/* * Copyright (c) 2010-2022 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /*- * Copyright (c) 2007-2009 Bruce Simpson. * Copyright (c) 2005 Robert N. M. Watson. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPv4 multicast socket, group, and socket option processing module. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Functions with non-static linkage defined in this file should be * declared in in_var.h: * imo_multi_filter() * in_addmulti() * in_delmulti() * in_joingroup() * in_leavegroup() * and ip_var.h: * inp_freemoptions() * inp_getmoptions() * inp_setmoptions() * * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() * and in_delmulti(). */ static void imf_commit(struct in_mfilter *); static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **); static struct in_msource * imf_graft(struct in_mfilter *, const uint8_t, const struct sockaddr_in *); static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); static void imf_rollback(struct in_mfilter *); static void imf_reap(struct in_mfilter *); static int imo_grow(struct ip_moptions *, uint16_t); static size_t imo_match_group(const struct ip_moptions *, const struct ifnet *, const struct sockaddr_in *); static struct in_msource * imo_match_source(const struct ip_moptions *, const size_t, const struct sockaddr_in *); static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback); static int in_getmulti(struct ifnet *, const struct in_addr *, struct in_multi **); static int in_joingroup(struct ifnet *, const struct in_addr *, struct in_mfilter *, struct in_multi **); static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims); static int inm_is_ifp_detached(const struct in_multi *); static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); static void inm_reap(struct in_multi *); static struct ip_moptions * inp_findmoptions(struct inpcb *); static int inp_get_source_filters(struct inpcb *, struct sockopt *); static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *, const struct sockaddr_in *, const struct in_addr); static int inp_block_unblock_source(struct inpcb *, struct sockopt *); static int inp_set_multicast_if(struct inpcb *, struct sockopt *); static int inp_set_source_filters(struct inpcb *, struct sockopt *); static int sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS; static struct ifnet * ip_multicast_if(struct in_addr *, unsigned int *); static __inline__ int ip_msource_cmp(const struct ip_msource *, const struct ip_msource *); SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv4 multicast"); static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxgrpsrc, "Max source filters per group"); static u_int in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; SYSCTL_UINT(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxsocksrc, IP_MAX_SOCK_SRC_FILTER, "Max source filters per socket"); int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_loop, 0, "Loopback multicast datagrams by default"); SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip_mcast_filters, "Per-interface stack-wide source filters"); RB_GENERATE_PREV(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); #define INM_TRACE_HIST_SIZE 32 /* size of trace history */ /* For gdb */ __private_extern__ unsigned int inm_trace_hist_size = INM_TRACE_HIST_SIZE; struct in_multi_dbg { struct in_multi inm; /* in_multi */ u_int16_t inm_refhold_cnt; /* # of ref */ u_int16_t inm_refrele_cnt; /* # of rele */ /* * Circular lists of inm_addref and inm_remref callers. */ ctrace_t inm_refhold[INM_TRACE_HIST_SIZE]; ctrace_t inm_refrele[INM_TRACE_HIST_SIZE]; /* * Trash list linkage */ TAILQ_ENTRY(in_multi_dbg) inm_trash_link; }; static LCK_ATTR_DECLARE(in_multihead_lock_attr, 0, 0); static LCK_GRP_DECLARE(in_multihead_lock_grp, "in_multihead"); /* List of trash in_multi entries protected by inm_trash_lock */ static TAILQ_HEAD(, in_multi_dbg) inm_trash_head = TAILQ_HEAD_INITIALIZER(inm_trash_head); static LCK_MTX_DECLARE_ATTR(inm_trash_lock, &in_multihead_lock_grp, &in_multihead_lock_attr); #if DEBUG static TUNABLE(bool, inm_debug, "ifa_debug", true); /* debugging (enabled) */ #else static TUNABLE(bool, inm_debug, "ifa_debug", false); /* debugging (disabled) */ #endif /* !DEBUG */ static KALLOC_TYPE_DEFINE(ipms_zone, struct ip_msource, NET_KT_DEFAULT); static KALLOC_TYPE_DEFINE(inms_zone, struct in_msource, NET_KT_DEFAULT); static LCK_RW_DECLARE_ATTR(in_multihead_lock, &in_multihead_lock_grp, &in_multihead_lock_attr); struct in_multihead in_multihead; static struct in_multi *in_multi_alloc(zalloc_flags_t); static void in_multi_free(struct in_multi *); static void in_multi_attach(struct in_multi *); static void inm_trace(struct in_multi *, int); static struct ip_msource *ipms_alloc(zalloc_flags_t); static void ipms_free(struct ip_msource *); static struct in_msource *inms_alloc(zalloc_flags_t); static void inms_free(struct in_msource *); static __inline int ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b) { if (a->ims_haddr < b->ims_haddr) { return -1; } if (a->ims_haddr == b->ims_haddr) { return 0; } return 1; } /* * Inline function which wraps assertions for a valid ifp. */ static __inline__ int inm_is_ifp_detached(const struct in_multi *inm) { VERIFY(inm->inm_ifma != NULL); VERIFY(inm->inm_ifp == inm->inm_ifma->ifma_ifp); return !ifnet_is_attached(inm->inm_ifp, 0); } /* * Initialize an in_mfilter structure to a known state at t0, t1 * with an empty source filter list. */ static __inline__ void imf_init(struct in_mfilter *imf, const uint8_t st0, const uint8_t st1) { memset(imf, 0, sizeof(struct in_mfilter)); RB_INIT(&imf->imf_sources); imf->imf_st[0] = st0; imf->imf_st[1] = st1; } /* * Resize the ip_moptions vector to the next power-of-two minus 1. */ static int imo_grow(struct ip_moptions *imo, uint16_t newmax) { struct in_multi **nmships; struct in_multi **omships; struct in_mfilter *nmfilters; struct in_mfilter *omfilters; int err; uint16_t idx; uint16_t oldmax; IMO_LOCK_ASSERT_HELD(imo); nmships = NULL; nmfilters = NULL; err = 0; omships = imo->imo_membership; omfilters = imo->imo_mfilters; oldmax = imo->imo_max_memberships; if (newmax == 0) { newmax = ((oldmax + 1) * 2) - 1; } else if (newmax <= oldmax) { /* Nothing to do, exit early. */ return 0; } if (newmax > IP_MAX_MEMBERSHIPS) { err = ETOOMANYREFS; goto cleanup; } if ((nmships = kalloc_type(struct in_multi *, newmax, Z_WAITOK | Z_ZERO)) == NULL) { err = ENOMEM; goto cleanup; } if ((nmfilters = kalloc_type(struct in_mfilter, newmax, Z_WAITOK | Z_ZERO)) == NULL) { err = ENOMEM; goto cleanup; } /* Copy the existing memberships and release the memory. */ if (omships != NULL) { VERIFY(oldmax <= newmax); memcpy(nmships, omships, oldmax * sizeof(struct in_multi *)); kfree_type(struct in_multi *, oldmax, omships); } /* Copy the existing filters and release the memory. */ if (omfilters != NULL) { VERIFY(oldmax <= newmax); memcpy(nmfilters, omfilters, oldmax * sizeof(struct in_mfilter)); kfree_type(struct in_mfilter, oldmax, omfilters); } /* Initialize the newly allocated source filter heads. */ for (idx = oldmax; idx < newmax; idx++) { imf_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); } imo->imo_membership = nmships; nmships = NULL; imo->imo_mfilters = nmfilters; nmfilters = NULL; imo->imo_max_memberships = newmax; return 0; cleanup: if (nmfilters != NULL) { kfree_type(struct in_mfilter, newmax, nmfilters); } if (nmships != NULL) { kfree_type(struct in_multi *, newmax, nmships); } return err; } /* * Find an IPv4 multicast group entry for this ip_moptions instance * which matches the specified group, and optionally an interface. * Return its index into the array, or -1 if not found. */ static size_t imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr_in *group) { struct in_multi *pinm; int idx; int nmships; IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo)); /* The imo_membership array may be lazy allocated. */ if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) { return -1; } nmships = imo->imo_num_memberships; for (idx = 0; idx < nmships; idx++) { pinm = imo->imo_membership[idx]; if (pinm == NULL) { continue; } INM_LOCK(pinm); if ((ifp == NULL || (pinm->inm_ifp == ifp)) && in_hosteq(pinm->inm_addr, group->sin_addr)) { INM_UNLOCK(pinm); break; } INM_UNLOCK(pinm); } if (idx >= nmships) { idx = -1; } return idx; } /* * Find an IPv4 multicast source entry for this imo which matches * the given group index for this socket, and source address. * * NOTE: This does not check if the entry is in-mode, merely if * it exists, which may not be the desired behaviour. */ static struct in_msource * imo_match_source(const struct ip_moptions *imo, const size_t gidx, const struct sockaddr_in *src) { struct ip_msource find; struct in_mfilter *imf; struct ip_msource *ims; IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo)); VERIFY(src->sin_family == AF_INET); VERIFY(gidx != (size_t)-1 && gidx < imo->imo_num_memberships); /* The imo_mfilters array may be lazy allocated. */ if (imo->imo_mfilters == NULL) { return NULL; } imf = &imo->imo_mfilters[gidx]; /* Source trees are keyed in host byte order. */ find.ims_haddr = ntohl(src->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); return (struct in_msource *)ims; } /* * Perform filtering for multicast datagrams on a socket by group and source. * * Returns 0 if a datagram should be allowed through, or various error codes * if the socket was not a member of the group, or the source was muted, etc. */ int imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr_in *group, const struct sockaddr_in *src) { size_t gidx; struct in_msource *ims; int mode; IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo)); VERIFY(ifp != NULL); gidx = imo_match_group(imo, ifp, group); if (gidx == (size_t)-1) { return MCAST_NOTGMEMBER; } /* * Check if the source was included in an (S,G) join. * Allow reception on exclusive memberships by default, * reject reception on inclusive memberships by default. * Exclude source only if an in-mode exclude filter exists. * Include source only if an in-mode include filter exists. * NOTE: We are comparing group state here at IGMP t1 (now) * with socket-layer t0 (since last downcall). */ mode = imo->imo_mfilters[gidx].imf_st[1]; ims = imo_match_source(imo, gidx, src); if ((ims == NULL && mode == MCAST_INCLUDE) || (ims != NULL && ims->imsl_st[0] != mode)) { return MCAST_NOTSMEMBER; } return MCAST_PASS; } int imo_clone(struct inpcb *from_inp, struct inpcb *to_inp) { int err = 0; struct ip_moptions *from; struct ip_moptions *to; from = inp_findmoptions(from_inp); if (from == NULL) { return ENOMEM; } to = inp_findmoptions(to_inp); if (to == NULL) { IMO_REMREF(from); return ENOMEM; } IMO_LOCK(from); IMO_LOCK(to); to->imo_multicast_ifp = from->imo_multicast_ifp; to->imo_multicast_vif = from->imo_multicast_vif; to->imo_multicast_ttl = from->imo_multicast_ttl; to->imo_multicast_loop = from->imo_multicast_loop; /* * We're cloning, so drop any existing memberships and source * filters on the destination ip_moptions. */ IMO_PURGE_LOCKED(to); VERIFY(to->imo_max_memberships != 0 && from->imo_max_memberships != 0); if (to->imo_max_memberships < from->imo_max_memberships) { /* * Ensure source and destination ip_moptions memberships * and source filters arrays are at least equal in size. */ err = imo_grow(to, from->imo_max_memberships); if (err != 0) { goto done; } } VERIFY(to->imo_max_memberships >= from->imo_max_memberships); /* * Source filtering doesn't apply to OpenTransport socket, * so simply hold additional reference count per membership. */ for (int i = 0; i < from->imo_num_memberships; i++) { to->imo_membership[i] = in_addmulti(&from->imo_membership[i]->inm_addr, from->imo_membership[i]->inm_ifp); if (to->imo_membership[i] == NULL) { break; } to->imo_num_memberships++; } VERIFY(to->imo_num_memberships == from->imo_num_memberships); done: IMO_UNLOCK(to); IMO_REMREF(to); IMO_UNLOCK(from); IMO_REMREF(from); return err; } /* * Find and return a reference to an in_multi record for (ifp, group), * and bump its reference count. * If one does not exist, try to allocate it, and update link-layer multicast * filters on ifp to listen for group. * Return 0 if successful, otherwise return an appropriate error code. */ static int in_getmulti(struct ifnet *ifp, const struct in_addr *group, struct in_multi **pinm) { struct sockaddr_in gsin; struct ifmultiaddr *__single ifma; struct in_multi *__single inm; int error; in_multihead_lock_shared(); IN_LOOKUP_MULTI(group, ifp, inm); if (inm != NULL) { INM_LOCK(inm); VERIFY(inm->inm_reqcnt >= 1); inm->inm_reqcnt++; VERIFY(inm->inm_reqcnt != 0); *pinm = inm; INM_UNLOCK(inm); in_multihead_lock_done(); /* * We already joined this group; return the inm * with a refcount held (via lookup) for caller. */ return 0; } in_multihead_lock_done(); SOCKADDR_ZERO(&gsin, sizeof(gsin)); gsin.sin_family = AF_INET; gsin.sin_len = sizeof(struct sockaddr_in); gsin.sin_addr = *group; /* * Check if a link-layer group is already associated * with this network-layer group on the given ifnet. */ error = if_addmulti(ifp, SA(&gsin), &ifma); if (error != 0) { return error; } /* * See comments in inm_remref() for access to ifma_protospec. */ in_multihead_lock_exclusive(); IFMA_LOCK(ifma); if ((inm = ifma->ifma_protospec) != NULL) { VERIFY(ifma->ifma_addr != NULL); VERIFY(ifma->ifma_addr->sa_family == AF_INET); INM_ADDREF(inm); /* for caller */ IFMA_UNLOCK(ifma); INM_LOCK(inm); VERIFY(inm->inm_ifma == ifma); VERIFY(inm->inm_ifp == ifp); VERIFY(in_hosteq(inm->inm_addr, *group)); if (inm->inm_debug & IFD_ATTACHED) { VERIFY(inm->inm_reqcnt >= 1); inm->inm_reqcnt++; VERIFY(inm->inm_reqcnt != 0); *pinm = inm; INM_UNLOCK(inm); in_multihead_lock_done(); IFMA_REMREF(ifma); /* * We lost the race with another thread doing * in_getmulti(); since this group has already * been joined; return the inm with a refcount * held for caller. */ return 0; } /* * We lost the race with another thread doing in_delmulti(); * the inm referring to the ifma has been detached, thus we * reattach it back to the in_multihead list and return the * inm with a refcount held for the caller. */ in_multi_attach(inm); VERIFY((inm->inm_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED); *pinm = inm; INM_UNLOCK(inm); in_multihead_lock_done(); IFMA_REMREF(ifma); return 0; } IFMA_UNLOCK(ifma); /* * A new in_multi record is needed; allocate and initialize it. * We DO NOT perform an IGMP join as the in_ layer may need to * push an initial source list down to IGMP to support SSM. * * The initial source filter state is INCLUDE, {} as per the RFC. */ inm = in_multi_alloc(Z_WAITOK); INM_LOCK(inm); inm->inm_addr = *group; inm->inm_ifp = ifp; inm->inm_igi = IGMP_IFINFO(ifp); VERIFY(inm->inm_igi != NULL); IGI_ADDREF(inm->inm_igi); inm->inm_ifma = ifma; /* keep refcount from if_addmulti() */ inm->inm_state = IGMP_NOT_MEMBER; /* * Pending state-changes per group are subject to a bounds check. */ inm->inm_scq.ifq_maxlen = IGMP_MAX_STATE_CHANGES; inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; RB_INIT(&inm->inm_srcs); *pinm = inm; in_multi_attach(inm); VERIFY((inm->inm_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED); INM_ADDREF_LOCKED(inm); /* for caller */ INM_UNLOCK(inm); IFMA_LOCK(ifma); VERIFY(ifma->ifma_protospec == NULL); ifma->ifma_protospec = inm; IFMA_UNLOCK(ifma); in_multihead_lock_done(); return 0; } /* * Clear recorded source entries for a group. * Used by the IGMP code. * FIXME: Should reap. */ void inm_clear_recorded(struct in_multi *inm) { struct ip_msource *ims; INM_LOCK_ASSERT_HELD(inm); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { if (ims->ims_stp) { ims->ims_stp = 0; --inm->inm_st[1].iss_rec; } } VERIFY(inm->inm_st[1].iss_rec == 0); } /* * Record a source as pending for a Source-Group IGMPv3 query. * This lives here as it modifies the shared tree. * * inm is the group descriptor. * naddr is the address of the source to record in network-byte order. * * If the net.inet.igmp.sgalloc sysctl is non-zero, we will * lazy-allocate a source node in response to an SG query. * Otherwise, no allocation is performed. This saves some memory * with the trade-off that the source will not be reported to the * router if joined in the window between the query response and * the group actually being joined on the local host. * * Return 0 if the source didn't exist or was already marked as recorded. * Return 1 if the source was marked as recorded by this function. * Return <0 if any error occured (negated errno code). */ int inm_record_source(struct in_multi *inm, const in_addr_t naddr) { struct ip_msource find; struct ip_msource *ims, *nims; INM_LOCK_ASSERT_HELD(inm); find.ims_haddr = ntohl(naddr); ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims && ims->ims_stp) { return 0; } if (ims == NULL) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) { return -ENOSPC; } nims = ipms_alloc(Z_WAITOK); nims->ims_haddr = find.ims_haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; } /* * Mark the source as recorded and update the recorded * source count. */ ++ims->ims_stp; ++inm->inm_st[1].iss_rec; return 1; } /* * Return a pointer to an in_msource owned by an in_mfilter, * given its source address. * Lazy-allocate if needed. If this is a new entry its filter state is * undefined at t0. * * imf is the filter set being modified. * haddr is the source address in *host* byte-order. * * Caller is expected to be holding imo_lock. */ static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **plims) { struct ip_msource find; struct ip_msource *ims; struct in_msource *lims; int error; error = 0; ims = NULL; lims = NULL; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); lims = (struct in_msource *)ims; if (lims == NULL) { if (imf->imf_nsrc == in_mcast_maxsocksrc) { return ENOSPC; } lims = inms_alloc(Z_WAITOK); lims->ims_haddr = find.ims_haddr; lims->imsl_st[0] = MCAST_UNDEFINED; RB_INSERT(ip_msource_tree, &imf->imf_sources, (struct ip_msource *)lims); ++imf->imf_nsrc; } *plims = lims; return error; } /* * Graft a source entry into an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being in the new filter mode at t1. * * Return the pointer to the new node, otherwise return NULL. * * Caller is expected to be holding imo_lock. */ static struct in_msource * imf_graft(struct in_mfilter *imf, const uint8_t st1, const struct sockaddr_in *psin) { struct in_msource *lims; lims = inms_alloc(Z_WAITOK); lims->ims_haddr = ntohl(psin->sin_addr.s_addr); lims->imsl_st[0] = MCAST_UNDEFINED; lims->imsl_st[1] = st1; RB_INSERT(ip_msource_tree, &imf->imf_sources, (struct ip_msource *)lims); ++imf->imf_nsrc; return lims; } /* * Prune a source entry from an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being left at t1, it is not freed. * * Return 0 if no error occurred, otherwise return an errno value. * * Caller is expected to be holding imo_lock. */ static int imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) { struct ip_msource find; struct ip_msource *ims; struct in_msource *lims; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); if (ims == NULL) { return ENOENT; } lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; return 0; } /* * Revert socket-layer filter set deltas at t1 to t0 state. * * Caller is expected to be holding imo_lock. */ static void imf_rollback(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) { /* no change at t1 */ continue; } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { /* revert change to existing source at t1 */ lims->imsl_st[1] = lims->imsl_st[0]; } else { /* revert source added t1 */ IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(lims))); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); inms_free(lims); imf->imf_nsrc--; } } imf->imf_st[1] = imf->imf_st[0]; } /* * Mark socket-layer filter set as INCLUDE {} at t1. * * Caller is expected to be holding imo_lock. */ void imf_leave(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; } imf->imf_st[1] = MCAST_INCLUDE; } /* * Mark socket-layer filter set deltas as committed. * * Caller is expected to be holding imo_lock. */ static void imf_commit(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[0] = lims->imsl_st[1]; } imf->imf_st[0] = imf->imf_st[1]; } /* * Reap unreferenced sources from socket-layer filter set. * * Caller is expected to be holding imo_lock. */ static void imf_reap(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if ((lims->imsl_st[0] == MCAST_UNDEFINED) && (lims->imsl_st[1] == MCAST_UNDEFINED)) { IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(lims))); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); inms_free(lims); imf->imf_nsrc--; } } } /* * Purge socket-layer filter set. * * Caller is expected to be holding imo_lock. */ void imf_purge(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(lims))); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); inms_free(lims); imf->imf_nsrc--; } imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; VERIFY(RB_EMPTY(&imf->imf_sources)); } /* * Look up a source filter entry for a multicast group. * * inm is the group descriptor to work with. * haddr is the host-byte-order IPv4 address to look up. * noalloc may be non-zero to suppress allocation of sources. * *pims will be set to the address of the retrieved or allocated source. * * Return 0 if successful, otherwise return a non-zero error code. */ static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims) { struct ip_msource find; struct ip_msource *ims, *nims; #ifdef IGMP_DEBUG struct in_addr ia; char buf[MAX_IPv4_STR_LEN]; #endif INM_LOCK_ASSERT_HELD(inm); find.ims_haddr = haddr; ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims == NULL && !noalloc) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) { return ENOSPC; } nims = ipms_alloc(Z_WAITOK); nims->ims_haddr = haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; #ifdef IGMP_DEBUG ia.s_addr = htonl(haddr); inet_ntop(AF_INET, &ia, buf, sizeof(buf)); IGMP_PRINTF(("%s: allocated %s as 0x%llx\n", __func__, buf, (uint64_t)VM_KERNEL_ADDRPERM(ims))); #endif } *pims = ims; return 0; } /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ uint8_t ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims, uint8_t t) { INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm)); t = !!t; if (inm->inm_st[t].iss_ex > 0 && inm->inm_st[t].iss_ex == ims->ims_st[t].ex) { return MCAST_EXCLUDE; } else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0) { return MCAST_INCLUDE; } return MCAST_UNDEFINED; } /* * Merge socket-layer source into IGMP-layer source. * If rollback is non-zero, perform the inverse of the merge. */ static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback) { int n = rollback ? -1 : 1; #ifdef IGMP_DEBUG struct in_addr ia; ia.s_addr = htonl(ims->ims_haddr); #endif if (lims->imsl_st[0] == MCAST_EXCLUDE) { IGMP_INET_PRINTF(ia, ("%s: t1 ex -= %d on %s\n", __func__, n, _igmp_inet_buf)); ims->ims_st[1].ex -= n; } else if (lims->imsl_st[0] == MCAST_INCLUDE) { IGMP_INET_PRINTF(ia, ("%s: t1 in -= %d on %s\n", __func__, n, _igmp_inet_buf)); ims->ims_st[1].in -= n; } if (lims->imsl_st[1] == MCAST_EXCLUDE) { IGMP_INET_PRINTF(ia, ("%s: t1 ex += %d on %s\n", __func__, n, _igmp_inet_buf)); ims->ims_st[1].ex += n; } else if (lims->imsl_st[1] == MCAST_INCLUDE) { IGMP_INET_PRINTF(ia, ("%s: t1 in += %d on %s\n", __func__, n, _igmp_inet_buf)); ims->ims_st[1].in += n; } } /* * Atomically update the global in_multi state, when a membership's * filter list is being updated in any way. * * imf is the per-inpcb-membership group filter pointer. * A fake imf may be passed for in-kernel consumers. * * XXX This is a candidate for a set-symmetric-difference style loop * which would eliminate the repeated lookup from root of ims nodes, * as they share the same key space. * * If any error occurred this function will back out of refcounts * and return a non-zero value. */ static int inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct ip_msource *ims, *__single nims = NULL; struct in_msource *lims; int schanged, error; int nsrc0, nsrc1; INM_LOCK_ASSERT_HELD(inm); schanged = 0; error = 0; nsrc1 = nsrc0 = 0; /* * Update the source filters first, as this may fail. * Maintain count of in-mode filters at t0, t1. These are * used to work out if we transition into ASM mode or not. * Maintain a count of source filters whose state was * actually modified by this operation. */ RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == imf->imf_st[0]) { nsrc0++; } if (lims->imsl_st[1] == imf->imf_st[1]) { nsrc1++; } if (lims->imsl_st[0] == lims->imsl_st[1]) { continue; } error = inm_get_source(inm, lims->ims_haddr, 0, &nims); ++schanged; if (error) { break; } ims_merge(nims, lims, 0); } if (error) { struct ip_msource *__single bims; RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) { continue; } (void) inm_get_source(inm, lims->ims_haddr, 1, &bims); if (bims == NULL) { continue; } ims_merge(bims, lims, 1); } goto out_reap; } IGMP_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n", __func__, nsrc0, nsrc1)); /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ if (imf->imf_st[0] == imf->imf_st[1] && imf->imf_st[1] == MCAST_INCLUDE) { if (nsrc1 == 0) { IGMP_PRINTF(("%s: --in on inm at t1\n", __func__)); --inm->inm_st[1].iss_in; } } /* Handle filter mode transition on socket. */ if (imf->imf_st[0] != imf->imf_st[1]) { IGMP_PRINTF(("%s: imf transition %d to %d\n", __func__, imf->imf_st[0], imf->imf_st[1])); if (imf->imf_st[0] == MCAST_EXCLUDE) { IGMP_PRINTF(("%s: --ex on inm at t1\n", __func__)); --inm->inm_st[1].iss_ex; } else if (imf->imf_st[0] == MCAST_INCLUDE) { IGMP_PRINTF(("%s: --in on inm at t1\n", __func__)); --inm->inm_st[1].iss_in; } if (imf->imf_st[1] == MCAST_EXCLUDE) { IGMP_PRINTF(("%s: ex++ on inm at t1\n", __func__)); inm->inm_st[1].iss_ex++; } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { IGMP_PRINTF(("%s: in++ on inm at t1\n", __func__)); inm->inm_st[1].iss_in++; } } /* * Track inm filter state in terms of listener counts. * If there are any exclusive listeners, stack-wide * membership is exclusive. * Otherwise, if only inclusive listeners, stack-wide is inclusive. * If no listeners remain, state is undefined at t1, * and the IGMP lifecycle for this group should finish. */ if (inm->inm_st[1].iss_ex > 0) { IGMP_PRINTF(("%s: transition to EX\n", __func__)); inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; } else if (inm->inm_st[1].iss_in > 0) { IGMP_PRINTF(("%s: transition to IN\n", __func__)); inm->inm_st[1].iss_fmode = MCAST_INCLUDE; } else { IGMP_PRINTF(("%s: transition to UNDEF\n", __func__)); inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; } /* Decrement ASM listener count on transition out of ASM mode. */ if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { if ((imf->imf_st[1] != MCAST_EXCLUDE) || (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { IGMP_PRINTF(("%s: --asm on inm at t1\n", __func__)); --inm->inm_st[1].iss_asm; } } /* Increment ASM listener count on transition to ASM mode. */ if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { IGMP_PRINTF(("%s: asm++ on inm at t1\n", __func__)); inm->inm_st[1].iss_asm++; } IGMP_PRINTF(("%s: merged imf 0x%llx to inm 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(imf), (uint64_t)VM_KERNEL_ADDRPERM(inm))); inm_print(inm); out_reap: if (schanged > 0) { IGMP_PRINTF(("%s: sources changed; reaping\n", __func__)); inm_reap(inm); } return error; } /* * Mark an in_multi's filter set deltas as committed. * Called by IGMP after a state change has been enqueued. */ void inm_commit(struct in_multi *inm) { struct ip_msource *ims; INM_LOCK_ASSERT_HELD(inm); IGMP_PRINTF(("%s: commit inm 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm))); IGMP_PRINTF(("%s: pre commit:\n", __func__)); inm_print(inm); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { ims->ims_st[0] = ims->ims_st[1]; } inm->inm_st[0] = inm->inm_st[1]; } /* * Reap unreferenced nodes from an in_multi's filter set. */ static void inm_reap(struct in_multi *inm) { struct ip_msource *ims, *tims; INM_LOCK_ASSERT_HELD(inm); RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || ims->ims_stp != 0) { continue; } IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(ims))); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); ipms_free(ims); inm->inm_nsrc--; } } /* * Purge all source nodes from an in_multi's filter set. */ void inm_purge(struct in_multi *inm) { struct ip_msource *ims, *tims; INM_LOCK_ASSERT_HELD(inm); RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(ims))); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); ipms_free(ims); inm->inm_nsrc--; } } /* * Join a multicast group; real entry point. * * Only preserves atomicity at inm level. * NOTE: imf argument cannot be const due to sys/tree.h limitations. * * If the IGMP downcall fails, the group is not joined, and an error * code is returned. */ static int in_joingroup(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { struct in_mfilter timf; struct in_multi *__single inm = NULL; int error = 0; struct igmp_tparams itp; IGMP_INET_PRINTF(*gina, ("%s: join %s on 0x%llx(%s))\n", __func__, _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp))); bzero(&itp, sizeof(itp)); *pinm = NULL; /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); imf = &timf; } error = in_getmulti(ifp, gina, &inm); if (error) { IGMP_PRINTF(("%s: in_getmulti() failure\n", __func__)); return error; } IGMP_PRINTF(("%s: merge inm state\n", __func__)); INM_LOCK(inm); error = inm_merge(inm, imf); if (error) { IGMP_PRINTF(("%s: failed to merge inm state\n", __func__)); goto out_inm_release; } IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); error = igmp_change_state(inm, &itp); if (error) { IGMP_PRINTF(("%s: failed to update source\n", __func__)); imf_rollback(imf); goto out_inm_release; } out_inm_release: if (error) { IGMP_PRINTF(("%s: dropping ref on 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm))); INM_UNLOCK(inm); INM_REMREF(inm); } else { INM_UNLOCK(inm); *pinm = inm; /* keep refcount from in_getmulti() */ } /* schedule timer now that we've dropped the lock(s) */ igmp_set_fast_timeout(&itp); return error; } /* * Leave a multicast group; real entry point. * All source filters will be expunged. * * Only preserves atomicity at inm level. * * Note: This is not the same as inm_release(*) as this function also * makes a state change downcall into IGMP. */ int in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct in_mfilter timf; int error, lastref; struct igmp_tparams itp; bzero(&itp, sizeof(itp)); error = 0; INM_LOCK_ASSERT_NOTHELD(inm); in_multihead_lock_exclusive(); INM_LOCK(inm); IGMP_INET_PRINTF(inm->inm_addr, ("%s: leave inm 0x%llx, %s/%s%d, imf 0x%llx\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm), _igmp_inet_buf, (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_name), inm->inm_ifp->if_unit, (uint64_t)VM_KERNEL_ADDRPERM(imf))); /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); imf = &timf; } /* * Begin state merge transaction at IGMP layer. * * As this particular invocation should not cause any memory * to be allocated, and there is no opportunity to roll back * the transaction, it MUST NOT fail. */ IGMP_PRINTF(("%s: merge inm state\n", __func__)); error = inm_merge(inm, imf); KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__)); IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); error = igmp_change_state(inm, &itp); #if IGMP_DEBUG if (error) { IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); } #endif lastref = in_multi_detach(inm); VERIFY(!lastref || (!(inm->inm_debug & IFD_ATTACHED) && inm->inm_reqcnt == 0)); INM_UNLOCK(inm); in_multihead_lock_done(); if (lastref) { INM_REMREF(inm); /* for in_multihead list */ } /* schedule timer now that we've dropped the lock(s) */ igmp_set_fast_timeout(&itp); return error; } /* * Join an IPv4 multicast group in (*,G) exclusive mode. * The group must be a 224.0.0.0/24 link-scope group. * This KPI is for legacy kernel consumers only. */ struct in_multi * in_addmulti(struct in_addr *ap, struct ifnet *ifp) { struct in_multi *__single pinm = NULL; int error; KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), ("%s: %s not in 224.0.0.0/24\n", __func__, inet_ntoa(*ap))); error = in_joingroup(ifp, ap, NULL, &pinm); VERIFY(pinm != NULL || error != 0); return pinm; } /* * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode. * This KPI is for legacy kernel consumers only. */ void in_delmulti(struct in_multi *inm) { (void) in_leavegroup(inm, NULL); } /* * Block or unblock an ASM multicast source on an inpcb. * This implements the delta-based API described in RFC 3678. * * The delta-based API applies only to exclusive-mode memberships. * An IGMP downcall will be performed. * * Return 0 if successful, otherwise return an appropriate error code. */ static int inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct sockaddr_in *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; size_t idx; uint8_t fmode; int error, doblock; unsigned int ifindex = 0; struct igmp_tparams itp; bzero(&itp, sizeof(itp)); ifp = NULL; error = 0; doblock = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = SIN(&gsr.gsr_group); ssa = SIN(&gsr.gsr_source); switch (sopt->sopt_name) { case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: { struct ip_mreq_source mreqs; error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); if (error) { return error; } gsa->sin_family = AF_INET; gsa->sin_len = sizeof(struct sockaddr_in); gsa->sin_addr = mreqs.imr_multiaddr; ssa->sin_family = AF_INET; ssa->sin_len = sizeof(struct sockaddr_in); ssa->sin_addr = mreqs.imr_sourceaddr; if (!in_nullhost(mreqs.imr_interface)) { ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex); } if (sopt->sopt_name == IP_BLOCK_SOURCE) { doblock = 1; } IGMP_INET_PRINTF(mreqs.imr_interface, ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__, _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp))); break; } case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); if (error) { return error; } if (gsa->sin_family != AF_INET || gsa->sin_len != sizeof(struct sockaddr_in)) { return EINVAL; } if (ssa->sin_family != AF_INET || ssa->sin_len != sizeof(struct sockaddr_in)) { return EINVAL; } ifnet_head_lock_shared(); if (gsr.gsr_interface == 0 || !IF_INDEX_IN_RANGE(gsr.gsr_interface)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[gsr.gsr_interface]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } if (sopt->sopt_name == MCAST_BLOCK_SOURCE) { doblock = 1; } break; default: IGMP_PRINTF(("%s: unknown sopt_name %d\n", __func__, sopt->sopt_name)); return EOPNOTSUPP; } if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { return EINVAL; } /* * Check if we are actually a member of this group. */ imo = inp_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IMO_LOCK(imo); idx = imo_match_group(imo, ifp, gsa); if (idx == (size_t)-1 || imo->imo_mfilters == NULL) { error = EADDRNOTAVAIL; goto out_imo_locked; } VERIFY(imo->imo_mfilters != NULL); imf = &imo->imo_mfilters[idx]; inm = imo->imo_membership[idx]; /* * Attempting to use the delta-based API on an * non exclusive-mode membership is an error. */ fmode = imf->imf_st[0]; if (fmode != MCAST_EXCLUDE) { error = EINVAL; goto out_imo_locked; } /* * Deal with error cases up-front: * Asked to block, but already blocked; or * Asked to unblock, but nothing to unblock. * If adding a new block entry, allocate it. */ ims = imo_match_source(imo, idx, ssa); if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { IGMP_INET_PRINTF(ssa->sin_addr, ("%s: source %s %spresent\n", __func__, _igmp_inet_buf, doblock ? "" : "not ")); error = EADDRNOTAVAIL; goto out_imo_locked; } /* * Begin state merge transaction at socket layer. */ if (doblock) { IGMP_PRINTF(("%s: %s source\n", __func__, "block")); ims = imf_graft(imf, fmode, ssa); if (ims == NULL) { error = ENOMEM; } } else { IGMP_PRINTF(("%s: %s source\n", __func__, "allow")); error = imf_prune(imf, ssa); } if (error) { IGMP_PRINTF(("%s: merge imf state failed\n", __func__)); goto out_imf_rollback; } /* * Begin state merge transaction at IGMP layer. */ INM_LOCK(inm); IGMP_PRINTF(("%s: merge inm state\n", __func__)); error = inm_merge(inm, imf); if (error) { IGMP_PRINTF(("%s: failed to merge inm state\n", __func__)); INM_UNLOCK(inm); goto out_imf_rollback; } IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); error = igmp_change_state(inm, &itp); INM_UNLOCK(inm); #if IGMP_DEBUG if (error) { IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); } #endif out_imf_rollback: if (error) { imf_rollback(imf); } else { imf_commit(imf); } imf_reap(imf); out_imo_locked: IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ /* schedule timer now that we've dropped the lock(s) */ igmp_set_fast_timeout(&itp); return error; } /* * Given an inpcb, return its multicast options structure pointer. * * Caller is responsible for locking the inpcb, and releasing the * extra reference held on the imo, upon a successful return. */ static struct ip_moptions * inp_findmoptions(struct inpcb *inp) { struct ip_moptions *imo; struct in_multi **immp; struct in_mfilter *imfp; size_t idx; if ((imo = inp->inp_moptions) != NULL) { IMO_ADDREF(imo); /* for caller */ return imo; } imo = ip_allocmoptions(Z_WAITOK); if (imo == NULL) { return NULL; } immp = kalloc_type(struct in_multi *, IP_MIN_MEMBERSHIPS, Z_WAITOK | Z_ZERO | Z_NOFAIL); imfp = kalloc_type(struct in_mfilter, IP_MIN_MEMBERSHIPS, Z_WAITOK | Z_ZERO | Z_NOFAIL); imo->imo_multicast_ifp = NULL; imo->imo_multicast_addr.s_addr = INADDR_ANY; imo->imo_multicast_vif = -1; imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; imo->imo_multicast_loop = !!in_mcast_loop; imo->imo_num_memberships = 0; imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; imo->imo_membership = immp; imo->imo_mfilters = imfp; /* Initialize per-group source filters. */ for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) { imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); } inp->inp_moptions = imo; /* keep reference from ip_allocmoptions() */ IMO_ADDREF(imo); /* for caller */ return imo; } /* * Atomically get source filters on a socket for an IPv4 multicast group. */ static int inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq64 msfr = {}, msfr64; struct __msfilterreq32 msfr32; struct sockaddr_in *gsa; struct ifnet *ifp; struct ip_moptions *imo; struct in_mfilter *imf; struct ip_msource *ims; struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *ptss; struct sockaddr_storage *tss; int error; size_t idx; uint32_t nsrcs, ncsrcs; user_addr_t tmp_ptr; imo = inp->inp_moptions; VERIFY(imo != NULL); int is_64bit_proc = IS_64BIT_PROCESS(current_proc()); if (is_64bit_proc) { error = sooptcopyin(sopt, &msfr64, sizeof(struct __msfilterreq64), sizeof(struct __msfilterreq64)); if (error) { return error; } /* we never use msfr.msfr_srcs; */ memcpy(&msfr, &msfr64, sizeof(msfr64)); } else { error = sooptcopyin(sopt, &msfr32, sizeof(struct __msfilterreq32), sizeof(struct __msfilterreq32)); if (error) { return error; } /* we never use msfr.msfr_srcs; */ memcpy(&msfr, &msfr32, sizeof(msfr32)); } ifnet_head_lock_shared(); if (msfr.msfr_ifindex == 0 || !IF_INDEX_IN_RANGE(msfr.msfr_ifindex)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[msfr.msfr_ifindex]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } if ((size_t) msfr.msfr_nsrcs > UINT32_MAX / sizeof(struct sockaddr_storage)) { msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage); } if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) { msfr.msfr_nsrcs = in_mcast_maxsocksrc; } IMO_LOCK(imo); /* * Lookup group on the socket. */ gsa = SIN(&msfr.msfr_group); idx = imo_match_group(imo, ifp, gsa); if (idx == (size_t)-1 || imo->imo_mfilters == NULL) { IMO_UNLOCK(imo); return EADDRNOTAVAIL; } imf = &imo->imo_mfilters[idx]; /* * Ignore memberships which are in limbo. */ if (imf->imf_st[1] == MCAST_UNDEFINED) { IMO_UNLOCK(imo); return EAGAIN; } msfr.msfr_fmode = imf->imf_st[1]; /* * If the user specified a buffer, copy out the source filter * entries to userland gracefully. * We only copy out the number of entries which userland * has asked for, but we always tell userland how big the * buffer really needs to be. */ if (is_64bit_proc) { tmp_ptr = CAST_USER_ADDR_T(msfr64.msfr_srcs); } else { tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs); } tss = NULL; if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) { tss = kalloc_data((size_t)msfr.msfr_nsrcs * sizeof(*tss), Z_WAITOK | Z_ZERO); if (tss == NULL) { IMO_UNLOCK(imo); return ENOBUFS; } } /* * Count number of sources in-mode at t0. * If buffer space exists and remains, copy out source entries. */ nsrcs = msfr.msfr_nsrcs; ncsrcs = 0; ptss = tss; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == MCAST_UNDEFINED || lims->imsl_st[0] != imf->imf_st[0]) { continue; } if (tss != NULL && nsrcs > 0) { psin = SIN(ptss); psin->sin_family = AF_INET; psin->sin_len = sizeof(struct sockaddr_in); psin->sin_addr.s_addr = htonl(lims->ims_haddr); psin->sin_port = 0; ++ptss; --nsrcs; ++ncsrcs; } } IMO_UNLOCK(imo); if (tss != NULL) { error = copyout(tss, CAST_USER_ADDR_T(tmp_ptr), ncsrcs * sizeof(*tss)); kfree_data(tss, (size_t)msfr.msfr_nsrcs * sizeof(*tss)); if (error) { return error; } } msfr.msfr_nsrcs = ncsrcs; if (is_64bit_proc) { msfr64.msfr_ifindex = msfr.msfr_ifindex; msfr64.msfr_fmode = msfr.msfr_fmode; msfr64.msfr_nsrcs = msfr.msfr_nsrcs; memcpy(&msfr64.msfr_group, &msfr.msfr_group, sizeof(struct sockaddr_storage)); error = sooptcopyout(sopt, &msfr64, sizeof(struct __msfilterreq64)); } else { msfr32.msfr_ifindex = msfr.msfr_ifindex; msfr32.msfr_fmode = msfr.msfr_fmode; msfr32.msfr_nsrcs = msfr.msfr_nsrcs; memcpy(&msfr32.msfr_group, &msfr.msfr_group, sizeof(struct sockaddr_storage)); error = sooptcopyout(sopt, &msfr32, sizeof(struct __msfilterreq32)); } return error; } /* * Return the IP multicast options in response to user getsockopt(). */ int inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip_mreqn mreqn; struct ip_moptions *imo; struct ifnet *ifp; struct in_ifaddr *ia; int error, optval; unsigned int ifindex; u_char coptval; imo = inp->inp_moptions; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT || (SOCK_TYPE(inp->inp_socket) != SOCK_RAW && SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) { return EOPNOTSUPP; } error = 0; switch (sopt->sopt_name) { case IP_MULTICAST_IF: memset(&mreqn, 0, sizeof(struct ip_mreqn)); if (imo != NULL) { IMO_LOCK(imo); ifp = imo->imo_multicast_ifp; if (!in_nullhost(imo->imo_multicast_addr)) { mreqn.imr_address = imo->imo_multicast_addr; } else if (ifp != NULL) { mreqn.imr_ifindex = ifp->if_index; IFP_TO_IA(ifp, ia); if (ia != NULL) { IFA_LOCK_SPIN(&ia->ia_ifa); mreqn.imr_address = IA_SIN(ia)->sin_addr; IFA_UNLOCK(&ia->ia_ifa); ifa_remref(&ia->ia_ifa); } } IMO_UNLOCK(imo); } if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { error = sooptcopyout(sopt, &mreqn, sizeof(struct ip_mreqn)); } else { error = sooptcopyout(sopt, &mreqn.imr_address, sizeof(struct in_addr)); } break; case IP_MULTICAST_IFINDEX: if (imo != NULL) { IMO_LOCK(imo); } if (imo == NULL || imo->imo_multicast_ifp == NULL) { ifindex = 0; } else { ifindex = imo->imo_multicast_ifp->if_index; } if (imo != NULL) { IMO_UNLOCK(imo); } error = sooptcopyout(sopt, &ifindex, sizeof(ifindex)); break; case IP_MULTICAST_TTL: if (imo == NULL) { optval = coptval = IP_DEFAULT_MULTICAST_TTL; } else { IMO_LOCK(imo); optval = coptval = imo->imo_multicast_ttl; IMO_UNLOCK(imo); } if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyout(sopt, &coptval, sizeof(u_char)); } else { error = sooptcopyout(sopt, &optval, sizeof(int)); } break; case IP_MULTICAST_LOOP: if (imo == 0) { optval = coptval = IP_DEFAULT_MULTICAST_LOOP; } else { IMO_LOCK(imo); optval = coptval = imo->imo_multicast_loop; IMO_UNLOCK(imo); } if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyout(sopt, &coptval, sizeof(u_char)); } else { error = sooptcopyout(sopt, &optval, sizeof(int)); } break; case IP_MSFILTER: if (imo == NULL) { error = EADDRNOTAVAIL; } else { error = inp_get_source_filters(inp, sopt); } break; default: error = ENOPROTOOPT; break; } return error; } /* * Look up the ifnet to use for a multicast group membership, * given the IPv4 address of an interface, and the IPv4 group address. * * This routine exists to support legacy multicast applications * which do not understand that multicast memberships are scoped to * specific physical links in the networking stack, or which need * to join link-scope groups before IPv4 addresses are configured. * * If inp is non-NULL and is bound to an interface, use this socket's * inp_boundif for any required routing table lookup. * * If the route lookup fails, attempt to use the first non-loopback * interface with multicast capability in the system as a * last resort. The legacy IPv4 ASM API requires that we do * this in order to allow groups to be joined when the routing * table has not yet been populated during boot. * * Returns NULL if no ifp could be found. * */ static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *inp, const struct sockaddr_in *gsin, const struct in_addr ina) { struct ifnet *ifp; unsigned int ifindex = 0; VERIFY(gsin->sin_family == AF_INET); VERIFY(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr))); ifp = NULL; if (!in_nullhost(ina)) { struct in_addr new_ina; memcpy(&new_ina, &ina, sizeof(struct in_addr)); ifp = ip_multicast_if(&new_ina, &ifindex); } else { struct route ro; unsigned int ifscope = IFSCOPE_NONE; if (inp != NULL && (inp->inp_flags & INP_BOUND_IF)) { ifscope = inp->inp_boundifp->if_index; } bzero(&ro, sizeof(ro)); memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in)); rtalloc_scoped_ign(&ro, 0, ifscope); if (ro.ro_rt != NULL) { ifp = ro.ro_rt->rt_ifp; VERIFY(ifp != NULL); } else { struct in_ifaddr *ia; struct ifnet *mifp; mifp = NULL; lck_rw_lock_shared(&in_ifaddr_rwlock); TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { IFA_LOCK_SPIN(&ia->ia_ifa); mifp = ia->ia_ifp; IFA_UNLOCK(&ia->ia_ifa); if (!(mifp->if_flags & IFF_LOOPBACK) && (mifp->if_flags & IFF_MULTICAST)) { ifp = mifp; break; } } lck_rw_done(&in_ifaddr_rwlock); } ROUTE_RELEASE(&ro); } return ifp; } /* * Join an IPv4 multicast group, possibly with a source. * * NB: sopt->sopt_val might point to the kernel address space. This means that * we were called by the IPv6 stack due to the presence of an IPv6 v4 mapped * address. In this scenario, sopt_p points to kernproc and sooptcopyin() will * just issue an in-kernel memcpy. */ int inp_join_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct sockaddr_in *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *__single inm = NULL; struct in_msource *lims; size_t idx; int error, is_new; struct igmp_tparams itp; bzero(&itp, sizeof(itp)); ifp = NULL; imf = NULL; error = 0; is_new = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = SIN(&gsr.gsr_group); gsa->sin_family = AF_UNSPEC; ssa = SIN(&gsr.gsr_source); ssa->sin_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: { struct ip_mreq_source mreqs; if (sopt->sopt_name == IP_ADD_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); /* * Do argument switcharoo from ip_mreq into * ip_mreq_source to avoid using two instances. */ mreqs.imr_interface = mreqs.imr_sourceaddr; mreqs.imr_sourceaddr.s_addr = INADDR_ANY; } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); } if (error) { IGMP_PRINTF(("%s: error copyin IP_ADD_MEMBERSHIP/" "IP_ADD_SOURCE_MEMBERSHIP %d err=%d\n", __func__, sopt->sopt_name, error)); return error; } gsa->sin_family = AF_INET; gsa->sin_len = sizeof(struct sockaddr_in); gsa->sin_addr = mreqs.imr_multiaddr; if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { ssa->sin_family = AF_INET; ssa->sin_len = sizeof(struct sockaddr_in); ssa->sin_addr = mreqs.imr_sourceaddr; } if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { return EINVAL; } ifp = inp_lookup_mcast_ifp(inp, gsa, mreqs.imr_interface); IGMP_INET_PRINTF(mreqs.imr_interface, ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__, _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp))); break; } case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: if (sopt->sopt_name == MCAST_JOIN_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) { return error; } if (gsa->sin_family != AF_INET || gsa->sin_len != sizeof(struct sockaddr_in)) { return EINVAL; } /* * Overwrite the port field if present, as the sockaddr * being copied in may be matched with a binary comparison. */ gsa->sin_port = 0; if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { if (ssa->sin_family != AF_INET || ssa->sin_len != sizeof(struct sockaddr_in)) { return EINVAL; } ssa->sin_port = 0; } if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { return EINVAL; } ifnet_head_lock_shared(); if (gsr.gsr_interface == 0 || !IF_INDEX_IN_RANGE(gsr.gsr_interface)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[gsr.gsr_interface]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } break; default: IGMP_PRINTF(("%s: unknown sopt_name %d\n", __func__, sopt->sopt_name)); return EOPNOTSUPP; } if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { return EADDRNOTAVAIL; } INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_total); /* * TBD: revisit the criteria for non-OS initiated joins */ if (inp->inp_lport == htons(5353)) { INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_os_total); } imo = inp_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IMO_LOCK(imo); idx = imo_match_group(imo, ifp, gsa); if (idx == (size_t)-1) { is_new = 1; } else { inm = imo->imo_membership[idx]; imf = &imo->imo_mfilters[idx]; if (ssa->sin_family != AF_UNSPEC) { /* * MCAST_JOIN_SOURCE_GROUP on an exclusive membership * is an error. On an existing inclusive membership, * it just adds the source to the filter list. */ if (imf->imf_st[1] != MCAST_INCLUDE) { error = EINVAL; goto out_imo_locked; } /* * Throw out duplicates. * * XXX FIXME: This makes a naive assumption that * even if entries exist for *ssa in this imf, * they will be rejected as dupes, even if they * are not valid in the current mode (in-mode). * * in_msource is transactioned just as for anything * else in SSM -- but note naive use of inm_graft() * below for allocating new filter entries. * * This is only an issue if someone mixes the * full-state SSM API with the delta-based API, * which is discouraged in the relevant RFCs. */ lims = imo_match_source(imo, idx, ssa); if (lims != NULL /*&& * lims->imsl_st[1] == MCAST_INCLUDE*/) { error = EADDRNOTAVAIL; goto out_imo_locked; } } else { /* * MCAST_JOIN_GROUP on an existing exclusive * membership is an error; return EADDRINUSE * to preserve 4.4BSD API idempotence, and * avoid tedious detour to code below. * NOTE: This is bending RFC 3678 a bit. * * On an existing inclusive membership, this is also * an error; if you want to change filter mode, * you must use the userland API setsourcefilter(). * XXX We don't reject this for imf in UNDEFINED * state at t1, because allocation of a filter * is atomic with allocation of a membership. */ error = EINVAL; /* See comments above for EADDRINUSE */ if (imf->imf_st[1] == MCAST_EXCLUDE) { error = EADDRINUSE; } goto out_imo_locked; } } /* * Begin state merge transaction at socket layer. */ if (is_new) { if (imo->imo_num_memberships == imo->imo_max_memberships) { error = imo_grow(imo, 0); if (error) { goto out_imo_locked; } } /* * Allocate the new slot upfront so we can deal with * grafting the new source filter in same code path * as for join-source on existing membership. */ idx = imo->imo_num_memberships; imo->imo_membership[idx] = NULL; imo->imo_num_memberships++; VERIFY(imo->imo_mfilters != NULL); imf = &imo->imo_mfilters[idx]; VERIFY(RB_EMPTY(&imf->imf_sources)); } /* * Graft new source into filter list for this inpcb's * membership of the group. The in_multi may not have * been allocated yet if this is a new membership, however, * the in_mfilter slot will be allocated and must be initialized. */ if (ssa->sin_family != AF_UNSPEC) { /* Membership starts in IN mode */ if (is_new) { IGMP_PRINTF(("%s: new join w/source\n", __func__)); imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); } else { IGMP_PRINTF(("%s: %s source\n", __func__, "allow")); } lims = imf_graft(imf, MCAST_INCLUDE, ssa); if (lims == NULL) { IGMP_PRINTF(("%s: merge imf state failed\n", __func__)); error = ENOMEM; goto out_imo_free; } } else { /* No address specified; Membership starts in EX mode */ if (is_new) { IGMP_PRINTF(("%s: new join w/o source\n", __func__)); imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); } } /* * Begin state merge transaction at IGMP layer. */ if (is_new) { VERIFY(inm == NULL); error = in_joingroup(ifp, &gsa->sin_addr, imf, &inm); VERIFY(inm != NULL || error != 0); if (error) { goto out_imo_free; } imo->imo_membership[idx] = inm; /* from in_joingroup() */ } else { IGMP_PRINTF(("%s: merge inm state\n", __func__)); INM_LOCK(inm); error = inm_merge(inm, imf); if (error) { IGMP_PRINTF(("%s: failed to merge inm state\n", __func__)); INM_UNLOCK(inm); goto out_imf_rollback; } IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); error = igmp_change_state(inm, &itp); INM_UNLOCK(inm); if (error) { IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); goto out_imf_rollback; } } out_imf_rollback: if (error) { imf_rollback(imf); if (is_new) { imf_purge(imf); } else { imf_reap(imf); } } else { imf_commit(imf); } out_imo_free: if (error && is_new) { VERIFY(inm == NULL); imo->imo_membership[idx] = NULL; --imo->imo_num_memberships; } out_imo_locked: IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ /* schedule timer now that we've dropped the lock(s) */ igmp_set_fast_timeout(&itp); return error; } /* * Leave an IPv4 multicast group on an inpcb, possibly with a source. * * NB: sopt->sopt_val might point to the kernel address space. Refer to the * block comment on top of inp_join_group() for more information. */ int inp_leave_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct ip_mreq_source mreqs; struct sockaddr_in *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm = NULL; size_t idx; int error, is_final; unsigned int ifindex = 0; struct igmp_tparams itp; bzero(&itp, sizeof(itp)); ifp = NULL; error = 0; is_final = 1; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = SIN(&gsr.gsr_group); ssa = SIN(&gsr.gsr_source); switch (sopt->sopt_name) { case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); /* * Swap interface and sourceaddr arguments, * as ip_mreq and ip_mreq_source are laid * out differently. */ mreqs.imr_interface = mreqs.imr_sourceaddr; mreqs.imr_sourceaddr.s_addr = INADDR_ANY; } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); } if (error) { return error; } gsa->sin_family = AF_INET; gsa->sin_len = sizeof(struct sockaddr_in); gsa->sin_addr = mreqs.imr_multiaddr; if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { ssa->sin_family = AF_INET; ssa->sin_len = sizeof(struct sockaddr_in); ssa->sin_addr = mreqs.imr_sourceaddr; } /* * Attempt to look up hinted ifp from interface address. * Fallthrough with null ifp iff lookup fails, to * preserve 4.4BSD mcast API idempotence. * XXX NOTE WELL: The RFC 3678 API is preferred because * using an IPv4 address as a key is racy. */ if (!in_nullhost(mreqs.imr_interface)) { ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex); } IGMP_INET_PRINTF(mreqs.imr_interface, ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__, _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp))); break; case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: if (sopt->sopt_name == MCAST_LEAVE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) { return error; } if (gsa->sin_family != AF_INET || gsa->sin_len != sizeof(struct sockaddr_in)) { return EINVAL; } if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { if (ssa->sin_family != AF_INET || ssa->sin_len != sizeof(struct sockaddr_in)) { return EINVAL; } } ifnet_head_lock_shared(); if (gsr.gsr_interface == 0 || !IF_INDEX_IN_RANGE(gsr.gsr_interface)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[gsr.gsr_interface]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } break; default: IGMP_PRINTF(("%s: unknown sopt_name %d\n", __func__, sopt->sopt_name)); return EOPNOTSUPP; } if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { return EINVAL; } /* * Find the membership in the membership array. */ imo = inp_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IMO_LOCK(imo); idx = imo_match_group(imo, ifp, gsa); if (idx == (size_t)-1) { error = EADDRNOTAVAIL; goto out_locked; } inm = imo->imo_membership[idx]; if (inm == NULL) { error = EINVAL; goto out_locked; } imf = &imo->imo_mfilters[idx]; if (ssa->sin_family != AF_UNSPEC) { IGMP_PRINTF(("%s: opt=%d is_final=0\n", __func__, sopt->sopt_name)); is_final = 0; } /* * Begin state merge transaction at socket layer. */ /* * If we were instructed only to leave a given source, do so. * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. */ if (is_final) { imf_leave(imf); } else { if (imf->imf_st[0] == MCAST_EXCLUDE) { error = EADDRNOTAVAIL; goto out_locked; } ims = imo_match_source(imo, idx, ssa); if (ims == NULL) { IGMP_INET_PRINTF(ssa->sin_addr, ("%s: source %s %spresent\n", __func__, _igmp_inet_buf, "not ")); error = EADDRNOTAVAIL; goto out_locked; } IGMP_PRINTF(("%s: %s source\n", __func__, "block")); error = imf_prune(imf, ssa); if (error) { IGMP_PRINTF(("%s: merge imf state failed\n", __func__)); goto out_locked; } } /* * Begin state merge transaction at IGMP layer. */ if (is_final) { /* * Give up the multicast address record to which * the membership points. Reference held in imo * will be released below. */ (void) in_leavegroup(inm, imf); } else { IGMP_PRINTF(("%s: merge inm state\n", __func__)); INM_LOCK(inm); error = inm_merge(inm, imf); if (error) { IGMP_PRINTF(("%s: failed to merge inm state\n", __func__)); INM_UNLOCK(inm); goto out_imf_rollback; } IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); error = igmp_change_state(inm, &itp); if (error) { IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); } INM_UNLOCK(inm); } out_imf_rollback: if (error) { imf_rollback(imf); } else { imf_commit(imf); } imf_reap(imf); if (is_final) { /* Remove the gap in the membership array and filter array. */ VERIFY(inm == imo->imo_membership[idx]); INM_REMREF(inm); for (++idx; idx < imo->imo_num_memberships; ++idx) { imo->imo_membership[idx - 1] = imo->imo_membership[idx]; imo->imo_mfilters[idx - 1] = imo->imo_mfilters[idx]; } imo->imo_num_memberships--; /* Re-initialize the now unused tail of the list */ imo->imo_membership[imo->imo_num_memberships] = NULL; imf_init(&imo->imo_mfilters[imo->imo_num_memberships], MCAST_UNDEFINED, MCAST_EXCLUDE); } out_locked: IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ /* schedule timer now that we've dropped the lock(s) */ igmp_set_fast_timeout(&itp); return error; } /* * Select the interface for transmitting IPv4 multicast datagrams. * * Either an instance of struct in_addr or an instance of struct ip_mreqn * may be passed to this socket option. An address of INADDR_ANY or an * interface index of 0 is used to remove a previous selection. * When no interface is selected, one is chosen for every send. */ static int inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) { struct in_addr addr; struct ip_mreqn mreqn; struct ifnet *ifp; struct ip_moptions *imo; int error = 0; unsigned int ifindex = 0; bzero(&addr, sizeof(addr)); if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { /* * An interface index was specified using the * Linux-derived ip_mreqn structure. */ error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); if (error) { return error; } ifnet_head_lock_shared(); if (mreqn.imr_ifindex < 0 || !IF_INDEX_IN_RANGE(mreqn.imr_ifindex)) { ifnet_head_done(); return EINVAL; } if (mreqn.imr_ifindex == 0) { ifp = NULL; } else { ifp = ifindex2ifnet[mreqn.imr_ifindex]; if (ifp == NULL) { ifnet_head_done(); return EADDRNOTAVAIL; } } ifnet_head_done(); } else { /* * An interface was specified by IPv4 address. * This is the traditional BSD usage. */ error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), sizeof(struct in_addr)); if (error) { return error; } if (in_nullhost(addr)) { ifp = NULL; } else { ifp = ip_multicast_if(&addr, &ifindex); if (ifp == NULL) { IGMP_INET_PRINTF(addr, ("%s: can't find ifp for addr=%s\n", __func__, _igmp_inet_buf)); return EADDRNOTAVAIL; } } } /* Reject interfaces which do not support multicast. */ if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) { return EOPNOTSUPP; } imo = inp_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IMO_LOCK(imo); imo->imo_multicast_ifp = ifp; if (ifindex) { imo->imo_multicast_addr = addr; } else { imo->imo_multicast_addr.s_addr = INADDR_ANY; } IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ return 0; } /* * Atomically set source filters on a socket for an IPv4 multicast group. */ static int inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq64 msfr = {}, msfr64; struct __msfilterreq32 msfr32; struct sockaddr_in *gsa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; size_t idx; int error; uint64_t tmp_ptr; struct igmp_tparams itp; bzero(&itp, sizeof(itp)); int is_64bit_proc = IS_64BIT_PROCESS(current_proc()); if (is_64bit_proc) { error = sooptcopyin(sopt, &msfr64, sizeof(struct __msfilterreq64), sizeof(struct __msfilterreq64)); if (error) { return error; } /* we never use msfr.msfr_srcs; */ memcpy(&msfr, &msfr64, sizeof(msfr64)); } else { error = sooptcopyin(sopt, &msfr32, sizeof(struct __msfilterreq32), sizeof(struct __msfilterreq32)); if (error) { return error; } /* we never use msfr.msfr_srcs; */ memcpy(&msfr, &msfr32, sizeof(msfr32)); } if ((size_t) msfr.msfr_nsrcs > UINT32_MAX / sizeof(struct sockaddr_storage)) { msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage); } if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) { return ENOBUFS; } if ((msfr.msfr_fmode != MCAST_EXCLUDE && msfr.msfr_fmode != MCAST_INCLUDE)) { return EINVAL; } if (msfr.msfr_group.ss_family != AF_INET || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) { return EINVAL; } gsa = SIN(&msfr.msfr_group); if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { return EINVAL; } gsa->sin_port = 0; /* ignore port */ ifnet_head_lock_shared(); if (msfr.msfr_ifindex == 0 || !IF_INDEX_IN_RANGE(msfr.msfr_ifindex)) { ifnet_head_done(); return EADDRNOTAVAIL; } ifp = ifindex2ifnet[msfr.msfr_ifindex]; ifnet_head_done(); if (ifp == NULL) { return EADDRNOTAVAIL; } /* * Check if this socket is a member of this group. */ imo = inp_findmoptions(inp); if (imo == NULL) { return ENOMEM; } IMO_LOCK(imo); idx = imo_match_group(imo, ifp, gsa); if (idx == (size_t)-1 || imo->imo_mfilters == NULL) { error = EADDRNOTAVAIL; goto out_imo_locked; } inm = imo->imo_membership[idx]; imf = &imo->imo_mfilters[idx]; /* * Begin state merge transaction at socket layer. */ imf->imf_st[1] = (uint8_t)msfr.msfr_fmode; /* * Apply any new source filters, if present. * Make a copy of the user-space source vector so * that we may copy them with a single copyin. This * allows us to deal with page faults up-front. */ if (msfr.msfr_nsrcs > 0) { struct in_msource *__single lims; struct sockaddr_in *psin; struct sockaddr_storage *kss, *pkss; int i; if (is_64bit_proc) { tmp_ptr = msfr64.msfr_srcs; } else { tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs); } IGMP_PRINTF(("%s: loading %lu source list entries\n", __func__, (unsigned long)msfr.msfr_nsrcs)); kss = kalloc_data((size_t)msfr.msfr_nsrcs * sizeof(*kss), Z_WAITOK); if (kss == NULL) { error = ENOMEM; goto out_imo_locked; } error = copyin(CAST_USER_ADDR_T(tmp_ptr), kss, (size_t) msfr.msfr_nsrcs * sizeof(*kss)); if (error) { kfree_data(kss, (size_t)msfr.msfr_nsrcs * sizeof(*kss)); goto out_imo_locked; } /* * Mark all source filters as UNDEFINED at t1. * Restore new group filter mode, as imf_leave() * will set it to INCLUDE. */ imf_leave(imf); imf->imf_st[1] = (uint8_t)msfr.msfr_fmode; /* * Update socket layer filters at t1, lazy-allocating * new entries. This saves a bunch of memory at the * cost of one RB_FIND() per source entry; duplicate * entries in the msfr_nsrcs vector are ignored. * If we encounter an error, rollback transaction. * * XXX This too could be replaced with a set-symmetric * difference like loop to avoid walking from root * every time, as the key space is common. */ for (i = 0, pkss = kss; (u_int)i < msfr.msfr_nsrcs; i++, pkss++) { psin = SIN(pkss); if (psin->sin_family != AF_INET) { error = EAFNOSUPPORT; break; } if (psin->sin_len != sizeof(struct sockaddr_in)) { error = EINVAL; break; } error = imf_get_source(imf, psin, &lims); if (error) { break; } lims->imsl_st[1] = imf->imf_st[1]; } kfree_data(kss, (size_t)msfr.msfr_nsrcs * sizeof(*kss)); } if (error) { goto out_imf_rollback; } /* * Begin state merge transaction at IGMP layer. */ INM_LOCK(inm); IGMP_PRINTF(("%s: merge inm state\n", __func__)); error = inm_merge(inm, imf); if (error) { IGMP_PRINTF(("%s: failed to merge inm state\n", __func__)); INM_UNLOCK(inm); goto out_imf_rollback; } IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); error = igmp_change_state(inm, &itp); INM_UNLOCK(inm); #ifdef IGMP_DEBUG if (error) { IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); } #endif out_imf_rollback: if (error) { imf_rollback(imf); } else { imf_commit(imf); } imf_reap(imf); out_imo_locked: IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ /* schedule timer now that we've dropped the lock(s) */ igmp_set_fast_timeout(&itp); return error; } /* * Set the IP multicast options in response to user setsockopt(). * * Many of the socket options handled in this function duplicate the * functionality of socket options in the regular unicast API. However, * it is not possible to merge the duplicate code, because the idempotence * of the IPv4 multicast part of the BSD Sockets API must be preserved; * the effects of these options must be treated as separate and distinct. */ int inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip_moptions *imo; int error; unsigned int ifindex; struct ifnet *ifp; error = 0; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT || (SOCK_TYPE(inp->inp_socket) != SOCK_RAW && SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) { return EOPNOTSUPP; } switch (sopt->sopt_name) { case IP_MULTICAST_IF: error = inp_set_multicast_if(inp, sopt); break; case IP_MULTICAST_IFINDEX: /* * Select the interface for outgoing multicast packets. */ error = sooptcopyin(sopt, &ifindex, sizeof(ifindex), sizeof(ifindex)); if (error) { break; } imo = inp_findmoptions(inp); if (imo == NULL) { error = ENOMEM; break; } /* * Index 0 is used to remove a previous selection. * When no interface is selected, a default one is * chosen every time a multicast packet is sent. */ if (ifindex == 0) { IMO_LOCK(imo); imo->imo_multicast_ifp = NULL; IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ break; } ifnet_head_lock_shared(); /* Don't need to check is ifindex is < 0 since it's unsigned */ if (!IF_INDEX_IN_RANGE(ifindex)) { ifnet_head_done(); IMO_REMREF(imo); /* from inp_findmoptions() */ error = ENXIO; /* per IPV6_MULTICAST_IF */ break; } ifp = ifindex2ifnet[ifindex]; ifnet_head_done(); /* If it's detached or isn't a multicast interface, bail out */ if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) { IMO_REMREF(imo); /* from inp_findmoptions() */ error = EADDRNOTAVAIL; break; } IMO_LOCK(imo); imo->imo_multicast_ifp = ifp; /* * Clear out any remnants of past IP_MULTICAST_IF. The addr * isn't really used anywhere in the kernel; we could have * iterated thru the addresses of the interface and pick one * here, but that is redundant since ip_getmoptions() already * takes care of that for INADDR_ANY. */ imo->imo_multicast_addr.s_addr = INADDR_ANY; IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ break; case IP_MULTICAST_TTL: { u_char ttl; /* * Set the IP time-to-live for outgoing multicast packets. * The original multicast API required a char argument, * which is inconsistent with the rest of the socket API. * We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &ttl, sizeof(u_char), sizeof(u_char)); if (error) { break; } } else { u_int ittl; error = sooptcopyin(sopt, &ittl, sizeof(u_int), sizeof(u_int)); if (error) { break; } if (ittl > 255) { error = EINVAL; break; } ttl = (u_char)ittl; } imo = inp_findmoptions(inp); if (imo == NULL) { error = ENOMEM; break; } IMO_LOCK(imo); imo->imo_multicast_ttl = ttl; IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ break; } case IP_MULTICAST_LOOP: { u_char loop; /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. The original multicast API required a * char argument, which is inconsistent with the rest * of the socket API. We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &loop, sizeof(u_char), sizeof(u_char)); if (error) { break; } } else { u_int iloop; error = sooptcopyin(sopt, &iloop, sizeof(u_int), sizeof(u_int)); if (error) { break; } loop = (u_char)iloop; } imo = inp_findmoptions(inp); if (imo == NULL) { error = ENOMEM; break; } IMO_LOCK(imo); imo->imo_multicast_loop = !!loop; IMO_UNLOCK(imo); IMO_REMREF(imo); /* from inp_findmoptions() */ break; } case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: error = inp_join_group(inp, sopt); break; case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = inp_leave_group(inp, sopt); break; case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = inp_block_unblock_source(inp, sopt); break; case IP_MSFILTER: error = inp_set_source_filters(inp, sopt); break; default: error = EOPNOTSUPP; break; } return error; } /* * Expose IGMP's multicast filter mode and source list(s) to userland, * keyed by (ifindex, group). * The filter mode is written out as a uint32_t, followed by * 0..n of struct in_addr. * For use by ifmcstat(8). */ static int sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS { #pragma unused(oidp) struct in_addr src = {}, group; struct ifnet *ifp; struct in_multi *inm; struct in_multistep step; struct ip_msource *ims; int *name; int retval = 0; u_int namelen; uint32_t fmode, ifindex; namelen = (u_int)arg2; if (req->newptr != USER_ADDR_NULL) { return EPERM; } if (namelen != 2) { return EINVAL; } name = __unsafe_forge_bidi_indexable(int *, arg1, namelen * sizeof(int)); ifindex = name[0]; ifnet_head_lock_shared(); if (!IF_INDEX_IN_RANGE(ifindex)) { IGMP_PRINTF(("%s: ifindex %u out of range\n", __func__, ifindex)); ifnet_head_done(); return ENOENT; } group.s_addr = name[1]; if (!IN_MULTICAST(ntohl(group.s_addr))) { IGMP_INET_PRINTF(group, ("%s: group %s is not multicast\n", __func__, _igmp_inet_buf)); ifnet_head_done(); return EINVAL; } ifp = ifindex2ifnet[ifindex]; ifnet_head_done(); if (ifp == NULL) { IGMP_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex)); return ENOENT; } in_multihead_lock_shared(); IN_FIRST_MULTI(step, inm); while (inm != NULL) { INM_LOCK(inm); if (inm->inm_ifp != ifp) { goto next; } if (!in_hosteq(inm->inm_addr, group)) { goto next; } fmode = inm->inm_st[1].iss_fmode; retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); if (retval != 0) { INM_UNLOCK(inm); break; /* abort */ } RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { #ifdef IGMP_DEBUG struct in_addr ina; ina.s_addr = htonl(ims->ims_haddr); IGMP_INET_PRINTF(ina, ("%s: visit node %s\n", __func__, _igmp_inet_buf)); #endif /* * Only copy-out sources which are in-mode. */ if (fmode != ims_get_mode(inm, ims, 1)) { IGMP_PRINTF(("%s: skip non-in-mode\n", __func__)); continue; /* process next source */ } src.s_addr = htonl(ims->ims_haddr); retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); if (retval != 0) { break; /* process next inm */ } } next: INM_UNLOCK(inm); IN_NEXT_MULTI(step, inm); } in_multihead_lock_done(); return retval; } /* * XXX * The whole multicast option thing needs to be re-thought. * Several of these options are equally applicable to non-multicast * transmission, and one (IP_MULTICAST_TTL) totally duplicates a * standard option (IP_TTL). */ /* * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index. */ static struct ifnet * ip_multicast_if(struct in_addr *a, unsigned int *ifindexp) { unsigned int ifindex; struct ifnet *ifp; if (ifindexp != NULL) { *ifindexp = 0; } if (ntohl(a->s_addr) >> 24 == 0) { ifindex = ntohl(a->s_addr) & 0xffffff; ifnet_head_lock_shared(); /* Don't need to check is ifindex is < 0 since it's unsigned */ if (!IF_INDEX_IN_RANGE(ifindex)) { ifnet_head_done(); return NULL; } ifp = ifindex2ifnet[ifindex]; ifnet_head_done(); if (ifp != NULL && ifindexp != NULL) { *ifindexp = ifindex; } } else { INADDR_TO_IFP(*a, ifp); } return ifp; } static struct in_multi * in_multi_alloc(zalloc_flags_t how) { struct in_multi *inm; if (inm_debug == 0) { inm = kalloc_type(struct in_multi, how | Z_ZERO); } else { struct in_multi_dbg *__single inm_dbg; inm_dbg = kalloc_type(struct in_multi_dbg, how | Z_ZERO); inm = (struct in_multi *__single)inm_dbg; } if (inm != NULL) { lck_mtx_init(&inm->inm_lock, &in_multihead_lock_grp, &in_multihead_lock_attr); inm->inm_debug |= IFD_ALLOC; if (inm_debug != 0) { inm->inm_debug |= IFD_DEBUG; inm->inm_trace = inm_trace; } } return inm; } static void in_multi_free(struct in_multi *inm) { INM_LOCK(inm); if (inm->inm_debug & IFD_ATTACHED) { panic("%s: attached inm=%p is being freed", __func__, inm); /* NOTREACHED */ } else if (inm->inm_ifma != NULL) { panic("%s: ifma not NULL for inm=%p", __func__, inm); /* NOTREACHED */ } else if (!(inm->inm_debug & IFD_ALLOC)) { panic("%s: inm %p cannot be freed", __func__, inm); /* NOTREACHED */ } else if (inm->inm_refcount != 0) { panic("%s: non-zero refcount inm=%p", __func__, inm); /* NOTREACHED */ } else if (inm->inm_reqcnt != 0) { panic("%s: non-zero reqcnt inm=%p", __func__, inm); /* NOTREACHED */ } /* Free any pending IGMPv3 state-change records */ IF_DRAIN(&inm->inm_scq); inm->inm_debug &= ~IFD_ALLOC; if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) == (IFD_DEBUG | IFD_TRASHED)) { lck_mtx_lock(&inm_trash_lock); TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm, inm_trash_link); lck_mtx_unlock(&inm_trash_lock); inm->inm_debug &= ~IFD_TRASHED; } INM_UNLOCK(inm); lck_mtx_destroy(&inm->inm_lock, &in_multihead_lock_grp); if (inm_debug == 0) { kfree_type(struct in_multi, inm); } else { struct in_multi_dbg *__single inm_dbg = (struct in_multi_dbg *__single)inm; kfree_type(struct in_multi_dbg, inm_dbg); inm = NULL; } } static void in_multi_attach(struct in_multi *inm) { in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE); INM_LOCK_ASSERT_HELD(inm); if (inm->inm_debug & IFD_ATTACHED) { panic("%s: Attempt to attach an already attached inm=%p", __func__, inm); /* NOTREACHED */ } else if (inm->inm_debug & IFD_TRASHED) { panic("%s: Attempt to reattach a detached inm=%p", __func__, inm); /* NOTREACHED */ } inm->inm_reqcnt++; VERIFY(inm->inm_reqcnt == 1); INM_ADDREF_LOCKED(inm); inm->inm_debug |= IFD_ATTACHED; /* * Reattach case: If debugging is enabled, take it * out of the trash list and clear IFD_TRASHED. */ if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) == (IFD_DEBUG | IFD_TRASHED)) { /* Become a regular mutex, just in case */ INM_CONVERT_LOCK(inm); lck_mtx_lock(&inm_trash_lock); TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm, inm_trash_link); lck_mtx_unlock(&inm_trash_lock); inm->inm_debug &= ~IFD_TRASHED; } LIST_INSERT_HEAD(&in_multihead, inm, inm_link); } int in_multi_detach(struct in_multi *inm) { in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE); INM_LOCK_ASSERT_HELD(inm); if (inm->inm_reqcnt == 0) { panic("%s: inm=%p negative reqcnt", __func__, inm); /* NOTREACHED */ } --inm->inm_reqcnt; if (inm->inm_reqcnt > 0) { return 0; } if (!(inm->inm_debug & IFD_ATTACHED)) { panic("%s: Attempt to detach an unattached record inm=%p", __func__, inm); /* NOTREACHED */ } else if (inm->inm_debug & IFD_TRASHED) { panic("%s: inm %p is already in trash list", __func__, inm); /* NOTREACHED */ } /* * NOTE: Caller calls IFMA_REMREF */ inm->inm_debug &= ~IFD_ATTACHED; LIST_REMOVE(inm, inm_link); if (inm->inm_debug & IFD_DEBUG) { /* Become a regular mutex, just in case */ INM_CONVERT_LOCK(inm); lck_mtx_lock(&inm_trash_lock); TAILQ_INSERT_TAIL(&inm_trash_head, (struct in_multi_dbg *)inm, inm_trash_link); lck_mtx_unlock(&inm_trash_lock); inm->inm_debug |= IFD_TRASHED; } return 1; } void inm_addref(struct in_multi *inm, int locked) { if (!locked) { INM_LOCK_SPIN(inm); } else { INM_LOCK_ASSERT_HELD(inm); } if (++inm->inm_refcount == 0) { panic("%s: inm=%p wraparound refcnt", __func__, inm); /* NOTREACHED */ } else if (inm->inm_trace != NULL) { (*inm->inm_trace)(inm, TRUE); } if (!locked) { INM_UNLOCK(inm); } } void inm_remref(struct in_multi *inm, int locked) { struct ifmultiaddr *ifma; struct igmp_ifinfo *igi; if (!locked) { INM_LOCK_SPIN(inm); } else { INM_LOCK_ASSERT_HELD(inm); } if (inm->inm_refcount == 0 || (inm->inm_refcount == 1 && locked)) { panic("%s: inm=%p negative/missing refcnt", __func__, inm); /* NOTREACHED */ } else if (inm->inm_trace != NULL) { (*inm->inm_trace)(inm, FALSE); } --inm->inm_refcount; if (inm->inm_refcount > 0) { if (!locked) { INM_UNLOCK(inm); } return; } /* * Synchronization with in_getmulti(). In the event the inm has been * detached, the underlying ifma would still be in the if_multiaddrs * list, and thus can be looked up via if_addmulti(). At that point, * the only way to find this inm is via ifma_protospec. To avoid * race conditions between the last inm_remref() of that inm and its * use via ifma_protospec, in_multihead lock is used for serialization. * In order to avoid violating the lock order, we must drop inm_lock * before acquiring in_multihead lock. To prevent the inm from being * freed prematurely, we hold an extra reference. */ ++inm->inm_refcount; INM_UNLOCK(inm); in_multihead_lock_shared(); INM_LOCK_SPIN(inm); --inm->inm_refcount; if (inm->inm_refcount > 0) { /* We've lost the race, so abort since inm is still in use */ INM_UNLOCK(inm); in_multihead_lock_done(); /* If it was locked, return it as such */ if (locked) { INM_LOCK(inm); } return; } inm_purge(inm); ifma = inm->inm_ifma; inm->inm_ifma = NULL; inm->inm_ifp = NULL; igi = inm->inm_igi; inm->inm_igi = NULL; INM_UNLOCK(inm); IFMA_LOCK_SPIN(ifma); ifma->ifma_protospec = NULL; IFMA_UNLOCK(ifma); in_multihead_lock_done(); in_multi_free(inm); if_delmulti_ifma(ifma); /* Release reference held to the underlying ifmultiaddr */ IFMA_REMREF(ifma); if (igi != NULL) { IGI_REMREF(igi); } } static void inm_trace(struct in_multi *inm, int refhold) { struct in_multi_dbg *__single inm_dbg = (struct in_multi_dbg *__single)inm; ctrace_t *tr; u_int32_t idx; u_int16_t *cnt; if (!(inm->inm_debug & IFD_DEBUG)) { panic("%s: inm %p has no debug structure", __func__, inm); /* NOTREACHED */ } if (refhold) { cnt = &inm_dbg->inm_refhold_cnt; tr = inm_dbg->inm_refhold; } else { cnt = &inm_dbg->inm_refrele_cnt; tr = inm_dbg->inm_refrele; } idx = os_atomic_inc_orig(cnt, relaxed) % INM_TRACE_HIST_SIZE; ctrace_record(&tr[idx]); } void in_multihead_lock_exclusive(void) { lck_rw_lock_exclusive(&in_multihead_lock); } void in_multihead_lock_shared(void) { lck_rw_lock_shared(&in_multihead_lock); } void in_multihead_lock_assert(int what) { #if !MACH_ASSERT #pragma unused(what) #endif LCK_RW_ASSERT(&in_multihead_lock, what); } void in_multihead_lock_done(void) { lck_rw_done(&in_multihead_lock); } static struct ip_msource * ipms_alloc(zalloc_flags_t how) { return zalloc_flags(ipms_zone, how | Z_ZERO); } static void ipms_free(struct ip_msource *ims) { zfree(ipms_zone, ims); } static struct in_msource * inms_alloc(zalloc_flags_t how) { return zalloc_flags(inms_zone, how | Z_ZERO); } static void inms_free(struct in_msource *inms) { zfree(inms_zone, inms); } #ifdef IGMP_DEBUG static const char *inm_modestrs[] = { "un", "in", "ex" }; static const char * inm_mode_str(const int mode) { if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) { return inm_modestrs[mode]; } return "??"; } static const char *inm_statestrs[] = { "not-member", "silent", "reporting", "idle", "lazy", "sleeping", "awakening", "query-pending", "sg-query-pending", "leaving" }; static const char * inm_state_str(const int state) { if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) { return inm_statestrs[state]; } return "??"; } /* * Dump an in_multi structure to the console. */ void inm_print(const struct in_multi *inm) { int t; char buf[MAX_IPv4_STR_LEN]; INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm)); if (igmp_debug == 0) { return; } inet_ntop(AF_INET, &inm->inm_addr, buf, sizeof(buf)); printf("%s: --- begin inm 0x%llx ---\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm)); printf("addr %s ifp 0x%llx(%s) ifma 0x%llx\n", buf, (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifp), if_name(inm->inm_ifp), (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifma)); printf("timer %u state %s refcount %u scq.len %u\n", inm->inm_timer, inm_state_str(inm->inm_state), inm->inm_refcount, inm->inm_scq.ifq_len); printf("igi 0x%llx nsrc %lu sctimer %u scrv %u\n", (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_igi), inm->inm_nsrc, inm->inm_sctimer, inm->inm_scrv); for (t = 0; t < 2; t++) { printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, inm_mode_str(inm->inm_st[t].iss_fmode), inm->inm_st[t].iss_asm, inm->inm_st[t].iss_ex, inm->inm_st[t].iss_in, inm->inm_st[t].iss_rec); } printf("%s: --- end inm 0x%llx ---\n", __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm)); } #else void inm_print(__unused const struct in_multi *inm) { } #endif