/*- * Copyright (c) 2008-2009 Apple Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Audit Session Entry. This is treated as an object with public and private * data. The se_auinfo field is the only information that is public and * needs to be the first entry. */ struct au_sentry { auditinfo_addr_t se_auinfo; /* Public audit session data. */ #define se_asid se_auinfo.ai_asid #define se_auid se_auinfo.ai_auid #define se_mask se_auinfo.ai_mask #define se_termid se_auinfo.ai_termid #define se_flags se_auinfo.ai_flags long se_refcnt; /* Reference count. */ long se_procnt; /* Processes in session. */ ipc_port_t se_port; /* Session port. */ union { LIST_ENTRY(au_sentry) se_link; /* Hash bucket link list (1) */ struct smr_node se_smr_node; }; }; typedef struct au_sentry au_sentry_t; #define AU_SENTRY_PTR(aia_p) ((au_sentry_t *)(aia_p)) /* * The default au_sentry/auditinfo_addr entry for ucred. */ static au_sentry_t audit_default_se = { .se_auinfo = { .ai_auid = AU_DEFAUDITID, .ai_asid = AU_DEFAUDITSID, .ai_termid = { .at_type = AU_IPv4, }, }, .se_refcnt = 1, .se_procnt = 1, }; struct auditinfo_addr * const audit_default_aia_p = &audit_default_se.se_auinfo; /* Copied from */ #define IPC_OBJECT_COPYIN_FLAGS_ALLOW_IMMOVABLE_SEND 0x1 kern_return_t ipc_object_copyin(ipc_space_t, mach_port_name_t, mach_msg_type_name_t, ipc_port_t *, mach_port_context_t, mach_msg_guard_flags_t *, uint32_t); void ipc_port_release_send(ipc_port_t); #if CONFIG_AUDIT /* * Currently the hash table is a fixed size. */ #define HASH_TABLE_SIZE 97 #define HASH_ASID(asid) (audit_session_hash(asid) % HASH_TABLE_SIZE) static struct rwlock se_entry_lck; /* (1) lock for se_link above */ LIST_HEAD(au_sentry_head, au_sentry); static struct au_sentry_head *au_sentry_bucket = NULL; #define AU_HISTORY_LOGGING 0 #if AU_HISTORY_LOGGING typedef enum au_history_event { AU_HISTORY_EVENT_UNKNOWN = 0, AU_HISTORY_EVENT_REF = 1, AU_HISTORY_EVENT_UNREF = 2, AU_HISTORY_EVENT_BIRTH = 3, AU_HISTORY_EVENT_DEATH = 4, AU_HISTORY_EVENT_FIND = 5 } au_history_event_t; #define AU_HISTORY_MAX_STACK_DEPTH 8 struct au_history { struct au_sentry *ptr; struct au_sentry se; void *stack[AU_HISTORY_MAX_STACK_DEPTH]; unsigned int stack_depth; au_history_event_t event; }; static struct au_history *au_history; static size_t au_history_size = 65536; static unsigned int au_history_index; static inline unsigned int au_history_entries(void) { if (au_history_index >= au_history_size) { return au_history_size; } else { return au_history_index; } } static inline void au_history_record(au_sentry_t *se, au_history_event_t event) { struct au_history *p; unsigned int i; i = OSAddAtomic(1, &au_history_index); p = &au_history[i % au_history_size]; bzero(p, sizeof(*p)); p->event = event; bcopy(se, &p->se, sizeof(p->se)); p->stack_depth = OSBacktrace(&p->stack[0], AU_HISTORY_MAX_STACK_DEPTH); p->ptr = se; } #else #define au_history_record(se, event) do {} while (0) #endif MALLOC_DEFINE(M_AU_SESSION, "audit_session", "Audit session data"); static void audit_ref_session(au_sentry_t *se); static void audit_unref_session(au_sentry_t *se); static void audit_session_event(int event, auditinfo_addr_t *aia_p); /* * Audit session device. */ static MALLOC_DEFINE(M_AUDIT_SDEV, "audit_sdev", "Audit sdevs"); static MALLOC_DEFINE(M_AUDIT_SDEV_ENTRY, "audit_sdevent", "Audit sdev entries and buffers"); /* * Default audit sdev buffer parameters. */ #define AUDIT_SDEV_QLIMIT_DEFAULT 128 #define AUDIT_SDEV_QLIMIT_MIN 1 #define AUDIT_SDEV_QLIMIT_MAX 1024 /* * Entry structure. */ struct audit_sdev_entry { void *ase_record; u_int ase_record_len; TAILQ_ENTRY(audit_sdev_entry) ase_queue; }; /* * Per audit sdev structure. */ struct audit_sdev { int asdev_open; #define AUDIT_SDEV_ASYNC 0x00000001 #define AUDIT_SDEV_NBIO 0x00000002 #define AUDIT_SDEV_ALLSESSIONS 0x00010000 u_int asdev_flags; struct selinfo asdev_selinfo; pid_t asdev_sigio; au_id_t asdev_auid; au_asid_t asdev_asid; /* Per-sdev mutex for most fields in this struct. */ struct mtx asdev_mtx; /* * Per-sdev sleep lock serializing user-generated reads and * flushes. uiomove() is called to copy out the current head * record's data whie the record remains in the queue, so we * prevent other threads from removing it using this lock. */ struct slck asdev_sx; /* * Condition variable to signal when data has been delivered to * a sdev. */ struct cv asdev_cv; /* Count and bound of records in the queue. */ u_int asdev_qlen; u_int asdev_qlimit; /* The number of bytes of data across all records. */ u_int asdev_qbyteslen; /* * The amount read so far of the first record in the queue. * (The number of bytes available for reading in the queue is * qbyteslen - qoffset.) */ u_int asdev_qoffset; /* * Per-sdev operation statistics. */ u_int64_t asdev_inserts; /* Records added. */ u_int64_t asdev_reads; /* Records read. */ u_int64_t asdev_drops; /* Records dropped. */ /* * Current pending record list. This is protected by a * combination of asdev_mtx and asdev_sx. Note that both * locks are required to remove a record from the head of the * queue, as an in-progress read may sleep while copying and, * therefore, cannot hold asdev_mtx. */ TAILQ_HEAD(, audit_sdev_entry) asdev_queue; /* Global sdev list. */ TAILQ_ENTRY(audit_sdev) asdev_list; }; #define AUDIT_SDEV_LOCK(asdev) mtx_lock(&(asdev)->asdev_mtx) #define AUDIT_SDEV_LOCK_ASSERT(asdev) mtx_assert(&(asdev)->asdev_mtx, \ MA_OWNED) #define AUDIT_SDEV_LOCK_DESTROY(asdev) mtx_destroy(&(asdev)->asdev_mtx) #define AUDIT_SDEV_LOCK_INIT(asdev) mtx_init(&(asdev)->asdev_mtx, \ "audit_sdev_mtx", NULL, MTX_DEF) #define AUDIT_SDEV_UNLOCK(asdev) mtx_unlock(&(asdev)->asdev_mtx) #define AUDIT_SDEV_MTX(asdev) (&(asdev)->asdev_mtx) #define AUDIT_SDEV_SX_LOCK_DESTROY(asd) slck_destroy(&(asd)->asdev_sx) #define AUDIT_SDEV_SX_LOCK_INIT(asd) slck_init(&(asd)->asdev_sx, \ "audit_sdev_sx") #define AUDIT_SDEV_SX_XLOCK_ASSERT(asd) slck_assert(&(asd)->asdev_sx, \ SA_XLOCKED) #define AUDIT_SDEV_SX_XLOCK_SIG(asd) slck_lock_sig(&(asd)->asdev_sx) #define AUDIT_SDEV_SX_XUNLOCK(asd) slck_unlock(&(asd)->asdev_sx) /* * Cloning variables and constants. */ #define AUDIT_SDEV_NAME "auditsessions" #define MAX_AUDIT_SDEVS 32 static int audit_sdev_major; static void *devnode; /* * Global list of audit sdevs. The list is protected by a rw lock. * Individaul record queues are protected by per-sdev locks. These * locks synchronize between threads walking the list to deliver to * individual sdevs and adds/removes of sdevs. */ static TAILQ_HEAD(, audit_sdev) audit_sdev_list; static struct rwlock audit_sdev_lock; #define AUDIT_SDEV_LIST_LOCK_INIT() rw_init(&audit_sdev_lock, \ "audit_sdev_list_lock") #define AUDIT_SDEV_LIST_RLOCK() rw_rlock(&audit_sdev_lock) #define AUDIT_SDEV_LIST_RUNLOCK() rw_runlock(&audit_sdev_lock) #define AUDIT_SDEV_LIST_WLOCK() rw_wlock(&audit_sdev_lock) #define AUDIT_SDEV_LIST_WLOCK_ASSERT() rw_assert(&audit_sdev_lock, \ RA_WLOCKED) #define AUDIT_SDEV_LIST_WUNLOCK() rw_wunlock(&audit_sdev_lock) /* * dev_t doesn't have a pointer for "softc" data so we have to keep track of * it with the following global array (indexed by the minor number). * * XXX We may want to dynamically grow this as need. */ static struct audit_sdev *audit_sdev_dtab[MAX_AUDIT_SDEVS]; /* * Special device methods and definition. */ static open_close_fcn_t audit_sdev_open; static open_close_fcn_t audit_sdev_close; static read_write_fcn_t audit_sdev_read; static ioctl_fcn_t audit_sdev_ioctl; static select_fcn_t audit_sdev_poll; static const struct cdevsw audit_sdev_cdevsw = { .d_open = audit_sdev_open, .d_close = audit_sdev_close, .d_read = audit_sdev_read, .d_write = eno_rdwrt, .d_ioctl = audit_sdev_ioctl, .d_stop = eno_stop, .d_reset = eno_reset, .d_ttys = NULL, .d_select = audit_sdev_poll, .d_mmap = eno_mmap, .d_strategy = eno_strat, .d_type = 0 }; /* * Global statistics on audit sdevs. */ static int audit_sdev_count; /* Current number of sdevs. */ static u_int64_t audit_sdev_ever; /* Sdevs ever allocated. */ static u_int64_t audit_sdev_records; /* Total records seen. */ static u_int64_t audit_sdev_drops; /* Global record drop count. */ static int audit_sdev_init(void); #define AUDIT_SENTRY_RWLOCK_INIT() rw_init(&se_entry_lck, \ "se_entry_lck") #define AUDIT_SENTRY_RLOCK() rw_rlock(&se_entry_lck) #define AUDIT_SENTRY_WLOCK() rw_wlock(&se_entry_lck) #define AUDIT_SENTRY_RWLOCK_ASSERT() rw_assert(&se_entry_lck, RA_LOCKED) #define AUDIT_SENTRY_RUNLOCK() rw_runlock(&se_entry_lck) #define AUDIT_SENTRY_WUNLOCK() rw_wunlock(&se_entry_lck) /* * Access control on the auditinfo_addr.ai_flags member. */ static const uint64_t audit_session_superuser_set_sflags_mask = AU_SESSION_FLAG_HAS_GRAPHIC_ACCESS | AU_SESSION_FLAG_HAS_CONSOLE_ACCESS | AU_SESSION_FLAG_HAS_AUTHENTICATED; static const uint64_t audit_session_superuser_clear_sflags_mask = AU_SESSION_FLAG_HAS_GRAPHIC_ACCESS | AU_SESSION_FLAG_HAS_CONSOLE_ACCESS | AU_SESSION_FLAG_HAS_AUTHENTICATED; static const uint64_t audit_session_member_set_sflags_mask = 0; static const uint64_t audit_session_member_clear_sflags_mask = AU_SESSION_FLAG_HAS_AUTHENTICATED; #define AUDIT_SESSION_DEBUG 0 #if AUDIT_SESSION_DEBUG /* * The following is debugging code that can be used to get a snapshot of the * session state. The audit session information is read out using sysctl: * * error = sysctlbyname("kern.audit_session_debug", buffer_ptr, &buffer_len, * NULL, 0); */ #include /* * The per session record structure for the snapshot data. */ struct au_sentry_debug { auditinfo_addr_t se_auinfo; int64_t se_refcnt; /* refereence count */ int64_t se_procnt; /* process count */ int64_t se_ptcnt; /* process count from * proc table */ }; typedef struct au_sentry_debug au_sentry_debug_t; static int audit_sysctl_session_debug(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); SYSCTL_PROC(_kern, OID_AUTO, audit_session_debug, CTLFLAG_RD | CTLFLAG_LOCKED, NULL, 0, audit_sysctl_session_debug, "S,audit_session_debug", "Current session debug info for auditing."); /* * Callouts for proc_interate() which is used to reconcile the audit session * proc state information with the proc table. We get everything we need * in the filterfn while the proc_lock() is held so we really don't need the * callout() function. */ static int audit_session_debug_callout(__unused proc_t p, __unused void *arg) { return PROC_RETURNED_DONE; } static int audit_session_debug_filterfn(proc_t p, void *st) { kauth_cred_t cred = kauth_cred_get(); auditinfo_addr_t *aia_p = cred->cr_audit.as_aia_p; au_sentry_debug_t *sed_tab = (au_sentry_debug_t *) st; au_sentry_debug_t *sdtp; au_sentry_t *se; if (IS_VALID_SESSION(aia_p)) { sdtp = &sed_tab[0]; do { if (aia_p->ai_asid == sdtp->se_asid) { sdtp->se_ptcnt++; /* Do some santy checks. */ se = AU_SENTRY_PTR(aia_p); if (se->se_refcnt != sdtp->se_refcnt) { sdtp->se_refcnt = (int64_t)se->se_refcnt; } if (se->se_procnt != sdtp->se_procnt) { sdtp->se_procnt = (int64_t)se->se_procnt; } break; } sdtp++; } while (sdtp->se_asid != 0 && sdtp->se_auid != 0); } else { /* add it to the default sesison */ sed_tab->se_ptcnt++; } return 0; } /* * Copy out the session debug info via the sysctl interface. * */ static int audit_sysctl_session_debug(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { au_sentry_t *se; au_sentry_debug_t *sed_tab, *next_sed; int i, entry_cnt = 0; size_t sz; int err = 0; /* * This provides a read-only node. */ if (req->newptr != USER_ADDR_NULL) { return EPERM; } /* * Walk the audit session hash table to determine the size. */ AUDIT_SENTRY_RLOCK(); for (i = 0; i < HASH_TABLE_SIZE; i++) { LIST_FOREACH(se, &au_sentry_bucket[i], se_link) if (se != NULL) { entry_cnt++; } } entry_cnt++; /* add one for the default entry */ /* * If just querying then return the space required. There is an * obvious race condition here so we just fudge this by 3 in case * the audit session table grows. */ if (req->oldptr == USER_ADDR_NULL) { req->oldidx = (entry_cnt + 3) * sizeof(au_sentry_debug_t); AUDIT_SENTRY_RUNLOCK(); return 0; } /* * Alloc a temporary buffer. */ if (req->oldlen < (entry_cnt * sizeof(au_sentry_debug_t))) { AUDIT_SENTRY_RUNLOCK(); return ENOMEM; } /* * We hold the lock over the alloc since we don't want the table to * grow on us. Therefore, use the non-blocking version of kalloc(). */ sed_tab = kalloc_data(entry_cnt * sizeof(au_sentry_debug_t), Z_NOWAIT | Z_ZERO); if (sed_tab == NULL) { AUDIT_SENTRY_RUNLOCK(); return ENOMEM; } /* * Walk the audit session hash table and build the record array. */ sz = 0; next_sed = sed_tab; /* add the first entry for processes not tracked in sessions. */ bcopy(audit_default_aia_p, &next_sed->se_auinfo, sizeof(au_sentry_t)); next_sed->se_refcnt = (int64_t)audit_default_se.se_refcnt; next_sed->se_procnt = (int64_t)audit_default_se.se_procnt; next_sed++; sz += sizeof(au_sentry_debug_t); for (i = 0; i < HASH_TABLE_SIZE; i++) { LIST_FOREACH(se, &au_sentry_bucket[i], se_link) { if (se != NULL) { next_sed->se_auinfo = se->se_auinfo; next_sed->se_refcnt = (int64_t)se->se_refcnt; next_sed->se_procnt = (int64_t)se->se_procnt; next_sed++; sz += sizeof(au_sentry_debug_t); } } } AUDIT_SENTRY_RUNLOCK(); /* Reconcile with the process table. */ proc_iterate(PROC_ALLPROCLIST | PROC_ZOMBPROCLIST, audit_session_debug_callout, NULL, audit_session_debug_filterfn, (void *)&sed_tab[0]); req->oldlen = sz; err = SYSCTL_OUT(req, sed_tab, sz); kfree_data(sed_tab, entry_cnt * sizeof(au_sentry_debug_t)); return err; } #endif /* AUDIT_SESSION_DEBUG */ /* * Create and commit a session audit event. The proc and se arguments needs to * be that of the subject and not necessarily the current process. */ static void audit_session_event(int event, auditinfo_addr_t *aia_p) { struct kaudit_record *ar; KASSERT(AUE_SESSION_START == event || AUE_SESSION_UPDATE == event || AUE_SESSION_END == event || AUE_SESSION_CLOSE == event, ("audit_session_event: invalid event: %d", event)); if (NULL == aia_p) { return; } /* * Create a new audit record. The record will contain the subject * ruid, rgid, egid, pid, auid, asid, amask, and term_addr * (implicitly added by audit_new). */ ar = audit_new(event, PROC_NULL, /* Not used */ NULL); if (NULL == ar) { return; } /* * Audit session events are always generated because they are used * by some userland consumers so just set the preselect flag. */ ar->k_ar_commit |= AR_PRESELECT_FILTER; /* * Populate the subject information. Note that the ruid, rgid, * egid, and pid values are incorrect. We only need the auditinfo_addr * information. */ ar->k_ar.ar_subj_ruid = 0; ar->k_ar.ar_subj_rgid = 0; ar->k_ar.ar_subj_egid = 0; ar->k_ar.ar_subj_pid = 0; ar->k_ar.ar_subj_auid = aia_p->ai_auid; ar->k_ar.ar_subj_asid = aia_p->ai_asid; bcopy(&aia_p->ai_termid, &ar->k_ar.ar_subj_term_addr, sizeof(struct au_tid_addr)); /* Add the audit masks to the record. */ ar->k_ar.ar_arg_amask.am_success = aia_p->ai_mask.am_success; ar->k_ar.ar_arg_amask.am_failure = aia_p->ai_mask.am_failure; ARG_SET_VALID(ar, ARG_AMASK); /* Add the audit session flags to the record. */ ar->k_ar.ar_arg_value64 = aia_p->ai_flags; ARG_SET_VALID(ar, ARG_VALUE64); /* Commit the record to the queue. */ audit_commit(ar, 0, 0); } /* * Hash the audit session ID using a simple 32-bit mix. */ static inline uint32_t audit_session_hash(au_asid_t asid) { uint32_t a = (uint32_t) asid; a = (a - (a << 6)) ^ (a >> 17); a = (a - (a << 9)) ^ (a << 4); a = (a - (a << 3)) ^ (a << 10); a = a ^ (a >> 15); return a; } /* * Do an hash lookup and find the session entry for a given ASID. Return NULL * if not found. If the session is found then audit_session_find takes a * reference. */ static au_sentry_t * audit_session_find(au_asid_t asid) { uint32_t hkey; au_sentry_t *found_se; AUDIT_SENTRY_RWLOCK_ASSERT(); hkey = HASH_ASID(asid); LIST_FOREACH(found_se, &au_sentry_bucket[hkey], se_link) if (found_se->se_asid == asid) { au_history_record(found_se, AU_HISTORY_EVENT_FIND); audit_ref_session(found_se); return found_se; } return NULL; } static void audit_session_free(smr_node_t node) { au_sentry_t *se = __container_of(node, au_sentry_t, se_smr_node); kfree_type(au_sentry_t, se); } /* * Remove the given audit_session entry from the hash table. */ static void audit_session_remove(au_sentry_t *se) { uint32_t hkey; au_sentry_t *found_se, *tmp_se; au_history_record(se, AU_HISTORY_EVENT_DEATH); KASSERT(se->se_refcnt == 0, ("audit_session_remove: ref count != 0")); KASSERT(se != &audit_default_se, ("audit_session_remove: removing default session")); hkey = HASH_ASID(se->se_asid); AUDIT_SENTRY_WLOCK(); /* * Check and see if someone got a reference before we got the lock. */ if (se->se_refcnt != 0) { AUDIT_SENTRY_WUNLOCK(); return; } audit_session_portdestroy(&se->se_port); LIST_FOREACH_SAFE(found_se, &au_sentry_bucket[hkey], se_link, tmp_se) { if (found_se == se) { /* * Generate an audit event to notify userland of the * session close. */ audit_session_event(AUE_SESSION_CLOSE, &found_se->se_auinfo); LIST_REMOVE(found_se, se_link); AUDIT_SENTRY_WUNLOCK(); smr_call(&smr_proc_task, &found_se->se_smr_node, sizeof(found_se), audit_session_free); return; } } AUDIT_SENTRY_WUNLOCK(); } /* * Reference the session by incrementing the sentry ref count. */ static void audit_ref_session(au_sentry_t *se) { long old_val; if (se == NULL || se == &audit_default_se) { return; } au_history_record(se, AU_HISTORY_EVENT_REF); old_val = OSAddAtomicLong(1, &se->se_refcnt); KASSERT(old_val < 100000, ("audit_ref_session: Too many references on session.")); } /* * Decrement the sentry ref count and remove the session entry if last one. */ static void audit_unref_session(au_sentry_t *se) { long old_val; if (se == NULL || se == &audit_default_se) { return; } au_history_record(se, AU_HISTORY_EVENT_UNREF); old_val = OSAddAtomicLong(-1, &se->se_refcnt); if (old_val == 1) { audit_session_remove(se); } KASSERT(old_val > 0, ("audit_unref_session: Too few references on session.")); } /* * Increment the process count in the session. */ static void audit_inc_procount(au_sentry_t *se) { long old_val; if (se == NULL || se == &audit_default_se) { return; } old_val = OSAddAtomicLong(1, &se->se_procnt); KASSERT(old_val <= PID_MAX, ("audit_inc_procount: proc count > PID_MAX")); } /* * Decrement the process count and add a knote if it is the last process * to exit the session. */ static void audit_dec_procount(au_sentry_t *se) { long old_val; if (se == NULL || se == &audit_default_se) { return; } old_val = OSAddAtomicLong(-1, &se->se_procnt); /* * If this was the last process generate an audit event to notify * userland of the session ending. */ if (old_val == 1) { audit_session_event(AUE_SESSION_END, &se->se_auinfo); } KASSERT(old_val >= 1, ("audit_dec_procount: proc count < 0")); } /* * Update the session entry and check to see if anything was updated. * Returns: * 0 Nothing was updated (We don't care about process preselection masks) * 1 Something was updated. */ static int audit_update_sentry(au_sentry_t *se, auditinfo_addr_t *new_aia) { auditinfo_addr_t *aia = &se->se_auinfo; int update; KASSERT(new_aia != audit_default_aia_p, ("audit_update_sentry: Trying to update the default aia.")); update = (aia->ai_auid != new_aia->ai_auid || bcmp(&aia->ai_termid, &new_aia->ai_termid, sizeof(new_aia->ai_termid)) || aia->ai_flags != new_aia->ai_flags); if (update) { bcopy(new_aia, aia, sizeof(*aia)); } return update; } /* * Return the next session ID. The range of kernel generated audit session IDs * is ASSIGNED_ASID_MIN to ASSIGNED_ASID_MAX. */ static uint32_t audit_session_nextid(void) { static uint32_t next_asid = ASSIGNED_ASID_MIN; AUDIT_SENTRY_RWLOCK_ASSERT(); if (next_asid > ASSIGNED_ASID_MAX) { next_asid = ASSIGNED_ASID_MIN; } return next_asid++; } /* * Allocated a new audit_session entry and add it to the hash table. If the * given ASID is set to AU_ASSIGN_ASID then audit_session_new() will pick an * audit session ID. Otherwise, it attempts use the one given. It creates a * reference to the entry that must be unref'ed. */ static auditinfo_addr_t * audit_session_new(auditinfo_addr_t *new_aia_p, auditinfo_addr_t *old_aia_p) { au_asid_t new_asid; au_sentry_t *se = NULL; au_sentry_t *found_se = NULL; auditinfo_addr_t *aia = NULL; KASSERT(new_aia_p != NULL, ("audit_session_new: new_aia_p == NULL")); new_asid = new_aia_p->ai_asid; /* * Alloc a new session entry now so we don't wait holding the lock. */ se = kalloc_type(au_sentry_t, Z_WAITOK | Z_ZERO | Z_NOFAIL); /* * Find an unique session ID, if desired. */ AUDIT_SENTRY_WLOCK(); if (new_asid == AU_ASSIGN_ASID) { do { new_asid = (au_asid_t)audit_session_nextid(); found_se = audit_session_find(new_asid); /* * If the session ID is currently active then drop the * reference and try again. */ if (found_se != NULL) { audit_unref_session(found_se); } else { break; } } while (1); } else { /* * Check to see if the requested ASID is already in the * hash table. If so, update it with the new auditinfo. */ if ((found_se = audit_session_find(new_asid)) != NULL) { int updated; updated = audit_update_sentry(found_se, new_aia_p); AUDIT_SENTRY_WUNLOCK(); kfree_type(au_sentry_t, se); /* If a different session then add this process in. */ if (new_aia_p != old_aia_p) { audit_inc_procount(found_se); } /* * If the session information was updated then * generate an audit event to notify userland. */ if (updated) { audit_session_event(AUE_SESSION_UPDATE, &found_se->se_auinfo); } return &found_se->se_auinfo; } } /* * Start the reference and proc count at 1 to account for the process * that invoked this via setaudit_addr() (or friends). */ se->se_refcnt = se->se_procnt = 1; /* * Populate the new session entry. Note that process masks are stored * in kauth ucred so just zero them here. */ se->se_port = IPC_PORT_NULL; aia = &se->se_auinfo; aia->ai_asid = new_asid; aia->ai_auid = new_aia_p->ai_auid; bzero(&new_aia_p->ai_mask, sizeof(new_aia_p->ai_mask)); bcopy(&new_aia_p->ai_termid, &aia->ai_termid, sizeof(aia->ai_termid)); aia->ai_flags = new_aia_p->ai_flags; /* * Add it to the hash table. */ LIST_INSERT_HEAD(&au_sentry_bucket[HASH_ASID(new_asid)], se, se_link); AUDIT_SENTRY_WUNLOCK(); /* * Generate an audit event to notify userland of the new session. */ audit_session_event(AUE_SESSION_START, aia); au_history_record(se, AU_HISTORY_EVENT_BIRTH); return aia; } /* * Lookup an existing session. A copy of the audit session info for a given * ASID is returned in ret_aia. Returns 0 on success. */ int audit_session_lookup(au_asid_t asid, auditinfo_addr_t *ret_aia) { au_sentry_t *se = NULL; if ((uint32_t)asid > ASSIGNED_ASID_MAX) { return -1; } AUDIT_SENTRY_RLOCK(); if ((se = audit_session_find(asid)) == NULL) { AUDIT_SENTRY_RUNLOCK(); return 1; } /* We have a reference on the session so it is safe to drop the lock. */ AUDIT_SENTRY_RUNLOCK(); if (ret_aia != NULL) { bcopy(&se->se_auinfo, ret_aia, sizeof(*ret_aia)); } audit_unref_session(se); return 0; } void audit_session_aiaref(auditinfo_addr_t *aia_p) { audit_ref_session(AU_SENTRY_PTR(aia_p)); } /* * Add a reference to the session entry. */ void audit_session_ref(kauth_cred_t cred) { auditinfo_addr_t *aia_p; KASSERT(IS_VALID_CRED(cred), ("audit_session_ref: Invalid kauth_cred.")); aia_p = cred->cr_audit.as_aia_p; audit_session_aiaref(aia_p); } void audit_session_aiaunref(auditinfo_addr_t *aia_p) { audit_unref_session(AU_SENTRY_PTR(aia_p)); } /* * Remove a reference to the session entry. */ void audit_session_unref(kauth_cred_t cred) { auditinfo_addr_t *aia_p; KASSERT(IS_VALID_CRED(cred), ("audit_session_unref: Invalid kauth_cred.")); aia_p = cred->cr_audit.as_aia_p; audit_session_aiaunref(aia_p); } /* * Increment the per audit session process count. Assumes that the caller has * a reference on the process' cred. */ void audit_session_procnew(proc_t p) { kauth_cred_t cred = proc_ucred_unsafe(p); /* during create */ auditinfo_addr_t *aia_p; KASSERT(IS_VALID_CRED(cred), ("audit_session_procnew: Invalid kauth_cred.")); aia_p = cred->cr_audit.as_aia_p; audit_inc_procount(AU_SENTRY_PTR(aia_p)); } /* * Decrement the per audit session process count. Assumes that the caller has * a reference on the cred. */ void audit_session_procexit(proc_t p) { kauth_cred_t cred = proc_ucred_unsafe(p); /* during exit */ auditinfo_addr_t *aia_p; KASSERT(IS_VALID_CRED(cred), ("audit_session_procexit: Invalid kauth_cred.")); aia_p = cred->cr_audit.as_aia_p; audit_dec_procount(AU_SENTRY_PTR(aia_p)); } /* * Init the audit session code. */ void audit_session_init(void) { int i; KASSERT((ASSIGNED_ASID_MAX - ASSIGNED_ASID_MIN) > PID_MAX, ("audit_session_init: ASSIGNED_ASID_MAX is not large enough.")); AUDIT_SENTRY_RWLOCK_INIT(); au_sentry_bucket = zalloc_permanent(sizeof(struct au_sentry) * HASH_TABLE_SIZE, ZALIGN_PTR); for (i = 0; i < HASH_TABLE_SIZE; i++) { LIST_INIT(&au_sentry_bucket[i]); } (void)audit_sdev_init(); #if AU_HISTORY_LOGGING au_history = zalloc_permanent(sizeof(struct au_history) * au_history_size, ZALIGN_PTR); #endif } static int audit_session_update_check(kauth_cred_t cred, auditinfo_addr_t *old, auditinfo_addr_t *new) { uint64_t n; /* If the current audit ID is not the default then it is immutable. */ if (old->ai_auid != AU_DEFAUDITID && old->ai_auid != new->ai_auid) { return EINVAL; } /* If the current termid is not the default then it is immutable. */ if ((old->ai_termid.at_type != AU_IPv4 || old->ai_termid.at_port != 0 || old->ai_termid.at_addr[0] != 0) && (old->ai_termid.at_port != new->ai_termid.at_port || old->ai_termid.at_type != new->ai_termid.at_type || 0 != bcmp(&old->ai_termid.at_addr, &new->ai_termid.at_addr, sizeof(old->ai_termid.at_addr)))) { return EINVAL; } /* The flags may be set only according to the * audit_session_*_set_sflags_masks. */ n = ~old->ai_flags & new->ai_flags; if (0 != n && !((n == (audit_session_superuser_set_sflags_mask & n) && kauth_cred_issuser(cred)) || (n == (audit_session_member_set_sflags_mask & n) && old->ai_asid == new->ai_asid))) { return EINVAL; } /* The flags may be cleared only according to the * audit_session_*_clear_sflags_masks. */ n = ~new->ai_flags & old->ai_flags; if (0 != n && !((n == (audit_session_superuser_clear_sflags_mask & n) && kauth_cred_issuser(cred)) || (n == (audit_session_member_clear_sflags_mask & n) && old->ai_asid == new->ai_asid))) { return EINVAL; } /* The audit masks are mutable. */ return 0; } /* * Protect updates to proc->cred->session * * The lifecycle of sessions and kauth creds do not compose well, * so this lock makes sure that even in the presence of concurrent * updates to the proc's credential, sessions stay stable. * * This lock is only used to serialize audit_session_setaia() * and audit_session_join_internal() with each other, * which are called from posix_spawn() or regular syscall context. * * Once the session is established in the cred, this lock * is no longer required, it is only about avoiding racing * updates and lifetime bugs due to the discrepancy between * audit sessions and creds. */ static void proc_audit_session_lock(proc_t p) { lck_mtx_lock(&p->p_audit_mlock); } static void proc_audit_session_unlock(proc_t p) { lck_mtx_unlock(&p->p_audit_mlock); } /* * Safely update kauth cred of the given process with new the given audit info. */ int audit_session_setaia(proc_t p, auditinfo_addr_t *new_aia_p) { kauth_cred_t my_cred; struct au_session as, *asp = &as; auditinfo_addr_t caia, *old_aia_p; int ret; proc_audit_session_lock(p); my_cred = kauth_cred_proc_ref(p); /* * If this is going to modify an existing session then do some * immutable checks. */ if (audit_session_lookup(new_aia_p->ai_asid, &caia) == 0) { ret = audit_session_update_check(my_cred, &caia, new_aia_p); if (ret) { proc_audit_session_unlock(p); kauth_cred_unref(&my_cred); return ret; } } bcopy(&new_aia_p->ai_mask, &as.as_mask, sizeof(as.as_mask)); old_aia_p = my_cred->cr_audit.as_aia_p; /* audit_session_new() adds a reference on the session */ as.as_aia_p = audit_session_new(new_aia_p, old_aia_p); kauth_cred_proc_update(p, PROC_SETTOKEN_LAZY, ^bool (kauth_cred_t parent __unused, kauth_cred_t model) { return kauth_cred_model_setauditinfo(model, asp); }); proc_audit_session_unlock(p); kauth_cred_unref(&my_cred); /* If the process left a session then update the process count. */ if (old_aia_p != new_aia_p) { audit_dec_procount(AU_SENTRY_PTR(old_aia_p)); } /* Drop the reference taken by audit_session_new() above. */ audit_unref_session(AU_SENTRY_PTR(as.as_aia_p)); return 0; } /* * audit_session_self (system call) * * Description: Obtain a Mach send right for the current session. * * Parameters: p Process calling audit_session_self(). * * Returns: *ret_port Named Mach send right, which may be * MACH_PORT_NULL in the failure case. * * Errno: 0 Success * EINVAL The calling process' session has not be set. * ESRCH Bad process, can't get valid cred for process. * ENOMEM Port allocation failed due to no free memory. */ int audit_session_self(proc_t p, __unused struct audit_session_self_args *uap, mach_port_name_t *ret_port) { ipc_port_t sendport = IPC_PORT_NULL; kauth_cred_t cred = NULL; auditinfo_addr_t *aia_p; au_sentry_t *se; int err = 0; cred = kauth_cred_proc_ref(p); if (!IS_VALID_CRED(cred)) { err = ESRCH; goto done; } aia_p = cred->cr_audit.as_aia_p; if (!IS_VALID_SESSION(aia_p)) { /* Can't join the default session. */ err = EINVAL; goto done; } se = AU_SENTRY_PTR(aia_p); /* * Processes that join using this mach port will inherit this process' * pre-selection masks. */ if (se->se_port == IPC_PORT_NULL) { bcopy(&cred->cr_audit.as_mask, &se->se_mask, sizeof(se->se_mask)); } /* * Get a send right to the session's Mach port and insert it in the * process' mach port namespace. */ sendport = audit_session_mksend(aia_p, &se->se_port); *ret_port = ipc_port_copyout_send(sendport, get_task_ipcspace(proc_task(p))); done: if (cred != NULL) { kauth_cred_unref(&cred); } if (err != 0) { *ret_port = MACH_PORT_NULL; } return err; } /* * audit_session_port (system call) * * Description: Obtain a Mach send right for the given session ID. * * Parameters: p Process calling audit_session_port(). * uap->asid The target audit session ID. The special * value -1 can be used to target the process's * own session. * uap->portnamep User address at which to place port name. * * Returns: 0 Success * EINVAL The calling process' session has not be set. * EINVAL The given session ID could not be found. * EINVAL The Mach port right could not be copied out. * ESRCH Bad process, can't get valid cred for process. * EPERM Only the superuser can reference sessions other * than the process's own. * ENOMEM Port allocation failed due to no free memory. */ int audit_session_port(proc_t p, struct audit_session_port_args *uap, __unused int *retval) { ipc_port_t sendport = IPC_PORT_NULL; mach_port_name_t portname = MACH_PORT_NULL; kauth_cred_t cred = NULL; auditinfo_addr_t *aia_p = NULL; au_sentry_t *se = NULL; int err = 0; /* Note: Currently this test will never be true, because * ASSIGNED_ASID_MAX is effectively (uint32_t)-2. */ if (uap->asid != -1 && (uint32_t)uap->asid > ASSIGNED_ASID_MAX) { err = EINVAL; goto done; } cred = kauth_cred_proc_ref(p); if (!IS_VALID_CRED(cred)) { err = ESRCH; goto done; } aia_p = cred->cr_audit.as_aia_p; /* Find the session corresponding to the requested audit * session ID. If found, take a reference on it so that * the session is not dropped until the join is later done. */ if (uap->asid == (au_asid_t)-1 || uap->asid == aia_p->ai_asid) { if (!IS_VALID_SESSION(aia_p)) { /* Can't join the default session. */ err = EINVAL; goto done; } /* No privilege is required to obtain a port for our * own session. */ se = AU_SENTRY_PTR(aia_p); audit_ref_session(se); } else { /* * Only privileged processes may obtain a port for * any existing session. */ err = priv_check_cred(cred, PRIV_AUDIT_SESSION_PORT, 0); if (err != 0) { goto done; } AUDIT_SENTRY_RLOCK(); se = audit_session_find(uap->asid); AUDIT_SENTRY_RUNLOCK(); if (NULL == se) { err = EINVAL; goto done; } aia_p = &se->se_auinfo; } /* * Processes that join using this mach port will inherit this process' * pre-selection masks. */ if (se->se_port == IPC_PORT_NULL) { bcopy(&cred->cr_audit.as_mask, &se->se_mask, sizeof(se->se_mask)); } /* * Use the session reference to create a mach port reference for the * session (at which point we are free to drop the session reference) * and then copy out the mach port to the process' mach port namespace. */ sendport = audit_session_mksend(aia_p, &se->se_port); portname = ipc_port_copyout_send(sendport, get_task_ipcspace(proc_task(p))); if (!MACH_PORT_VALID(portname)) { err = EINVAL; goto done; } err = copyout(&portname, uap->portnamep, sizeof(mach_port_name_t)); done: if (cred != NULL) { kauth_cred_unref(&cred); } if (NULL != se) { audit_unref_session(se); } if (MACH_PORT_VALID(portname) && 0 != err) { (void)mach_port_deallocate(get_task_ipcspace(proc_task(p)), portname); } return err; } static int audit_session_join_internal(proc_t p, ipc_port_t port, au_asid_t *new_asid) { __block auditinfo_addr_t *old_aia_p = NULL; auditinfo_addr_t *new_aia_p; int err = 0; if ((new_aia_p = audit_session_porttoaia(port)) == NULL) { err = EINVAL; *new_asid = AU_DEFAUDITSID; goto done; } /* Increment the proc count of new session */ audit_inc_procount(AU_SENTRY_PTR(new_aia_p)); proc_audit_session_lock(p); kauth_cred_proc_update(p, PROC_SETTOKEN_LAZY, ^bool (kauth_cred_t parent __unused, kauth_cred_t model) { struct au_session new_as; old_aia_p = model->cr_audit.as_aia_p; if (old_aia_p->ai_asid == new_aia_p->ai_asid) { return false; } bcopy(&new_aia_p->ai_mask, &new_as.as_mask, sizeof(new_as.as_mask)); new_as.as_aia_p = new_aia_p; return kauth_cred_model_setauditinfo(model, &new_as); }); proc_audit_session_unlock(p); /* Decrement the process count of the former session. */ audit_dec_procount(AU_SENTRY_PTR(old_aia_p)); *new_asid = new_aia_p->ai_asid; done: if (port != IPC_PORT_NULL) { ipc_port_release_send(port); } return err; } /* * audit_session_spawnjoin * * Description: posix_spawn() interface to audit_session_join_internal(). * * Returns: 0 Success * EINVAL Invalid Mach port name. * ESRCH Invalid calling process/cred. */ int audit_session_spawnjoin(proc_t p, ipc_port_t port) { au_asid_t new_asid; return audit_session_join_internal(p, port, &new_asid); } /* * audit_session_join (system call) * * Description: Join the session for a given Mach port send right. * * Parameters: p Process calling session join. * uap->port A Mach send right. * * Returns: *ret_asid Audit session ID of new session. * In the failure case the return value will be -1 * and 'errno' will be set to a non-zero value * described below. * * Errno: 0 Success * EINVAL Invalid Mach port name. * ESRCH Invalid calling process/cred. */ int audit_session_join(proc_t p, struct audit_session_join_args *uap, au_asid_t *ret_asid) { ipc_port_t port = IPC_PORT_NULL; mach_port_name_t send = uap->port; int err = 0; if (ipc_object_copyin(get_task_ipcspace(proc_task(p)), send, MACH_MSG_TYPE_COPY_SEND, &port, 0, NULL, IPC_OBJECT_COPYIN_FLAGS_ALLOW_IMMOVABLE_SEND) != KERN_SUCCESS) { *ret_asid = AU_DEFAUDITSID; err = EINVAL; } else { err = audit_session_join_internal(p, port, ret_asid); } return err; } /* * Audit session device. */ /* * Free an audit sdev entry. */ static void audit_sdev_entry_free(struct audit_sdev_entry *ase) { kfree_data(ase->ase_record, ase->ase_record_len); kfree_type(struct audit_sdev_entry, ase); } /* * Append individual record to a queue. Allocate queue-local buffer and * add to the queue. If the queue is full or we can't allocate memory, * drop the newest record. */ static void audit_sdev_append(struct audit_sdev *asdev, void *record, u_int record_len) { struct audit_sdev_entry *ase; AUDIT_SDEV_LOCK_ASSERT(asdev); if (asdev->asdev_qlen >= asdev->asdev_qlimit) { asdev->asdev_drops++; audit_sdev_drops++; return; } ase = kalloc_type(struct audit_sdev_entry, Z_NOWAIT | Z_ZERO); if (NULL == ase) { asdev->asdev_drops++; audit_sdev_drops++; return; } ase->ase_record = kalloc_data(record_len, Z_NOWAIT); if (NULL == ase->ase_record) { kfree_type(struct audit_sdev_entry, ase); asdev->asdev_drops++; audit_sdev_drops++; return; } bcopy(record, ase->ase_record, record_len); ase->ase_record_len = record_len; TAILQ_INSERT_TAIL(&asdev->asdev_queue, ase, ase_queue); asdev->asdev_inserts++; asdev->asdev_qlen++; asdev->asdev_qbyteslen += ase->ase_record_len; selwakeup(&asdev->asdev_selinfo); if (asdev->asdev_flags & AUDIT_SDEV_ASYNC) { pgsigio(asdev->asdev_sigio, SIGIO); } cv_broadcast(&asdev->asdev_cv); } /* * Submit an audit record to be queued in the audit session device. */ void audit_sdev_submit(__unused au_id_t auid, __unused au_asid_t asid, void *record, u_int record_len) { struct audit_sdev *asdev; /* * Lockless read to avoid lock overhead if sessio devices are not in * use. */ if (NULL == TAILQ_FIRST(&audit_sdev_list)) { return; } AUDIT_SDEV_LIST_RLOCK(); TAILQ_FOREACH(asdev, &audit_sdev_list, asdev_list) { AUDIT_SDEV_LOCK(asdev); /* * Only append to the sdev queue if the AUID and ASID match that * of the process that opened this session device or if the * ALLSESSIONS flag is set. */ if ((/* XXXss auid == asdev->asdev_auid && */ asid == asdev->asdev_asid) || (asdev->asdev_flags & AUDIT_SDEV_ALLSESSIONS) != 0) { audit_sdev_append(asdev, record, record_len); } AUDIT_SDEV_UNLOCK(asdev); } AUDIT_SDEV_LIST_RUNLOCK(); /* Unlocked increment. */ audit_sdev_records++; } /* * Allocate a new audit sdev. Connects the sdev, on succes, to the global * list and updates statistics. */ static struct audit_sdev * audit_sdev_alloc(void) { struct audit_sdev *asdev; AUDIT_SDEV_LIST_WLOCK_ASSERT(); asdev = kalloc_type(struct audit_sdev, Z_ZERO | Z_WAITOK | Z_NOFAIL); asdev->asdev_qlimit = AUDIT_SDEV_QLIMIT_DEFAULT; TAILQ_INIT(&asdev->asdev_queue); AUDIT_SDEV_LOCK_INIT(asdev); AUDIT_SDEV_SX_LOCK_INIT(asdev); cv_init(&asdev->asdev_cv, "audit_sdev_cv"); /* * Add to global list and update global statistics. */ TAILQ_INSERT_HEAD(&audit_sdev_list, asdev, asdev_list); audit_sdev_count++; audit_sdev_ever++; return asdev; } /* * Flush all records currently present in an audit sdev. */ static void audit_sdev_flush(struct audit_sdev *asdev) { struct audit_sdev_entry *ase; AUDIT_SDEV_LOCK_ASSERT(asdev); while ((ase = TAILQ_FIRST(&asdev->asdev_queue)) != NULL) { TAILQ_REMOVE(&asdev->asdev_queue, ase, ase_queue); asdev->asdev_qbyteslen -= ase->ase_record_len; audit_sdev_entry_free(ase); asdev->asdev_qlen--; } asdev->asdev_qoffset = 0; KASSERT(0 == asdev->asdev_qlen, ("audit_sdev_flush: asdev_qlen")); KASSERT(0 == asdev->asdev_qbyteslen, ("audit_sdev_flush: asdev_qbyteslen")); } /* * Free an audit sdev. */ static void audit_sdev_free(struct audit_sdev *asdev) { AUDIT_SDEV_LIST_WLOCK_ASSERT(); AUDIT_SDEV_LOCK_ASSERT(asdev); /* XXXss - preselect hook here */ audit_sdev_flush(asdev); cv_destroy(&asdev->asdev_cv); AUDIT_SDEV_SX_LOCK_DESTROY(asdev); AUDIT_SDEV_UNLOCK(asdev); AUDIT_SDEV_LOCK_DESTROY(asdev); TAILQ_REMOVE(&audit_sdev_list, asdev, asdev_list); kfree_type(struct audit_sdev, asdev); audit_sdev_count--; } /* * Get the auditinfo_addr of the proc and check to see if suser. Will return * non-zero if not suser. */ static int audit_sdev_get_aia(proc_t p, struct auditinfo_addr *aia_p) { int error; kauth_cred_t scred; scred = kauth_cred_proc_ref(p); error = suser(scred, &p->p_acflag); if (NULL != aia_p) { bcopy(scred->cr_audit.as_aia_p, aia_p, sizeof(*aia_p)); } kauth_cred_unref(&scred); return error; } /* * Audit session dev open method. */ static int audit_sdev_open(dev_t dev, __unused int flags, __unused int devtype, proc_t p) { struct audit_sdev *asdev; struct auditinfo_addr aia; int u; u = minor(dev); if (u < 0 || u >= MAX_AUDIT_SDEVS) { return ENXIO; } (void) audit_sdev_get_aia(p, &aia); AUDIT_SDEV_LIST_WLOCK(); asdev = audit_sdev_dtab[u]; if (NULL == asdev) { asdev = audit_sdev_alloc(); if (NULL == asdev) { AUDIT_SDEV_LIST_WUNLOCK(); return ENOMEM; } audit_sdev_dtab[u] = asdev; } else { KASSERT(asdev->asdev_open, ("audit_sdev_open: Already open")); AUDIT_SDEV_LIST_WUNLOCK(); return EBUSY; } asdev->asdev_open = 1; asdev->asdev_auid = aia.ai_auid; asdev->asdev_asid = aia.ai_asid; asdev->asdev_flags = 0; AUDIT_SDEV_LIST_WUNLOCK(); return 0; } /* * Audit session dev close method. */ static int audit_sdev_close(dev_t dev, __unused int flags, __unused int devtype, __unused proc_t p) { struct audit_sdev *asdev; int u; u = minor(dev); asdev = audit_sdev_dtab[u]; KASSERT(asdev != NULL, ("audit_sdev_close: asdev == NULL")); KASSERT(asdev->asdev_open, ("audit_sdev_close: !asdev_open")); AUDIT_SDEV_LIST_WLOCK(); AUDIT_SDEV_LOCK(asdev); asdev->asdev_open = 0; audit_sdev_free(asdev); /* sdev lock unlocked in audit_sdev_free() */ audit_sdev_dtab[u] = NULL; AUDIT_SDEV_LIST_WUNLOCK(); return 0; } /* * Audit session dev ioctl method. */ static int audit_sdev_ioctl(dev_t dev, u_long cmd, caddr_t data, __unused int flag, proc_t p) { struct audit_sdev *asdev; int error; asdev = audit_sdev_dtab[minor(dev)]; KASSERT(asdev != NULL, ("audit_sdev_ioctl: asdev == NULL")); error = 0; switch (cmd) { case FIONBIO: AUDIT_SDEV_LOCK(asdev); if (*(int *)data) { asdev->asdev_flags |= AUDIT_SDEV_NBIO; } else { asdev->asdev_flags &= ~AUDIT_SDEV_NBIO; } AUDIT_SDEV_UNLOCK(asdev); break; case FIONREAD: AUDIT_SDEV_LOCK(asdev); *(int *)data = asdev->asdev_qbyteslen - asdev->asdev_qoffset; AUDIT_SDEV_UNLOCK(asdev); break; case AUDITSDEV_GET_QLEN: *(u_int *)data = asdev->asdev_qlen; break; case AUDITSDEV_GET_QLIMIT: *(u_int *)data = asdev->asdev_qlimit; break; case AUDITSDEV_SET_QLIMIT: if (*(u_int *)data >= AUDIT_SDEV_QLIMIT_MIN || *(u_int *)data <= AUDIT_SDEV_QLIMIT_MAX) { asdev->asdev_qlimit = *(u_int *)data; } else { error = EINVAL; } break; case AUDITSDEV_GET_QLIMIT_MIN: *(u_int *)data = AUDIT_SDEV_QLIMIT_MIN; break; case AUDITSDEV_GET_QLIMIT_MAX: *(u_int *)data = AUDIT_SDEV_QLIMIT_MAX; break; case AUDITSDEV_FLUSH: if (AUDIT_SDEV_SX_XLOCK_SIG(asdev) != 0) { return EINTR; } AUDIT_SDEV_LOCK(asdev); audit_sdev_flush(asdev); AUDIT_SDEV_UNLOCK(asdev); AUDIT_SDEV_SX_XUNLOCK(asdev); break; case AUDITSDEV_GET_MAXDATA: *(u_int *)data = MAXAUDITDATA; break; /* XXXss these should be 64 bit, maybe. */ case AUDITSDEV_GET_INSERTS: *(u_int *)data = asdev->asdev_inserts; break; case AUDITSDEV_GET_READS: *(u_int *)data = asdev->asdev_reads; break; case AUDITSDEV_GET_DROPS: *(u_int *)data = asdev->asdev_drops; break; case AUDITSDEV_GET_ALLSESSIONS: error = audit_sdev_get_aia(p, NULL); if (error) { break; } *(u_int *)data = (asdev->asdev_flags & AUDIT_SDEV_ALLSESSIONS) ? 1 : 0; break; case AUDITSDEV_SET_ALLSESSIONS: error = audit_sdev_get_aia(p, NULL); if (error) { break; } AUDIT_SDEV_LOCK(asdev); if (*(int *)data) { asdev->asdev_flags |= AUDIT_SDEV_ALLSESSIONS; } else { asdev->asdev_flags &= ~AUDIT_SDEV_ALLSESSIONS; } AUDIT_SDEV_UNLOCK(asdev); break; default: error = ENOTTY; } return error; } /* * Audit session dev read method. */ static int audit_sdev_read(dev_t dev, struct uio *uio, __unused int flag) { struct audit_sdev_entry *ase; struct audit_sdev *asdev; u_int toread; int error; asdev = audit_sdev_dtab[minor(dev)]; KASSERT(NULL != asdev, ("audit_sdev_read: asdev == NULL")); /* * We hold a sleep lock over read and flush because we rely on the * stability of a record in the queue during uiomove. */ if (0 != AUDIT_SDEV_SX_XLOCK_SIG(asdev)) { return EINTR; } AUDIT_SDEV_LOCK(asdev); while (TAILQ_EMPTY(&asdev->asdev_queue)) { if (asdev->asdev_flags & AUDIT_SDEV_NBIO) { AUDIT_SDEV_UNLOCK(asdev); AUDIT_SDEV_SX_XUNLOCK(asdev); return EAGAIN; } error = cv_wait_sig(&asdev->asdev_cv, AUDIT_SDEV_MTX(asdev)); if (error) { AUDIT_SDEV_UNLOCK(asdev); AUDIT_SDEV_SX_XUNLOCK(asdev); return error; } } /* * Copy as many remaining bytes from the current record to userspace * as we can. Keep processing records until we run out of records in * the queue or until the user buffer runs out of space. * * We rely on the sleep lock to maintain ase's stability here. */ asdev->asdev_reads++; while ((ase = TAILQ_FIRST(&asdev->asdev_queue)) != NULL && uio_resid(uio) > 0) { AUDIT_SDEV_LOCK_ASSERT(asdev); KASSERT(ase->ase_record_len > asdev->asdev_qoffset, ("audit_sdev_read: record_len > qoffset (1)")); toread = MIN((int)(ase->ase_record_len - asdev->asdev_qoffset), uio_resid(uio)); AUDIT_SDEV_UNLOCK(asdev); error = uiomove((char *) ase->ase_record + asdev->asdev_qoffset, toread, uio); if (error) { AUDIT_SDEV_SX_XUNLOCK(asdev); return error; } /* * If the copy succeeded then update book-keeping, and if no * bytes remain in the current record then free it. */ AUDIT_SDEV_LOCK(asdev); KASSERT(TAILQ_FIRST(&asdev->asdev_queue) == ase, ("audit_sdev_read: queue out of sync after uiomove")); asdev->asdev_qoffset += toread; KASSERT(ase->ase_record_len >= asdev->asdev_qoffset, ("audit_sdev_read: record_len >= qoffset (2)")); if (asdev->asdev_qoffset == ase->ase_record_len) { TAILQ_REMOVE(&asdev->asdev_queue, ase, ase_queue); asdev->asdev_qbyteslen -= ase->ase_record_len; audit_sdev_entry_free(ase); asdev->asdev_qlen--; asdev->asdev_qoffset = 0; } } AUDIT_SDEV_UNLOCK(asdev); AUDIT_SDEV_SX_XUNLOCK(asdev); return 0; } /* * Audit session device poll method. */ static int audit_sdev_poll(dev_t dev, int events, void *wql, struct proc *p) { struct audit_sdev *asdev; int revents; revents = 0; asdev = audit_sdev_dtab[minor(dev)]; KASSERT(NULL != asdev, ("audit_sdev_poll: asdev == NULL")); if (events & (POLLIN | POLLRDNORM)) { AUDIT_SDEV_LOCK(asdev); if (NULL != TAILQ_FIRST(&asdev->asdev_queue)) { revents |= events & (POLLIN | POLLRDNORM); } else { selrecord(p, &asdev->asdev_selinfo, wql); } AUDIT_SDEV_UNLOCK(asdev); } return revents; } /* * Audit sdev clone routine. Provides a new minor number or returns -1. * This called with DEVFS_LOCK held. */ static int audit_sdev_clone(__unused dev_t dev, int action) { int i; if (DEVFS_CLONE_ALLOC == action) { for (i = 0; i < MAX_AUDIT_SDEVS; i++) { if (NULL == audit_sdev_dtab[i]) { return i; } } /* * This really should return -1 here but that seems to * hang things in devfs. We instead return 0 and let * audit_sdev_open tell userland the bad news. */ return 0; } return -1; } static int audit_sdev_init(void) { dev_t dev; TAILQ_INIT(&audit_sdev_list); AUDIT_SDEV_LIST_LOCK_INIT(); audit_sdev_major = cdevsw_add(-1, &audit_sdev_cdevsw); if (audit_sdev_major < 0) { return KERN_FAILURE; } dev = makedev(audit_sdev_major, 0); devnode = devfs_make_node_clone(dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0644, audit_sdev_clone, AUDIT_SDEV_NAME); if (NULL == devnode) { return KERN_FAILURE; } return KERN_SUCCESS; } /* XXXss * static int * audit_sdev_shutdown(void) * { * * devfs_remove(devnode); * (void) cdevsw_remove(audit_sdev_major, &audit_sdev_cdevsw); * * return (KERN_SUCCESS); * } */ #else int audit_session_self(proc_t p, struct audit_session_self_args *uap, mach_port_name_t *ret_port) { #pragma unused(p, uap, ret_port) return ENOSYS; } int audit_session_join(proc_t p, struct audit_session_join_args *uap, au_asid_t *ret_asid) { #pragma unused(p, uap, ret_asid) return ENOSYS; } int audit_session_port(proc_t p, struct audit_session_port_args *uap, int *retval) { #pragma unused(p, uap, retval) return ENOSYS; } #endif /* CONFIG_AUDIT */