == sin->sin_addr.s_addr && inp->inp_lport == sin->sin_port) { error = EINVAL; goto done; } #if SKYWALK if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) { error = netns_reserve_in(&inp->inp_netns_token, inp->inp_laddr.s_addr != INADDR_ANY ? inp->inp_laddr : laddr, IPPROTO_TCP, inp->inp_lport, NETNS_BSD, NULL); if (error) { goto done; } } #endif /* SKYWALK */ if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) { /*lock inversion issue, mostly with udp multicast packets */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock); socket_lock(inp->inp_socket, 0); } if (inp->inp_laddr.s_addr == INADDR_ANY) { inp->inp_laddr = laddr; /* no reference needed */ inp->inp_last_outifp = outif; #if SKYWALK if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { netns_set_ifnet(&inp->inp_netns_token, inp->inp_last_outifp); } #endif /* SKYWALK */ inp->inp_flags |= INP_INADDR_ANY; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbrehash(inp); lck_rw_done(&inp->inp_pcbinfo->ipi_lock); if (inp->inp_flowhash == 0) { inp_calc_flowhash(inp); ASSERT(inp->inp_flowhash != 0); } tcp_set_max_rwinscale(tp, so); soisconnecting(so); tcpstat.tcps_connattempt++; TCP_LOG_STATE(tp, TCPS_SYN_SENT); tp->t_state = TCPS_SYN_SENT; tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPINIT(tp)); tp->iss = tcp_new_isn(tp); tcp_sendseqinit(tp); tp->t_connect_time = tcp_now; if (nstat_collect) { nstat_pcb_event(inp, NSTAT_EVENT_SRC_FLOW_STATE_OUTBOUND); nstat_route_connect_attempt(inp->inp_route.ro_rt); } tcp_add_fsw_flow(tp, outif); done: if (outif != NULL) { ifnet_release(outif); } return error; } static int tcp6_connect(struct tcpcb *tp, struct sockaddr *nam, struct proc *p) { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct tcpcb *otp; struct sockaddr_in6 *sin6 = SIN6(nam); struct in6_addr addr6; int error = 0; struct ifnet *outif = NULL; if (inp->inp_lport == 0) { error = in6_pcbbind(inp, NULL, p); if (error) { goto done; } } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. * * in6_pcbladdr() might return an ifp with its reference held * even in the error case, so make sure that it's released * whenever it's non-NULL. */ error = in6_pcbladdr(inp, nam, &addr6, &outif); if (error) { goto done; } socket_unlock(inp->inp_socket, 0); uint32_t lifscope = IFSCOPE_NONE; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { lifscope = inp->inp_lifscope; } else if (sin6->sin6_scope_id != IFSCOPE_NONE) { lifscope = sin6->sin6_scope_id; } else if (outif != NULL) { lifscope = outif->if_index; } oinp = in6_pcblookup_hash(inp->inp_pcbinfo, &sin6->sin6_addr, sin6->sin6_port, sin6->sin6_scope_id, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? &addr6 : &inp->in6p_laddr, inp->inp_lport, lifscope, 0, NULL); socket_lock(inp->inp_socket, 0); if (oinp) { if (oinp != inp && (otp = intotcpcb(oinp)) != NULL && otp->t_state == TCPS_TIME_WAIT && ((int)(tcp_now - otp->t_starttime)) < tcp_msl && (otp->t_flags & TF_RCVD_CC)) { otp = tcp_close(otp); } else { error = EADDRINUSE; goto done; } } #if SKYWALK if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) { error = netns_reserve_in6(&inp->inp_netns_token, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? addr6 : inp->in6p_laddr, IPPROTO_TCP, inp->inp_lport, NETNS_BSD, NULL); if (error) { goto done; } } #endif /* SKYWALK */ if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) { /*lock inversion issue, mostly with udp multicast packets */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock); socket_lock(inp->inp_socket, 0); } if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { inp->in6p_laddr = addr6; inp->in6p_last_outifp = outif; /* no reference needed */ inp->inp_lifscope = lifscope; in6_verify_ifscope(&inp->in6p_laddr, inp->inp_lifscope); #if SKYWALK if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { netns_set_ifnet(&inp->inp_netns_token, inp->in6p_last_outifp); } #endif /* SKYWALK */ inp->in6p_flags |= INP_IN6ADDR_ANY; } inp->in6p_faddr = sin6->sin6_addr; inp->inp_fport = sin6->sin6_port; inp->inp_fifscope = sin6->sin6_scope_id; in6_verify_ifscope(&inp->in6p_faddr, inp->inp_fifscope); if ((sin6->sin6_flowinfo & IPV6_FLOWINFO_MASK) != 0) { inp->inp_flow = sin6->sin6_flowinfo; } in_pcbrehash(inp); lck_rw_done(&inp->inp_pcbinfo->ipi_lock); if (inp->inp_flowhash == 0) { inp_calc_flowhash(inp); ASSERT(inp->inp_flowhash != 0); } /* update flowinfo - RFC 6437 */ if (inp->inp_flow == 0 && inp->in6p_flags & IN6P_AUTOFLOWLABEL) { inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; inp->inp_flow |= (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK); } tcp_set_max_rwinscale(tp, so); soisconnecting(so); tcpstat.tcps_connattempt++; TCP_LOG_STATE(tp, TCPS_SYN_SENT); tp->t_state = TCPS_SYN_SENT; tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPINIT(tp)); tp->iss = tcp_new_isn(tp); tcp_sendseqinit(tp); tp->t_connect_time = tcp_now; if (nstat_collect) { nstat_pcb_event(inp, NSTAT_EVENT_SRC_FLOW_STATE_OUTBOUND); nstat_route_connect_attempt(inp->inp_route.ro_rt); } tcp_add_fsw_flow(tp, outif); done: if (outif != NULL) { ifnet_release(outif); } return error; } /* * Export TCP internal state information via a struct tcp_info */ void tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti) { struct inpcb *inp = tp->t_inpcb; bzero(ti, sizeof(*ti)); ti->tcpi_state = (uint8_t)tp->t_state; ti->tcpi_flowhash = inp != NULL ? inp->inp_flowhash: 0; if (TSTMP_SUPPORTED(tp)) { ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; } if (SACK_ENABLED(tp)) { ti->tcpi_options |= TCPI_OPT_SACK; } if (TCP_WINDOW_SCALE_ENABLED(tp)) { ti->tcpi_options |= TCPI_OPT_WSCALE; ti->tcpi_snd_wscale = tp->snd_scale; ti->tcpi_rcv_wscale = tp->rcv_scale; } if (TCP_ECN_ENABLED(tp)) { ti->tcpi_options |= TCPI_OPT_ECN; } /* Are we in retranmission episode */ if (IN_FASTRECOVERY(tp) || tp->t_rxtshift > 0) { ti->tcpi_flags |= TCPI_FLAG_LOSSRECOVERY; } if (tp->t_flags & TF_STREAMING_ON) { ti->tcpi_flags |= TCPI_FLAG_STREAMING_ON; } ti->tcpi_rto = tp->t_timer[TCPT_REXMT] ? tp->t_rxtcur : 0; ti->tcpi_snd_mss = tp->t_maxseg; ti->tcpi_rcv_mss = tp->t_maxseg; ti->tcpi_rttcur = tp->t_rttcur; ti->tcpi_srtt = tp->t_srtt >> TCP_RTT_SHIFT; ti->tcpi_rcv_srtt = tp->rcv_srtt >> TCP_RTT_SHIFT; ti->tcpi_rttvar = tp->t_rttvar >> TCP_RTTVAR_SHIFT; ti->tcpi_rttbest = tp->t_rttbest >> TCP_RTT_SHIFT; ti->tcpi_snd_ssthresh = tp->snd_ssthresh; ti->tcpi_snd_cwnd = tp->snd_cwnd; if (inp != NULL && inp->inp_socket != NULL) { ti->tcpi_snd_sbbytes = inp->inp_socket->so_snd.sb_cc; } ti->tcpi_rcv_space = tp->rcv_adv > tp->rcv_nxt ? tp->rcv_adv - tp->rcv_nxt : 0; ti->tcpi_snd_wnd = tp->snd_wnd; ti->tcpi_snd_nxt = tp->snd_nxt; ti->tcpi_rcv_nxt = tp->rcv_nxt; /* convert bytes/msec to bits/sec */ if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && tp->t_bwmeas != NULL) { ti->tcpi_snd_bw = (tp->t_bwmeas->bw_sndbw * 8000); } ti->tcpi_txpackets = inp != NULL ? inp->inp_stat->txpackets : 0; ti->tcpi_txbytes = inp != NULL ? inp->inp_stat->txbytes : 0; ti->tcpi_txretransmitbytes = tp->t_stat.txretransmitbytes; ti->tcpi_txretransmitpackets = tp->t_stat.rxmitpkts; ti->tcpi_txunacked = tp->snd_max - tp->snd_una; ti->tcpi_rxpackets = inp != NULL ? inp->inp_stat->rxpackets : 0; ti->tcpi_rxbytes = inp != NULL ? inp->inp_stat->rxbytes : 0; ti->tcpi_rxduplicatebytes = tp->t_stat.rxduplicatebytes; ti->tcpi_rxoutoforderbytes = tp->t_stat.rxoutoforderbytes; if (tp->t_state > TCPS_LISTEN) { ti->tcpi_synrexmits = (uint8_t)tp->t_stat.rxmitsyns; } if (inp != NULL) { ti->tcpi_cell_rxpackets = inp->inp_cstat->rxpackets; ti->tcpi_cell_rxbytes = inp->inp_cstat->rxbytes; ti->tcpi_cell_txpackets = inp->inp_cstat->txpackets; ti->tcpi_cell_txbytes = inp->inp_cstat->txbytes; ti->tcpi_wifi_rxpackets = inp->inp_wstat->rxpackets; ti->tcpi_wifi_rxbytes = inp->inp_wstat->rxbytes; ti->tcpi_wifi_txpackets = inp->inp_wstat->txpackets; ti->tcpi_wifi_txbytes = inp->inp_wstat->txbytes; ti->tcpi_wired_rxpackets = inp->inp_Wstat->rxpackets; ti->tcpi_wired_rxbytes = inp->inp_Wstat->rxbytes; ti->tcpi_wired_txpackets = inp->inp_Wstat->txpackets; ti->tcpi_wired_txbytes = inp->inp_Wstat->txbytes; } tcp_get_connectivity_status(tp, &ti->tcpi_connstatus); ti->tcpi_tfo_syn_data_rcv = !!(tp->t_tfo_stats & TFO_S_SYNDATA_RCV); ti->tcpi_tfo_cookie_req_rcv = !!(tp->t_tfo_stats & TFO_S_COOKIEREQ_RECV); ti->tcpi_tfo_cookie_sent = !!(tp->t_tfo_stats & TFO_S_COOKIE_SENT); ti->tcpi_tfo_cookie_invalid = !!(tp->t_tfo_stats & TFO_S_COOKIE_INVALID); ti->tcpi_tfo_cookie_req = !!(tp->t_tfo_stats & TFO_S_COOKIE_REQ); ti->tcpi_tfo_cookie_rcv = !!(tp->t_tfo_stats & TFO_S_COOKIE_RCV); ti->tcpi_tfo_syn_data_sent = !!(tp->t_tfo_stats & TFO_S_SYN_DATA_SENT); ti->tcpi_tfo_syn_data_acked = !!(tp->t_tfo_stats & TFO_S_SYN_DATA_ACKED); ti->tcpi_tfo_syn_loss = !!(tp->t_tfo_stats & TFO_S_SYN_LOSS); ti->tcpi_tfo_cookie_wrong = !!(tp->t_tfo_stats & TFO_S_COOKIE_WRONG); ti->tcpi_tfo_no_cookie_rcv = !!(tp->t_tfo_stats & TFO_S_NO_COOKIE_RCV); ti->tcpi_tfo_heuristics_disable = !!(tp->t_tfo_stats & TFO_S_HEURISTICS_DISABLE); ti->tcpi_tfo_send_blackhole = !!(tp->t_tfo_stats & TFO_S_SEND_BLACKHOLE); ti->tcpi_tfo_recv_blackhole = !!(tp->t_tfo_stats & TFO_S_RECV_BLACKHOLE); ti->tcpi_tfo_onebyte_proxy = !!(tp->t_tfo_stats & TFO_S_ONE_BYTE_PROXY); ti->tcpi_ecn_client_setup = !!(tp->ecn_flags & (TE_SETUPSENT | TE_ACE_SETUPSENT)); ti->tcpi_ecn_server_setup = !!(tp->ecn_flags & (TE_SETUPRECEIVED | TE_ACE_SETUPRECEIVED)); ti->tcpi_ecn_success = (TCP_ECN_ENABLED(tp) || TCP_ACC_ECN_ON(tp)) ? 1 : 0; ti->tcpi_ecn_lost_syn = !!(tp->ecn_flags & TE_LOST_SYN); ti->tcpi_ecn_lost_synack = !!(tp->ecn_flags & TE_LOST_SYNACK); ti->tcpi_local_peer = !!(tp->t_flags & TF_LOCAL); if (inp != NULL && inp->inp_last_outifp != NULL) { ti->tcpi_last_outif = inp->inp_last_outifp->if_index; if (IFNET_IS_CELLULAR(inp->inp_last_outifp)) { ti->tcpi_if_cell = 1; } if (IFNET_IS_WIFI(inp->inp_last_outifp)) { ti->tcpi_if_wifi = 1; } if (IFNET_IS_WIRED(inp->inp_last_outifp)) { ti->tcpi_if_wired = 1; } if (IFNET_IS_WIFI_INFRA(inp->inp_last_outifp)) { ti->tcpi_if_wifi_infra = 1; } if (inp->inp_last_outifp->if_eflags & IFEF_AWDL) { ti->tcpi_if_wifi_awdl = 1; } } if (tp->tcp_cc_index == TCP_CC_ALGO_BACKGROUND_INDEX) { ti->tcpi_snd_background = 1; } if (tcp_recv_bg == 1 || (inp != NULL && inp->inp_socket != NULL && IS_TCP_RECV_BG(inp->inp_socket))) { ti->tcpi_rcv_background = 1; } ti->tcpi_ecn_recv_ce = tp->t_ecn_recv_ce; ti->tcpi_ecn_recv_cwr = tp->t_ecn_recv_cwr; ti->tcpi_rcvoopack = tp->t_rcvoopack; ti->tcpi_pawsdrop = tp->t_pawsdrop; ti->tcpi_sack_recovery_episode = tp->t_sack_recovery_episode; ti->tcpi_reordered_pkts = tp->t_reordered_pkts; ti->tcpi_dsack_sent = tp->t_dsack_sent; ti->tcpi_dsack_recvd = tp->t_dsack_recvd; ti->tcpi_client_accecn_state = tp->t_client_accecn_state; ti->tcpi_server_accecn_state = tp->t_server_accecn_state; ti->tcpi_ecn_capable_packets_sent = tp->t_ecn_capable_packets_sent; ti->tcpi_ecn_capable_packets_acked = tp->t_ecn_capable_packets_acked; ti->tcpi_ecn_capable_packets_marked = tp->t_ecn_capable_packets_marked; ti->tcpi_ecn_capable_packets_lost = tp->t_ecn_capable_packets_lost; ti->tcpi_flow_control_total_time = inp->inp_fadv_total_time; ti->tcpi_rcvwnd_limited_total_time = tp->t_rcvwnd_limited_total_time; } __private_extern__ errno_t tcp_fill_info_for_info_tuple(struct info_tuple *itpl, struct tcp_info *ti) { struct inpcbinfo *pcbinfo = NULL; struct inpcb *inp = NULL; struct socket *so; struct tcpcb *tp; if (itpl->itpl_proto == IPPROTO_TCP) { pcbinfo = &tcbinfo; } else { return EINVAL; } if (itpl->itpl_local_sa.sa_family == AF_INET && itpl->itpl_remote_sa.sa_family == AF_INET) { inp = in_pcblookup_hash(pcbinfo, itpl->itpl_remote_sin.sin_addr, itpl->itpl_remote_sin.sin_port, itpl->itpl_local_sin.sin_addr, itpl->itpl_local_sin.sin_port, 0, NULL); } else if (itpl->itpl_local_sa.sa_family == AF_INET6 && itpl->itpl_remote_sa.sa_family == AF_INET6) { struct in6_addr ina6_local; struct in6_addr ina6_remote; ina6_local = itpl->itpl_local_sin6.sin6_addr; if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&ina6_local) && itpl->itpl_local_sin6.sin6_scope_id) { ina6_local.s6_addr16[1] = htons((uint16_t)itpl->itpl_local_sin6.sin6_scope_id); } ina6_remote = itpl->itpl_remote_sin6.sin6_addr; if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&ina6_remote) && itpl->itpl_remote_sin6.sin6_scope_id) { ina6_remote.s6_addr16[1] = htons((uint16_t)itpl->itpl_remote_sin6.sin6_scope_id); } inp = in6_pcblookup_hash(pcbinfo, &ina6_remote, itpl->itpl_remote_sin6.sin6_port, itpl->itpl_remote_sin6.sin6_scope_id, &ina6_local, itpl->itpl_local_sin6.sin6_port, itpl->itpl_local_sin6.sin6_scope_id, 0, NULL); } else { return EINVAL; } if (inp != NULL) { if ((so = inp->inp_socket) == NULL) { return ENOENT; } socket_lock(so, 0); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { socket_unlock(so, 0); return ENOENT; } tp = intotcpcb(inp); tcp_fill_info(tp, ti); socket_unlock(so, 0); return 0; } #if SKYWALK else { /* if no pcb found, check for flowswitch for uTCP flow */ int error; struct nexus_mib_filter nmf = { .nmf_type = NXMIB_FLOW, .nmf_bitmap = NXMIB_FILTER_INFO_TUPLE, .nmf_info_tuple = *itpl, }; struct sk_stats_flow sf; size_t len = sizeof(sf); error = kernel_sysctlbyname(SK_STATS_FLOW, &sf, &len, &nmf, sizeof(nmf)); if (error != 0) { printf("kernel_sysctlbyname err %d\n", error); return error; } if (len != sizeof(sf)) { printf("kernel_sysctlbyname invalid len %zu\n", len); return ENOENT; } /* * This is what flow tracker can offer right now, which is good * for mDNS TCP keep alive offload. */ ti->tcpi_snd_nxt = sf.sf_lseq; ti->tcpi_rcv_nxt = sf.sf_rseq; ti->tcpi_rcv_space = (uint32_t)(sf.sf_lmax_win << sf.sf_lwscale); ti->tcpi_rcv_wscale = sf.sf_lwscale; ti->tcpi_last_outif = (int32_t)sf.sf_if_index; return 0; } #endif /* SKYWALK */ return ENOENT; } static void tcp_connection_fill_info(struct tcpcb *tp, struct tcp_connection_info *tci) { struct inpcb *inp = tp->t_inpcb; bzero(tci, sizeof(*tci)); tci->tcpi_state = (uint8_t)tp->t_state; if (TSTMP_SUPPORTED(tp)) { tci->tcpi_options |= TCPCI_OPT_TIMESTAMPS; } if (SACK_ENABLED(tp)) { tci->tcpi_options |= TCPCI_OPT_SACK; } if (TCP_WINDOW_SCALE_ENABLED(tp)) { tci->tcpi_options |= TCPCI_OPT_WSCALE; tci->tcpi_snd_wscale = tp->snd_scale; tci->tcpi_rcv_wscale = tp->rcv_scale; } if (TCP_ECN_ENABLED(tp)) { tci->tcpi_options |= TCPCI_OPT_ECN; } if (IN_FASTRECOVERY(tp) || tp->t_rxtshift > 0) { tci->tcpi_flags |= TCPCI_FLAG_LOSSRECOVERY; } if (tp->t_flagsext & TF_PKTS_REORDERED) { tci->tcpi_flags |= TCPCI_FLAG_REORDERING_DETECTED; } tci->tcpi_rto = tp->t_timer[TCPT_REXMT] > 0 ? tp->t_rxtcur : 0; tci->tcpi_maxseg = tp->t_maxseg; tci->tcpi_snd_ssthresh = tp->snd_ssthresh; tci->tcpi_snd_cwnd = tp->snd_cwnd; tci->tcpi_snd_wnd = tp->snd_wnd; if (inp != NULL && inp->inp_socket != NULL) { tci->tcpi_snd_sbbytes = inp->inp_socket->so_snd.sb_cc; } tci->tcpi_rcv_wnd = tp->rcv_adv > tp->rcv_nxt ? tp->rcv_adv - tp->rcv_nxt : 0; tci->tcpi_rttcur = tp->t_rttcur; tci->tcpi_srtt = (tp->t_srtt >> TCP_RTT_SHIFT); tci->tcpi_rttvar = (tp->t_rttvar >> TCP_RTTVAR_SHIFT); tci->tcpi_txpackets = inp != NULL ? inp->inp_stat->txpackets : 0; tci->tcpi_txbytes = inp != NULL ? inp->inp_stat->txbytes : 0; tci->tcpi_txretransmitbytes = tp->t_stat.txretransmitbytes; tci->tcpi_txretransmitpackets = tp->t_stat.rxmitpkts; tci->tcpi_rxpackets = inp != NULL ? inp->inp_stat->rxpackets : 0; tci->tcpi_rxbytes = inp != NULL ? inp->inp_stat->rxbytes : 0; tci->tcpi_rxoutoforderbytes = tp->t_stat.rxoutoforderbytes; tci->tcpi_tfo_syn_data_rcv = !!(tp->t_tfo_stats & TFO_S_SYNDATA_RCV); tci->tcpi_tfo_cookie_req_rcv = !!(tp->t_tfo_stats & TFO_S_COOKIEREQ_RECV); tci->tcpi_tfo_cookie_sent = !!(tp->t_tfo_stats & TFO_S_COOKIE_SENT); tci->tcpi_tfo_cookie_invalid = !!(tp->t_tfo_stats & TFO_S_COOKIE_INVALID); tci->tcpi_tfo_cookie_req = !!(tp->t_tfo_stats & TFO_S_COOKIE_REQ); tci->tcpi_tfo_cookie_rcv = !!(tp->t_tfo_stats & TFO_S_COOKIE_RCV); tci->tcpi_tfo_syn_data_sent = !!(tp->t_tfo_stats & TFO_S_SYN_DATA_SENT); tci->tcpi_tfo_syn_data_acked = !!(tp->t_tfo_stats & TFO_S_SYN_DATA_ACKED); tci->tcpi_tfo_syn_loss = !!(tp->t_tfo_stats & TFO_S_SYN_LOSS); tci->tcpi_tfo_cookie_wrong = !!(tp->t_tfo_stats & TFO_S_COOKIE_WRONG); tci->tcpi_tfo_no_cookie_rcv = !!(tp->t_tfo_stats & TFO_S_NO_COOKIE_RCV); tci->tcpi_tfo_heuristics_disable = !!(tp->t_tfo_stats & TFO_S_HEURISTICS_DISABLE); tci->tcpi_tfo_send_blackhole = !!(tp->t_tfo_stats & TFO_S_SEND_BLACKHOLE); tci->tcpi_tfo_recv_blackhole = !!(tp->t_tfo_stats & TFO_S_RECV_BLACKHOLE); tci->tcpi_tfo_onebyte_proxy = !!(tp->t_tfo_stats & TFO_S_ONE_BYTE_PROXY); } __private_extern__ int tcp_sysctl_info(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error; struct tcp_info ti = {}; struct info_tuple itpl; if (req->newptr == USER_ADDR_NULL) { return EINVAL; } if (req->newlen < sizeof(struct info_tuple)) { return EINVAL; } error = SYSCTL_IN(req, &itpl, sizeof(struct info_tuple)); if (error != 0) { return error; } error = tcp_fill_info_for_info_tuple(&itpl, &ti); if (error != 0) { return error; } error = SYSCTL_OUT(req, &ti, sizeof(struct tcp_info)); if (error != 0) { return error; } return 0; } static int tcp_lookup_peer_pid_locked(struct socket *so, pid_t *out_pid) { int error = EHOSTUNREACH; *out_pid = -1; if ((so->so_state & SS_ISCONNECTED) == 0) { return ENOTCONN; } struct inpcb *inp = (struct inpcb*)so->so_pcb; uint16_t lport = inp->inp_lport; uint16_t fport = inp->inp_fport; uint32_t fifscope = inp->inp_fifscope; uint32_t lifscope = inp->inp_lifscope; struct inpcb *finp = NULL; struct in6_addr laddr6, faddr6; struct in_addr laddr4, faddr4; if (inp->inp_vflag & INP_IPV6) { laddr6 = inp->in6p_laddr; faddr6 = inp->in6p_faddr; } else if (inp->inp_vflag & INP_IPV4) { laddr4 = inp->inp_laddr; faddr4 = inp->inp_faddr; } socket_unlock(so, 0); if (inp->inp_vflag & INP_IPV6) { finp = in6_pcblookup_hash(&tcbinfo, &laddr6, lport, lifscope, &faddr6, fport, fifscope, 0, NULL); } else if (inp->inp_vflag & INP_IPV4) { finp = in_pcblookup_hash(&tcbinfo, laddr4, lport, faddr4, fport, 0, NULL); } if (finp) { *out_pid = finp->inp_socket->last_pid; error = 0; in_pcb_checkstate(finp, WNT_RELEASE, 0); } socket_lock(so, 0); return error; } void tcp_getconninfo(struct socket *so, struct conninfo_tcp *tcp_ci) { tcp_fill_info(sototcpcb(so), &tcp_ci->tcpci_tcp_info); } void tcp_clear_keep_alive_offload(struct socket *so) { struct inpcb *inp; struct ifnet *ifp; inp = sotoinpcb(so); if (inp == NULL) { return; } if ((inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD) == 0) { return; } ifp = inp->inp_boundifp != NULL ? inp->inp_boundifp : inp->inp_last_outifp; if (ifp == NULL) { panic("%s: so %p inp %p ifp NULL", __func__, so, inp); } ifnet_lock_exclusive(ifp); if (ifp->if_tcp_kao_cnt == 0) { panic("%s: so %p inp %p ifp %p if_tcp_kao_cnt == 0", __func__, so, inp, ifp); } ifp->if_tcp_kao_cnt--; inp->inp_flags2 &= ~INP2_KEEPALIVE_OFFLOAD; ifnet_lock_done(ifp); } static int tcp_set_keep_alive_offload(struct socket *so, struct proc *proc) { int error = 0; struct inpcb *inp; struct ifnet *ifp; inp = sotoinpcb(so); if (inp == NULL) { return ECONNRESET; } if ((inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD) != 0) { return 0; } ifp = inp->inp_boundifp != NULL ? inp->inp_boundifp : inp->inp_last_outifp; if (ifp == NULL) { error = ENXIO; os_log_info(OS_LOG_DEFAULT, "%s: error %d for proc %s[%u] out ifp is not set\n", __func__, error, proc != NULL ? proc->p_comm : "kernel", proc != NULL ? proc_getpid(proc) : 0); return ENXIO; } error = if_get_tcp_kao_max(ifp); if (error != 0) { return error; } ifnet_lock_exclusive(ifp); if (ifp->if_tcp_kao_cnt < ifp->if_tcp_kao_max) { ifp->if_tcp_kao_cnt++; inp->inp_flags2 |= INP2_KEEPALIVE_OFFLOAD; } else { error = ETOOMANYREFS; os_log_info(OS_LOG_DEFAULT, "%s: error %d for proc %s[%u] if_tcp_kao_max %u\n", __func__, error, proc != NULL ? proc->p_comm : "kernel", proc != NULL ? proc_getpid(proc) : 0, ifp->if_tcp_kao_max); } ifnet_lock_done(ifp); return error; } /* * The new sockopt interface makes it possible for us to block in the * copyin/out step (if we take a page fault). Taking a page fault at * splnet() is probably a Bad Thing. (Since sockets and pcbs both now * use TSM, there probably isn't any need for this function to run at * splnet() any more. This needs more examination.) */ int tcp_ctloutput(struct socket *so, struct sockopt *sopt) { int error = 0, opt = 0, optval = 0; struct inpcb *inp; struct tcpcb *tp; inp = sotoinpcb(so); if (inp == NULL) { return ECONNRESET; } /* Allow at this level */ if (sopt->sopt_level != IPPROTO_TCP && !(sopt->sopt_level == SOL_SOCKET && (sopt->sopt_name == SO_FLUSH || sopt->sopt_name == SO_TRAFFIC_MGT_BACKGROUND))) { if (SOCK_CHECK_DOM(so, PF_INET6)) { error = ip6_ctloutput(so, sopt); } else { error = ip_ctloutput(so, sopt); } return error; } tp = intotcpcb(inp); if (tp == NULL) { return ECONNRESET; } calculate_tcp_clock(); switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case TCP_NODELAY: case TCP_NOOPT: case TCP_NOPUSH: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } switch (sopt->sopt_name) { case TCP_NODELAY: opt = TF_NODELAY; break; case TCP_NOOPT: opt = TF_NOOPT; break; case TCP_NOPUSH: opt = TF_NOPUSH; break; default: opt = 0; /* dead code to fool gcc */ break; } if (optval) { tp->t_flags |= opt; } else { tp->t_flags &= ~opt; } break; case TCP_RXT_FINDROP: case TCP_NOTIMEWAIT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } switch (sopt->sopt_name) { case TCP_RXT_FINDROP: opt = TF_RXTFINDROP; break; case TCP_NOTIMEWAIT: opt = TF_NOTIMEWAIT; break; default: opt = 0; break; } if (optval) { tp->t_flagsext |= opt; } else { tp->t_flagsext &= ~opt; } break; case TCP_MEASURE_SND_BW: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } opt = TF_MEASURESNDBW; if (optval) { if (tp->t_bwmeas == NULL) { tp->t_bwmeas = tcp_bwmeas_alloc(tp); if (tp->t_bwmeas == NULL) { error = ENOMEM; break; } } tp->t_flagsext |= opt; } else { tp->t_flagsext &= ~opt; /* Reset snd bw measurement state */ tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS); if (tp->t_bwmeas != NULL) { tcp_bwmeas_free(tp); } } break; case TCP_MEASURE_BW_BURST: { struct tcp_measure_bw_burst in; uint32_t minpkts, maxpkts; bzero(&in, sizeof(in)); error = sooptcopyin(sopt, &in, sizeof(in), sizeof(in)); if (error) { break; } if ((tp->t_flagsext & TF_MEASURESNDBW) == 0 || tp->t_bwmeas == NULL) { error = EINVAL; break; } minpkts = (in.min_burst_size != 0) ? in.min_burst_size : tp->t_bwmeas->bw_minsizepkts; maxpkts = (in.max_burst_size != 0) ? in.max_burst_size : tp->t_bwmeas->bw_maxsizepkts; if (minpkts > maxpkts) { error = EINVAL; break; } tp->t_bwmeas->bw_minsizepkts = minpkts; tp->t_bwmeas->bw_maxsizepkts = maxpkts; tp->t_bwmeas->bw_minsize = (minpkts * tp->t_maxseg); tp->t_bwmeas->bw_maxsize = (maxpkts * tp->t_maxseg); break; } case TCP_MAXSEG: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } if (optval > 0 && optval <= tp->t_maxseg && optval + 40 >= tcp_minmss) { tp->t_maxseg = optval; } else { error = EINVAL; } break; case TCP_KEEPALIVE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } if (optval < 0 || optval > UINT32_MAX / TCP_RETRANSHZ) { error = EINVAL; } else { tp->t_keepidle = optval * TCP_RETRANSHZ; /* reset the timer to new value */ if (TCPS_HAVEESTABLISHED(tp->t_state)) { tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPIDLE(tp)); tcp_check_timer_state(tp); } } break; case TCP_CONNECTIONTIMEOUT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } if (optval < 0 || optval > UINT32_MAX / TCP_RETRANSHZ) { error = EINVAL; } else { tp->t_keepinit = optval * TCP_RETRANSHZ; if (tp->t_state == TCPS_SYN_RECEIVED || tp->t_state == TCPS_SYN_SENT) { tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_CONN_KEEPINIT(tp)); tcp_check_timer_state(tp); } } break; case TCP_KEEPINTVL: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > UINT32_MAX / TCP_RETRANSHZ) { error = EINVAL; } else { tp->t_keepintvl = optval * TCP_RETRANSHZ; if (tp->t_state == TCPS_FIN_WAIT_2 && TCP_CONN_MAXIDLE(tp) > 0) { tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, TCP_CONN_MAXIDLE(tp)); tcp_check_timer_state(tp); } } break; case TCP_KEEPCNT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > INT32_MAX) { error = EINVAL; } else { tp->t_keepcnt = optval; if (tp->t_state == TCPS_FIN_WAIT_2 && TCP_CONN_MAXIDLE(tp) > 0) { tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, TCP_CONN_MAXIDLE(tp)); tcp_check_timer_state(tp); } } break; case TCP_KEEPALIVE_OFFLOAD: if ((error = priv_check_cred(kauth_cred_get(), PRIV_NETINET_TCP_KA_OFFLOAD, 0)) != 0) { break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > INT32_MAX) { error = EINVAL; break; } if (optval != 0) { error = tcp_set_keep_alive_offload(so, sopt->sopt_p); } else { tcp_clear_keep_alive_offload(so); } break; case PERSIST_TIMEOUT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } if (optval < 0) { error = EINVAL; } else { tp->t_persist_timeout = optval * TCP_RETRANSHZ; } break; case TCP_RXT_CONNDROPTIME: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0) { error = EINVAL; } else { tp->t_rxt_conndroptime = optval * TCP_RETRANSHZ; } break; case TCP_NOTSENT_LOWAT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0) { error = EINVAL; break; } else { if (optval == 0) { so->so_flags &= ~(SOF_NOTSENT_LOWAT); tp->t_notsent_lowat = 0; } else { so->so_flags |= SOF_NOTSENT_LOWAT; tp->t_notsent_lowat = optval; } } break; case TCP_ADAPTIVE_READ_TIMEOUT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > TCP_ADAPTIVE_TIMEOUT_MAX) { error = EINVAL; break; } else if (optval == 0) { tp->t_adaptive_rtimo = 0; tcp_keepalive_reset(tp); if (tp->t_mpsub) { mptcp_reset_keepalive(tp); } } else { tp->t_adaptive_rtimo = (uint8_t)optval; } break; case TCP_ADAPTIVE_WRITE_TIMEOUT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > TCP_ADAPTIVE_TIMEOUT_MAX) { error = EINVAL; break; } else { tp->t_adaptive_wtimo = (uint8_t)optval; } break; case TCP_SENDMOREACKS: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > 1) { error = EINVAL; } else if (optval == 0) { tp->t_flagsext &= ~(TF_NOSTRETCHACK); } else { tp->t_flagsext |= TF_NOSTRETCHACK; } break; case TCP_DISABLE_BLACKHOLE_DETECTION: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > 1) { error = EINVAL; } else if (optval == 0) { tp->t_flagsext &= ~TF_NOBLACKHOLE_DETECTION; } else { tp->t_flagsext |= TF_NOBLACKHOLE_DETECTION; if ((tp->t_flags & TF_BLACKHOLE) && tp->t_pmtud_saved_maxopd > 0) { tcp_pmtud_revert_segment_size(tp); } } break; case TCP_FASTOPEN: if (!(tcp_fastopen & TCP_FASTOPEN_SERVER)) { error = ENOTSUP; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > 1) { error = EINVAL; break; } if (tp->t_state != TCPS_LISTEN) { error = EINVAL; break; } if (optval) { tp->t_flagsext |= TF_FASTOPEN; } else { tcp_disable_tfo(tp); } break; case TCP_FASTOPEN_FORCE_HEURISTICS: break; case TCP_FASTOPEN_FORCE_ENABLE: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0 || optval > 1) { error = EINVAL; break; } if (tp->t_state != TCPS_CLOSED) { error = EINVAL; break; } if (optval) { tp->t_flagsext |= TF_FASTOPEN_FORCE_ENABLE; } else { tp->t_flagsext &= ~TF_FASTOPEN_FORCE_ENABLE; } break; case TCP_ENABLE_ECN: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } if (optval) { tp->ecn_flags |= TE_ECN_MODE_ENABLE; tp->ecn_flags &= ~TE_ECN_MODE_DISABLE; } else { tp->ecn_flags &= ~TE_ECN_MODE_ENABLE; tp->ecn_flags |= TE_ECN_MODE_DISABLE; } break; case TCP_ECN_MODE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } if (optval == ECN_MODE_DEFAULT) { tp->ecn_flags &= ~TE_ECN_MODE_ENABLE; tp->ecn_flags &= ~TE_ECN_MODE_DISABLE; } else if (optval == ECN_MODE_ENABLE) { tp->ecn_flags |= TE_ECN_MODE_ENABLE; tp->ecn_flags &= ~TE_ECN_MODE_DISABLE; } else if (optval == ECN_MODE_DISABLE) { tp->ecn_flags &= ~TE_ECN_MODE_ENABLE; tp->ecn_flags |= TE_ECN_MODE_DISABLE; } else { error = EINVAL; } break; case TCP_ENABLE_L4S: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) { break; } if (optval < 0 || optval > 1) { error = EINVAL; break; } if (tp->t_state != TCPS_CLOSED) { error = EINVAL; break; } if (optval == 1) { tp->t_flagsext |= TF_L4S_ENABLED; tp->t_flagsext &= ~TF_L4S_DISABLED; } else { tp->t_flagsext &= ~TF_L4S_ENABLED; tp->t_flagsext |= TF_L4S_DISABLED; } break; case TCP_NOTIFY_ACKNOWLEDGEMENT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval <= 0) { error = EINVAL; break; } if (tp->t_notify_ack_count >= TCP_MAX_NOTIFY_ACK) { error = ETOOMANYREFS; break; } /* * validate that the given marker id is not * a duplicate to avoid ambiguity */ if ((error = tcp_notify_ack_id_valid(tp, so, optval)) != 0) { break; } error = tcp_add_notify_ack_marker(tp, optval); break; case SO_FLUSH: if ((error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval))) != 0) { break; } error = inp_flush(inp, optval); break; case SO_TRAFFIC_MGT_BACKGROUND: if ((error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval))) != 0) { break; } if (optval) { socket_set_traffic_mgt_flags_locked(so, TRAFFIC_MGT_SO_BACKGROUND); } else { socket_clear_traffic_mgt_flags_locked(so, TRAFFIC_MGT_SO_BACKGROUND); } break; case TCP_RXT_MINIMUM_TIMEOUT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) { break; } if (optval < 0) { error = EINVAL; break; } if (optval == 0) { tp->t_rxt_minimum_timeout = 0; } else { tp->t_rxt_minimum_timeout = min(optval, TCP_RXT_MINIMUM_TIMEOUT_LIMIT); /* convert to milliseconds */ tp->t_rxt_minimum_timeout *= TCP_RETRANSHZ; } break; default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case TCP_NODELAY: optval = tp->t_flags & TF_NODELAY; break; case TCP_MAXSEG: optval = tp->t_maxseg; break; case TCP_KEEPALIVE: if (tp->t_keepidle > 0) { optval = tp->t_keepidle / TCP_RETRANSHZ; } else { optval = tcp_keepidle / TCP_RETRANSHZ; } break; case TCP_KEEPINTVL: if (tp->t_keepintvl > 0) { optval = tp->t_keepintvl / TCP_RETRANSHZ; } else { optval = tcp_keepintvl / TCP_RETRANSHZ; } break; case TCP_KEEPCNT: if (tp->t_keepcnt > 0) { optval = tp->t_keepcnt; } else { optval = tcp_keepcnt; } break; case TCP_KEEPALIVE_OFFLOAD: optval = !!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD); break; case TCP_NOOPT: optval = tp->t_flags & TF_NOOPT; break; case TCP_NOPUSH: optval = tp->t_flags & TF_NOPUSH; break; case TCP_ENABLE_ECN: optval = (tp->ecn_flags & TE_ECN_MODE_ENABLE) ? 1 : 0; break; case TCP_ECN_MODE: if (tp->ecn_flags & TE_ECN_MODE_ENABLE) { optval = ECN_MODE_ENABLE; } else if (tp->ecn_flags & TE_ECN_MODE_DISABLE) { optval = ECN_MODE_DISABLE; } else { optval = ECN_MODE_DEFAULT; } break; case TCP_ENABLE_L4S: optval = (tp->t_flagsext & TF_L4S_ENABLED) ? 1 : 0; break; case TCP_CONNECTIONTIMEOUT: optval = tp->t_keepinit / TCP_RETRANSHZ; break; case PERSIST_TIMEOUT: optval = tp->t_persist_timeout / TCP_RETRANSHZ; break; case TCP_RXT_CONNDROPTIME: optval = tp->t_rxt_conndroptime / TCP_RETRANSHZ; break; case TCP_RXT_FINDROP: optval = tp->t_flagsext & TF_RXTFINDROP; break; case TCP_NOTIMEWAIT: optval = (tp->t_flagsext & TF_NOTIMEWAIT) ? 1 : 0; break; case TCP_FASTOPEN: if (tp->t_state != TCPS_LISTEN || !(tcp_fastopen & TCP_FASTOPEN_SERVER)) { error = ENOTSUP; break; } optval = tfo_enabled(tp); break; case TCP_FASTOPEN_FORCE_HEURISTICS: optval = 0; break; case TCP_FASTOPEN_FORCE_ENABLE: optval = (tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) ? 1 : 0; break; case TCP_MEASURE_SND_BW: optval = tp->t_flagsext & TF_MEASURESNDBW; break; case TCP_INFO: { struct tcp_info ti; tcp_fill_info(tp, &ti); error = sooptcopyout(sopt, &ti, sizeof(struct tcp_info)); goto done; /* NOT REACHED */ } case TCP_CONNECTION_INFO: { struct tcp_connection_info tci; tcp_connection_fill_info(tp, &tci); error = sooptcopyout(sopt, &tci, sizeof(struct tcp_connection_info)); goto done; } case TCP_MEASURE_BW_BURST: { struct tcp_measure_bw_burst out = {}; if ((tp->t_flagsext & TF_MEASURESNDBW) == 0 || tp->t_bwmeas == NULL) { error = EINVAL; break; } out.min_burst_size = tp->t_bwmeas->bw_minsizepkts; out.max_burst_size = tp->t_bwmeas->bw_maxsizepkts; error = sooptcopyout(sopt, &out, sizeof(out)); goto done; } case TCP_NOTSENT_LOWAT: if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0) { optval = tp->t_notsent_lowat; } else { optval = 0; } break; case TCP_SENDMOREACKS: if (tp->t_flagsext & TF_NOSTRETCHACK) { optval = 1; } else { optval = 0; } break; case TCP_DISABLE_BLACKHOLE_DETECTION: if (tp->t_flagsext & TF_NOBLACKHOLE_DETECTION) { optval = 1; } else { optval = 0; } break; case TCP_PEER_PID: { pid_t pid; error = tcp_lookup_peer_pid_locked(so, &pid); if (error == 0) { error = sooptcopyout(sopt, &pid, sizeof(pid)); } goto done; } case TCP_ADAPTIVE_READ_TIMEOUT: optval = tp->t_adaptive_rtimo; break; case TCP_ADAPTIVE_WRITE_TIMEOUT: optval = tp->t_adaptive_wtimo; break; case SO_TRAFFIC_MGT_BACKGROUND: optval = (so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0; break; case TCP_NOTIFY_ACKNOWLEDGEMENT: { struct tcp_notify_ack_complete retid; if (sopt->sopt_valsize != sizeof(retid)) { error = EINVAL; break; } bzero(&retid, sizeof(retid)); tcp_get_notify_ack_count(tp, &retid); if (retid.notify_complete_count > 0) { tcp_get_notify_ack_ids(tp, &retid); } error = sooptcopyout(sopt, &retid, sizeof(retid)); goto done; } case TCP_RXT_MINIMUM_TIMEOUT: optval = tp->t_rxt_minimum_timeout / TCP_RETRANSHZ; break; default: error = ENOPROTOOPT; break; } if (error == 0) { error = sooptcopyout(sopt, &optval, sizeof optval); } break; } done: return error; } /* * tcp_sendspace and tcp_recvspace are the default send and receive window * sizes, respectively. These are obsolescent (this information should * be set by the route). */ uint32_t tcp_sendspace = 1448 * 256; uint32_t tcp_recvspace = 1448 * 384; /* During attach, the size of socket buffer allocated is limited to * sb_max in sbreserve. Disallow setting the tcp send and recv space * to be more than sb_max because that will cause tcp_attach to fail * (see radar 5713060) */ static int sysctl_tcp_sospace(struct sysctl_oid *oidp, __unused void *arg1, int arg2, struct sysctl_req *req) { #pragma unused(arg2) u_int32_t new_value = 0, *space_p = NULL; int changed = 0, error = 0; switch (oidp->oid_number) { case TCPCTL_SENDSPACE: space_p = &tcp_sendspace; break; case TCPCTL_RECVSPACE: space_p = &tcp_recvspace; break; default: return EINVAL; } error = sysctl_io_number(req, *space_p, sizeof(u_int32_t), &new_value, &changed); if (changed) { if (new_value > 0 && new_value <= sb_max) { *space_p = new_value; SYSCTL_SKMEM_UPDATE_AT_OFFSET(arg2, new_value); } else { error = ERANGE; } } return error; } #if SYSCTL_SKMEM SYSCTL_PROC(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &tcp_sendspace, offsetof(skmem_sysctl, tcp.sendspace), sysctl_tcp_sospace, "IU", "Maximum outgoing TCP datagram size"); SYSCTL_PROC(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &tcp_recvspace, offsetof(skmem_sysctl, tcp.recvspace), sysctl_tcp_sospace, "IU", "Maximum incoming TCP datagram size"); #else /* SYSCTL_SKMEM */ SYSCTL_PROC(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &tcp_sendspace, 0, &sysctl_tcp_sospace, "IU", "Maximum outgoing TCP datagram size"); SYSCTL_PROC(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &tcp_recvspace, 0, &sysctl_tcp_sospace, "IU", "Maximum incoming TCP datagram size"); #endif /* SYSCTL_SKMEM */ /* * Attach TCP protocol to socket, allocating * internet protocol control block, tcp control block, * bufer space, and entering LISTEN state if to accept connections. * * Returns: 0 Success * in_pcballoc:ENOBUFS * in_pcballoc:ENOMEM * in_pcballoc:??? [IPSEC specific] * soreserve:ENOBUFS */ static int tcp_attach(struct socket *so, struct proc *p) { struct tcpcb *tp; struct inpcb *inp; int error; int isipv6 = SOCK_CHECK_DOM(so, PF_INET6) != 0; if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, tcp_sendspace, tcp_recvspace); if (error) { return error; } } error = in_pcballoc(so, &tcbinfo, p); if (error) { return error; } inp = sotoinpcb(so); if (so->so_snd.sb_preconn_hiwat == 0) { soreserve_preconnect(so, 2048); } if ((so->so_rcv.sb_flags & SB_USRSIZE) == 0) { so->so_rcv.sb_flags |= SB_AUTOSIZE; } if ((so->so_snd.sb_flags & SB_USRSIZE) == 0) { so->so_snd.sb_flags |= SB_AUTOSIZE; } if (isipv6) { inp->inp_vflag |= INP_IPV6; inp->in6p_hops = -1; /* use kernel default */ } else { inp->inp_vflag |= INP_IPV4; } tp = tcp_newtcpcb(inp); if (tp == NULL) { short nofd = so->so_state & SS_NOFDREF; /* XXX */ so->so_state &= ~SS_NOFDREF; /* don't free the socket yet */ if (isipv6) { in6_pcbdetach(inp); } else { in_pcbdetach(inp); } so->so_state |= nofd; return ENOBUFS; } if (nstat_collect) { nstat_tcp_new_pcb(inp); } TCP_LOG_STATE(tp, TCPS_CLOSED); tp->t_state = TCPS_CLOSED; return 0; } /* * Initiate (or continue) disconnect. * If embryonic state, just send reset (once). * If in ``let data drain'' option and linger null, just drop. * Otherwise (hard), mark socket disconnecting and drop * current input data; switch states based on user close, and * send segment to peer (with FIN). */ static struct tcpcb * tcp_disconnect(struct tcpcb *tp) { struct socket *so = tp->t_inpcb->inp_socket; if (so->so_rcv.sb_cc != 0 || tp->t_reassqlen != 0 || so->so_flags1 & SOF1_DEFUNCTINPROG) { return tcp_drop(tp, 0); } if (tp->t_state < TCPS_ESTABLISHED) { tp = tcp_close(tp); } else if ((so->so_options & SO_LINGER) && so->so_linger == 0) { tp = tcp_drop(tp, 0); } else { soisdisconnecting(so); sbflush(&so->so_rcv); tp = tcp_usrclosed(tp); #if MPTCP /* A reset has been sent but socket exists, do not send FIN */ if ((so->so_flags & SOF_MP_SUBFLOW) && (tp) && (tp->t_mpflags & TMPF_RESET)) { return tp; } #endif if (tp) { (void) tcp_output(tp); } } return tp; } /* * User issued close, and wish to trail through shutdown states: * if never received SYN, just forget it. If got a SYN from peer, * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. * If already got a FIN from peer, then almost done; go to LAST_ACK * state. In all other cases, have already sent FIN to peer (e.g. * after PRU_SHUTDOWN), and just have to play tedious game waiting * for peer to send FIN or not respond to keep-alives, etc. * We can let the user exit from the close as soon as the FIN is acked. */ static struct tcpcb * tcp_usrclosed(struct tcpcb *tp) { switch (tp->t_state) { case TCPS_CLOSED: case TCPS_LISTEN: case TCPS_SYN_SENT: tp = tcp_close(tp); break; case TCPS_SYN_RECEIVED: tp->t_flags |= TF_NEEDFIN; break; case TCPS_ESTABLISHED: DTRACE_TCP4(state__change, void, NULL, struct inpcb *, tp->t_inpcb, struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1); TCP_LOG_STATE(tp, TCPS_FIN_WAIT_1); tp->t_state = TCPS_FIN_WAIT_1; TCP_LOG_CONNECTION_SUMMARY(tp); break; case TCPS_CLOSE_WAIT: DTRACE_TCP4(state__change, void, NULL, struct inpcb *, tp->t_inpcb, struct tcpcb *, tp, int32_t, TCPS_LAST_ACK); TCP_LOG_STATE(tp, TCPS_LAST_ACK); tp->t_state = TCPS_LAST_ACK; TCP_LOG_CONNECTION_SUMMARY(tp); break; } if (tp && tp->t_state >= TCPS_FIN_WAIT_2) { soisdisconnected(tp->t_inpcb->inp_socket); /* To prevent the connection hanging in FIN_WAIT_2 forever. */ if (tp->t_state == TCPS_FIN_WAIT_2) { tcp_set_finwait_timeout(tp); } } return tp; } void tcp_in_cksum_stats(u_int32_t len) { tcpstat.tcps_rcv_swcsum++; tcpstat.tcps_rcv_swcsum_bytes += len; } void tcp_out_cksum_stats(u_int32_t len) { tcpstat.tcps_snd_swcsum++; tcpstat.tcps_snd_swcsum_bytes += len; } void tcp_in6_cksum_stats(u_int32_t len) { tcpstat.tcps_rcv6_swcsum++; tcpstat.tcps_rcv6_swcsum_bytes += len; } void tcp_out6_cksum_stats(u_int32_t len) { tcpstat.tcps_snd6_swcsum++; tcpstat.tcps_snd6_swcsum_bytes += len; } int tcp_get_mpkl_send_info(struct mbuf *control, struct so_mpkl_send_info *mpkl_send_info) { struct cmsghdr *cm; if (control == NULL || mpkl_send_info == NULL) { return EINVAL; } for (cm = M_FIRST_CMSGHDR(control); cm; cm = M_NXT_CMSGHDR(control, cm)) { if (cm->cmsg_len < sizeof(struct cmsghdr) || cm->cmsg_len > control->m_len) { return EINVAL; } if (cm->cmsg_level != SOL_SOCKET || cm->cmsg_type != SCM_MPKL_SEND_INFO) { continue; } if (cm->cmsg_len != CMSG_LEN(sizeof(struct so_mpkl_send_info))) { return EINVAL; } memcpy(mpkl_send_info, CMSG_DATA(cm), sizeof(struct so_mpkl_send_info)); return 0; } return ENOMSG; } /* * tcp socket options. * * The switch statement below does nothing at runtime, as it serves as a * compile time check to ensure that all of the tcp socket options are * unique. This works as long as this routine gets updated each time a * new tcp socket option gets added. * * Any failures at compile time indicates duplicated tcp socket option * values. */ static __attribute__((unused)) void tcpsockopt_cassert(void) { /* * This is equivalent to _CASSERT() and the compiler wouldn't * generate any instructions, thus for compile time only. */ switch ((int)0) { case 0: /* bsd/netinet/tcp.h */ case TCP_NODELAY: case TCP_MAXSEG: case TCP_NOPUSH: case TCP_NOOPT: case TCP_KEEPALIVE: case TCP_CONNECTIONTIMEOUT: case PERSIST_TIMEOUT: case TCP_RXT_CONNDROPTIME: case TCP_RXT_FINDROP: case TCP_KEEPINTVL: case TCP_KEEPCNT: case TCP_SENDMOREACKS: case TCP_ENABLE_ECN: case TCP_FASTOPEN: case TCP_CONNECTION_INFO: case TCP_NOTSENT_LOWAT: /* bsd/netinet/tcp_private.h */ case TCP_INFO: case TCP_MEASURE_SND_BW: case TCP_MEASURE_BW_BURST: case TCP_PEER_PID: case TCP_ADAPTIVE_READ_TIMEOUT: case TCP_OPTION_UNUSED_0: case TCP_ADAPTIVE_WRITE_TIMEOUT: case TCP_NOTIMEWAIT: case TCP_DISABLE_BLACKHOLE_DETECTION: case TCP_ECN_MODE: case TCP_KEEPALIVE_OFFLOAD: ; } }