/* * Copyright (c) 2000-2023 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Karels at Berkeley Software Design, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sysctl.c 8.4 (Berkeley) 4/14/94 */ /* * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce * support for mandatory and extensible security protections. This notice * is included in support of clause 2.2 (b) of the Apple Public License, * Version 2.0. */ /* * DEPRECATED sysctl system call code * * Everything in this file is deprecated. Sysctls should be handled * by the code in kern_newsysctl.c. * The remaining "case" sections are supposed to be converted into * SYSCTL_*-style definitions, and as soon as all of them are gone, * this source file is supposed to die. * * DO NOT ADD ANY MORE "case" SECTIONS TO THIS FILE, instead define * your sysctl with SYSCTL_INT, SYSCTL_PROC etc. in your source file. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if DEVELOPMENT || DEBUG #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_CSR #include #endif #if defined(__i386__) || defined(__x86_64__) #include #endif #if CONFIG_FREEZE #include #endif #if KPERF #include #endif #if HYPERVISOR #include #endif #include /* * deliberately setting max requests to really high number * so that runaway settings do not cause MALLOC overflows */ #define AIO_MAX_REQUESTS (128 * CONFIG_AIO_MAX) extern int aio_max_requests; extern int aio_max_requests_per_process; extern int aio_worker_threads; extern int lowpri_IO_window_msecs; extern int lowpri_IO_delay_msecs; #if DEVELOPMENT || DEBUG extern int nx_enabled; #endif extern int speculative_reads_disabled; extern unsigned int speculative_prefetch_max; extern unsigned int speculative_prefetch_max_iosize; extern unsigned int preheat_max_bytes; extern unsigned int preheat_min_bytes; extern long numvnodes; extern long freevnodes; extern long num_recycledvnodes; extern uuid_string_t bootsessionuuid_string; extern unsigned int vm_max_delayed_work_limit; extern unsigned int vm_max_batch; extern unsigned int vm_page_free_min; extern unsigned int vm_page_free_target; extern unsigned int vm_page_free_reserved; #if (DEVELOPMENT || DEBUG) extern uint32_t vm_page_creation_throttled_hard; extern uint32_t vm_page_creation_throttled_soft; #endif /* DEVELOPMENT || DEBUG */ #if DEVELOPMENT || DEBUG extern bool bootarg_hide_process_traced; #endif /* * Conditionally allow dtrace to see these functions for debugging purposes. */ #ifdef STATIC #undef STATIC #endif #if 0 #define STATIC #else #define STATIC static #endif extern boolean_t mach_timer_coalescing_enabled; extern uint64_t timer_deadline_tracking_bin_1, timer_deadline_tracking_bin_2; STATIC void fill_user32_eproc(proc_t, struct user32_eproc *__restrict); STATIC void fill_user32_externproc(proc_t, struct user32_extern_proc *__restrict); STATIC void fill_user64_eproc(proc_t, struct user64_eproc *__restrict); STATIC void fill_user64_proc(proc_t, struct user64_kinfo_proc *__restrict); STATIC void fill_user64_externproc(proc_t, struct user64_extern_proc *__restrict); STATIC void fill_user32_proc(proc_t, struct user32_kinfo_proc *__restrict); #if CONFIG_NETBOOT extern int netboot_root(void); #endif int sysctl_procargs(int *name, u_int namelen, user_addr_t where, size_t *sizep, proc_t cur_proc); STATIC int sysctl_procargsx(int *name, u_int namelen, user_addr_t where, size_t *sizep, proc_t cur_proc, int argc_yes); int sysctl_struct(user_addr_t oldp, size_t *oldlenp, user_addr_t newp, size_t newlen, void *sp, int len); STATIC int sysdoproc_filt_KERN_PROC_PID(proc_t p, void * arg); STATIC int sysdoproc_filt_KERN_PROC_PGRP(proc_t p, void * arg); STATIC int sysdoproc_filt_KERN_PROC_TTY(proc_t p, void * arg); STATIC int sysdoproc_filt_KERN_PROC_UID(proc_t p, void * arg); STATIC int sysdoproc_filt_KERN_PROC_RUID(proc_t p, void * arg); int sysdoproc_callback(proc_t p, void *arg); #if CONFIG_THREAD_GROUPS && (DEVELOPMENT || DEBUG) STATIC int sysctl_get_thread_group_id SYSCTL_HANDLER_ARGS; #endif /* forward declarations for non-static STATIC */ STATIC void fill_loadavg64(struct loadavg *la, struct user64_loadavg *la64); STATIC void fill_loadavg32(struct loadavg *la, struct user32_loadavg *la32); STATIC int sysctl_handle_kern_threadname(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_sched_stats(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_sched_stats_enable(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #if COUNT_SYSCALLS STATIC int sysctl_docountsyscalls SYSCTL_HANDLER_ARGS; #endif /* COUNT_SYSCALLS */ #if defined(XNU_TARGET_OS_OSX) STATIC int sysctl_doprocargs SYSCTL_HANDLER_ARGS; #endif /* defined(XNU_TARGET_OS_OSX) */ STATIC int sysctl_doprocargs2 SYSCTL_HANDLER_ARGS; STATIC int sysctl_prochandle SYSCTL_HANDLER_ARGS; STATIC int sysctl_aiomax(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_aioprocmax(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_aiothreads(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_maxproc(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_osversion(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_sysctl_bootargs(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_maxvnodes(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_securelvl(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_domainname(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_hostname(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_procname(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_boottime(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_bootuuid(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_symfile(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #if CONFIG_NETBOOT STATIC int sysctl_netboot(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #endif #ifdef CONFIG_IMGSRC_ACCESS STATIC int sysctl_imgsrcdev(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #endif STATIC int sysctl_usrstack(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_usrstack64(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #if CONFIG_COREDUMP STATIC int sysctl_coredump(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_suid_coredump(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #endif STATIC int sysctl_delayterm(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_rage_vnode(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_kern_check_openevt(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #if DEVELOPMENT || DEBUG STATIC int sysctl_nx(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #endif STATIC int sysctl_loadavg(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_vm_toggle_address_reuse(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_swapusage(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int fetch_process_cputype( proc_t cur_proc, int *name, u_int namelen, cpu_type_t *cputype); STATIC int sysctl_sysctl_native(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_sysctl_cputype(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_safeboot(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_singleuser(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_minimalboot(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_slide(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #ifdef CONFIG_XNUPOST #include STATIC int sysctl_debug_test_oslog_ctl(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_debug_test_stackshot_mutex_owner(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); STATIC int sysctl_debug_test_stackshot_rwlck_owner(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req); #endif extern void IORegistrySetOSBuildVersion(char * build_version); extern int IOParseWorkloadConfig(workload_config_ctx_t *ctx, const char * buffer, size_t size); extern int IOUnparseWorkloadConfig(char *buffer, size_t *size); STATIC void fill_loadavg64(struct loadavg *la, struct user64_loadavg *la64) { la64->ldavg[0] = la->ldavg[0]; la64->ldavg[1] = la->ldavg[1]; la64->ldavg[2] = la->ldavg[2]; la64->fscale = (user64_long_t)la->fscale; } STATIC void fill_loadavg32(struct loadavg *la, struct user32_loadavg *la32) { la32->ldavg[0] = la->ldavg[0]; la32->ldavg[1] = la->ldavg[1]; la32->ldavg[2] = la->ldavg[2]; la32->fscale = (user32_long_t)la->fscale; } #if COUNT_SYSCALLS extern int do_count_syscalls; #endif #ifdef INSECURE int securelevel = -1; #else int securelevel; #endif STATIC int sysctl_handle_kern_threadname( __unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error; struct uthread *ut = current_uthread(); user_addr_t oldp = 0, newp = 0; size_t *oldlenp = NULL; size_t newlen = 0; oldp = req->oldptr; oldlenp = &(req->oldlen); newp = req->newptr; newlen = req->newlen; /* We want the current length, and maybe the string itself */ if (oldlenp) { /* if we have no thread name yet tell'em we want MAXTHREADNAMESIZE - 1 */ size_t currlen = MAXTHREADNAMESIZE - 1; if (ut->pth_name) { /* use length of current thread name */ currlen = strlen(ut->pth_name); } if (oldp) { if (*oldlenp < currlen) { return ENOMEM; } /* NOTE - we do not copy the NULL terminator */ if (ut->pth_name) { error = copyout(ut->pth_name, oldp, currlen); if (error) { return error; } } } /* return length of thread name minus NULL terminator (just like strlen) */ req->oldidx = currlen; } /* We want to set the name to something */ if (newp) { if (newlen > (MAXTHREADNAMESIZE - 1)) { return ENAMETOOLONG; } if (!ut->pth_name) { char *tmp_pth_name = (char *)kalloc_data(MAXTHREADNAMESIZE, Z_WAITOK | Z_ZERO); if (!tmp_pth_name) { return ENOMEM; } if (!OSCompareAndSwapPtr(NULL, tmp_pth_name, &ut->pth_name)) { kfree_data(tmp_pth_name, MAXTHREADNAMESIZE); return EBUSY; } } else { kernel_debug_string_simple(TRACE_STRING_THREADNAME_PREV, ut->pth_name); bzero(ut->pth_name, MAXTHREADNAMESIZE); } error = copyin(newp, ut->pth_name, newlen); if (error) { return error; } kernel_debug_string_simple(TRACE_STRING_THREADNAME, ut->pth_name); } return 0; } SYSCTL_PROC(_kern, KERN_THREADNAME, threadname, CTLFLAG_ANYBODY | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_handle_kern_threadname, "A", ""); #define WORKLOAD_CONFIG_MAX_SIZE (128 * 1024 * 1024) /* Called locked - sysctl defined without CTLFLAG_LOCKED. */ static int sysctl_workload_config SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) char *plist_blob = NULL; kern_return_t ret = KERN_FAILURE; int error = -1; /* Only allow reading of workload config on non-RELEASE kernels. */ #if DEVELOPMENT || DEBUG const size_t buf_size = req->oldlen; if (!req->oldptr) { /* Just looking for the size to allocate. */ size_t size = 0; ret = IOUnparseWorkloadConfig(NULL, &size); if (ret != KERN_SUCCESS) { return ENOMEM; } error = SYSCTL_OUT(req, NULL, size); if (error) { return error; } } else { if (buf_size > (WORKLOAD_CONFIG_MAX_SIZE - 1) || buf_size == 0) { return EINVAL; } plist_blob = kalloc_data(buf_size, Z_WAITOK | Z_ZERO); if (!plist_blob) { return ENOMEM; } size_t size = buf_size; ret = IOUnparseWorkloadConfig(plist_blob, &size); if (ret != KERN_SUCCESS) { kfree_data(plist_blob, buf_size); return ENOMEM; } error = SYSCTL_OUT(req, plist_blob, MIN(buf_size, size)); /* If the buffer was too small to fit the entire config. */ if (buf_size < size) { error = ENOMEM; } kfree_data(plist_blob, buf_size); if (error) { return error; } } #endif /* DEVELOPMENT || DEBUG */ if (req->newptr) { size_t newlen = req->newlen; if (newlen > (WORKLOAD_CONFIG_MAX_SIZE - 1)) { return EINVAL; } workload_config_ctx_t *ctx = NULL; /* * Only allow workload_config_boot to be loaded once at boot by launchd. */ if (current_proc() == initproc && !workload_config_initialized(&workload_config_boot)) { ctx = &workload_config_boot; } else { #if DEVELOPMENT || DEBUG /* * Use the devel config context otherwise. If a devel config has been * initialized it will be used for lookups in place of the boot config. */ ctx = &workload_config_devel; if (workload_config_initialized(ctx)) { workload_config_free(ctx); } /* The devel context can be explicitly cleared by an empty string. */ if (newlen == 1) { return 0; } #else return EINVAL; #endif } plist_blob = kalloc_data(newlen + 1, Z_WAITOK | Z_ZERO); if (!plist_blob) { return ENOMEM; } error = copyin(req->newptr, plist_blob, newlen); if (error) { kfree_data(plist_blob, newlen + 1); return error; } plist_blob[newlen] = '\0'; ret = IOParseWorkloadConfig(ctx, plist_blob, newlen + 1); kfree_data(plist_blob, newlen + 1); return ret == KERN_SUCCESS ? 0 : EINVAL; } return 0; } SYSCTL_PROC(_kern, OID_AUTO, workload_config, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MASKED, 0, 0, sysctl_workload_config, "A", "global workgroup configuration plist load/unload"); #define BSD_HOST 1 STATIC int sysctl_sched_stats(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { host_basic_info_data_t hinfo; kern_return_t kret; uint32_t size; uint32_t buf_size = 0; int changed; mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; struct _processor_statistics_np *buf; int error; kret = host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count); if (kret != KERN_SUCCESS) { return EINVAL; } size = sizeof(struct _processor_statistics_np) * (hinfo.logical_cpu_max + 2); /* One for RT Queue, One for Fair Share Queue */ if (req->oldlen < size) { return EINVAL; } buf_size = size; buf = (struct _processor_statistics_np *)kalloc_data(buf_size, Z_ZERO | Z_WAITOK); kret = get_sched_statistics(buf, &size); if (kret != KERN_SUCCESS) { error = EINVAL; goto out; } error = sysctl_io_opaque(req, buf, size, &changed); if (error) { goto out; } if (changed) { panic("Sched info changed?!"); } out: kfree_data(buf, buf_size); return error; } SYSCTL_PROC(_kern, OID_AUTO, sched_stats, CTLFLAG_LOCKED, 0, 0, sysctl_sched_stats, "-", ""); STATIC int sysctl_sched_stats_enable(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, __unused struct sysctl_req *req) { boolean_t active; int res; if (req->newlen != sizeof(active)) { return EINVAL; } res = copyin(req->newptr, &active, sizeof(active)); if (res != 0) { return res; } return set_sched_stats_active(active); } SYSCTL_PROC(_kern, OID_AUTO, sched_stats_enable, CTLFLAG_LOCKED | CTLFLAG_WR, 0, 0, sysctl_sched_stats_enable, "-", ""); extern uint32_t sched_debug_flags; SYSCTL_INT(_debug, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_LOCKED, &sched_debug_flags, 0, "scheduler debug"); #if (DEBUG || DEVELOPMENT) extern boolean_t doprnt_hide_pointers; SYSCTL_INT(_debug, OID_AUTO, hide_kernel_pointers, CTLFLAG_RW | CTLFLAG_LOCKED, &doprnt_hide_pointers, 0, "hide kernel pointers from log"); #endif extern int get_kernel_symfile(proc_t, char **); #if COUNT_SYSCALLS #define KERN_COUNT_SYSCALLS (KERN_OSTYPE + 1000) extern const unsigned int nsysent; extern int syscalls_log[]; extern const char *syscallnames[]; STATIC int sysctl_docountsyscalls SYSCTL_HANDLER_ARGS { __unused int cmd = oidp->oid_arg2; /* subcommand*/ __unused int *name = arg1; /* oid element argument vector */ __unused int namelen = arg2; /* number of oid element arguments */ int error, changed; int tmp; /* valid values passed in: * = 0 means don't keep called counts for each bsd syscall * > 0 means keep called counts for each bsd syscall * = 2 means dump current counts to the system log * = 3 means reset all counts * for example, to dump current counts: * sysctl -w kern.count_calls=2 */ error = sysctl_io_number(req, do_count_syscalls, sizeof(do_count_syscalls), &tmp, &changed); if (error != 0 || !changed) { return error; } if (tmp == 1) { do_count_syscalls = 1; } else if (tmp == 0 || tmp == 2 || tmp == 3) { for (int i = 0; i < nsysent; i++) { if (syscalls_log[i] != 0) { if (tmp == 2) { printf("%d calls - name %s \n", syscalls_log[i], syscallnames[i]); } else { syscalls_log[i] = 0; } } } do_count_syscalls = (tmp != 0); } return error; } SYSCTL_PROC(_kern, KERN_COUNT_SYSCALLS, count_syscalls, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ 0, /* Integer argument (arg2) */ sysctl_docountsyscalls, /* Handler function */ NULL, /* Data pointer */ ""); #endif /* COUNT_SYSCALLS */ /* * The following sysctl_* functions should not be used * any more, as they can only cope with callers in * user mode: Use new-style * sysctl_io_number() * sysctl_io_string() * sysctl_io_opaque() * instead. */ STATIC int sysdoproc_filt_KERN_PROC_PID(proc_t p, void * arg) { if (proc_getpid(p) != (pid_t)*(int*)arg) { return 0; } else { return 1; } } STATIC int sysdoproc_filt_KERN_PROC_PGRP(proc_t p, void * arg) { if (p->p_pgrpid != (pid_t)*(int*)arg) { return 0; } else { return 1; } } STATIC int sysdoproc_filt_KERN_PROC_TTY(proc_t p, void * arg) { struct pgrp *pg; dev_t dev = NODEV; if ((p->p_flag & P_CONTROLT) && (pg = proc_pgrp(p, NULL)) != PGRP_NULL) { dev = os_atomic_load(&pg->pg_session->s_ttydev, relaxed); pgrp_rele(pg); } return dev != NODEV && dev == (dev_t)*(int *)arg; } STATIC int sysdoproc_filt_KERN_PROC_UID(proc_t p, void * arg) { uid_t uid; smr_proc_task_enter(); uid = kauth_cred_getuid(proc_ucred_smr(p)); smr_proc_task_leave(); if (uid != (uid_t)*(int*)arg) { return 0; } else { return 1; } } STATIC int sysdoproc_filt_KERN_PROC_RUID(proc_t p, void * arg) { uid_t ruid; smr_proc_task_enter(); ruid = kauth_cred_getruid(proc_ucred_smr(p)); smr_proc_task_leave(); if (ruid != (uid_t)*(int*)arg) { return 0; } else { return 1; } } /* * try over estimating by 5 procs */ #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) struct sysdoproc_args { size_t buflen; void *kprocp; boolean_t is_64_bit; user_addr_t dp; size_t needed; unsigned int sizeof_kproc; int *errorp; int uidcheck; int ruidcheck; int ttycheck; int uidval; }; int sysdoproc_callback(proc_t p, void *arg) { struct sysdoproc_args *args = arg; if (args->buflen >= args->sizeof_kproc) { if ((args->ruidcheck != 0) && (sysdoproc_filt_KERN_PROC_RUID(p, &args->uidval) == 0)) { return PROC_RETURNED; } if ((args->uidcheck != 0) && (sysdoproc_filt_KERN_PROC_UID(p, &args->uidval) == 0)) { return PROC_RETURNED; } if ((args->ttycheck != 0) && (sysdoproc_filt_KERN_PROC_TTY(p, &args->uidval) == 0)) { return PROC_RETURNED; } bzero(args->kprocp, args->sizeof_kproc); if (args->is_64_bit) { fill_user64_proc(p, args->kprocp); } else { fill_user32_proc(p, args->kprocp); } int error = copyout(args->kprocp, args->dp, args->sizeof_kproc); if (error) { *args->errorp = error; return PROC_RETURNED_DONE; } args->dp += args->sizeof_kproc; args->buflen -= args->sizeof_kproc; } args->needed += args->sizeof_kproc; return PROC_RETURNED; } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_LOCKED, 0, ""); STATIC int sysctl_prochandle SYSCTL_HANDLER_ARGS { int cmd = oidp->oid_arg2; /* subcommand for multiple nodes */ int *name = arg1; /* oid element argument vector */ int namelen = arg2; /* number of oid element arguments */ user_addr_t where = req->oldptr;/* user buffer copy out address */ user_addr_t dp = where; size_t needed = 0; size_t buflen = where != USER_ADDR_NULL ? req->oldlen : 0; int error = 0; boolean_t is_64_bit = proc_is64bit(current_proc()); struct user32_kinfo_proc user32_kproc; struct user64_kinfo_proc user_kproc; int sizeof_kproc; void *kprocp; int (*filterfn)(proc_t, void *) = 0; struct sysdoproc_args args; int uidcheck = 0; int ruidcheck = 0; int ttycheck = 0; if (namelen != 1 && !(namelen == 0 && cmd == KERN_PROC_ALL)) { return EINVAL; } if (is_64_bit) { sizeof_kproc = sizeof(user_kproc); kprocp = &user_kproc; } else { sizeof_kproc = sizeof(user32_kproc); kprocp = &user32_kproc; } switch (cmd) { case KERN_PROC_PID: filterfn = sysdoproc_filt_KERN_PROC_PID; break; case KERN_PROC_PGRP: filterfn = sysdoproc_filt_KERN_PROC_PGRP; break; case KERN_PROC_TTY: ttycheck = 1; break; case KERN_PROC_UID: uidcheck = 1; break; case KERN_PROC_RUID: ruidcheck = 1; break; case KERN_PROC_ALL: break; default: /* must be kern.proc. */ return ENOTSUP; } error = 0; args.buflen = buflen; args.kprocp = kprocp; args.is_64_bit = is_64_bit; args.dp = dp; args.needed = needed; args.errorp = &error; args.uidcheck = uidcheck; args.ruidcheck = ruidcheck; args.ttycheck = ttycheck; args.sizeof_kproc = sizeof_kproc; if (namelen) { args.uidval = name[0]; } proc_iterate((PROC_ALLPROCLIST | PROC_ZOMBPROCLIST), sysdoproc_callback, &args, filterfn, name); if (error) { return error; } dp = args.dp; needed = args.needed; if (where != USER_ADDR_NULL) { req->oldlen = dp - where; if (needed > req->oldlen) { return ENOMEM; } } else { needed += KERN_PROCSLOP; req->oldlen = needed; } /* adjust index so we return the right required/consumed amount */ req->oldidx += req->oldlen; return 0; } /* * We specify the subcommand code for multiple nodes as the 'req->arg2' value * in the sysctl declaration itself, which comes into the handler function * as 'oidp->oid_arg2'. * * For these particular sysctls, since they have well known OIDs, we could * have just obtained it from the '((int *)arg1)[0]' parameter, but that would * not demonstrate how to handle multiple sysctls that used OID_AUTO instead * of a well known value with a common handler function. This is desirable, * because we want well known values to "go away" at some future date. * * It should be noted that the value of '((int *)arg1)[1]' is used for many * an integer parameter to the subcommand for many of these sysctls; we'd * rather have used '((int *)arg1)[0]' for that, or even better, an element * in a structure passed in as the the 'newp' argument to sysctlbyname(3), * and then use leaf-node permissions enforcement, but that would have * necessitated modifying user space code to correspond to the interface * change, and we are striving for binary backward compatibility here; even * though these are SPI, and not intended for use by user space applications * which are not themselves system tools or libraries, some applications * have erroneously used them. */ SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ KERN_PROC_ALL, /* Integer argument (arg2) */ sysctl_prochandle, /* Handler function */ NULL, /* Data is size variant on ILP32/LP64 */ ""); SYSCTL_PROC(_kern_proc, KERN_PROC_PID, pid, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ KERN_PROC_PID, /* Integer argument (arg2) */ sysctl_prochandle, /* Handler function */ NULL, /* Data is size variant on ILP32/LP64 */ ""); SYSCTL_PROC(_kern_proc, KERN_PROC_TTY, tty, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ KERN_PROC_TTY, /* Integer argument (arg2) */ sysctl_prochandle, /* Handler function */ NULL, /* Data is size variant on ILP32/LP64 */ ""); SYSCTL_PROC(_kern_proc, KERN_PROC_PGRP, pgrp, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ KERN_PROC_PGRP, /* Integer argument (arg2) */ sysctl_prochandle, /* Handler function */ NULL, /* Data is size variant on ILP32/LP64 */ ""); SYSCTL_PROC(_kern_proc, KERN_PROC_UID, uid, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ KERN_PROC_UID, /* Integer argument (arg2) */ sysctl_prochandle, /* Handler function */ NULL, /* Data is size variant on ILP32/LP64 */ ""); SYSCTL_PROC(_kern_proc, KERN_PROC_RUID, ruid, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ KERN_PROC_RUID, /* Integer argument (arg2) */ sysctl_prochandle, /* Handler function */ NULL, /* Data is size variant on ILP32/LP64 */ ""); SYSCTL_PROC(_kern_proc, KERN_PROC_LCID, lcid, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ KERN_PROC_LCID, /* Integer argument (arg2) */ sysctl_prochandle, /* Handler function */ NULL, /* Data is size variant on ILP32/LP64 */ ""); /* * Fill in non-zero fields of an eproc structure for the specified process. */ STATIC void fill_user32_eproc(proc_t p, struct user32_eproc *__restrict ep) { struct pgrp *pg; struct session *sessp; kauth_cred_t my_cred; pg = proc_pgrp(p, &sessp); if (pg != PGRP_NULL) { ep->e_pgid = p->p_pgrpid; ep->e_jobc = pg->pg_jobc; if (sessp->s_ttyvp) { ep->e_flag = EPROC_CTTY; } } ep->e_ppid = p->p_ppid; smr_proc_task_enter(); my_cred = proc_ucred_smr(p); /* A fake historical pcred */ ep->e_pcred.p_ruid = kauth_cred_getruid(my_cred); ep->e_pcred.p_svuid = kauth_cred_getsvuid(my_cred); ep->e_pcred.p_rgid = kauth_cred_getrgid(my_cred); ep->e_pcred.p_svgid = kauth_cred_getsvgid(my_cred); /* A fake historical *kauth_cred_t */ unsigned long refcnt = os_atomic_load(&my_cred->cr_ref, relaxed); ep->e_ucred.cr_ref = (uint32_t)MIN(refcnt, UINT32_MAX); ep->e_ucred.cr_uid = kauth_cred_getuid(my_cred); ep->e_ucred.cr_ngroups = (short)posix_cred_get(my_cred)->cr_ngroups; bcopy(posix_cred_get(my_cred)->cr_groups, ep->e_ucred.cr_groups, NGROUPS * sizeof(gid_t)); my_cred = NOCRED; smr_proc_task_leave(); ep->e_tdev = NODEV; if (pg != PGRP_NULL) { if (p->p_flag & P_CONTROLT) { session_lock(sessp); ep->e_tdev = os_atomic_load(&sessp->s_ttydev, relaxed); ep->e_tpgid = sessp->s_ttypgrpid; session_unlock(sessp); } if (SESS_LEADER(p, sessp)) { ep->e_flag |= EPROC_SLEADER; } pgrp_rele(pg); } } /* * Fill in non-zero fields of an LP64 eproc structure for the specified process. */ STATIC void fill_user64_eproc(proc_t p, struct user64_eproc *__restrict ep) { struct pgrp *pg; struct session *sessp; kauth_cred_t my_cred; pg = proc_pgrp(p, &sessp); if (pg != PGRP_NULL) { ep->e_pgid = p->p_pgrpid; ep->e_jobc = pg->pg_jobc; if (sessp->s_ttyvp) { ep->e_flag = EPROC_CTTY; } } ep->e_ppid = p->p_ppid; smr_proc_task_enter(); my_cred = proc_ucred_smr(p); /* A fake historical pcred */ ep->e_pcred.p_ruid = kauth_cred_getruid(my_cred); ep->e_pcred.p_svuid = kauth_cred_getsvuid(my_cred); ep->e_pcred.p_rgid = kauth_cred_getrgid(my_cred); ep->e_pcred.p_svgid = kauth_cred_getsvgid(my_cred); /* A fake historical *kauth_cred_t */ unsigned long refcnt = os_atomic_load(&my_cred->cr_ref, relaxed); ep->e_ucred.cr_ref = (uint32_t)MIN(refcnt, UINT32_MAX); ep->e_ucred.cr_uid = kauth_cred_getuid(my_cred); ep->e_ucred.cr_ngroups = (short)posix_cred_get(my_cred)->cr_ngroups; bcopy(posix_cred_get(my_cred)->cr_groups, ep->e_ucred.cr_groups, NGROUPS * sizeof(gid_t)); my_cred = NOCRED; smr_proc_task_leave(); ep->e_tdev = NODEV; if (pg != PGRP_NULL) { if (p->p_flag & P_CONTROLT) { session_lock(sessp); ep->e_tdev = os_atomic_load(&sessp->s_ttydev, relaxed); ep->e_tpgid = sessp->s_ttypgrpid; session_unlock(sessp); } if (SESS_LEADER(p, sessp)) { ep->e_flag |= EPROC_SLEADER; } pgrp_rele(pg); } } /* * Fill in an eproc structure for the specified process. * bzeroed by our caller, so only set non-zero fields. */ STATIC void fill_user32_externproc(proc_t p, struct user32_extern_proc *__restrict exp) { exp->p_starttime.tv_sec = (user32_time_t)p->p_start.tv_sec; exp->p_starttime.tv_usec = p->p_start.tv_usec; exp->p_flag = p->p_flag; #if DEVELOPMENT || DEBUG if (p->p_lflag & P_LTRACED && !bootarg_hide_process_traced) { #else if (p->p_lflag & P_LTRACED) { #endif exp->p_flag |= P_TRACED; } if (p->p_lflag & P_LPPWAIT) { exp->p_flag |= P_PPWAIT; } if (p->p_lflag & P_LEXIT) { exp->p_flag |= P_WEXIT; } exp->p_stat = p->p_stat; exp->p_pid = proc_getpid(p); #if DEVELOPMENT || DEBUG if (bootarg_hide_process_traced) { exp->p_oppid = 0; } else #endif { exp->p_oppid = p->p_oppid; } /* Mach related */ exp->p_debugger = p->p_debugger; exp->sigwait = p->sigwait; /* scheduling */ #ifdef _PROC_HAS_SCHEDINFO_ exp->p_estcpu = p->p_estcpu; exp->p_pctcpu = p->p_pctcpu; exp->p_slptime = p->p_slptime; #endif exp->p_realtimer.it_interval.tv_sec = (user32_time_t)p->p_realtimer.it_interval.tv_sec; exp->p_realtimer.it_interval.tv_usec = (__int32_t)p->p_realtimer.it_interval.tv_usec; exp->p_realtimer.it_value.tv_sec = (user32_time_t)p->p_realtimer.it_value.tv_sec; exp->p_realtimer.it_value.tv_usec = (__int32_t)p->p_realtimer.it_value.tv_usec; exp->p_rtime.tv_sec = (user32_time_t)p->p_rtime.tv_sec; exp->p_rtime.tv_usec = (__int32_t)p->p_rtime.tv_usec; exp->p_sigignore = p->p_sigignore; exp->p_sigcatch = p->p_sigcatch; exp->p_priority = p->p_priority; exp->p_nice = p->p_nice; bcopy(&p->p_comm, &exp->p_comm, MAXCOMLEN); exp->p_xstat = (u_short)MIN(p->p_xstat, USHRT_MAX); exp->p_acflag = p->p_acflag; } /* * Fill in an LP64 version of extern_proc structure for the specified process. */ STATIC void fill_user64_externproc(proc_t p, struct user64_extern_proc *__restrict exp) { exp->p_starttime.tv_sec = p->p_start.tv_sec; exp->p_starttime.tv_usec = p->p_start.tv_usec; exp->p_flag = p->p_flag; #if DEVELOPMENT || DEBUG if (p->p_lflag & P_LTRACED && !bootarg_hide_process_traced) { #else if (p->p_lflag & P_LTRACED) { #endif exp->p_flag |= P_TRACED; } if (p->p_lflag & P_LPPWAIT) { exp->p_flag |= P_PPWAIT; } if (p->p_lflag & P_LEXIT) { exp->p_flag |= P_WEXIT; } exp->p_stat = p->p_stat; exp->p_pid = proc_getpid(p); #if DEVELOPMENT || DEBUG if (bootarg_hide_process_traced) { exp->p_oppid = 0; } else #endif { exp->p_oppid = p->p_oppid; } /* Mach related */ exp->p_debugger = p->p_debugger; exp->sigwait = p->sigwait; /* scheduling */ #ifdef _PROC_HAS_SCHEDINFO_ exp->p_estcpu = p->p_estcpu; exp->p_pctcpu = p->p_pctcpu; exp->p_slptime = p->p_slptime; #endif exp->p_realtimer.it_interval.tv_sec = p->p_realtimer.it_interval.tv_sec; exp->p_realtimer.it_interval.tv_usec = p->p_realtimer.it_interval.tv_usec; exp->p_realtimer.it_value.tv_sec = p->p_realtimer.it_value.tv_sec; exp->p_realtimer.it_value.tv_usec = p->p_realtimer.it_value.tv_usec; exp->p_rtime.tv_sec = p->p_rtime.tv_sec; exp->p_rtime.tv_usec = p->p_rtime.tv_usec; exp->p_sigignore = p->p_sigignore; exp->p_sigcatch = p->p_sigcatch; exp->p_priority = p->p_priority; exp->p_nice = p->p_nice; bcopy(&p->p_comm, &exp->p_comm, MAXCOMLEN); exp->p_xstat = (u_short)MIN(p->p_xstat, USHRT_MAX); exp->p_acflag = p->p_acflag; } STATIC void fill_user32_proc(proc_t p, struct user32_kinfo_proc *__restrict kp) { /* on a 64 bit kernel, 32 bit users get some truncated information */ fill_user32_externproc(p, &kp->kp_proc); fill_user32_eproc(p, &kp->kp_eproc); } STATIC void fill_user64_proc(proc_t p, struct user64_kinfo_proc *__restrict kp) { fill_user64_externproc(p, &kp->kp_proc); fill_user64_eproc(p, &kp->kp_eproc); } #if defined(XNU_TARGET_OS_OSX) /* * Return the top *sizep bytes of the user stack, or the entire area of the * user stack down through the saved exec_path, whichever is smaller. */ STATIC int sysctl_doprocargs SYSCTL_HANDLER_ARGS { __unused int cmd = oidp->oid_arg2; /* subcommand*/ int *name = arg1; /* oid element argument vector */ int namelen = arg2; /* number of oid element arguments */ user_addr_t oldp = req->oldptr; /* user buffer copy out address */ size_t *oldlenp = &req->oldlen; /* user buffer copy out size */ // user_addr_t newp = req->newptr; /* user buffer copy in address */ // size_t newlen = req->newlen; /* user buffer copy in size */ int error; error = sysctl_procargsx( name, namelen, oldp, oldlenp, current_proc(), 0); /* adjust index so we return the right required/consumed amount */ if (!error) { req->oldidx += req->oldlen; } return error; } SYSCTL_PROC(_kern, KERN_PROCARGS, procargs, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ 0, /* Integer argument (arg2) */ sysctl_doprocargs, /* Handler function */ NULL, /* Data pointer */ ""); #endif /* defined(XNU_TARGET_OS_OSX) */ STATIC int sysctl_doprocargs2 SYSCTL_HANDLER_ARGS { __unused int cmd = oidp->oid_arg2; /* subcommand*/ int *name = arg1; /* oid element argument vector */ int namelen = arg2; /* number of oid element arguments */ user_addr_t oldp = req->oldptr; /* user buffer copy out address */ size_t *oldlenp = &req->oldlen; /* user buffer copy out size */ // user_addr_t newp = req->newptr; /* user buffer copy in address */ // size_t newlen = req->newlen; /* user buffer copy in size */ int error; error = sysctl_procargsx( name, namelen, oldp, oldlenp, current_proc(), 1); /* adjust index so we return the right required/consumed amount */ if (!error) { req->oldidx += req->oldlen; } return error; } SYSCTL_PROC(_kern, KERN_PROCARGS2, procargs2, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, /* Pointer argument (arg1) */ 0, /* Integer argument (arg2) */ sysctl_doprocargs2, /* Handler function */ NULL, /* Data pointer */ ""); #define SYSCTL_PROCARGS_READ_ENVVARS_ENTITLEMENT "com.apple.private.read-environment-variables" STATIC int sysctl_procargsx(int *name, u_int namelen, user_addr_t where, size_t *sizep, proc_t cur_proc, int argc_yes) { assert(sizep != NULL); proc_t p = NULL; size_t buflen = where != USER_ADDR_NULL ? *sizep : 0; int error = 0; struct _vm_map *proc_map = NULL; struct task * task; vm_map_copy_t tmp = NULL; user_addr_t arg_addr; size_t arg_size; caddr_t data; size_t argslen = 0; size_t size = 0; vm_offset_t copy_start = 0, copy_end; vm_offset_t smallbuffer_start; kern_return_t ret; int pid; uid_t uid; int argc = -1; size_t argvsize; size_t remaining; size_t current_arg_index; size_t current_arg_len; const char * current_arg; bool omit_env_vars = true; user_addr_t user_stack; vm_map_offset_t effective_page_mask; if (namelen < 1) { error = EINVAL; goto finish; } if (argc_yes) { buflen -= sizeof(int); /* reserve first word to return argc */ } /* we only care about buflen when where (oldp from sysctl) is not NULL. */ /* when where (oldp from sysctl) is NULL and sizep (oldlenp from sysctl */ /* is not NULL then the caller wants us to return the length needed to */ /* hold the data we would return */ if (where != USER_ADDR_NULL && (buflen <= 0 || buflen > ARG_MAX)) { error = EINVAL; goto finish; } /* * Lookup process by pid */ pid = name[0]; p = proc_find(pid); if (p == NULL) { error = EINVAL; goto finish; } /* Allow reading environment variables if any of the following are true: * - kernel is DEVELOPMENT || DEBUG * - target process is same as current_proc() * - target process is not cs_restricted * - SIP is off * - caller has an entitlement */ #if DEVELOPMENT || DEBUG omit_env_vars = false; #endif if (p == current_proc() || !cs_restricted(p) || #if CONFIG_CSR csr_check(CSR_ALLOW_UNRESTRICTED_DTRACE) == 0 || #endif IOCurrentTaskHasEntitlement(SYSCTL_PROCARGS_READ_ENVVARS_ENTITLEMENT) ) { omit_env_vars = false; } /* * Copy the top N bytes of the stack. * On all machines we have so far, the stack grows * downwards. * * If the user expects no more than N bytes of * argument list, use that as a guess for the * size. */ if (!p->user_stack) { error = EINVAL; goto finish; } /* save off argc, argslen, user_stack before releasing the proc */ argc = p->p_argc; argslen = p->p_argslen; user_stack = p->user_stack; /* * When these sysctls were introduced, the first string in the strings * section was just the bare path of the executable. However, for security * reasons we now prefix this string with executable_path= so it can be * parsed getenv style. To avoid binary compatability issues with exising * callers of this sysctl, we strip it off here. * (rdar://problem/13746466) */ #define EXECUTABLE_KEY "executable_path=" argslen -= strlen(EXECUTABLE_KEY); if (where == USER_ADDR_NULL && !omit_env_vars) { /* caller only wants to know length of proc args data. * If we don't need to omit environment variables, we can skip * copying the target process stack */ goto calculate_size; } smr_proc_task_enter(); uid = kauth_cred_getuid(proc_ucred_smr(p)); smr_proc_task_leave(); if ((uid != kauth_cred_getuid(kauth_cred_get())) && suser(kauth_cred_get(), &cur_proc->p_acflag)) { error = EINVAL; goto finish; } /* * Before we can block (any VM code), make another * reference to the map to keep it alive. We do * that by getting a reference on the task itself. */ task = proc_task(p); if (task == NULL) { error = EINVAL; goto finish; } /* * Once we have a task reference we can convert that into a * map reference, which we will use in the calls below. The * task/process may change its map after we take this reference * (see execve), but the worst that will happen then is a return * of stale info (which is always a possibility). */ task_reference(task); proc_rele(p); p = NULL; proc_map = get_task_map_reference(task); task_deallocate(task); if (proc_map == NULL) { error = EINVAL; goto finish; } effective_page_mask = vm_map_page_mask(proc_map); arg_size = vm_map_round_page(argslen, effective_page_mask); arg_addr = user_stack - arg_size; ret = kmem_alloc(kernel_map, ©_start, arg_size, KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_BSD); if (ret != KERN_SUCCESS) { error = ENOMEM; goto finish; } copy_end = copy_start + arg_size; if (vm_map_copyin(proc_map, (vm_map_address_t)arg_addr, (vm_map_size_t)arg_size, FALSE, &tmp) != KERN_SUCCESS) { error = EIO; goto finish; } /* * Now that we've done the copyin from the process' * map, we can release the reference to it. */ vm_map_deallocate(proc_map); proc_map = NULL; if (vm_map_copy_overwrite(kernel_map, (vm_map_address_t)copy_start, tmp, (vm_map_size_t) arg_size, FALSE) != KERN_SUCCESS) { error = EIO; goto finish; } /* tmp was consumed */ tmp = NULL; if (omit_env_vars) { argvsize = 0; /* Iterate over everything in argv, plus one for the bare executable path */ for (current_arg_index = 0; current_arg_index < argc + 1 && argvsize < argslen; ++current_arg_index) { current_arg = (const char *)(copy_end - argslen) + argvsize; remaining = argslen - argvsize; current_arg_len = strnlen(current_arg, remaining); if (current_arg_len < remaining) { /* We have space for the null terminator */ current_arg_len += 1; if (current_arg_index == 0) { /* The bare executable path may have multiple null bytes after it for alignment */ while (current_arg_len < remaining && current_arg[current_arg_len] == 0) { current_arg_len += 1; } } } argvsize += current_arg_len; } assert(argvsize <= argslen); /* Adjust argslen and copy_end to make the copyout range extend to the end of argv */ copy_end = copy_end - argslen + argvsize; argslen = argvsize; } if (where == USER_ADDR_NULL) { /* Skip copyout */ goto calculate_size; } if (buflen >= argslen) { data = (caddr_t) (copy_end - argslen); size = argslen; } else { /* * Before rdar://25397314, this function contained incorrect logic when buflen is less * than argslen. The problem was that it copied in `buflen` bytes from the end of the target * process user stack into the beginning of a buffer of size round_page(buflen), and then * copied out `buflen` bytes from the end of this buffer. The effect of this was that * the caller of this sysctl would get zeros at the end of their buffer. * * To preserve this behavior, bzero everything from copy_end-round_page(buflen)+buflen to the * end of the buffer. This emulates copying in only `buflen` bytes. * * * In the old code: * * copy_start .... size: round_page(buflen) .... copy_end * [---copied in data (size: buflen)---|--- zeros ----------] * ^ * data = copy_end - buflen * * * In the new code: * copy_start .... size: round_page(p->argslen) .... full copy_end * ^ ....................... p->argslen ...............................^ * ^ ^ truncated copy_end ^ * ^ ^ ^ ^ * ^ ................ argslen ........................ ^ * ^ ^ ^ ^ * [-------copied in data (size: round_page(p->argslen))-------:----env vars---] * ^ ^ * ^ data = copy_end - buflen * smallbuffer_start = max(copy_end - round_page(buflen), copy_start) * * * Full copy_end: copy_end calculated from copy_start + round_page(p->argslen) * Truncated copy_end: copy_end after truncation to remove environment variables. * * If environment variables were omitted, then we use the truncated copy_end, otherwise * we use full copy_end. * * smallbuffer_start: represents where copy_start would be in the old code. * data: The beginning of the region we copyout */ smallbuffer_start = copy_end - vm_map_round_page(buflen, effective_page_mask); if (smallbuffer_start < copy_start) { smallbuffer_start = copy_start; } bzero((void *)(smallbuffer_start + buflen), copy_end - (smallbuffer_start + buflen)); data = (caddr_t) (copy_end - buflen); size = buflen; } if (argc_yes) { /* Put processes argc as the first word in the copyout buffer */ suword(where, argc); error = copyout(data, (where + sizeof(int)), size); size += sizeof(int); } else { error = copyout(data, where, size); /* * Make the old PROCARGS work to return the executable's path * But, only if there is enough space in the provided buffer * * on entry: data [possibily] points to the beginning of the path * * Note: we keep all pointers&sizes aligned to word boundries */ if ((!error) && (buflen > 0 && (u_int)buflen > size)) { int binPath_sz, alignedBinPath_sz = 0; int extraSpaceNeeded, addThis; user_addr_t placeHere; char * str = (char *) data; size_t max_len = size; /* Some apps are really bad about messing up their stacks * So, we have to be extra careful about getting the length * of the executing binary. If we encounter an error, we bail. */ /* Limit ourselves to PATH_MAX paths */ if (max_len > PATH_MAX) { max_len = PATH_MAX; } binPath_sz = 0; while ((binPath_sz < max_len - 1) && (*str++ != 0)) { binPath_sz++; } /* If we have a NUL terminator, copy it, too */ if (binPath_sz < max_len - 1) { binPath_sz += 1; } /* Pre-Flight the space requiremnts */ /* Account for the padding that fills out binPath to the next word */ alignedBinPath_sz += (binPath_sz & (sizeof(int) - 1)) ? (sizeof(int) - (binPath_sz & (sizeof(int) - 1))) : 0; placeHere = where + size; /* Account for the bytes needed to keep placeHere word aligned */ addThis = (placeHere & (sizeof(int) - 1)) ? (sizeof(int) - (placeHere & (sizeof(int) - 1))) : 0; /* Add up all the space that is needed */ extraSpaceNeeded = alignedBinPath_sz + addThis + binPath_sz + (4 * sizeof(int)); /* is there is room to tack on argv[0]? */ if ((buflen & ~(sizeof(int) - 1)) >= (size + extraSpaceNeeded)) { placeHere += addThis; suword(placeHere, 0); placeHere += sizeof(int); suword(placeHere, 0xBFFF0000); placeHere += sizeof(int); suword(placeHere, 0); placeHere += sizeof(int); error = copyout(data, placeHere, binPath_sz); if (!error) { placeHere += binPath_sz; suword(placeHere, 0); size += extraSpaceNeeded; } } } } calculate_size: /* Size has already been calculated for the where != NULL case */ if (where == USER_ADDR_NULL) { size = argslen; if (argc_yes) { size += sizeof(int); } else { /* * old PROCARGS will return the executable's path and plus some * extra space for work alignment and data tags */ size += PATH_MAX + (6 * sizeof(int)); } size += (size & (sizeof(int) - 1)) ? (sizeof(int) - (size & (sizeof(int) - 1))) : 0; } *sizep = size; finish: if (p != NULL) { proc_rele(p); } if (tmp != NULL) { vm_map_copy_discard(tmp); } if (proc_map != NULL) { vm_map_deallocate(proc_map); } if (copy_start != (vm_offset_t) 0) { kmem_free(kernel_map, copy_start, arg_size); } return error; } /* * Max number of concurrent aio requests */ STATIC int sysctl_aiomax (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, aio_max_requests, sizeof(int), &new_value, &changed); if (changed) { /* make sure the system-wide limit is greater than the per process limit */ if (new_value >= aio_max_requests_per_process && new_value <= AIO_MAX_REQUESTS) { aio_max_requests = new_value; } else { error = EINVAL; } } return error; } /* * Max number of concurrent aio requests per process */ STATIC int sysctl_aioprocmax (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, aio_max_requests_per_process, sizeof(int), &new_value, &changed); if (changed) { /* make sure per process limit is less than the system-wide limit */ if (new_value <= aio_max_requests && new_value >= AIO_LISTIO_MAX) { aio_max_requests_per_process = new_value; } else { error = EINVAL; } } return error; } /* * Max number of async IO worker threads */ STATIC int sysctl_aiothreads (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, aio_worker_threads, sizeof(int), &new_value, &changed); if (changed) { /* we only allow an increase in the number of worker threads */ if (new_value > aio_worker_threads) { _aio_create_worker_threads((new_value - aio_worker_threads)); aio_worker_threads = new_value; } else { error = EINVAL; } } return error; } /* * System-wide limit on the max number of processes */ STATIC int sysctl_maxproc (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, maxproc, sizeof(int), &new_value, &changed); if (changed) { AUDIT_ARG(value32, new_value); /* make sure the system-wide limit is less than the configured hard * limit set at kernel compilation */ if (new_value <= hard_maxproc && new_value > 0) { maxproc = new_value; } else { error = EINVAL; } } return error; } extern int sched_enable_smt; STATIC int sysctl_sched_enable_smt (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, sched_enable_smt, sizeof(int), &new_value, &changed); if (error) { return error; } kern_return_t kret = KERN_SUCCESS; if (changed) { AUDIT_ARG(value32, new_value); if (new_value == 0) { sched_enable_smt = 0; kret = enable_smt_processors(false); } else { sched_enable_smt = 1; kret = enable_smt_processors(true); } } switch (kret) { case KERN_SUCCESS: error = 0; break; case KERN_INVALID_ARGUMENT: error = EINVAL; break; case KERN_FAILURE: error = EBUSY; break; default: error = ENOENT; break; } return error; } SYSCTL_STRING(_kern, KERN_OSTYPE, ostype, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, ostype, 0, ""); SYSCTL_STRING(_kern, KERN_OSRELEASE, osrelease, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, osrelease, 0, ""); SYSCTL_INT(_kern, KERN_OSREV, osrevision, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, (int *)NULL, BSD, ""); SYSCTL_STRING(_kern, KERN_VERSION, version, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, version, 0, ""); SYSCTL_STRING(_kern, OID_AUTO, uuid, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, &kernel_uuid_string[0], 0, ""); SYSCTL_STRING(_kern, OID_AUTO, osbuildconfig, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLFLAG_MASKED, &osbuild_config[0], 0, ""); #if DEBUG #ifndef DKPR #define DKPR 1 #endif #endif #if DKPR int debug_kprint_syscall = 0; char debug_kprint_syscall_process[MAXCOMLEN + 1]; /* Thread safe: bits and string value are not used to reclaim state */ SYSCTL_INT(_debug, OID_AUTO, kprint_syscall, CTLFLAG_RW | CTLFLAG_LOCKED, &debug_kprint_syscall, 0, "kprintf syscall tracing"); SYSCTL_STRING(_debug, OID_AUTO, kprint_syscall_process, CTLFLAG_RW | CTLFLAG_LOCKED, debug_kprint_syscall_process, sizeof(debug_kprint_syscall_process), "name of process for kprintf syscall tracing"); int debug_kprint_current_process(const char **namep) { struct proc *p = current_proc(); if (p == NULL) { return 0; } if (debug_kprint_syscall_process[0]) { /* user asked to scope tracing to a particular process name */ if (0 == strncmp(debug_kprint_syscall_process, p->p_comm, sizeof(debug_kprint_syscall_process))) { /* no value in telling the user that we traced what they asked */ if (namep) { *namep = NULL; } return 1; } else { return 0; } } /* trace all processes. Tell user what we traced */ if (namep) { *namep = p->p_comm; } return 1; } #endif /* PR-5293665: need to use a callback function for kern.osversion to set * osversion in IORegistry */ STATIC int sysctl_osversion(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { int rval = 0; rval = sysctl_handle_string(oidp, arg1, arg2, req); if (req->newptr) { IORegistrySetOSBuildVersion((char *)arg1); } return rval; } SYSCTL_PROC(_kern, KERN_OSVERSION, osversion, CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, osversion, 256 /* OSVERSIZE*/, sysctl_osversion, "A", ""); static bool _already_set_or_not_launchd(struct sysctl_req *req, char *val) { if (req->newptr != 0) { /* * Can only ever be set by launchd, and only once at boot. */ if (proc_getpid(req->p) != 1 || val[0] != '\0') { return true; } } return false; } #define kRootsInstalledReadWriteEntitlement "com.apple.private.roots-installed-read-write" #define kRootsInstalledReadOnlyEntitlement "com.apple.private.roots-installed-read-only" uint64_t roots_installed = 0; static int sysctl_roots_installed (__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { int error = 0; if (req->newptr != 0) { /* a ReadWrite entitlement is required for updating this syscl * meanwhile, only allow write once */ if (!IOCurrentTaskHasEntitlement(kRootsInstalledReadWriteEntitlement) || (roots_installed != 0)) { return EPERM; } } else { /* for reader of this sysctl, need either ReadWrite or ReadOnly entitlement */ if (!IOCurrentTaskHasEntitlement(kRootsInstalledReadWriteEntitlement) && !IOCurrentTaskHasEntitlement(kRootsInstalledReadOnlyEntitlement)) { return EPERM; } } error = sysctl_handle_quad(oidp, arg1, arg2, req); return error; } SYSCTL_PROC(_kern, OID_AUTO, roots_installed, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, &roots_installed, sizeof(roots_installed), sysctl_roots_installed, "Q", ""); #if XNU_TARGET_OS_OSX static int sysctl_system_version_compat (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int oldval = (task_has_system_version_compat_enabled(current_task())); int new_value = 0, changed = 0; int error = sysctl_io_number(req, oldval, sizeof(int), &new_value, &changed); if (changed) { task_set_system_version_compat_enabled(current_task(), (new_value)); } return error; } SYSCTL_PROC(_kern, OID_AUTO, system_version_compat, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, sysctl_system_version_compat, "A", ""); char osproductversioncompat[48] = { '\0' }; static int sysctl_osproductversioncompat(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { if (_already_set_or_not_launchd(req, osproductversioncompat)) { return EPERM; } return sysctl_handle_string(oidp, arg1, arg2, req); } SYSCTL_PROC(_kern, OID_AUTO, osproductversioncompat, CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, osproductversioncompat, sizeof(osproductversioncompat), sysctl_osproductversioncompat, "A", "The ProductVersion from SystemVersionCompat.plist"); #endif char osproductversion[48] = { '\0' }; static char iossupportversion_string[48] = { '\0' }; static int sysctl_osproductversion(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { if (_already_set_or_not_launchd(req, osproductversion)) { return EPERM; } #if XNU_TARGET_OS_OSX if (task_has_system_version_compat_enabled(current_task()) && (osproductversioncompat[0] != '\0')) { return sysctl_handle_string(oidp, osproductversioncompat, arg2, req); } else { return sysctl_handle_string(oidp, arg1, arg2, req); } #else return sysctl_handle_string(oidp, arg1, arg2, req); #endif } #if XNU_TARGET_OS_OSX static_assert(sizeof(osproductversioncompat) == sizeof(osproductversion), "osproductversion size matches osproductversioncompat size"); #endif SYSCTL_PROC(_kern, OID_AUTO, osproductversion, CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, osproductversion, sizeof(osproductversion), sysctl_osproductversion, "A", "The ProductVersion from SystemVersion.plist"); char osreleasetype[48] = { '\0' }; STATIC int sysctl_osreleasetype(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { if (_already_set_or_not_launchd(req, osreleasetype)) { return EPERM; } return sysctl_handle_string(oidp, arg1, arg2, req); } void reset_osreleasetype(void); void reset_osreleasetype(void) { memset(osreleasetype, 0, sizeof(osreleasetype)); } SYSCTL_PROC(_kern, OID_AUTO, osreleasetype, CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, osreleasetype, sizeof(osreleasetype), sysctl_osreleasetype, "A", "The ReleaseType from SystemVersion.plist"); STATIC int sysctl_iossupportversion(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { if (_already_set_or_not_launchd(req, iossupportversion_string)) { return EPERM; } return sysctl_handle_string(oidp, arg1, arg2, req); } SYSCTL_PROC(_kern, OID_AUTO, iossupportversion, CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, iossupportversion_string, sizeof(iossupportversion_string), sysctl_iossupportversion, "A", "The iOSSupportVersion from SystemVersion.plist"); static uint64_t osvariant_status = 0; STATIC int sysctl_osvariant_status(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { if (req->newptr != 0) { /* * Can only ever be set by launchd, and only once. * Reset by usrctl() -> reset_osvariant_status() during * userspace reboot, since userspace could reboot into * a different variant. */ if (proc_getpid(req->p) != 1 || osvariant_status != 0) { return EPERM; } } int err = sysctl_handle_quad(oidp, arg1, arg2, req); reset_debug_syscall_rejection_mode(); return err; } SYSCTL_PROC(_kern, OID_AUTO, osvariant_status, CTLFLAG_RW | CTLTYPE_QUAD | CTLFLAG_LOCKED | CTLFLAG_MASKED, &osvariant_status, sizeof(osvariant_status), sysctl_osvariant_status, "Q", "Opaque flags used to cache OS variant information"); static bool _os_variant_check_disabled(enum os_variant_property property) { return (osvariant_status >> (32 + property)) & 0x1; } static bool _os_variant_has(enum os_variant_status_flags_positions p) { return ((osvariant_status >> (p * OS_VARIANT_STATUS_BIT_WIDTH)) & OS_VARIANT_STATUS_MASK) == OS_VARIANT_S_YES; } bool os_variant_has_internal_diagnostics(__unused const char *subsystem) { if (_os_variant_check_disabled(OS_VARIANT_PROPERTY_DIAGNOSTICS)) { return false; } #if XNU_TARGET_OS_OSX return _os_variant_has(OS_VARIANT_SFP_INTERNAL_CONTENT) || _os_variant_has(OS_VARIANT_SFP_INTERNAL_DIAGS_PROFILE); #else return _os_variant_has(OS_VARIANT_SFP_INTERNAL_RELEASE_TYPE); #endif /* XNU_TARGET_OS_OSX */ } void reset_osvariant_status(void); void reset_osvariant_status(void) { osvariant_status = 0; reset_debug_syscall_rejection_mode(); } extern void commpage_update_dyld_flags(uint64_t); TUNABLE_WRITEABLE(uint64_t, dyld_flags, "dyld_flags", 0); STATIC int sysctl_dyld_flags(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { /* * Can only ever be set by launchd, possibly several times * as dyld may change its mind after a userspace reboot. */ if (req->newptr != 0 && proc_getpid(req->p) != 1) { return EPERM; } int res = sysctl_handle_quad(oidp, arg1, arg2, req); if (req->newptr && res == 0) { commpage_update_dyld_flags(dyld_flags); } return res; } SYSCTL_PROC(_kern, OID_AUTO, dyld_flags, CTLFLAG_RW | CTLTYPE_QUAD | CTLFLAG_LOCKED | CTLFLAG_MASKED, &dyld_flags, sizeof(dyld_flags), sysctl_dyld_flags, "Q", "Opaque flags used to cache dyld system-wide configuration"); #if defined(XNU_TARGET_OS_BRIDGE) char macosproductversion[MACOS_VERS_LEN] = { '\0' }; SYSCTL_STRING(_kern, OID_AUTO, macosproductversion, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &macosproductversion[0], MACOS_VERS_LEN, "The currently running macOS ProductVersion (from SystemVersion.plist on macOS)"); char macosversion[MACOS_VERS_LEN] = { '\0' }; SYSCTL_STRING(_kern, OID_AUTO, macosversion, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &macosversion[0], MACOS_VERS_LEN, "The currently running macOS build version"); #endif STATIC int sysctl_sysctl_bootargs (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error; char buf[BOOT_LINE_LENGTH]; strlcpy(buf, PE_boot_args(), BOOT_LINE_LENGTH); error = sysctl_io_string(req, buf, BOOT_LINE_LENGTH, 0, NULL); return error; } SYSCTL_PROC(_kern, OID_AUTO, bootargs, CTLFLAG_LOCKED | CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING, NULL, 0, sysctl_sysctl_bootargs, "A", "bootargs"); STATIC int sysctl_kernelcacheuuid(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { int rval = ENOENT; if (kernelcache_uuid_valid) { rval = sysctl_handle_string(oidp, arg1, arg2, req); } return rval; } SYSCTL_PROC(_kern, OID_AUTO, kernelcacheuuid, CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, kernelcache_uuid_string, sizeof(kernelcache_uuid_string), sysctl_kernelcacheuuid, "A", ""); STATIC int sysctl_systemfilesetuuid(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { int rval = ENOENT; if (pageablekc_uuid_valid) { rval = sysctl_handle_string(oidp, arg1, arg2, req); } return rval; } SYSCTL_PROC(_kern, OID_AUTO, systemfilesetuuid, CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, pageablekc_uuid_string, sizeof(pageablekc_uuid_string), sysctl_systemfilesetuuid, "A", ""); STATIC int sysctl_auxiliaryfilesetuuid(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { int rval = ENOENT; if (auxkc_uuid_valid) { rval = sysctl_handle_string(oidp, arg1, arg2, req); } return rval; } SYSCTL_PROC(_kern, OID_AUTO, auxiliaryfilesetuuid, CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, auxkc_uuid_string, sizeof(auxkc_uuid_string), sysctl_auxiliaryfilesetuuid, "A", ""); STATIC int sysctl_filesetuuid(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int rval = ENOENT; kc_format_t kcformat; kernel_mach_header_t *mh; void *uuid = NULL; unsigned long uuidlen = 0; uuid_string_t uuid_str; if (!PE_get_primary_kc_format(&kcformat) || kcformat != KCFormatFileset) { return rval; } mh = (kernel_mach_header_t *)PE_get_kc_header(KCKindPrimary); uuid = getuuidfromheader(mh, &uuidlen); if ((uuid != NULL) && (uuidlen == sizeof(uuid_t))) { uuid_unparse_upper(*(uuid_t *)uuid, uuid_str); rval = sysctl_io_string(req, (char *)uuid_str, sizeof(uuid_str), 0, NULL); } return rval; } SYSCTL_PROC(_kern, OID_AUTO, filesetuuid, CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED, NULL, 0, sysctl_filesetuuid, "A", ""); SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &maxfiles, 0, ""); SYSCTL_INT(_kern, KERN_ARGMAX, argmax, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, (int *)NULL, ARG_MAX, ""); SYSCTL_INT(_kern, KERN_POSIX1, posix1version, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, (int *)NULL, _POSIX_VERSION, ""); SYSCTL_INT(_kern, KERN_NGROUPS, ngroups, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, (int *)NULL, NGROUPS_MAX, ""); SYSCTL_INT(_kern, KERN_JOB_CONTROL, job_control, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, (int *)NULL, 1, ""); #if 1 /* _POSIX_SAVED_IDS from */ SYSCTL_INT(_kern, KERN_SAVED_IDS, saved_ids, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, (int *)NULL, 1, ""); #else SYSCTL_INT(_kern, KERN_SAVED_IDS, saved_ids, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, NULL, 0, ""); #endif SYSCTL_INT(_kern, OID_AUTO, num_files, CTLFLAG_RD | CTLFLAG_LOCKED, &nfiles, 0, ""); SYSCTL_COMPAT_INT(_kern, OID_AUTO, num_vnodes, CTLFLAG_RD | CTLFLAG_LOCKED, &numvnodes, 0, ""); SYSCTL_INT(_kern, OID_AUTO, num_tasks, CTLFLAG_RD | CTLFLAG_LOCKED, &task_max, 0, ""); SYSCTL_INT(_kern, OID_AUTO, num_threads, CTLFLAG_RD | CTLFLAG_LOCKED, &thread_max, 0, ""); SYSCTL_INT(_kern, OID_AUTO, num_taskthreads, CTLFLAG_RD | CTLFLAG_LOCKED, &task_threadmax, 0, ""); SYSCTL_LONG(_kern, OID_AUTO, num_recycledvnodes, CTLFLAG_RD | CTLFLAG_LOCKED, &num_recycledvnodes, ""); SYSCTL_COMPAT_INT(_kern, OID_AUTO, free_vnodes, CTLFLAG_RD | CTLFLAG_LOCKED, &freevnodes, 0, ""); STATIC int sysctl_maxvnodes(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int oldval = desiredvnodes; int error = sysctl_io_number(req, desiredvnodes, sizeof(int), &desiredvnodes, NULL); if (oldval != desiredvnodes) { resize_namecache(desiredvnodes); } return error; } SYSCTL_INT(_kern, OID_AUTO, namecache_disabled, CTLFLAG_RW | CTLFLAG_LOCKED, &nc_disabled, 0, ""); SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_maxvnodes, "I", ""); SYSCTL_PROC(_kern, KERN_MAXPROC, maxproc, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_maxproc, "I", ""); SYSCTL_PROC(_kern, KERN_AIOMAX, aiomax, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_aiomax, "I", ""); SYSCTL_PROC(_kern, KERN_AIOPROCMAX, aioprocmax, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_aioprocmax, "I", ""); SYSCTL_PROC(_kern, KERN_AIOTHREADS, aiothreads, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_aiothreads, "I", ""); SYSCTL_PROC(_kern, OID_AUTO, sched_enable_smt, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_KERN, 0, 0, sysctl_sched_enable_smt, "I", ""); extern int sched_allow_NO_SMT_threads; SYSCTL_INT(_kern, OID_AUTO, sched_allow_NO_SMT_threads, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_allow_NO_SMT_threads, 0, ""); extern int sched_avoid_cpu0; SYSCTL_INT(_kern, OID_AUTO, sched_rt_avoid_cpu0, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_avoid_cpu0, 0, "If 1, choose cpu0 after all other primaries; if 2, choose cpu0 and cpu1 last, after all other cpus including secondaries"); #if (DEVELOPMENT || DEBUG) static int sysctl_kern_max_unsafe_rt_quanta(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { extern void sched_set_max_unsafe_rt_quanta(int); extern int max_unsafe_rt_quanta; int new_value, changed; int old_value = max_unsafe_rt_quanta; int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if (changed) { sched_set_max_unsafe_rt_quanta(new_value); } return error; } SYSCTL_PROC(_kern, OID_AUTO, max_unsafe_rt_quanta, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_kern_max_unsafe_rt_quanta, "I", "Number of quanta to allow a realtime " "thread to run before being penalized"); static int sysctl_kern_max_unsafe_fixed_quanta(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { extern void sched_set_max_unsafe_fixed_quanta(int); extern int max_unsafe_fixed_quanta; int new_value, changed; int old_value = max_unsafe_fixed_quanta; int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if (changed) { sched_set_max_unsafe_fixed_quanta(new_value); } return error; } SYSCTL_PROC(_kern, OID_AUTO, max_unsafe_fixed_quanta, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_kern_max_unsafe_fixed_quanta, "I", "Number of quanta to allow a fixed sched mode " "thread to run before being penalized"); static int sysctl_kern_quantum_us(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { extern uint64_t sysctl_get_quantum_us(void); const uint64_t quantum_us = sysctl_get_quantum_us(); return sysctl_io_number(req, quantum_us, sizeof(quantum_us), NULL, NULL); } SYSCTL_PROC(_kern, OID_AUTO, quantum_us, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_kern_quantum_us, "Q", "Length of scheduling quantum in microseconds"); extern int smt_sched_bonus_16ths; SYSCTL_INT(_kern, OID_AUTO, smt_sched_bonus_16ths, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &smt_sched_bonus_16ths, 0, ""); extern int smt_timeshare_enabled; SYSCTL_INT(_kern, OID_AUTO, sched_smt_timeshare_enable, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &smt_timeshare_enabled, 0, ""); extern int sched_smt_balance; SYSCTL_INT(_kern, OID_AUTO, sched_smt_balance, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_smt_balance, 0, ""); extern int sched_allow_rt_smt; SYSCTL_INT(_kern, OID_AUTO, sched_allow_rt_smt, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_allow_rt_smt, 0, ""); extern int sched_allow_rt_steal; SYSCTL_INT(_kern, OID_AUTO, sched_allow_rt_steal, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_allow_rt_steal, 0, ""); extern int sched_backup_cpu_timeout_count; SYSCTL_INT(_kern, OID_AUTO, sched_backup_cpu_timeout_count, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_backup_cpu_timeout_count, 0, "The maximum number of 10us delays before allowing a backup cpu to select a thread"); #if __arm64__ /* Scheduler perfcontrol callouts sysctls */ SYSCTL_DECL(_kern_perfcontrol_callout); SYSCTL_NODE(_kern, OID_AUTO, perfcontrol_callout, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "scheduler perfcontrol callouts"); extern int perfcontrol_callout_stats_enabled; SYSCTL_INT(_kern_perfcontrol_callout, OID_AUTO, stats_enabled, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &perfcontrol_callout_stats_enabled, 0, ""); extern uint64_t perfcontrol_callout_stat_avg(perfcontrol_callout_type_t type, perfcontrol_callout_stat_t stat); /* On-Core Callout */ STATIC int sysctl_perfcontrol_callout_stat (__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { perfcontrol_callout_stat_t stat = (perfcontrol_callout_stat_t)arg1; perfcontrol_callout_type_t type = (perfcontrol_callout_type_t)arg2; return sysctl_io_number(req, (int)perfcontrol_callout_stat_avg(type, stat), sizeof(int), NULL, NULL); } SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, oncore_instr, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, (void *)PERFCONTROL_STAT_INSTRS, PERFCONTROL_CALLOUT_ON_CORE, sysctl_perfcontrol_callout_stat, "I", ""); SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, oncore_cycles, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, (void *)PERFCONTROL_STAT_CYCLES, PERFCONTROL_CALLOUT_ON_CORE, sysctl_perfcontrol_callout_stat, "I", ""); SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, offcore_instr, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, (void *)PERFCONTROL_STAT_INSTRS, PERFCONTROL_CALLOUT_OFF_CORE, sysctl_perfcontrol_callout_stat, "I", ""); SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, offcore_cycles, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, (void *)PERFCONTROL_STAT_CYCLES, PERFCONTROL_CALLOUT_OFF_CORE, sysctl_perfcontrol_callout_stat, "I", ""); SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, context_instr, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, (void *)PERFCONTROL_STAT_INSTRS, PERFCONTROL_CALLOUT_CONTEXT, sysctl_perfcontrol_callout_stat, "I", ""); SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, context_cycles, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, (void *)PERFCONTROL_STAT_CYCLES, PERFCONTROL_CALLOUT_CONTEXT, sysctl_perfcontrol_callout_stat, "I", ""); SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, update_instr, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, (void *)PERFCONTROL_STAT_INSTRS, PERFCONTROL_CALLOUT_STATE_UPDATE, sysctl_perfcontrol_callout_stat, "I", ""); SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, update_cycles, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, (void *)PERFCONTROL_STAT_CYCLES, PERFCONTROL_CALLOUT_STATE_UPDATE, sysctl_perfcontrol_callout_stat, "I", ""); #if __AMP__ extern int sched_amp_idle_steal; SYSCTL_INT(_kern, OID_AUTO, sched_amp_idle_steal, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_amp_idle_steal, 0, ""); extern int sched_amp_spill_steal; SYSCTL_INT(_kern, OID_AUTO, sched_amp_spill_steal, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_amp_spill_steal, 0, ""); extern int sched_amp_spill_count; SYSCTL_INT(_kern, OID_AUTO, sched_amp_spill_count, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_amp_spill_count, 0, ""); extern int sched_amp_spill_deferred_ipi; SYSCTL_INT(_kern, OID_AUTO, sched_amp_spill_deferred_ipi, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_amp_spill_deferred_ipi, 0, ""); extern int sched_amp_pcores_preempt_immediate_ipi; SYSCTL_INT(_kern, OID_AUTO, sched_amp_pcores_preempt_immediate_ipi, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_amp_pcores_preempt_immediate_ipi, 0, ""); #endif /* __AMP__ */ #endif /* __arm64__ */ #if __arm64__ extern int legacy_footprint_entitlement_mode; SYSCTL_INT(_kern, OID_AUTO, legacy_footprint_entitlement_mode, CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, &legacy_footprint_entitlement_mode, 0, ""); #endif /* __arm64__ */ /* * Realtime threads are ordered by highest priority first then, * for threads of the same priority, by earliest deadline first. * But if sched_rt_runq_strict_priority is false (the default), * a lower priority thread with an earlier deadline will be preferred * over a higher priority thread with a later deadline, as long as * both threads' computations will fit before the later deadline. */ extern int sched_rt_runq_strict_priority; SYSCTL_INT(_kern, OID_AUTO, sched_rt_runq_strict_priority, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_rt_runq_strict_priority, 0, ""); static int sysctl_kern_sched_rt_n_backup_processors(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int old_value = sched_get_rt_n_backup_processors(); int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if (changed) { sched_set_rt_n_backup_processors(new_value); } return error; } SYSCTL_PROC(_kern, OID_AUTO, sched_rt_n_backup_processors, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_kern_sched_rt_n_backup_processors, "I", ""); static int sysctl_kern_sched_rt_deadline_epsilon_us(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int old_value = sched_get_rt_deadline_epsilon(); int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if (changed) { sched_set_rt_deadline_epsilon(new_value); } return error; } SYSCTL_PROC(_kern, OID_AUTO, sched_rt_deadline_epsilon_us, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_kern_sched_rt_deadline_epsilon_us, "I", ""); extern int sched_idle_delay_cpuid; SYSCTL_INT(_kern, OID_AUTO, sched_idle_delay_cpuid, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &sched_idle_delay_cpuid, 0, "This cpuid will be delayed by 500us on exiting idle, to simulate interrupt or preemption delays when testing the scheduler"); static int sysctl_kern_sched_powered_cores(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int old_value = sched_get_powered_cores(); int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if (changed) { sched_set_powered_cores(new_value); } return error; } SYSCTL_PROC(_kern, OID_AUTO, sched_powered_cores, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_kern_sched_powered_cores, "I", ""); #endif /* (DEVELOPMENT || DEBUG) */ extern uint64_t perfcontrol_requested_recommended_cores; SYSCTL_QUAD(_kern, OID_AUTO, sched_recommended_cores, CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, &perfcontrol_requested_recommended_cores, ""); static int sysctl_kern_suspend_cluster_powerdown(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int old_value = get_cluster_powerdown_user_suspended(); int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if (!error && changed) { if (new_value > 0) { error = suspend_cluster_powerdown_from_user(); } else { error = resume_cluster_powerdown_from_user(); } if (error) { error = EALREADY; } } return error; } SYSCTL_PROC(_kern, OID_AUTO, suspend_cluster_powerdown, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_kern_suspend_cluster_powerdown, "I", ""); STATIC int sysctl_securelvl (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, securelevel, sizeof(int), &new_value, &changed); if (changed) { if (!(new_value < securelevel && proc_getpid(req->p) != 1)) { proc_list_lock(); securelevel = new_value; proc_list_unlock(); } else { error = EPERM; } } return error; } SYSCTL_PROC(_kern, KERN_SECURELVL, securelevel, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_securelvl, "I", ""); STATIC int sysctl_domainname (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error, changed; char tmpname[MAXHOSTNAMELEN] = {}; lck_mtx_lock(&domainname_lock); strlcpy(tmpname, domainname, sizeof(tmpname)); lck_mtx_unlock(&domainname_lock); error = sysctl_io_string(req, tmpname, sizeof(tmpname), 0, &changed); if (!error && changed) { lck_mtx_lock(&domainname_lock); strlcpy(domainname, tmpname, sizeof(domainname)); lck_mtx_unlock(&domainname_lock); } return error; } SYSCTL_PROC(_kern, KERN_DOMAINNAME, nisdomainname, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_domainname, "A", ""); SYSCTL_COMPAT_INT(_kern, KERN_HOSTID, hostid, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &hostid, 0, ""); STATIC int sysctl_hostname (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error, changed; char tmpname[MAXHOSTNAMELEN] = {}; const char * name; #if XNU_TARGET_OS_OSX name = hostname; #else /* XNU_TARGET_OS_OSX */ #define ENTITLEMENT_USER_ASSIGNED_DEVICE_NAME \ "com.apple.developer.device-information.user-assigned-device-name" if (csproc_get_platform_binary(current_proc()) || IOCurrentTaskHasEntitlement(ENTITLEMENT_USER_ASSIGNED_DEVICE_NAME)) { name = hostname; } else { /* Deny writes if we don't pass entitlement check */ if (req->newptr) { return EPERM; } name = "localhost"; } #endif /* ! XNU_TARGET_OS_OSX */ lck_mtx_lock(&hostname_lock); strlcpy(tmpname, name, sizeof(tmpname)); lck_mtx_unlock(&hostname_lock); error = sysctl_io_string(req, tmpname, sizeof(tmpname), 1, &changed); if (!error && changed) { lck_mtx_lock(&hostname_lock); strlcpy(hostname, tmpname, sizeof(hostname)); lck_mtx_unlock(&hostname_lock); } return error; } SYSCTL_PROC(_kern, KERN_HOSTNAME, hostname, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_hostname, "A", ""); STATIC int sysctl_procname (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { /* Original code allowed writing, I'm copying this, although this all makes * no sense to me. Besides, this sysctl is never used. */ return sysctl_io_string(req, &req->p->p_name[0], (2 * MAXCOMLEN + 1), 1, NULL); } SYSCTL_PROC(_kern, KERN_PROCNAME, procname, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, sysctl_procname, "A", ""); SYSCTL_INT(_kern, KERN_SPECULATIVE_READS, speculative_reads_disabled, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &speculative_reads_disabled, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, preheat_max_bytes, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &preheat_max_bytes, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, preheat_min_bytes, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &preheat_min_bytes, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, speculative_prefetch_max, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &speculative_prefetch_max, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, speculative_prefetch_max_iosize, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &speculative_prefetch_max_iosize, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, vm_page_free_target, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_page_free_target, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, vm_page_free_min, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_page_free_min, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, vm_page_free_reserved, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_page_free_reserved, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, vm_page_speculative_percentage, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_speculative_percentage, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, vm_page_speculative_q_age_ms, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_speculative_q_age_ms, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, vm_max_delayed_work_limit, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_max_delayed_work_limit, 0, ""); SYSCTL_UINT(_kern, OID_AUTO, vm_max_batch, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_max_batch, 0, ""); SYSCTL_STRING(_kern, OID_AUTO, bootsessionuuid, CTLFLAG_RD | CTLFLAG_LOCKED, &bootsessionuuid_string, sizeof(bootsessionuuid_string), ""); STATIC int sysctl_boottime (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { struct timeval tv; boottime_timeval(&tv); struct proc *p = req->p; if (proc_is64bit(p)) { struct user64_timeval t = {}; t.tv_sec = tv.tv_sec; t.tv_usec = tv.tv_usec; return sysctl_io_opaque(req, &t, sizeof(t), NULL); } else { struct user32_timeval t = {}; t.tv_sec = (user32_time_t)tv.tv_sec; t.tv_usec = tv.tv_usec; return sysctl_io_opaque(req, &t, sizeof(t), NULL); } } SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_boottime, "S,timeval", ""); extern bool IOGetBootUUID(char *); /* non-static: written by imageboot.c */ uuid_string_t fake_bootuuid; STATIC int sysctl_bootuuid (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error = ENOENT; /* check the first byte to see if the string has been * populated. this is a uuid_STRING_t, this check would * not work with a uuid_t. */ if (fake_bootuuid[0] != '\0') { error = sysctl_io_string(req, fake_bootuuid, 0, 0, NULL); goto out; } uuid_string_t uuid_string; if (IOGetBootUUID(uuid_string)) { uuid_t boot_uuid; error = uuid_parse(uuid_string, boot_uuid); if (!error) { error = sysctl_io_string(req, __DECONST(char *, uuid_string), 0, 0, NULL); } } out: return error; } SYSCTL_PROC(_kern, OID_AUTO, bootuuid, CTLTYPE_STRING | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_bootuuid, "A", ""); extern bool IOGetApfsPrebootUUID(char *); extern bool IOGetAssociatedApfsVolgroupUUID(char *); STATIC int sysctl_apfsprebootuuid (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error = ENOENT; uuid_string_t uuid_string; if (IOGetApfsPrebootUUID(uuid_string)) { uuid_t apfs_preboot_uuid; error = uuid_parse(uuid_string, apfs_preboot_uuid); if (!error) { error = sysctl_io_string(req, __DECONST(char *, uuid_string), 0, 0, NULL); } } return error; } SYSCTL_PROC(_kern, OID_AUTO, apfsprebootuuid, CTLTYPE_STRING | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_apfsprebootuuid, "A", ""); STATIC int sysctl_targetsystemvolgroupuuid (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error = ENOENT; uuid_string_t uuid_string; if (IOGetApfsPrebootUUID(uuid_string)) { uuid_t apfs_preboot_uuid; error = uuid_parse(uuid_string, apfs_preboot_uuid); if (!error) { error = sysctl_io_string(req, __DECONST(char *, uuid_string), 0, 0, NULL); } } else { /* * In special boot modes, such as kcgen-mode, the * apfs-preboot-uuid property will not be set. Instead, a * different property, associated-volume-group, will be set * which indicates the UUID of the VolumeGroup containing the * system volume into which you will boot. */ if (IOGetAssociatedApfsVolgroupUUID(uuid_string)) { uuid_t apfs_preboot_uuid; error = uuid_parse(uuid_string, apfs_preboot_uuid); if (!error) { error = sysctl_io_string(req, __DECONST(char *, uuid_string), 0, 0, NULL); } } } return error; } SYSCTL_PROC(_kern, OID_AUTO, targetsystemvolgroupuuid, CTLTYPE_STRING | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_LOCKED, 0, 0, sysctl_targetsystemvolgroupuuid, "A", ""); extern bool IOGetBootManifestHash(char *, size_t *); extern bool IOGetBootObjectsPath(char *); STATIC int sysctl_bootobjectspath (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error = ENOENT; #if defined(__x86_64__) /* auth-root-dmg is used for the Intel BaseSystem in some flows, * e.g. createinstallmedia and as part of upgrading from 10.15 or earlier * under these scenarios, set_fake_bootuuid will be called when pivoting to * the new root filesystem. need honor the fake bootuuid. */ if (fake_bootuuid[0] != '\0') { error = sysctl_io_string(req, fake_bootuuid, 0, 0, NULL); } else { /* for intel mac, boot objects reside in [preboot volume]/[bootuuid] * bootuuid and apfsprebootuuid are populated by efiboot and they are alias. */ uuid_string_t uuid_string; if (IOGetBootUUID(uuid_string)) { uuid_t boot_uuid; error = uuid_parse(uuid_string, boot_uuid); if (!error) { error = sysctl_io_string(req, (char *)uuid_string, 0, 0, NULL); } } } #else char boot_obj_path[MAXPATHLEN] = { "\0" }; static const char kAsciiHexChars[] = "0123456789ABCDEF"; unsigned int i, j; /* Hashed with SHA2-384 or SHA1, boot manifest hash is 48 bytes or 20 bytes * hence, need a 97 bytes char array for the string. */ size_t hash_data_size = CCSHA384_OUTPUT_SIZE; char hash_data[CCSHA384_OUTPUT_SIZE] = { "\0" }; char boot_manifest_hash[CCSHA384_OUTPUT_SIZE * 2 + 1] = { "\0" };; /* for Apple Silicon Macs, there is a boot-objects-path under IODeviceTree:/chosen * and boot objects reside in [preboot volume]/[boot-objects-path] * for embedded platforms, there would be a boot-manifest-hash under IODeviceTree:/chosen * and boot objects reside in [preboot volume]/[boot-manifest-hash] */ if (IOGetBootObjectsPath(boot_obj_path)) { error = sysctl_io_string(req, (char *)boot_obj_path, 0, 0, NULL); } else if (IOGetBootManifestHash(hash_data, &hash_data_size)) { j = 0; for (i = 0; i < hash_data_size; ++i) { char octet = hash_data[i]; boot_manifest_hash[j++] = kAsciiHexChars[((octet & 0xF0) >> 4)]; boot_manifest_hash[j++] = kAsciiHexChars[(octet & 0x0F)]; } /* make sure string has null termination */ boot_manifest_hash[j] = '\0'; error = sysctl_io_string(req, (char *)boot_manifest_hash, 0, 0, NULL); } #endif return error; } SYSCTL_PROC(_kern, OID_AUTO, bootobjectspath, CTLTYPE_STRING | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_bootobjectspath, "A", ""); STATIC int sysctl_symfile (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { char *str; int error = get_kernel_symfile(req->p, &str); if (error) { return error; } return sysctl_io_string(req, str, 0, 0, NULL); } SYSCTL_PROC(_kern, KERN_SYMFILE, symfile, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_symfile, "A", ""); #if CONFIG_NETBOOT STATIC int sysctl_netboot (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { return sysctl_io_number(req, netboot_root(), sizeof(int), NULL, NULL); } SYSCTL_PROC(_kern, KERN_NETBOOT, netboot, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_netboot, "I", ""); #endif #ifdef CONFIG_IMGSRC_ACCESS /* * Legacy--act as if only one layer of nesting is possible. */ STATIC int sysctl_imgsrcdev (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { vfs_context_t ctx = vfs_context_current(); vnode_t devvp; int result; if (!vfs_context_issuser(ctx)) { return EPERM; } if (imgsrc_rootvnodes[0] == NULL) { return ENOENT; } result = vnode_getwithref(imgsrc_rootvnodes[0]); if (result != 0) { return result; } devvp = vnode_mount(imgsrc_rootvnodes[0])->mnt_devvp; result = vnode_getwithref(devvp); if (result != 0) { goto out; } result = sysctl_io_number(req, vnode_specrdev(devvp), sizeof(dev_t), NULL, NULL); vnode_put(devvp); out: vnode_put(imgsrc_rootvnodes[0]); return result; } SYSCTL_PROC(_kern, OID_AUTO, imgsrcdev, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_imgsrcdev, "I", ""); STATIC int sysctl_imgsrcinfo (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error; struct imgsrc_info info[MAX_IMAGEBOOT_NESTING] = {}; /* 2 for now, no problem */ uint32_t i; vnode_t rvp, devvp; if (imgsrc_rootvnodes[0] == NULLVP) { return ENXIO; } for (i = 0; i < MAX_IMAGEBOOT_NESTING; i++) { /* * Go get the root vnode. */ rvp = imgsrc_rootvnodes[i]; if (rvp == NULLVP) { break; } error = vnode_get(rvp); if (error != 0) { return error; } /* * For now, no getting at a non-local volume. */ devvp = vnode_mount(rvp)->mnt_devvp; if (devvp == NULL) { vnode_put(rvp); return EINVAL; } error = vnode_getwithref(devvp); if (error != 0) { vnode_put(rvp); return error; } /* * Fill in info. */ info[i].ii_dev = vnode_specrdev(devvp); info[i].ii_flags = 0; info[i].ii_height = i; bzero(info[i].ii_reserved, sizeof(info[i].ii_reserved)); vnode_put(devvp); vnode_put(rvp); } return sysctl_io_opaque(req, info, i * sizeof(info[0]), NULL); } SYSCTL_PROC(_kern, OID_AUTO, imgsrcinfo, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_imgsrcinfo, "I", ""); #endif /* CONFIG_IMGSRC_ACCESS */ SYSCTL_DECL(_kern_timer); SYSCTL_NODE(_kern, OID_AUTO, timer, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "timer"); SYSCTL_INT(_kern_timer, OID_AUTO, coalescing_enabled, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &mach_timer_coalescing_enabled, 0, ""); SYSCTL_QUAD(_kern_timer, OID_AUTO, deadline_tracking_bin_1, CTLFLAG_RW | CTLFLAG_LOCKED, &timer_deadline_tracking_bin_1, ""); SYSCTL_QUAD(_kern_timer, OID_AUTO, deadline_tracking_bin_2, CTLFLAG_RW | CTLFLAG_LOCKED, &timer_deadline_tracking_bin_2, ""); SYSCTL_DECL(_kern_timer_longterm); SYSCTL_NODE(_kern_timer, OID_AUTO, longterm, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "longterm"); /* Must match definition in osfmk/kern/timer_call.c */ enum { THRESHOLD, QCOUNT, ENQUEUES, DEQUEUES, ESCALATES, SCANS, PREEMPTS, LATENCY, LATENCY_MIN, LATENCY_MAX, LONG_TERM_SCAN_LIMIT, LONG_TERM_SCAN_INTERVAL, LONG_TERM_SCAN_PAUSES, SCAN_LIMIT, SCAN_INTERVAL, SCAN_PAUSES, SCAN_POSTPONES, }; extern uint64_t timer_sysctl_get(int); extern int timer_sysctl_set(int, uint64_t); STATIC int sysctl_timer (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int oid = (int)arg1; uint64_t value = timer_sysctl_get(oid); uint64_t new_value; int error; int changed; error = sysctl_io_number(req, value, sizeof(value), &new_value, &changed); if (changed) { error = timer_sysctl_set(oid, new_value); } return error; } SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, threshold, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, (void *) THRESHOLD, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, scan_limit, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, (void *) LONG_TERM_SCAN_LIMIT, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, scan_interval, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, (void *) LONG_TERM_SCAN_INTERVAL, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, qlen, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) QCOUNT, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, scan_pauses, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) LONG_TERM_SCAN_PAUSES, 0, sysctl_timer, "Q", ""); #if DEBUG SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, enqueues, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) ENQUEUES, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, dequeues, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) DEQUEUES, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, escalates, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) ESCALATES, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, scans, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) SCANS, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, preempts, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) PREEMPTS, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, latency, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) LATENCY, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, latency_min, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) LATENCY_MIN, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, latency_max, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) LATENCY_MAX, 0, sysctl_timer, "Q", ""); #endif /* DEBUG */ SYSCTL_PROC(_kern_timer, OID_AUTO, scan_limit, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, (void *) SCAN_LIMIT, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer, OID_AUTO, scan_interval, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, (void *) SCAN_INTERVAL, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer, OID_AUTO, scan_pauses, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) SCAN_PAUSES, 0, sysctl_timer, "Q", ""); SYSCTL_PROC(_kern_timer, OID_AUTO, scan_postpones, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, (void *) SCAN_POSTPONES, 0, sysctl_timer, "Q", ""); STATIC int sysctl_usrstack (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { return sysctl_io_number(req, (int)req->p->user_stack, sizeof(int), NULL, NULL); } SYSCTL_PROC(_kern, KERN_USRSTACK32, usrstack, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_usrstack, "I", ""); STATIC int sysctl_usrstack64 (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { return sysctl_io_number(req, req->p->user_stack, sizeof(req->p->user_stack), NULL, NULL); } SYSCTL_PROC(_kern, KERN_USRSTACK64, usrstack64, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_usrstack64, "Q", ""); #if EXCLAVES_COREDUMP /* secure kernel coredump support. */ extern unsigned int sc_dump_mode; SYSCTL_UINT(_kern, OID_AUTO, secure_coredump, CTLFLAG_RD, &sc_dump_mode, 0, "secure_coredump"); #endif /* EXCLAVES_COREDUMP */ #if CONFIG_COREDUMP SYSCTL_STRING(_kern, KERN_COREFILE, corefile, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, corefilename, sizeof(corefilename), ""); SYSCTL_STRING(_kern, OID_AUTO, drivercorefile, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, drivercorefilename, sizeof(drivercorefilename), ""); STATIC int sysctl_coredump (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { #ifdef SECURE_KERNEL (void)req; return ENOTSUP; #else int new_value, changed; int error = sysctl_io_number(req, do_coredump, sizeof(int), &new_value, &changed); if (changed) { if ((new_value == 0) || (new_value == 1)) { do_coredump = new_value; } else { error = EINVAL; } } return error; #endif } SYSCTL_PROC(_kern, KERN_COREDUMP, coredump, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_coredump, "I", ""); STATIC int sysctl_suid_coredump (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { #ifdef SECURE_KERNEL (void)req; return ENOTSUP; #else int new_value, changed; int error = sysctl_io_number(req, sugid_coredump, sizeof(int), &new_value, &changed); if (changed) { if ((new_value == 0) || (new_value == 1)) { sugid_coredump = new_value; } else { error = EINVAL; } } return error; #endif } SYSCTL_PROC(_kern, KERN_SUGID_COREDUMP, sugid_coredump, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_suid_coredump, "I", ""); #endif /* CONFIG_COREDUMP */ STATIC int sysctl_delayterm (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { struct proc *p = req->p; int new_value, changed; int error = sysctl_io_number(req, (req->p->p_lflag & P_LDELAYTERM)? 1: 0, sizeof(int), &new_value, &changed); if (changed) { proc_lock(p); if (new_value) { req->p->p_lflag |= P_LDELAYTERM; } else { req->p->p_lflag &= ~P_LDELAYTERM; } proc_unlock(p); } return error; } SYSCTL_PROC(_kern, KERN_PROCDELAYTERM, delayterm, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_delayterm, "I", ""); STATIC int sysctl_rage_vnode (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { struct proc *p = req->p; struct uthread *ut; int new_value, old_value, changed; int error; ut = current_uthread(); if (ut->uu_flag & UT_RAGE_VNODES) { old_value = KERN_RAGE_THREAD; } else if (p->p_lflag & P_LRAGE_VNODES) { old_value = KERN_RAGE_PROC; } else { old_value = 0; } error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if ((error == 0) && (changed != 0)) { switch (new_value) { case KERN_RAGE_PROC: proc_lock(p); p->p_lflag |= P_LRAGE_VNODES; proc_unlock(p); break; case KERN_UNRAGE_PROC: proc_lock(p); p->p_lflag &= ~P_LRAGE_VNODES; proc_unlock(p); break; case KERN_RAGE_THREAD: ut->uu_flag |= UT_RAGE_VNODES; break; case KERN_UNRAGE_THREAD: ut = current_uthread(); ut->uu_flag &= ~UT_RAGE_VNODES; break; } } return error; } SYSCTL_PROC(_kern, KERN_RAGEVNODE, rage_vnode, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, sysctl_rage_vnode, "I", ""); /* XXX until filecoordinationd fixes a bit of inverted logic. */ STATIC int sysctl_vfsnspace (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int old_value = 0, new_value, changed; return sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); } SYSCTL_PROC(_kern, OID_AUTO, vfsnspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, sysctl_vfsnspace, "I", ""); /* XXX move this interface into libproc and remove this sysctl */ STATIC int sysctl_setthread_cpupercent (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, old_value; int error = 0; kern_return_t kret = KERN_SUCCESS; uint8_t percent = 0; int ms_refill = 0; if (!req->newptr) { return 0; } old_value = 0; if ((error = sysctl_io_number(req, old_value, sizeof(old_value), &new_value, NULL)) != 0) { return error; } percent = new_value & 0xff; /* low 8 bytes for perent */ ms_refill = (new_value >> 8) & 0xffffff; /* upper 24bytes represent ms refill value */ if (percent > 100) { return EINVAL; } /* * If the caller is specifying a percentage of 0, this will unset the CPU limit, if present. */ kret = percent == 0 ? thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, 0, 0) : thread_set_cpulimit(THREAD_CPULIMIT_BLOCK, percent, ms_refill * (int)NSEC_PER_MSEC); if (kret != 0) { return EIO; } return 0; } SYSCTL_PROC(_kern, OID_AUTO, setthread_cpupercent, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_ANYBODY, 0, 0, sysctl_setthread_cpupercent, "I", "set thread cpu percentage limit"); STATIC int sysctl_kern_check_openevt (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { struct proc *p = req->p; int new_value, old_value, changed; int error; if (p->p_flag & P_CHECKOPENEVT) { old_value = KERN_OPENEVT_PROC; } else { old_value = 0; } error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if ((error == 0) && (changed != 0)) { switch (new_value) { case KERN_OPENEVT_PROC: OSBitOrAtomic(P_CHECKOPENEVT, &p->p_flag); break; case KERN_UNOPENEVT_PROC: OSBitAndAtomic(~((uint32_t)P_CHECKOPENEVT), &p->p_flag); break; default: error = EINVAL; } } return error; } SYSCTL_PROC(_kern, KERN_CHECKOPENEVT, check_openevt, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, sysctl_kern_check_openevt, "I", "set the per-process check-open-evt flag"); #if DEVELOPMENT || DEBUG STATIC int sysctl_nx (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { #ifdef SECURE_KERNEL (void)req; return ENOTSUP; #else int new_value, changed; int error; error = sysctl_io_number(req, nx_enabled, sizeof(nx_enabled), &new_value, &changed); if (error) { return error; } if (changed) { #if defined(__x86_64__) /* * Only allow setting if NX is supported on the chip */ if (!(cpuid_extfeatures() & CPUID_EXTFEATURE_XD)) { return ENOTSUP; } #endif nx_enabled = new_value; } return error; #endif /* SECURE_KERNEL */ } #endif #if DEVELOPMENT || DEBUG SYSCTL_PROC(_kern, KERN_NX_PROTECTION, nx, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, 0, 0, sysctl_nx, "I", ""); #endif STATIC int sysctl_loadavg (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { if (proc_is64bit(req->p)) { struct user64_loadavg loadinfo64 = {}; fill_loadavg64(&averunnable, &loadinfo64); return sysctl_io_opaque(req, &loadinfo64, sizeof(loadinfo64), NULL); } else { struct user32_loadavg loadinfo32 = {}; fill_loadavg32(&averunnable, &loadinfo32); return sysctl_io_opaque(req, &loadinfo32, sizeof(loadinfo32), NULL); } } SYSCTL_PROC(_vm, VM_LOADAVG, loadavg, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_loadavg, "S,loadavg", ""); /* * Note: Thread safe; vm_map_lock protects in vm_toggle_entry_reuse() */ STATIC int sysctl_vm_toggle_address_reuse(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int old_value = 0, new_value = 0, error = 0; if (vm_toggle_entry_reuse( VM_TOGGLE_GETVALUE, &old_value )) { return error; } error = sysctl_io_number(req, old_value, sizeof(int), &new_value, NULL); if (!error) { return vm_toggle_entry_reuse(new_value, NULL); } return error; } SYSCTL_PROC(_debug, OID_AUTO, toggle_address_reuse, CTLFLAG_ANYBODY | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_vm_toggle_address_reuse, "I", ""); #ifdef CONFIG_XNUPOST extern uint32_t xnupost_get_estimated_testdata_size(void); extern int xnupost_reset_all_tests(void); STATIC int sysctl_handle_xnupost_get_tests SYSCTL_HANDLER_ARGS { /* fixup unused arguments warnings */ __unused int _oa2 = arg2; __unused void * _oa1 = arg1; __unused struct sysctl_oid * _oidp = oidp; int error = 0; user_addr_t oldp = 0; user_addr_t newp = 0; uint32_t usedbytes = 0; oldp = req->oldptr; newp = req->newptr; if (newp) { return ENOTSUP; } if ((void *)oldp == NULL) { /* return estimated size for second call where info can be placed */ req->oldidx = xnupost_get_estimated_testdata_size(); } else { error = xnupost_export_testdata((void *)oldp, req->oldlen, &usedbytes); req->oldidx = usedbytes; } return error; } SYSCTL_PROC(_debug, OID_AUTO, xnupost_get_tests, CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_handle_xnupost_get_tests, "-", "read xnupost test data in kernel"); #if CONFIG_EXT_PANICLOG /* * Extensible panic log test hooks */ static int sysctl_debug_ext_paniclog_test_hook SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int rval = 0; uint32_t test_option = 0; rval = sysctl_handle_int(oidp, &test_option, 0, req); if (rval == 0 && req->newptr) { rval = ext_paniclog_test_hook(test_option); } return rval; } SYSCTL_PROC(_debug, OID_AUTO, ext_paniclog_test_hook, CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_debug_ext_paniclog_test_hook, "A", "ext paniclog test hook"); #endif STATIC int sysctl_debug_xnupost_ctl SYSCTL_HANDLER_ARGS { /* fixup unused arguments warnings */ __unused int _oa2 = arg2; __unused void * _oa1 = arg1; __unused struct sysctl_oid * _oidp = oidp; #define ARRCOUNT 4 /* * INPUT: ACTION, PARAM1, PARAM2, PARAM3 * OUTPUT: RESULTCODE, ADDITIONAL DATA */ int32_t outval[ARRCOUNT] = {0}; int32_t input[ARRCOUNT] = {0}; int32_t out_size = sizeof(outval); int32_t in_size = sizeof(input); int error = 0; /* if this is NULL call to find out size, send out size info */ if (!req->newptr) { goto out; } /* pull in provided value from userspace */ error = SYSCTL_IN(req, &input[0], in_size); if (error) { return error; } if (input[0] == XTCTL_RESET_TESTDATA) { outval[0] = xnupost_reset_all_tests(); goto out; } out: error = SYSCTL_OUT(req, &outval[0], out_size); return error; } SYSCTL_PROC(_debug, OID_AUTO, xnupost_testctl, CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_debug_xnupost_ctl, "I", "xnupost control for kernel testing"); extern void test_oslog_handleOSLogCtl(int32_t * in, int32_t * out, int32_t arraycount); STATIC int sysctl_debug_test_oslog_ctl(__unused struct sysctl_oid * oidp, __unused void * arg1, __unused int arg2, struct sysctl_req * req) { #define ARRCOUNT 4 int32_t outval[ARRCOUNT] = {0}; int32_t input[ARRCOUNT] = {0}; int32_t size_outval = sizeof(outval); int32_t size_inval = sizeof(input); int32_t error; /* if this is NULL call to find out size, send out size info */ if (!req->newptr) { error = SYSCTL_OUT(req, &outval[0], size_outval); return error; } /* pull in provided value from userspace */ error = SYSCTL_IN(req, &input[0], size_inval); if (error) { return error; } test_oslog_handleOSLogCtl(input, outval, ARRCOUNT); error = SYSCTL_OUT(req, &outval[0], size_outval); return error; } SYSCTL_PROC(_debug, OID_AUTO, test_OSLogCtl, CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_debug_test_oslog_ctl, "I", "testing oslog in kernel"); #include #include static LCK_GRP_DECLARE(sysctl_debug_test_stackshot_owner_grp, "test-stackshot-owner-grp"); static LCK_MTX_DECLARE(sysctl_debug_test_stackshot_owner_init_mtx, &sysctl_debug_test_stackshot_owner_grp); /* This is a sysctl for testing collection of owner info on a lock in kernel space. A multi-threaded * test from userland sets this sysctl in such a way that a thread blocks in kernel mode, and a * stackshot is taken to see if the owner of the lock can be identified. * * We can't return to userland with a kernel lock held, so be sure to unlock before we leave. * the semaphores allow us to artificially create cases where the lock is being held and the * thread is hanging / taking a long time to do something. */ volatile char sysctl_debug_test_stackshot_mtx_inited = 0; semaphore_t sysctl_debug_test_stackshot_mutex_sem; lck_mtx_t sysctl_debug_test_stackshot_owner_lck; #define SYSCTL_DEBUG_MTX_ACQUIRE_WAIT 1 #define SYSCTL_DEBUG_MTX_ACQUIRE_NOWAIT 2 #define SYSCTL_DEBUG_MTX_SIGNAL 3 #define SYSCTL_DEBUG_MTX_TEARDOWN 4 STATIC int sysctl_debug_test_stackshot_mutex_owner(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { long long option = -1; /* if the user tries to read the sysctl, we tell them what the address of the lock is (to test against stackshot's output) */ long long mtx_unslid_addr = (long long)VM_KERNEL_UNSLIDE_OR_PERM(&sysctl_debug_test_stackshot_owner_lck); int error = sysctl_io_number(req, mtx_unslid_addr, sizeof(long long), (void*)&option, NULL); lck_mtx_lock(&sysctl_debug_test_stackshot_owner_init_mtx); if (!sysctl_debug_test_stackshot_mtx_inited) { lck_mtx_init(&sysctl_debug_test_stackshot_owner_lck, &sysctl_debug_test_stackshot_owner_grp, LCK_ATTR_NULL); semaphore_create(kernel_task, &sysctl_debug_test_stackshot_mutex_sem, SYNC_POLICY_FIFO, 0); sysctl_debug_test_stackshot_mtx_inited = 1; } lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_init_mtx); if (!error) { switch (option) { case SYSCTL_DEBUG_MTX_ACQUIRE_NOWAIT: lck_mtx_lock(&sysctl_debug_test_stackshot_owner_lck); lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_lck); break; case SYSCTL_DEBUG_MTX_ACQUIRE_WAIT: lck_mtx_lock(&sysctl_debug_test_stackshot_owner_lck); semaphore_wait(sysctl_debug_test_stackshot_mutex_sem); lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_lck); break; case SYSCTL_DEBUG_MTX_SIGNAL: semaphore_signal(sysctl_debug_test_stackshot_mutex_sem); break; case SYSCTL_DEBUG_MTX_TEARDOWN: lck_mtx_lock(&sysctl_debug_test_stackshot_owner_init_mtx); lck_mtx_destroy(&sysctl_debug_test_stackshot_owner_lck, &sysctl_debug_test_stackshot_owner_grp); semaphore_destroy(kernel_task, sysctl_debug_test_stackshot_mutex_sem); sysctl_debug_test_stackshot_mtx_inited = 0; lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_init_mtx); break; case -1: /* user just wanted to read the value, so do nothing */ break; default: error = EINVAL; break; } } return error; } /* we can't return to userland with a kernel rwlock held, so be sure to unlock before we leave. * the semaphores allow us to artificially create cases where the lock is being held and the * thread is hanging / taking a long time to do something. */ SYSCTL_PROC(_debug, OID_AUTO, test_MutexOwnerCtl, CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_debug_test_stackshot_mutex_owner, "-", "Testing mutex owner in kernel"); volatile char sysctl_debug_test_stackshot_rwlck_inited = 0; lck_rw_t sysctl_debug_test_stackshot_owner_rwlck; semaphore_t sysctl_debug_test_stackshot_rwlck_sem; #define SYSCTL_DEBUG_KRWLCK_RACQUIRE_NOWAIT 1 #define SYSCTL_DEBUG_KRWLCK_RACQUIRE_WAIT 2 #define SYSCTL_DEBUG_KRWLCK_WACQUIRE_NOWAIT 3 #define SYSCTL_DEBUG_KRWLCK_WACQUIRE_WAIT 4 #define SYSCTL_DEBUG_KRWLCK_SIGNAL 5 #define SYSCTL_DEBUG_KRWLCK_TEARDOWN 6 STATIC int sysctl_debug_test_stackshot_rwlck_owner(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { long long option = -1; /* if the user tries to read the sysctl, we tell them what the address of the lock is * (to test against stackshot's output) */ long long rwlck_unslid_addr = (long long)VM_KERNEL_UNSLIDE_OR_PERM(&sysctl_debug_test_stackshot_owner_rwlck); int error = sysctl_io_number(req, rwlck_unslid_addr, sizeof(long long), (void*)&option, NULL); lck_mtx_lock(&sysctl_debug_test_stackshot_owner_init_mtx); if (!sysctl_debug_test_stackshot_rwlck_inited) { lck_rw_init(&sysctl_debug_test_stackshot_owner_rwlck, &sysctl_debug_test_stackshot_owner_grp, LCK_ATTR_NULL); semaphore_create(kernel_task, &sysctl_debug_test_stackshot_rwlck_sem, SYNC_POLICY_FIFO, 0); sysctl_debug_test_stackshot_rwlck_inited = 1; } lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_init_mtx); if (!error) { switch (option) { case SYSCTL_DEBUG_KRWLCK_RACQUIRE_NOWAIT: lck_rw_lock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_SHARED); lck_rw_unlock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_SHARED); break; case SYSCTL_DEBUG_KRWLCK_RACQUIRE_WAIT: lck_rw_lock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_SHARED); semaphore_wait(sysctl_debug_test_stackshot_rwlck_sem); lck_rw_unlock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_SHARED); break; case SYSCTL_DEBUG_KRWLCK_WACQUIRE_NOWAIT: lck_rw_lock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_EXCLUSIVE); lck_rw_unlock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_EXCLUSIVE); break; case SYSCTL_DEBUG_KRWLCK_WACQUIRE_WAIT: lck_rw_lock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_EXCLUSIVE); semaphore_wait(sysctl_debug_test_stackshot_rwlck_sem); lck_rw_unlock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_EXCLUSIVE); break; case SYSCTL_DEBUG_KRWLCK_SIGNAL: semaphore_signal(sysctl_debug_test_stackshot_rwlck_sem); break; case SYSCTL_DEBUG_KRWLCK_TEARDOWN: lck_mtx_lock(&sysctl_debug_test_stackshot_owner_init_mtx); lck_rw_destroy(&sysctl_debug_test_stackshot_owner_rwlck, &sysctl_debug_test_stackshot_owner_grp); semaphore_destroy(kernel_task, sysctl_debug_test_stackshot_rwlck_sem); sysctl_debug_test_stackshot_rwlck_inited = 0; lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_init_mtx); break; case -1: /* user just wanted to read the value, so do nothing */ break; default: error = EINVAL; break; } } return error; } SYSCTL_PROC(_debug, OID_AUTO, test_RWLockOwnerCtl, CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_debug_test_stackshot_rwlck_owner, "-", "Testing rwlock owner in kernel"); #endif /* !CONFIG_XNUPOST */ STATIC int sysctl_swapusage (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error; uint64_t swap_total; uint64_t swap_avail; vm_size_t swap_pagesize; boolean_t swap_encrypted; struct xsw_usage xsu = {}; error = macx_swapinfo(&swap_total, &swap_avail, &swap_pagesize, &swap_encrypted); if (error) { return error; } xsu.xsu_total = swap_total; xsu.xsu_avail = swap_avail; xsu.xsu_used = swap_total - swap_avail; xsu.xsu_pagesize = (u_int32_t)MIN(swap_pagesize, UINT32_MAX); xsu.xsu_encrypted = swap_encrypted; return sysctl_io_opaque(req, &xsu, sizeof(xsu), NULL); } SYSCTL_PROC(_vm, VM_SWAPUSAGE, swapusage, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_swapusage, "S,xsw_usage", ""); extern int vm_swap_enabled; SYSCTL_INT(_vm, OID_AUTO, swap_enabled, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_swap_enabled, 0, ""); #if DEVELOPMENT || DEBUG extern int vm_num_swap_files_config; extern int vm_num_swap_files; extern lck_mtx_t vm_swap_data_lock; #define VM_MAX_SWAP_FILE_NUM 100 static int sysctl_vm_config_num_swap_files SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error = 0, val = vm_num_swap_files_config; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr) { goto out; } if (!VM_CONFIG_SWAP_IS_ACTIVE && !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { printf("Swap is disabled\n"); error = EINVAL; goto out; } lck_mtx_lock(&vm_swap_data_lock); if (val < vm_num_swap_files) { printf("Cannot configure fewer swap files than already exist.\n"); error = EINVAL; lck_mtx_unlock(&vm_swap_data_lock); goto out; } if (val > VM_MAX_SWAP_FILE_NUM) { printf("Capping number of swap files to upper bound.\n"); val = VM_MAX_SWAP_FILE_NUM; } vm_num_swap_files_config = val; lck_mtx_unlock(&vm_swap_data_lock); out: return 0; } SYSCTL_PROC(_debug, OID_AUTO, num_swap_files_configured, CTLFLAG_ANYBODY | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_vm_config_num_swap_files, "I", ""); #endif /* DEVELOPMENT || DEBUG */ /* this kernel does NOT implement shared_region_make_private_np() */ SYSCTL_INT(_kern, KERN_SHREG_PRIVATIZABLE, shreg_private, CTLFLAG_RD | CTLFLAG_LOCKED, (int *)NULL, 0, ""); STATIC int fetch_process_cputype( proc_t cur_proc, int *name, u_int namelen, cpu_type_t *cputype) { proc_t p = PROC_NULL; int refheld = 0; cpu_type_t ret = 0; int error = 0; if (namelen == 0) { p = cur_proc; } else if (namelen == 1) { p = proc_find(name[0]); if (p == NULL) { return EINVAL; } refheld = 1; } else { error = EINVAL; goto out; } ret = cpu_type() & ~CPU_ARCH_MASK; if (IS_64BIT_PROCESS(p)) { ret |= CPU_ARCH_ABI64; } *cputype = ret; if (refheld != 0) { proc_rele(p); } out: return error; } STATIC int sysctl_sysctl_native(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { int error; cpu_type_t proc_cputype = 0; if ((error = fetch_process_cputype(req->p, (int *)arg1, arg2, &proc_cputype)) != 0) { return error; } int res = 1; if ((proc_cputype & ~CPU_ARCH_MASK) != (cpu_type() & ~CPU_ARCH_MASK)) { res = 0; } return SYSCTL_OUT(req, &res, sizeof(res)); } SYSCTL_PROC(_sysctl, OID_AUTO, proc_native, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_sysctl_native, "I", "proc_native"); STATIC int sysctl_sysctl_cputype(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { int error; cpu_type_t proc_cputype = 0; if ((error = fetch_process_cputype(req->p, (int *)arg1, arg2, &proc_cputype)) != 0) { return error; } return SYSCTL_OUT(req, &proc_cputype, sizeof(proc_cputype)); } SYSCTL_PROC(_sysctl, OID_AUTO, proc_cputype, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_sysctl_cputype, "I", "proc_cputype"); STATIC int sysctl_safeboot (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { return sysctl_io_number(req, boothowto & RB_SAFEBOOT ? 1 : 0, sizeof(int), NULL, NULL); } SYSCTL_PROC(_kern, KERN_SAFEBOOT, safeboot, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_safeboot, "I", ""); STATIC int sysctl_singleuser (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { return sysctl_io_number(req, boothowto & RB_SINGLE ? 1 : 0, sizeof(int), NULL, NULL); } SYSCTL_PROC(_kern, OID_AUTO, singleuser, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_singleuser, "I", ""); STATIC int sysctl_minimalboot (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { return sysctl_io_number(req, minimalboot, sizeof(int), NULL, NULL); } SYSCTL_PROC(_kern, OID_AUTO, minimalboot, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_minimalboot, "I", ""); /* * Controls for debugging affinity sets - see osfmk/kern/affinity.c */ extern boolean_t affinity_sets_enabled; extern int affinity_sets_mapping; SYSCTL_INT(_kern, OID_AUTO, affinity_sets_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, (int *) &affinity_sets_enabled, 0, "hinting enabled"); SYSCTL_INT(_kern, OID_AUTO, affinity_sets_mapping, CTLFLAG_RW | CTLFLAG_LOCKED, &affinity_sets_mapping, 0, "mapping policy"); /* * Boolean indicating if KASLR is active. */ STATIC int sysctl_slide (__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { uint32_t slide; slide = vm_kernel_slide ? 1 : 0; return sysctl_io_number( req, slide, sizeof(int), NULL, NULL); } SYSCTL_PROC(_kern, OID_AUTO, slide, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_slide, "I", ""); #if DEBUG || DEVELOPMENT #if defined(__arm64__) extern vm_offset_t segTEXTEXECB; static int sysctl_kernel_text_exec_base_slide SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2, oidp) unsigned long slide = 0; kc_format_t kc_format; PE_get_primary_kc_format(&kc_format); if (kc_format == KCFormatFileset) { void *kch = PE_get_kc_header(KCKindPrimary); slide = (unsigned long)segTEXTEXECB - (unsigned long)kch + vm_kernel_slide; } return SYSCTL_OUT(req, &slide, sizeof(slide)); } SYSCTL_QUAD(_kern, OID_AUTO, kernel_slide, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_kernel_slide, ""); SYSCTL_QUAD(_kern, OID_AUTO, kernel_text_exec_base, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, &segTEXTEXECB, ""); SYSCTL_PROC(_kern, OID_AUTO, kernel_text_exec_base_slide, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_kernel_text_exec_base_slide, "Q", ""); #endif /* defined(__arm64__) */ /* User address of the PFZ */ extern user32_addr_t commpage_text32_location; extern user64_addr_t commpage_text64_location; STATIC int sysctl_pfz_start SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) #ifdef __LP64__ return sysctl_io_number(req, commpage_text64_location, sizeof(user64_addr_t), NULL, NULL); #else return sysctl_io_number(req, commpage_text32_location, sizeof(user32_addr_t), NULL, NULL); #endif } SYSCTL_PROC(_kern, OID_AUTO, pfz, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, sysctl_pfz_start, "I", ""); #endif /* * Limit on total memory users can wire. * * vm_global_user_wire_limit - system wide limit on wired memory from all processes combined. * * vm_per_task_user_wire_limit - per address space limit on wired memory. This puts a cap on the process's rlimit value. * * These values are initialized to reasonable defaults at boot time based on the available physical memory in * kmem_init(). * * All values are in bytes. */ vm_map_size_t vm_global_user_wire_limit; vm_map_size_t vm_per_task_user_wire_limit; extern uint64_t max_mem_actual, max_mem; uint64_t vm_add_wire_count_over_global_limit; uint64_t vm_add_wire_count_over_user_limit; /* * We used to have a global in the kernel called vm_global_no_user_wire_limit which was the inverse * of vm_global_user_wire_limit. But maintaining both of those is silly, and vm_global_user_wire_limit is the * real limit. * This function is for backwards compatibility with userspace * since we exposed the old global via a sysctl. */ STATIC int sysctl_global_no_user_wire_amount(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { vm_map_size_t old_value; vm_map_size_t new_value; int changed; int error; uint64_t config_memsize = max_mem; #if defined(XNU_TARGET_OS_OSX) config_memsize = max_mem_actual; #endif /* defined(XNU_TARGET_OS_OSX) */ old_value = (vm_map_size_t)(config_memsize - vm_global_user_wire_limit); error = sysctl_io_number(req, old_value, sizeof(vm_map_size_t), &new_value, &changed); if (changed) { if ((uint64_t)new_value > config_memsize) { error = EINVAL; } else { vm_global_user_wire_limit = (vm_map_size_t)(config_memsize - new_value); } } return error; } /* * There needs to be a more automatic/elegant way to do this */ SYSCTL_QUAD(_vm, OID_AUTO, global_user_wire_limit, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_global_user_wire_limit, ""); SYSCTL_QUAD(_vm, OID_AUTO, user_wire_limit, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_per_task_user_wire_limit, ""); SYSCTL_PROC(_vm, OID_AUTO, global_no_user_wire_amount, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, &sysctl_global_no_user_wire_amount, "Q", ""); /* * Relaxed atomic RW of a 64bit value via sysctl. */ STATIC int sysctl_r_64bit_atomic(uint64_t *ptr, struct sysctl_req *req) { uint64_t old_value; uint64_t new_value; int error; old_value = os_atomic_load_wide(ptr, relaxed); error = sysctl_io_number(req, old_value, sizeof(vm_map_size_t), &new_value, NULL); return error; } STATIC int sysctl_add_wire_count_over_global_limit(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { return sysctl_r_64bit_atomic(&vm_add_wire_count_over_global_limit, req); } STATIC int sysctl_add_wire_count_over_user_limit(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { return sysctl_r_64bit_atomic(&vm_add_wire_count_over_user_limit, req); } SYSCTL_PROC(_vm, OID_AUTO, add_wire_count_over_global_limit, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, &sysctl_add_wire_count_over_global_limit, "Q", ""); SYSCTL_PROC(_vm, OID_AUTO, add_wire_count_over_user_limit, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, &sysctl_add_wire_count_over_user_limit, "Q", ""); #if DEVELOPMENT || DEBUG /* These sysctls are used to test the wired limit. */ extern unsigned int vm_page_wire_count; extern uint32_t vm_lopage_free_count; SYSCTL_INT(_vm, OID_AUTO, page_wire_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_wire_count, 0, ""); SYSCTL_INT(_vm, OID_AUTO, lopage_free_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_lopage_free_count, 0, ""); /* * Setting the per task variable exclude_physfootprint_ledger to 1 will allow the calling task to exclude memory entries that are * tagged by VM_LEDGER_TAG_DEFAULT and flagged by VM_LEDGER_FLAG_EXCLUDE_FOOTPRINT_DEBUG from its phys_footprint ledger. */ STATIC int sysctl_rw_task_no_footprint_for_debug(struct sysctl_oid *oidp __unused, void *arg1 __unused, int arg2 __unused, struct sysctl_req *req) { int error; int value; proc_t p = current_proc(); if (req->newptr) { // Write request error = SYSCTL_IN(req, &value, sizeof(value)); if (!error) { if (value == 1) { task_set_no_footprint_for_debug(proc_task(p), TRUE); } else if (value == 0) { task_set_no_footprint_for_debug(proc_task(p), FALSE); } else { error = EINVAL; } } } else { // Read request value = task_get_no_footprint_for_debug(proc_task(p)); error = SYSCTL_OUT(req, &value, sizeof(value)); } return error; } SYSCTL_PROC(_vm, OID_AUTO, task_no_footprint_for_debug, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, 0, 0, &sysctl_rw_task_no_footprint_for_debug, "I", "Allow debug memory to be excluded from this task's memory footprint (debug only)"); #endif /* DEVELOPMENT || DEBUG */ extern int vm_map_copy_overwrite_aligned_src_not_internal; extern int vm_map_copy_overwrite_aligned_src_not_symmetric; extern int vm_map_copy_overwrite_aligned_src_large; SYSCTL_INT(_vm, OID_AUTO, vm_copy_src_not_internal, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_copy_overwrite_aligned_src_not_internal, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_copy_src_not_symmetric, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_copy_overwrite_aligned_src_not_symmetric, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_copy_src_large, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_copy_overwrite_aligned_src_large, 0, ""); extern uint32_t vm_page_external_count; SYSCTL_INT(_vm, OID_AUTO, vm_page_external_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_external_count, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_filecache_min, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_filecache_min, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_xpmapped_min, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_xpmapped_min, 0, ""); #if DEVELOPMENT || DEBUG SYSCTL_INT(_vm, OID_AUTO, vm_page_filecache_min_divisor, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_filecache_min_divisor, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_xpmapped_min_divisor, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_xpmapped_min_divisor, 0, ""); extern boolean_t vps_yield_for_pgqlockwaiters; SYSCTL_INT(_vm, OID_AUTO, vm_pageoutscan_yields_for_pageQlockwaiters, CTLFLAG_RW | CTLFLAG_LOCKED, &vps_yield_for_pgqlockwaiters, 0, ""); #endif extern int vm_compressor_mode; extern int vm_compressor_is_active; extern int vm_compressor_available; extern uint32_t c_seg_bufsize; extern uint64_t compressor_pool_size; extern uint32_t vm_ripe_target_age; extern uint32_t swapout_target_age; extern int64_t compressor_bytes_used; extern int64_t c_segment_input_bytes; extern int64_t c_segment_compressed_bytes; extern uint32_t compressor_eval_period_in_msecs; extern uint32_t compressor_sample_min_in_msecs; extern uint32_t compressor_sample_max_in_msecs; extern uint32_t compressor_thrashing_threshold_per_10msecs; extern uint32_t compressor_thrashing_min_per_10msecs; extern uint32_t vm_compressor_time_thread; #if DEVELOPMENT || DEBUG extern uint32_t vm_compressor_minorcompact_threshold_divisor; extern uint32_t vm_compressor_majorcompact_threshold_divisor; extern uint32_t vm_compressor_unthrottle_threshold_divisor; extern uint32_t vm_compressor_catchup_threshold_divisor; extern uint32_t vm_compressor_minorcompact_threshold_divisor_overridden; extern uint32_t vm_compressor_majorcompact_threshold_divisor_overridden; extern uint32_t vm_compressor_unthrottle_threshold_divisor_overridden; extern uint32_t vm_compressor_catchup_threshold_divisor_overridden; extern vmct_stats_t vmct_stats; STATIC int sysctl_minorcompact_threshold_divisor(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, vm_compressor_minorcompact_threshold_divisor, sizeof(int), &new_value, &changed); if (changed) { vm_compressor_minorcompact_threshold_divisor = new_value; vm_compressor_minorcompact_threshold_divisor_overridden = 1; } return error; } SYSCTL_PROC(_vm, OID_AUTO, compressor_minorcompact_threshold_divisor, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW, 0, 0, sysctl_minorcompact_threshold_divisor, "I", ""); STATIC int sysctl_majorcompact_threshold_divisor(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, vm_compressor_majorcompact_threshold_divisor, sizeof(int), &new_value, &changed); if (changed) { vm_compressor_majorcompact_threshold_divisor = new_value; vm_compressor_majorcompact_threshold_divisor_overridden = 1; } return error; } SYSCTL_PROC(_vm, OID_AUTO, compressor_majorcompact_threshold_divisor, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW, 0, 0, sysctl_majorcompact_threshold_divisor, "I", ""); STATIC int sysctl_unthrottle_threshold_divisor(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, vm_compressor_unthrottle_threshold_divisor, sizeof(int), &new_value, &changed); if (changed) { vm_compressor_unthrottle_threshold_divisor = new_value; vm_compressor_unthrottle_threshold_divisor_overridden = 1; } return error; } SYSCTL_PROC(_vm, OID_AUTO, compressor_unthrottle_threshold_divisor, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW, 0, 0, sysctl_unthrottle_threshold_divisor, "I", ""); STATIC int sysctl_catchup_threshold_divisor(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, vm_compressor_catchup_threshold_divisor, sizeof(int), &new_value, &changed); if (changed) { vm_compressor_catchup_threshold_divisor = new_value; vm_compressor_catchup_threshold_divisor_overridden = 1; } return error; } SYSCTL_PROC(_vm, OID_AUTO, compressor_catchup_threshold_divisor, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW, 0, 0, sysctl_catchup_threshold_divisor, "I", ""); #endif SYSCTL_QUAD(_vm, OID_AUTO, compressor_input_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &c_segment_input_bytes, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_compressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &c_segment_compressed_bytes, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_bytes_used, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_bytes_used, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_mode, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_compressor_mode, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_is_active, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_compressor_is_active, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_swapout_target_age, CTLFLAG_RD | CTLFLAG_LOCKED, &swapout_target_age, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_available, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_compressor_available, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_segment_buffer_size, CTLFLAG_RD | CTLFLAG_LOCKED, &c_seg_bufsize, 0, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_pool_size, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_pool_size, ""); #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES extern uint64_t compressor_ro_uncompressed; extern uint64_t compressor_ro_uncompressed_total_returned; extern uint64_t compressor_ro_uncompressed_skip_returned; extern uint64_t compressor_ro_uncompressed_get; extern uint64_t compressor_ro_uncompressed_put; extern uint64_t compressor_ro_uncompressed_swap_usage; SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_total_returned, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed_total_returned, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_writes_saved, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed_skip_returned, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_candidates, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_rereads, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed_get, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_swap_pages_on_disk, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed_swap_usage, ""); #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ extern int min_csegs_per_major_compaction; SYSCTL_INT(_vm, OID_AUTO, compressor_min_csegs_per_major_compaction, CTLFLAG_RW | CTLFLAG_LOCKED, &min_csegs_per_major_compaction, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_ripe_target_age_in_secs, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_ripe_target_age, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_eval_period_in_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_eval_period_in_msecs, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_sample_min_in_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_sample_min_in_msecs, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_sample_max_in_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_sample_max_in_msecs, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_thrashing_threshold_per_10msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_thrashing_threshold_per_10msecs, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_thrashing_min_per_10msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_thrashing_min_per_10msecs, 0, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapouts_under_30s, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.unripe_under_30s, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapouts_under_60s, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.unripe_under_60s, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapouts_under_300s, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.unripe_under_300s, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_reclaim_swapins, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.reclaim_swapins, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_defrag_swapins, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.defrag_swapins, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_threshold_exceeded, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.compressor_swap_threshold_exceeded, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_fileq_throttled, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.external_q_throttled, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_free_count_low, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.free_count_below_reserve, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_thrashing_detected, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.thrashing_detected, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_fragmentation_detected, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.fragmentation_detected, ""); SYSCTL_STRING(_vm, OID_AUTO, swapfileprefix, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, swapfilename, sizeof(swapfilename) - SWAPFILENAME_INDEX_LEN, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_timing_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_compressor_time_thread, 0, ""); #if DEVELOPMENT || DEBUG SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_runtime0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_runtimes[0], ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_runtime1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_runtimes[1], ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_threads_total_execution_time, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_cthreads_total, ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_pages0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_pages[0], ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_pages1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_pages[1], ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_iterations0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_iterations[0], ""); SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_iterations1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_iterations[1], ""); SYSCTL_INT(_vm, OID_AUTO, compressor_thread_minpages0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_minpages[0], 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_thread_minpages1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_minpages[1], 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_thread_maxpages0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_maxpages[0], 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_thread_maxpages1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_maxpages[1], 0, ""); int vm_compressor_injected_error_count; SYSCTL_INT(_vm, OID_AUTO, compressor_injected_error_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_compressor_injected_error_count, 0, ""); static int sysctl_compressor_inject_error(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int result; vm_address_t va = 0; int changed; result = sysctl_io_number(req, va, sizeof(va), &va, &changed); if (result == 0 && changed) { result = vm_map_inject_error(current_map(), va); if (result == 0) { /* * Count the number of errors injected successfully to detect * situations where corruption was caused by improper use of this * sysctl. */ os_atomic_inc(&vm_compressor_injected_error_count, relaxed); } } return result; } SYSCTL_PROC(_vm, OID_AUTO, compressor_inject_error, CTLTYPE_QUAD | CTLFLAG_LOCKED | CTLFLAG_RW, 0, 0, sysctl_compressor_inject_error, "Q", "flips a bit in a compressed page for the current task"); /* * Opt a process in/out of self donation mode. */ static int sysctl_vm_pid_toggle_selfdonate_pages SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, pid = 0; proc_t p; error = sysctl_handle_int(oidp, &pid, 0, req); if (error || !req->newptr) { return error; } p = proc_find(pid); if (p != NULL) { (void) vm_toggle_task_selfdonate_pages(proc_task(p)); proc_rele(p); return error; } else { printf("sysctl_vm_pid_selfdonate_pages: Invalid process\n"); } return EINVAL; } SYSCTL_PROC(_vm, OID_AUTO, pid_toggle_selfdonate_pages, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, &sysctl_vm_pid_toggle_selfdonate_pages, "I", ""); #endif extern uint32_t vm_page_donate_mode; extern uint32_t vm_page_donate_target_high, vm_page_donate_target_low; SYSCTL_INT(_vm, OID_AUTO, vm_page_donate_mode, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_donate_mode, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_donate_target_high, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_donate_target_high, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_donate_target_low, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_donate_target_low, 0, ""); SYSCTL_QUAD(_vm, OID_AUTO, lz4_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_compressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, lz4_compression_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_compression_failures, ""); SYSCTL_QUAD(_vm, OID_AUTO, lz4_compressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_compressed_bytes, ""); SYSCTL_QUAD(_vm, OID_AUTO, lz4_wk_compression_delta, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_wk_compression_delta, ""); SYSCTL_QUAD(_vm, OID_AUTO, lz4_wk_compression_negative_delta, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_wk_compression_negative_delta, ""); SYSCTL_QUAD(_vm, OID_AUTO, lz4_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_decompressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, lz4_decompressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_decompressed_bytes, ""); SYSCTL_QUAD(_vm, OID_AUTO, uc_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.uc_decompressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_catime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_cabstime, ""); SYSCTL_QUAD(_vm, OID_AUTO, wkh_catime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wkh_cabstime, ""); SYSCTL_QUAD(_vm, OID_AUTO, wkh_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wkh_compressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wks_catime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_cabstime, ""); SYSCTL_QUAD(_vm, OID_AUTO, wks_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_compressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_compressions_exclusive, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compressions_exclusive, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_sv_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_sv_compressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_mzv_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_mzv_compressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_compression_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compression_failures, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_compressed_bytes_exclusive, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compressed_bytes_exclusive, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_compressed_bytes_total, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compressed_bytes_total, ""); SYSCTL_QUAD(_vm, OID_AUTO, wks_compressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_compressed_bytes, ""); SYSCTL_QUAD(_vm, OID_AUTO, wks_compression_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_compression_failures, ""); SYSCTL_QUAD(_vm, OID_AUTO, wks_sv_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_sv_compressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_decompressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_datime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_dabstime, ""); SYSCTL_QUAD(_vm, OID_AUTO, wkh_datime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wkh_dabstime, ""); SYSCTL_QUAD(_vm, OID_AUTO, wkh_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wkh_decompressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wks_datime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_dabstime, ""); SYSCTL_QUAD(_vm, OID_AUTO, wks_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_decompressions, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_decompressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_decompressed_bytes, ""); SYSCTL_QUAD(_vm, OID_AUTO, wk_sv_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_sv_decompressions, ""); SYSCTL_INT(_vm, OID_AUTO, lz4_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_threshold, 0, ""); SYSCTL_INT(_vm, OID_AUTO, wkdm_reeval_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.wkdm_reeval_threshold, 0, ""); SYSCTL_INT(_vm, OID_AUTO, lz4_max_failure_skips, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_max_failure_skips, 0, ""); SYSCTL_INT(_vm, OID_AUTO, lz4_max_failure_run_length, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_max_failure_run_length, 0, ""); SYSCTL_INT(_vm, OID_AUTO, lz4_max_preselects, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_max_preselects, 0, ""); SYSCTL_INT(_vm, OID_AUTO, lz4_run_preselection_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_run_preselection_threshold, 0, ""); SYSCTL_INT(_vm, OID_AUTO, lz4_run_continue_bytes, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_run_continue_bytes, 0, ""); SYSCTL_INT(_vm, OID_AUTO, lz4_profitable_bytes, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_profitable_bytes, 0, ""); #if DEVELOPMENT || DEBUG extern int vm_compressor_current_codec; extern int vm_compressor_test_seg_wp; extern boolean_t vm_compressor_force_sw_wkdm; SYSCTL_INT(_vm, OID_AUTO, compressor_codec, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_compressor_current_codec, 0, ""); SYSCTL_INT(_vm, OID_AUTO, compressor_test_wp, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_compressor_test_seg_wp, 0, ""); SYSCTL_INT(_vm, OID_AUTO, wksw_force, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_compressor_force_sw_wkdm, 0, ""); extern int precompy, wkswhw; SYSCTL_INT(_vm, OID_AUTO, precompy, CTLFLAG_RW | CTLFLAG_LOCKED, &precompy, 0, ""); SYSCTL_INT(_vm, OID_AUTO, wkswhw, CTLFLAG_RW | CTLFLAG_LOCKED, &wkswhw, 0, ""); extern unsigned int vm_ktrace_enabled; SYSCTL_INT(_vm, OID_AUTO, vm_ktrace, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_ktrace_enabled, 0, ""); #endif #if CONFIG_PHANTOM_CACHE extern uint32_t phantom_cache_thrashing_threshold; extern uint32_t phantom_cache_eval_period_in_msecs; extern uint32_t phantom_cache_thrashing_threshold_ssd; SYSCTL_INT(_vm, OID_AUTO, phantom_cache_eval_period_in_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &phantom_cache_eval_period_in_msecs, 0, ""); SYSCTL_INT(_vm, OID_AUTO, phantom_cache_thrashing_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &phantom_cache_thrashing_threshold, 0, ""); SYSCTL_INT(_vm, OID_AUTO, phantom_cache_thrashing_threshold_ssd, CTLFLAG_RW | CTLFLAG_LOCKED, &phantom_cache_thrashing_threshold_ssd, 0, ""); #endif #if defined(__LP64__) extern uint32_t vm_page_background_count; extern uint32_t vm_page_background_target; extern uint32_t vm_page_background_internal_count; extern uint32_t vm_page_background_external_count; extern uint32_t vm_page_background_mode; extern uint32_t vm_page_background_exclude_external; extern uint64_t vm_page_background_promoted_count; extern uint64_t vm_pageout_rejected_bq_internal; extern uint64_t vm_pageout_rejected_bq_external; SYSCTL_INT(_vm, OID_AUTO, vm_page_background_mode, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_background_mode, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_background_exclude_external, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_background_exclude_external, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_background_target, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_background_target, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_background_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_background_count, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_background_internal_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_background_internal_count, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_page_background_external_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_background_external_count, 0, ""); SYSCTL_QUAD(_vm, OID_AUTO, vm_page_background_promoted_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_background_promoted_count, ""); SYSCTL_QUAD(_vm, OID_AUTO, vm_pageout_considered_bq_internal, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_considered_bq_internal, ""); SYSCTL_QUAD(_vm, OID_AUTO, vm_pageout_considered_bq_external, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_considered_bq_external, ""); SYSCTL_QUAD(_vm, OID_AUTO, vm_pageout_rejected_bq_internal, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_rejected_bq_internal, ""); SYSCTL_QUAD(_vm, OID_AUTO, vm_pageout_rejected_bq_external, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_rejected_bq_external, ""); #endif /* __LP64__ */ extern void vm_update_darkwake_mode(boolean_t); extern boolean_t vm_darkwake_mode; STATIC int sysctl_toggle_darkwake_mode(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value, changed; int error = sysctl_io_number(req, vm_darkwake_mode, sizeof(int), &new_value, &changed); if (!error && changed) { if (new_value != 0 && new_value != 1) { printf("Error: Invalid value passed to darkwake sysctl. Acceptable: 0 or 1.\n"); error = EINVAL; } else { vm_update_darkwake_mode((boolean_t) new_value); } } return error; } SYSCTL_PROC(_vm, OID_AUTO, darkwake_mode, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW, 0, 0, sysctl_toggle_darkwake_mode, "I", ""); #if (DEVELOPMENT || DEBUG) SYSCTL_UINT(_vm, OID_AUTO, vm_page_creation_throttled_hard, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_page_creation_throttled_hard, 0, ""); SYSCTL_UINT(_vm, OID_AUTO, vm_page_creation_throttled_soft, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_page_creation_throttled_soft, 0, ""); extern uint32_t vm_pageout_memorystatus_fb_factor_nr; extern uint32_t vm_pageout_memorystatus_fb_factor_dr; SYSCTL_INT(_vm, OID_AUTO, vm_pageout_memorystatus_fb_factor_nr, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_memorystatus_fb_factor_nr, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_pageout_memorystatus_fb_factor_dr, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_memorystatus_fb_factor_dr, 0, ""); extern uint32_t vm_grab_anon_nops; SYSCTL_INT(_vm, OID_AUTO, vm_grab_anon_overrides, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_debug.vm_grab_anon_overrides, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_grab_anon_nops, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_debug.vm_grab_anon_nops, 0, ""); SYSCTL_INT(_vm, OID_AUTO, vm_pageout_yield_for_free_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_debug.vm_pageout_yield_for_free_pages, 0, ""); extern int vm_page_delayed_work_ctx_needed; SYSCTL_INT(_vm, OID_AUTO, vm_page_needed_delayed_work_ctx, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_delayed_work_ctx_needed, 0, ""); /* log message counters for persistence mode */ SCALABLE_COUNTER_DECLARE(oslog_p_total_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_metadata_saved_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_metadata_dropped_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_signpost_saved_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_signpost_dropped_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_error_count); SCALABLE_COUNTER_DECLARE(oslog_p_error_count); SCALABLE_COUNTER_DECLARE(oslog_p_saved_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_dropped_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_boot_dropped_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_coprocessor_total_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_coprocessor_dropped_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_unresolved_kc_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_fmt_invalid_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_fmt_max_args_msgcount); SCALABLE_COUNTER_DECLARE(oslog_p_truncated_msgcount); SCALABLE_COUNTER_DECLARE(oslog_subsystem_count); SCALABLE_COUNTER_DECLARE(oslog_subsystem_found); SCALABLE_COUNTER_DECLARE(oslog_subsystem_dropped); SCALABLE_COUNTER_DECLARE(log_queue_cnt_received); SCALABLE_COUNTER_DECLARE(log_queue_cnt_rejected_fh); SCALABLE_COUNTER_DECLARE(log_queue_cnt_sent); SCALABLE_COUNTER_DECLARE(log_queue_cnt_dropped_nomem); SCALABLE_COUNTER_DECLARE(log_queue_cnt_queued); SCALABLE_COUNTER_DECLARE(log_queue_cnt_dropped_off); SCALABLE_COUNTER_DECLARE(log_queue_cnt_mem_active); SCALABLE_COUNTER_DECLARE(log_queue_cnt_mem_allocated); SCALABLE_COUNTER_DECLARE(log_queue_cnt_mem_released); SCALABLE_COUNTER_DECLARE(log_queue_cnt_mem_failed); /* log message counters for streaming mode */ SCALABLE_COUNTER_DECLARE(oslog_s_total_msgcount); SCALABLE_COUNTER_DECLARE(oslog_s_metadata_msgcount); SCALABLE_COUNTER_DECLARE(oslog_s_error_count); SCALABLE_COUNTER_DECLARE(oslog_s_streamed_msgcount); SCALABLE_COUNTER_DECLARE(oslog_s_dropped_msgcount); /* log message counters for msgbuf logging */ SCALABLE_COUNTER_DECLARE(oslog_msgbuf_msgcount); SCALABLE_COUNTER_DECLARE(oslog_msgbuf_dropped_msgcount); extern uint32_t oslog_msgbuf_dropped_charcount; #if CONFIG_EXCLAVES /* log message counters for exclaves logging */ SCALABLE_COUNTER_DECLARE(oslog_e_log_count); SCALABLE_COUNTER_DECLARE(oslog_e_log_dropped_count); SCALABLE_COUNTER_DECLARE(oslog_e_metadata_count); SCALABLE_COUNTER_DECLARE(oslog_e_metadata_dropped_count); SCALABLE_COUNTER_DECLARE(oslog_e_signpost_count); SCALABLE_COUNTER_DECLARE(oslog_e_signpost_dropped_count); SCALABLE_COUNTER_DECLARE(oslog_e_query_count); SCALABLE_COUNTER_DECLARE(oslog_e_error_query_count); #endif // CONFIG_EXCLAVES SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_total_msgcount, oslog_p_total_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_metadata_saved_msgcount, oslog_p_metadata_saved_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_metadata_dropped_msgcount, oslog_p_metadata_dropped_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_signpost_saved_msgcount, oslog_p_signpost_saved_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_signpost_dropped_msgcount, oslog_p_signpost_dropped_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_error_count, oslog_p_error_count, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_saved_msgcount, oslog_p_saved_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_dropped_msgcount, oslog_p_dropped_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_boot_dropped_msgcount, oslog_p_boot_dropped_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_coprocessor_total_msgcount, oslog_p_coprocessor_total_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_coprocessor_dropped_msgcount, oslog_p_coprocessor_dropped_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_unresolved_kc_msgcount, oslog_p_unresolved_kc_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_fmt_invalid_msgcount, oslog_p_fmt_invalid_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_fmt_max_args_msgcount, oslog_p_fmt_max_args_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_truncated_msgcount, oslog_p_truncated_msgcount, ""); SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_total_msgcount, oslog_s_total_msgcount, "Number of logs sent to streaming"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_metadata_msgcount, oslog_s_metadata_msgcount, "Number of metadata sent to streaming"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_error_count, oslog_s_error_count, "Number of invalid stream logs"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_streamed_msgcount, oslog_s_streamed_msgcount, "Number of streamed logs"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_dropped_msgcount, oslog_s_dropped_msgcount, "Number of logs dropped from stream"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_msgbuf_msgcount, oslog_msgbuf_msgcount, "Number of dmesg log messages"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_msgbuf_dropped_msgcount, oslog_msgbuf_dropped_msgcount, "Number of dropped dmesg log messages"); SYSCTL_UINT(_debug, OID_AUTO, oslog_msgbuf_dropped_charcount, CTLFLAG_ANYBODY | CTLFLAG_RD | CTLFLAG_LOCKED, &oslog_msgbuf_dropped_charcount, 0, "Number of dropped dmesg log chars"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_received, log_queue_cnt_received, "Number of received logs"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_rejected_fh, log_queue_cnt_rejected_fh, "Number of logs initially rejected by FH"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_sent, log_queue_cnt_sent, "Number of logs successfully saved in FH"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_dropped_nomem, log_queue_cnt_dropped_nomem, "Number of logs dropped due to lack of queue memory"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_queued, log_queue_cnt_queued, "Current number of logs stored in log queues"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_dropped_off, log_queue_cnt_dropped_off, "Number of logs dropped due to disabled log queues"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_mem_allocated, log_queue_cnt_mem_allocated, "Number of memory allocations"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_mem_released, log_queue_cnt_mem_released, "Number of memory releases"); SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_mem_failed, log_queue_cnt_mem_failed, "Number of failed memory allocations"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_subsystem_count, oslog_subsystem_count, "Number of registered log subsystems"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_subsystem_found, oslog_subsystem_found, "Number of sucessful log subsystem lookups"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_subsystem_dropped, oslog_subsystem_dropped, "Number of dropped log subsystem registrations"); #if CONFIG_EXCLAVES SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_metadata_count, oslog_e_metadata_count, "Number of metadata messages retrieved from the exclaves log server"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_metadata_dropped_count, oslog_e_metadata_dropped_count, "Number of dropped metadata messages retrieved from the exclaves log server"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_log_count, oslog_e_log_count, "Number of logs retrieved from the exclaves log server"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_log_dropped_count, oslog_e_log_dropped_count, "Number of dropeed logs retrieved from the exclaves log server"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_signpost_count, oslog_e_signpost_count, "Number of signposts retrieved from the exclaves log server"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_signpost_dropped_count, oslog_e_signpost_dropped_count, "Number of dropped signposts retrieved from the exclaves log server"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_query_count, oslog_e_query_count, "Number of sucessful queries to the exclaves log server"); SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_error_query_count, oslog_e_error_query_count, "Number of failed queries to the exclaves log server"); #endif // CONFIG_EXCLAVES #endif /* DEVELOPMENT || DEBUG */ /* * Enable tracing of voucher contents */ extern uint32_t ipc_voucher_trace_contents; SYSCTL_INT(_kern, OID_AUTO, ipc_voucher_trace_contents, CTLFLAG_RW | CTLFLAG_LOCKED, &ipc_voucher_trace_contents, 0, "Enable tracing voucher contents"); /* * Kernel stack size and depth */ SYSCTL_INT(_kern, OID_AUTO, stack_size, CTLFLAG_RD | CTLFLAG_LOCKED, (int *) &kernel_stack_size, 0, "Kernel stack size"); SYSCTL_INT(_kern, OID_AUTO, stack_depth_max, CTLFLAG_RD | CTLFLAG_LOCKED, (int *) &kernel_stack_depth_max, 0, "Max kernel stack depth at interrupt or context switch"); extern unsigned int kern_feature_overrides; SYSCTL_INT(_kern, OID_AUTO, kern_feature_overrides, CTLFLAG_RD | CTLFLAG_LOCKED, &kern_feature_overrides, 0, "Kernel feature override mask"); /* * enable back trace for port allocations */ extern int ipc_portbt; SYSCTL_INT(_kern, OID_AUTO, ipc_portbt, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &ipc_portbt, 0, ""); /* * Mach message signature validation control and outputs */ extern unsigned int ikm_signature_failures; SYSCTL_INT(_kern, OID_AUTO, ikm_signature_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &ikm_signature_failures, 0, "Message signature failure count"); extern unsigned int ikm_signature_failure_id; SYSCTL_INT(_kern, OID_AUTO, ikm_signature_failure_id, CTLFLAG_RD | CTLFLAG_LOCKED, &ikm_signature_failure_id, 0, "Message signature failure count"); #if (DEVELOPMENT || DEBUG) extern unsigned int ikm_signature_panic_disable; SYSCTL_INT(_kern, OID_AUTO, ikm_signature_panic_disable, CTLFLAG_RW | CTLFLAG_LOCKED, &ikm_signature_panic_disable, 0, "Message signature failure mode"); extern unsigned int ikm_signature_header_failures; SYSCTL_INT(_kern, OID_AUTO, ikm_signature_header_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &ikm_signature_header_failures, 0, "Message header signature failure count"); extern unsigned int ikm_signature_trailer_failures; SYSCTL_INT(_kern, OID_AUTO, ikm_signature_trailer_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &ikm_signature_trailer_failures, 0, "Message trailer signature failure count"); #endif /* * Scheduler sysctls */ SYSCTL_STRING(_kern, OID_AUTO, sched, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, sched_string, sizeof(sched_string), "Timeshare scheduler implementation"); static int sysctl_cpu_quiescent_counter_interval SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) uint32_t local_min_interval_us = smr_cpu_checkin_get_min_interval_us(); int error = sysctl_handle_int(oidp, &local_min_interval_us, 0, req); if (error || !req->newptr) { return error; } smr_cpu_checkin_set_min_interval_us(local_min_interval_us); return 0; } SYSCTL_PROC(_kern, OID_AUTO, cpu_checkin_interval, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_cpu_quiescent_counter_interval, "I", "Quiescent CPU checkin interval (microseconds)"); /* * Allow the precise user/kernel time sysctl to be set, but don't allow it to * affect anything. Some tools expect to be able to set this, even though * runtime configuration is no longer supported. */ static int sysctl_precise_user_kernel_time SYSCTL_HANDLER_ARGS { #if PRECISE_USER_KERNEL_TIME int dummy_set = 1; #else /* PRECISE_USER_KERNEL_TIME */ int dummy_set = 0; #endif /* !PRECISE_USER_KERNEL_TIME */ return sysctl_handle_int(oidp, &dummy_set, 0, req); } SYSCTL_PROC(_kern, OID_AUTO, precise_user_kernel_time, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_precise_user_kernel_time, "I", "Precise accounting of kernel vs. user time (deprecated)"); #if CONFIG_PERVASIVE_ENERGY && HAS_CPU_DPE_COUNTER __security_const_late static int pervasive_energy = 1; #else /* CONFIG_PERVASIVE_ENERGY && HAS_CPU_DPE_COUNTER */ __security_const_late static int pervasive_energy = 0; #endif /* !CONFIG_PERVASIVE_ENERGY || !HAS_CPU_DPE_COUNTER */ SYSCTL_INT(_kern, OID_AUTO, pervasive_energy, CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, &pervasive_energy, 0, ""); /* Parameters related to timer coalescing tuning, to be replaced * with a dedicated systemcall in the future. */ /* Enable processing pending timers in the context of any other interrupt * Coalescing tuning parameters for various thread/task attributes */ STATIC int sysctl_timer_user_us_kernel_abstime SYSCTL_HANDLER_ARGS { #pragma unused(oidp) int size = arg2; /* subcommand*/ int error; int changed = 0; uint64_t old_value_ns; uint64_t new_value_ns; uint64_t value_abstime; if (size == sizeof(uint32_t)) { value_abstime = *((uint32_t *)arg1); } else if (size == sizeof(uint64_t)) { value_abstime = *((uint64_t *)arg1); } else { return ENOTSUP; } absolutetime_to_nanoseconds(value_abstime, &old_value_ns); error = sysctl_io_number(req, old_value_ns, sizeof(old_value_ns), &new_value_ns, &changed); if ((error) || (!changed)) { return error; } nanoseconds_to_absolutetime(new_value_ns, &value_abstime); if (size == sizeof(uint32_t)) { *((uint32_t *)arg1) = (uint32_t)value_abstime; } else { *((uint64_t *)arg1) = value_abstime; } return error; } SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_bg_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_coalesce_bg_shift, 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_resort_threshold_ns, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_resort_threshold_abstime, sizeof(tcoal_prio_params.timer_resort_threshold_abstime), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_bg_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_coalesce_bg_abstime_max, sizeof(tcoal_prio_params.timer_coalesce_bg_abstime_max), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_kt_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_coalesce_kt_shift, 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_kt_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_coalesce_kt_abstime_max, sizeof(tcoal_prio_params.timer_coalesce_kt_abstime_max), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_fp_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_coalesce_fp_shift, 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_fp_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_coalesce_fp_abstime_max, sizeof(tcoal_prio_params.timer_coalesce_fp_abstime_max), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_ts_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_coalesce_ts_shift, 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_ts_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.timer_coalesce_ts_abstime_max, sizeof(tcoal_prio_params.timer_coalesce_ts_abstime_max), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier0_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_scale[0], 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier0_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_abstime_max[0], sizeof(tcoal_prio_params.latency_qos_abstime_max[0]), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier1_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_scale[1], 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier1_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_abstime_max[1], sizeof(tcoal_prio_params.latency_qos_abstime_max[1]), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier2_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_scale[2], 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier2_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_abstime_max[2], sizeof(tcoal_prio_params.latency_qos_abstime_max[2]), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier3_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_scale[3], 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier3_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_abstime_max[3], sizeof(tcoal_prio_params.latency_qos_abstime_max[3]), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier4_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_scale[4], 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier4_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_abstime_max[4], sizeof(tcoal_prio_params.latency_qos_abstime_max[4]), sysctl_timer_user_us_kernel_abstime, "Q", ""); SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier5_scale, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_scale[5], 0, ""); SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier5_ns_max, CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &tcoal_prio_params.latency_qos_abstime_max[5], sizeof(tcoal_prio_params.latency_qos_abstime_max[5]), sysctl_timer_user_us_kernel_abstime, "Q", ""); /* Communicate the "user idle level" heuristic to the timer layer, and * potentially other layers in the future. */ static int timer_user_idle_level(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int new_value = 0, old_value = 0, changed = 0, error; old_value = timer_get_user_idle_level(); error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed); if (error == 0 && changed) { if (timer_set_user_idle_level(new_value) != KERN_SUCCESS) { error = ERANGE; } } return error; } SYSCTL_PROC(_machdep, OID_AUTO, user_idle_level, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, timer_user_idle_level, "I", "User idle level heuristic, 0-128"); #if DEVELOPMENT || DEBUG /* * Basic console mode for games; used for development purposes only. * Final implementation for this feature (with possible removal of * sysctl) tracked via rdar://101215873. */ static int console_mode = 0; SYSCTL_INT(_kern, OID_AUTO, console_mode, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED, &console_mode, 0, "Game Console Mode"); #endif /* DEVELOPMENT || DEBUG */ #if HYPERVISOR SYSCTL_INT(_kern, OID_AUTO, hv_support, CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, &hv_support_available, 0, ""); SYSCTL_INT(_kern, OID_AUTO, hv_disable, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &hv_disable, 0, ""); #endif /* HYPERVISOR */ #if DEVELOPMENT || DEBUG extern uint64_t driverkit_checkin_timed_out; SYSCTL_QUAD(_kern, OID_AUTO, driverkit_checkin_timed_out, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, &driverkit_checkin_timed_out, "timestamp of dext checkin timeout"); #endif #if CONFIG_DARKBOOT STATIC int sysctl_darkboot SYSCTL_HANDLER_ARGS { int err = 0, value = 0; #pragma unused(oidp, arg1, arg2, err, value, req) /* * Handle the sysctl request. * * If this is a read, the function will set the value to the current darkboot value. Otherwise, * we'll get the request identifier into "value" and then we can honor it. */ if ((err = sysctl_io_number(req, darkboot, sizeof(int), &value, NULL)) != 0) { goto exit; } /* writing requested, let's process the request */ if (req->newptr) { /* writing is protected by an entitlement */ if (priv_check_cred(kauth_cred_get(), PRIV_DARKBOOT, 0) != 0) { err = EPERM; goto exit; } switch (value) { case MEMORY_MAINTENANCE_DARK_BOOT_UNSET: /* * If the darkboot sysctl is unset, the NVRAM variable * must be unset too. If that's not the case, it means * someone is doing something crazy and not supported. */ if (darkboot != 0) { int ret = PERemoveNVRAMProperty(MEMORY_MAINTENANCE_DARK_BOOT_NVRAM_NAME); if (ret) { darkboot = 0; } else { err = EINVAL; } } break; case MEMORY_MAINTENANCE_DARK_BOOT_SET: darkboot = 1; break; case MEMORY_MAINTENANCE_DARK_BOOT_SET_PERSISTENT: { /* * Set the NVRAM and update 'darkboot' in case * of success. Otherwise, do not update * 'darkboot' and report the failure. */ if (PEWriteNVRAMBooleanProperty(MEMORY_MAINTENANCE_DARK_BOOT_NVRAM_NAME, TRUE)) { darkboot = 1; } else { err = EINVAL; } break; } default: err = EINVAL; } } exit: return err; } SYSCTL_PROC(_kern, OID_AUTO, darkboot, CTLFLAG_KERN | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, 0, 0, sysctl_darkboot, "I", ""); #endif /* CONFIG_DARKBOOT */ #if DEVELOPMENT || DEBUG #include /* This should result in a fatal exception, verifying that "sysent" is * write-protected. */ static int kern_sysent_write(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { uint64_t new_value = 0, old_value = 0; int changed = 0, error; error = sysctl_io_number(req, old_value, sizeof(uint64_t), &new_value, &changed); if ((error == 0) && changed) { volatile uint32_t *wraddr = __DECONST(uint32_t *, &sysent[0]); *wraddr = 0; printf("sysent[0] write succeeded\n"); } return error; } SYSCTL_PROC(_kern, OID_AUTO, sysent_const_check, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, kern_sysent_write, "I", "Attempt sysent[0] write"); #endif #if DEVELOPMENT || DEBUG SYSCTL_COMPAT_INT(_kern, OID_AUTO, development, CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_KERN, NULL, 1, ""); #else SYSCTL_COMPAT_INT(_kern, OID_AUTO, development, CTLFLAG_RD | CTLFLAG_MASKED, NULL, 0, ""); #endif #if DEVELOPMENT || DEBUG decl_lck_spin_data(, spinlock_panic_test_lock); __attribute__((noreturn)) static void spinlock_panic_test_acquire_spinlock(void * arg __unused, wait_result_t wres __unused) { lck_spin_lock(&spinlock_panic_test_lock); while (1) { ; } } static int sysctl_spinlock_panic_test SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) if (req->newlen == 0) { return EINVAL; } thread_t panic_spinlock_thread; /* Initialize panic spinlock */ lck_grp_t * panic_spinlock_grp; lck_grp_attr_t * panic_spinlock_grp_attr; lck_attr_t * panic_spinlock_attr; panic_spinlock_grp_attr = lck_grp_attr_alloc_init(); panic_spinlock_grp = lck_grp_alloc_init("panic_spinlock", panic_spinlock_grp_attr); panic_spinlock_attr = lck_attr_alloc_init(); lck_spin_init(&spinlock_panic_test_lock, panic_spinlock_grp, panic_spinlock_attr); /* Create thread to acquire spinlock */ if (kernel_thread_start(spinlock_panic_test_acquire_spinlock, NULL, &panic_spinlock_thread) != KERN_SUCCESS) { return EBUSY; } /* Try to acquire spinlock -- should panic eventually */ lck_spin_lock(&spinlock_panic_test_lock); while (1) { ; } } __attribute__((noreturn)) static void simultaneous_panic_worker (void * arg, wait_result_t wres __unused) { atomic_int *start_panic = (atomic_int *)arg; while (!atomic_load(start_panic)) { ; } panic("SIMULTANEOUS PANIC TEST: INITIATING PANIC FROM CPU %d", cpu_number()); __builtin_unreachable(); } static int sysctl_simultaneous_panic_test SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) if (req->newlen == 0) { return EINVAL; } int i = 0, threads_to_create = 2 * processor_count; atomic_int start_panic = 0; unsigned int threads_created = 0; thread_t new_panic_thread; for (i = threads_to_create; i > 0; i--) { if (kernel_thread_start(simultaneous_panic_worker, (void *) &start_panic, &new_panic_thread) == KERN_SUCCESS) { threads_created++; } } /* FAIL if we couldn't create at least processor_count threads */ if (threads_created < processor_count) { panic("SIMULTANEOUS PANIC TEST: FAILED TO CREATE ENOUGH THREADS, ONLY CREATED %d (of %d)", threads_created, threads_to_create); } atomic_exchange(&start_panic, 1); while (1) { ; } } extern unsigned int panic_test_failure_mode; SYSCTL_INT(_debug, OID_AUTO, xnu_panic_failure_mode, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &panic_test_failure_mode, 0, "panic/debugger test failure mode"); extern unsigned int panic_test_action_count; SYSCTL_INT(_debug, OID_AUTO, xnu_panic_action_count, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &panic_test_action_count, 0, "panic/debugger test action count"); extern unsigned int panic_test_case; SYSCTL_INT(_debug, OID_AUTO, xnu_panic_test_case, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &panic_test_case, 0, "panic/debugger testcase"); SYSCTL_PROC(_debug, OID_AUTO, xnu_spinlock_panic_test, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_MASKED, 0, 0, sysctl_spinlock_panic_test, "A", "spinlock panic test"); SYSCTL_PROC(_debug, OID_AUTO, xnu_simultaneous_panic_test, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_MASKED, 0, 0, sysctl_simultaneous_panic_test, "A", "simultaneous panic test"); extern int exc_resource_threads_enabled; SYSCTL_INT(_kern, OID_AUTO, exc_resource_threads_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &exc_resource_threads_enabled, 0, "exc_resource thread limit enabled"); #endif /* DEVELOPMENT || DEBUG */ #if BUILT_LTO static int _built_lto = 1; #else // BUILT_LTO static int _built_lto = 0; #endif // !BUILT_LTO SYSCTL_INT(_kern, OID_AUTO, link_time_optimized, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN, &_built_lto, 0, "Whether the kernel was built with Link Time Optimization enabled"); #if CONFIG_THREAD_GROUPS #if DEVELOPMENT || DEBUG static int sysctl_get_thread_group_id SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2, oidp) uint64_t thread_group_id = thread_group_get_id(thread_group_get(current_thread())); return SYSCTL_OUT(req, &thread_group_id, sizeof(thread_group_id)); } SYSCTL_PROC(_kern, OID_AUTO, thread_group_id, CTLFLAG_RD | CTLFLAG_LOCKED | CTLTYPE_QUAD, 0, 0, &sysctl_get_thread_group_id, "I", "thread group id of the thread"); STATIC int sysctl_thread_group_count(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int value = thread_group_count(); return sysctl_io_number(req, value, sizeof(value), NULL, NULL); } SYSCTL_PROC(_kern, OID_AUTO, thread_group_count, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN, 0, 0, &sysctl_thread_group_count, "I", "count of thread groups"); #endif /* DEVELOPMENT || DEBUG */ const uint32_t thread_groups_supported = 1; #else /* CONFIG_THREAD_GROUPS */ const uint32_t thread_groups_supported = 0; #endif /* CONFIG_THREAD_GROUPS */ STATIC int sysctl_thread_groups_supported(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int value = thread_groups_supported; return sysctl_io_number(req, value, sizeof(value), NULL, NULL); } SYSCTL_PROC(_kern, OID_AUTO, thread_groups_supported, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN, 0, 0, &sysctl_thread_groups_supported, "I", "thread groups supported"); static int sysctl_grade_cputype SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2, oidp) int error = 0; int type_tuple[2] = {}; int return_value = 0; error = SYSCTL_IN(req, &type_tuple, sizeof(type_tuple)); if (error) { return error; } return_value = grade_binary(type_tuple[0], type_tuple[1] & ~CPU_SUBTYPE_MASK, type_tuple[1] & CPU_SUBTYPE_MASK, FALSE); error = SYSCTL_OUT(req, &return_value, sizeof(return_value)); if (error) { return error; } return error; } SYSCTL_PROC(_kern, OID_AUTO, grade_cputype, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MASKED | CTLFLAG_LOCKED | CTLTYPE_OPAQUE, 0, 0, &sysctl_grade_cputype, "S", "grade value of cpu_type_t+cpu_sub_type_t"); extern boolean_t allow_direct_handoff; SYSCTL_INT(_kern, OID_AUTO, direct_handoff, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &allow_direct_handoff, 0, "Enable direct handoff for realtime threads"); #if DEVELOPMENT || DEBUG SYSCTL_QUAD(_kern, OID_AUTO, phys_carveout_pa, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN, &phys_carveout_pa, "base physical address of the phys_carveout_mb boot-arg region"); SYSCTL_QUAD(_kern, OID_AUTO, phys_carveout_size, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN, &phys_carveout_size, "size in bytes of the phys_carveout_mb boot-arg region"); extern void do_cseg_wedge_thread(void); extern void do_cseg_unwedge_thread(void); static int cseg_wedge_thread SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error || val == 0) { return error; } do_cseg_wedge_thread(); return 0; } SYSCTL_PROC(_kern, OID_AUTO, cseg_wedge_thread, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, cseg_wedge_thread, "I", "wedge c_seg thread"); static int cseg_unwedge_thread SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error || val == 0) { return error; } do_cseg_unwedge_thread(); return 0; } SYSCTL_PROC(_kern, OID_AUTO, cseg_unwedge_thread, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, cseg_unwedge_thread, "I", "unstuck c_seg thread"); static atomic_int wedge_thread_should_wake = 0; static int unwedge_thread SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error || val == 0) { return error; } atomic_store(&wedge_thread_should_wake, 1); return 0; } SYSCTL_PROC(_kern, OID_AUTO, unwedge_thread, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, unwedge_thread, "I", "unwedge the thread wedged by kern.wedge_thread"); static int wedge_thread SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error || val == 0) { return error; } uint64_t interval = 1; nanoseconds_to_absolutetime(1000 * 1000 * 50, &interval); atomic_store(&wedge_thread_should_wake, 0); while (!atomic_load(&wedge_thread_should_wake)) { tsleep1(NULL, 0, "wedge_thread", mach_absolute_time() + interval, NULL); } return 0; } SYSCTL_PROC(_kern, OID_AUTO, wedge_thread, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, wedge_thread, "I", "wedge this thread so it cannot be cleaned up"); static int sysctl_total_corpses_count SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) extern unsigned long total_corpses_count(void); unsigned long corpse_count_long = total_corpses_count(); unsigned int corpse_count = (unsigned int)MIN(corpse_count_long, UINT_MAX); return sysctl_io_opaque(req, &corpse_count, sizeof(corpse_count), NULL); } SYSCTL_PROC(_kern, OID_AUTO, total_corpses_count, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, sysctl_total_corpses_count, "I", "total corpses on the system"); static int sysctl_turnstile_test_prim_lock SYSCTL_HANDLER_ARGS; static int sysctl_turnstile_test_prim_unlock SYSCTL_HANDLER_ARGS; int tstile_test_prim_lock(boolean_t use_hashtable); int tstile_test_prim_unlock(boolean_t use_hashtable); static int sysctl_turnstile_test_prim_lock SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error || val == 0) { return error; } switch (val) { case SYSCTL_TURNSTILE_TEST_USER_DEFAULT: case SYSCTL_TURNSTILE_TEST_USER_HASHTABLE: case SYSCTL_TURNSTILE_TEST_KERNEL_DEFAULT: case SYSCTL_TURNSTILE_TEST_KERNEL_HASHTABLE: return tstile_test_prim_lock(val); default: return error; } } static int sysctl_turnstile_test_prim_unlock SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error || val == 0) { return error; } switch (val) { case SYSCTL_TURNSTILE_TEST_USER_DEFAULT: case SYSCTL_TURNSTILE_TEST_USER_HASHTABLE: case SYSCTL_TURNSTILE_TEST_KERNEL_DEFAULT: case SYSCTL_TURNSTILE_TEST_KERNEL_HASHTABLE: return tstile_test_prim_unlock(val); default: return error; } } SYSCTL_PROC(_kern, OID_AUTO, turnstiles_test_lock, CTLFLAG_WR | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED, 0, 0, sysctl_turnstile_test_prim_lock, "I", "turnstiles test lock"); SYSCTL_PROC(_kern, OID_AUTO, turnstiles_test_unlock, CTLFLAG_WR | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED, 0, 0, sysctl_turnstile_test_prim_unlock, "I", "turnstiles test unlock"); int turnstile_get_boost_stats_sysctl(void *req); int turnstile_get_unboost_stats_sysctl(void *req); static int sysctl_turnstile_boost_stats SYSCTL_HANDLER_ARGS; static int sysctl_turnstile_unboost_stats SYSCTL_HANDLER_ARGS; extern uint64_t thread_block_on_turnstile_count; extern uint64_t thread_block_on_regular_waitq_count; static int sysctl_turnstile_boost_stats SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2, oidp) return turnstile_get_boost_stats_sysctl(req); } static int sysctl_turnstile_unboost_stats SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2, oidp) return turnstile_get_unboost_stats_sysctl(req); } SYSCTL_PROC(_kern, OID_AUTO, turnstile_boost_stats, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLTYPE_STRUCT, 0, 0, sysctl_turnstile_boost_stats, "S", "turnstiles boost stats"); SYSCTL_PROC(_kern, OID_AUTO, turnstile_unboost_stats, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLTYPE_STRUCT, 0, 0, sysctl_turnstile_unboost_stats, "S", "turnstiles unboost stats"); SYSCTL_QUAD(_kern, OID_AUTO, thread_block_count_on_turnstile, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED, &thread_block_on_turnstile_count, "thread blocked on turnstile count"); SYSCTL_QUAD(_kern, OID_AUTO, thread_block_count_on_reg_waitq, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED, &thread_block_on_regular_waitq_count, "thread blocked on regular waitq count"); #if CONFIG_PV_TICKET extern int ticket_lock_spins; SYSCTL_INT(_kern, OID_AUTO, ticket_lock_spins, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, &ticket_lock_spins, 0, "loops before hypercall"); #if (DEBUG || DEVELOPMENT) /* PV ticket lock stats */ SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_kicks, ticket_kick_count, "ticket lock kicks"); SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_waits, ticket_wait_count, "ticket lock waits"); SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_already, ticket_already_count, "ticket lock already unlocked"); SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_just_unlock, ticket_just_unlock, "ticket unlock without kick"); SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_wflag_cleared, ticket_wflag_cleared, "ticket lock wait flag cleared"); SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_wflag_still, ticket_wflag_still, "ticket lock wait flag not cleared"); SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_spin_count, ticket_spin_count, "ticket lock spin count"); /* sysctl kern.hcall_probe=n -- does hypercall #n exist? */ static int sysctl_hcall_probe SYSCTL_HANDLER_ARGS { char instr[20]; if (!req->newptr) { return 0; } if (req->newlen >= sizeof(instr)) { return EOVERFLOW; } int error = SYSCTL_IN(req, instr, req->newlen); if (error) { return error; } instr[req->newlen] = '\0'; int hcall = 0; error = sscanf(instr, "%d", &hcall); if (error != 1 || hcall < 0) { return EINVAL; } uprintf("%savailable\n", hvg_is_hcall_available((hvg_hcall_code_t)hcall) ? "" : "not "); return 0; } SYSCTL_PROC(_kern, OID_AUTO, hcall_probe, CTLTYPE_STRING | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, sysctl_hcall_probe, "A", "probe hypercall by id"); #endif /* (DEBUG || DEVELOPMENT) */ #endif /* CONFIG_PV_TICKET */ #if defined(__x86_64__) extern uint64_t MutexSpin; SYSCTL_QUAD(_kern, OID_AUTO, mutex_spin_abs, CTLFLAG_RW, &MutexSpin, "Spin time in abs for acquiring a kernel mutex"); #else extern machine_timeout_t MutexSpin; SYSCTL_QUAD(_kern, OID_AUTO, mutex_spin_abs, CTLFLAG_RW, &MutexSpin, "Spin time in abs for acquiring a kernel mutex"); #endif extern uint64_t low_MutexSpin; extern int64_t high_MutexSpin; extern unsigned int real_ncpus; SYSCTL_QUAD(_kern, OID_AUTO, low_mutex_spin_abs, CTLFLAG_RW, &low_MutexSpin, "Low spin threshold in abs for acquiring a kernel mutex"); static int sysctl_high_mutex_spin_ns SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error; int64_t val = 0; int64_t res; /* Check if the user is writing to high_MutexSpin, or just reading it */ if (req->newptr) { error = SYSCTL_IN(req, &val, sizeof(val)); if (error || (val < 0 && val != -1)) { return error; } high_MutexSpin = val; } if (high_MutexSpin >= 0) { res = high_MutexSpin; } else { res = low_MutexSpin * real_ncpus; } return SYSCTL_OUT(req, &res, sizeof(res)); } SYSCTL_PROC(_kern, OID_AUTO, high_mutex_spin_abs, CTLFLAG_RW | CTLTYPE_QUAD, 0, 0, sysctl_high_mutex_spin_ns, "I", "High spin threshold in abs for acquiring a kernel mutex"); #if defined (__x86_64__) semaphore_t sysctl_test_panic_with_thread_sem; #pragma clang diagnostic push #pragma clang diagnostic ignored "-Winfinite-recursion" /* rdar://38801963 */ __attribute__((noreturn)) static void panic_thread_test_child_spin(void * arg, wait_result_t wres) { static int panic_thread_recurse_count = 5; if (panic_thread_recurse_count > 0) { panic_thread_recurse_count--; panic_thread_test_child_spin(arg, wres); } semaphore_signal(sysctl_test_panic_with_thread_sem); while (1) { ; } } #pragma clang diagnostic pop static void panic_thread_test_child_park(void * arg __unused, wait_result_t wres __unused) { int event; assert_wait(&event, THREAD_UNINT); semaphore_signal(sysctl_test_panic_with_thread_sem); thread_block(panic_thread_test_child_park); } static int sysctl_test_panic_with_thread SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int rval = 0; char str[16] = { '\0' }; thread_t child_thread = THREAD_NULL; rval = sysctl_handle_string(oidp, str, sizeof(str), req); if (rval != 0 || !req->newptr) { return EINVAL; } semaphore_create(kernel_task, &sysctl_test_panic_with_thread_sem, SYNC_POLICY_FIFO, 0); /* Create thread to spin or park in continuation */ if (strncmp("spin", str, strlen("spin")) == 0) { if (kernel_thread_start(panic_thread_test_child_spin, NULL, &child_thread) != KERN_SUCCESS) { semaphore_destroy(kernel_task, sysctl_test_panic_with_thread_sem); return EBUSY; } } else if (strncmp("continuation", str, strlen("continuation")) == 0) { if (kernel_thread_start(panic_thread_test_child_park, NULL, &child_thread) != KERN_SUCCESS) { semaphore_destroy(kernel_task, sysctl_test_panic_with_thread_sem); return EBUSY; } } else { semaphore_destroy(kernel_task, sysctl_test_panic_with_thread_sem); return EINVAL; } semaphore_wait(sysctl_test_panic_with_thread_sem); panic_with_thread_context(0, NULL, 0, child_thread, "testing panic_with_thread_context for thread %p", child_thread); /* Not reached */ return EINVAL; } SYSCTL_PROC(_kern, OID_AUTO, test_panic_with_thread, CTLFLAG_MASKED | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLFLAG_WR | CTLTYPE_STRING, 0, 0, sysctl_test_panic_with_thread, "A", "test panic flow for backtracing a different thread"); #endif /* defined (__x86_64__) */ #endif /* DEVELOPMENT || DEBUG */ static int sysctl_get_owned_vmobjects SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) /* validate */ if (req->newlen != sizeof(mach_port_name_t) || req->newptr == USER_ADDR_NULL || req->oldidx != 0 || req->newidx != 0 || req->p == NULL || (req->oldlen == 0 && req->oldptr != USER_ADDR_NULL)) { return EINVAL; } int error; mach_port_name_t task_port_name; task_t task; size_t buffer_size = (req->oldptr != USER_ADDR_NULL) ? req->oldlen : 0; vmobject_list_output_t buffer = NULL; size_t output_size; size_t entries; /* we have a "newptr" (for write) we get a task port name from the caller. */ error = SYSCTL_IN(req, &task_port_name, sizeof(mach_port_name_t)); if (error != 0) { goto sysctl_get_vmobject_list_exit; } task = port_name_to_task_read(task_port_name); if (task == TASK_NULL) { error = ESRCH; goto sysctl_get_vmobject_list_exit; } bool corpse = task_is_a_corpse(task); /* get the current size */ size_t max_size; task_get_owned_vmobjects(task, 0, NULL, &max_size, &entries); if (buffer_size && (buffer_size < sizeof(*buffer) + sizeof(vm_object_query_data_t))) { error = ENOMEM; goto sysctl_get_vmobject_list_deallocate_and_exit; } if (corpse == false) { /* copy the vmobjects and vmobject data out of the task */ if (buffer_size == 0) { output_size = max_size; } else { buffer_size = (buffer_size > max_size) ? max_size : buffer_size; buffer = (struct _vmobject_list_output_ *)kalloc_data(buffer_size, Z_WAITOK); if (!buffer) { error = ENOMEM; goto sysctl_get_vmobject_list_deallocate_and_exit; } task_get_owned_vmobjects(task, buffer_size, buffer, &output_size, &entries); } /* req->oldptr should be USER_ADDR_NULL if buffer == NULL and return the current size */ /* otherwise copy buffer to oldptr and return the bytes copied */ error = SYSCTL_OUT(req, (char *)buffer, output_size); } else { vmobject_list_output_t list; task_get_corpse_vmobject_list(task, &list, &max_size); assert(buffer == NULL); /* copy corpse_vmobject_list to output buffer to avoid double copy */ if (buffer_size) { size_t temp_size; temp_size = buffer_size > max_size ? max_size : buffer_size; output_size = temp_size - sizeof(*buffer); /* whole multiple of vm_object_query_data_t */ output_size = (output_size / sizeof(vm_object_query_data_t)) * sizeof(vm_object_query_data_t) + sizeof(*buffer); buffer = list; } else { output_size = max_size; } /* req->oldptr should be USER_ADDR_NULL if buffer == NULL and return the current size */ /* otherwise copy buffer to oldptr and return the bytes copied */ error = SYSCTL_OUT(req, (char*)buffer, output_size); buffer = NULL; } sysctl_get_vmobject_list_deallocate_and_exit: task_deallocate(task); sysctl_get_vmobject_list_exit: if (buffer) { kfree_data(buffer, buffer_size); } return error; } SYSCTL_PROC(_vm, OID_AUTO, get_owned_vmobjects, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_WR | CTLFLAG_MASKED | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, 0, 0, sysctl_get_owned_vmobjects, "A", "get owned vmobjects in task"); extern uint64_t num_static_scalable_counters; SYSCTL_QUAD(_kern, OID_AUTO, num_static_scalable_counters, CTLFLAG_RD | CTLFLAG_LOCKED, &num_static_scalable_counters, ""); #if SCHED_HYGIENE_DEBUG TUNABLE_DT(bool, sched_hygiene_nonspec_tb, "machine-timeouts", "nonspec-tb", "sched-hygiene-nonspec-tb", false, TUNABLE_DT_NONE); #endif /* SCHED_HYGIENE_DEBUG */ uuid_string_t trial_treatment_id; uuid_string_t trial_experiment_id; int trial_deployment_id = -1; SYSCTL_STRING(_kern, OID_AUTO, trial_treatment_id, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_EXPERIMENT, trial_treatment_id, sizeof(trial_treatment_id), ""); SYSCTL_STRING(_kern, OID_AUTO, trial_experiment_id, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_EXPERIMENT, trial_experiment_id, sizeof(trial_experiment_id), ""); SYSCTL_INT(_kern, OID_AUTO, trial_deployment_id, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_EXPERIMENT, &trial_deployment_id, 0, ""); #if (DEVELOPMENT || DEBUG) /* For unit testing setting factors & limits. */ unsigned int testing_experiment_factor; EXPERIMENT_FACTOR_UINT(_kern, testing_experiment_factor, &testing_experiment_factor, 5, 10, ""); extern int exception_log_max_pid; SYSCTL_INT(_debug, OID_AUTO, exception_log_max_pid, CTLFLAG_RW | CTLFLAG_LOCKED, &exception_log_max_pid, 0, "Log exceptions for all processes up to this pid"); #endif /* (DEVELOPMENT || DEBUG) */ #if DEVELOPMENT || DEBUG static int unlink_kernelcore_sysctl SYSCTL_HANDLER_ARGS { if (!req->newptr) { return EINVAL; } void IOBSDLowSpaceUnlinkKernelCore(void); IOBSDLowSpaceUnlinkKernelCore(); return 0; } SYSCTL_PROC(_kern, OID_AUTO, unlink_kernelcore, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, unlink_kernelcore_sysctl, "-", "unlink the kernelcore file"); #endif /* DEVELOPMENT || DEBUG */ #if CONFIG_IOTRACE #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wcast-qual" SYSCTL_INT(_debug, OID_AUTO, MMIOtrace, CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED, (int *)&mmiotrace_enabled, 0, ""); #pragma clang diagnostic pop #endif /* CONFIG_IOTRACE */ static int sysctl_page_protection_type SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int value = ml_page_protection_type(); return SYSCTL_OUT(req, &value, sizeof(value)); } SYSCTL_PROC(_kern, OID_AUTO, page_protection_type, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_page_protection_type, "I", "Type of page protection that the system supports"); TUNABLE_DT(int, gpu_pmem_selector, "defaults", "kern.gpu_pmem_selector", "gpu-pmem-selector", 0, TUNABLE_DT_NONE); #if CONFIG_EXCLAVES static int sysctl_task_conclave SYSCTL_HANDLER_ARGS { extern const char *exclaves_resource_name(void *); #pragma unused(arg2) void *conclave = task_get_conclave(current_task()); if (conclave != NULL) { const char *name = exclaves_resource_name(conclave); assert3u(strlen(name), >, 0); /* * This is a RO operation already and the string is never * written to. */ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wcast-qual" return sysctl_handle_string(oidp, (char *)name, 0, req); #pragma clang diagnostic pop } return sysctl_handle_string(oidp, arg1, MAXCONCLAVENAME, req); } SYSCTL_PROC(_kern, OID_AUTO, task_conclave, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, "", 0, sysctl_task_conclave, "A", "Conclave string for the task"); void task_set_conclave_untaintable(task_t task); static int sysctl_task_conclave_untaintable SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int error, val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error || val == 0) { return error; } task_set_conclave_untaintable(current_task()); return 0; } SYSCTL_PROC(_kern, OID_AUTO, task_conclave_untaintable, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, "", 0, sysctl_task_conclave_untaintable, "A", "Task could not be tainted by talking to conclaves"); extern uint32_t fake_crash_buffer_length; SYSCTL_INT(_kern, OID_AUTO, fake_crash_buffer_length, CTLFLAG_RD, &fake_crash_buffer_length, 0, NULL); #endif /* CONFIG_EXCLAVES */ #if (DEVELOPMENT || DEBUG) SYSCTL_INT(_kern, OID_AUTO, gpu_pmem_selector, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN, &gpu_pmem_selector, 0, "GPU wire down limit selector"); #else /* !(DEVELOPMENT || DEBUG) */ SYSCTL_INT(_kern, OID_AUTO, gpu_pmem_selector, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN | CTLFLAG_MASKED, &gpu_pmem_selector, 0, "GPU wire down limit selector"); #endif /* (DEVELOPMENT || DEBUG) */ static int sysctl_exclaves_status SYSCTL_HANDLER_ARGS { int value = exclaves_get_status(); return sysctl_io_number(req, value, sizeof(value), NULL, NULL); } SYSCTL_PROC(_kern, OID_AUTO, exclaves_status, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_exclaves_status, "I", "Running status of Exclaves"); static int sysctl_exclaves_boot_stage SYSCTL_HANDLER_ARGS { int value = exclaves_get_boot_stage(); return sysctl_io_number(req, value, sizeof(value), NULL, NULL); } SYSCTL_PROC(_kern, OID_AUTO, exclaves_boot_stage, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_exclaves_boot_stage, "I", "Boot stage of Exclaves"); #if CONFIG_EXCLAVES && (DEVELOPMENT || DEBUG) extern unsigned int exclaves_debug; SYSCTL_UINT(_kern, OID_AUTO, exclaves_debug, CTLFLAG_RW | CTLFLAG_LOCKED, &exclaves_debug, 0, "Exclaves debug flags"); #endif /* CONFIG_EXCLAVES && (DEVELOPMENT || DEBUG) */